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  Early String Theory Expectations: (≈ 1985)

thereby explicitly avoiding the field theory divergence. The spectrum of string theory
consists of an infinite “tower” of excited states, corresponding to quantized energy levels
of the various modes of the string. Any change in the spectrum of such a tower destroys
the crucial property of modular invariance.

5.2 Non-Uniqueness in String Theory

It is understandable that this rigidity of the spectrum fueled the hope that string theory
might lead us to a unique gauge theory, and perhaps a completely unambiguous derivation
of the Standard Model from first principles. This hope is very well described by the
following paragraph from the book “The Problems of Physics” by A.J. Legget, which
dates from 1987 [35].12 The author is not a string theorist (he received the Nobel Prize in
2003 for his work on superfluidity) but echoes very accurately the atmosphere in part of
the string community around that time:
The hope is that the constraints imposed on such theories solely by the need for mathe-
matical consistency are so strong that they essentially determine a single possible theory
uniquely, and that by working out the consequences of the theory in detail one might even-
tually be able to show that there must be particles with precisely the masses, interactions,
and so on, of the known elementary particles: in other words, that the world we live in is
the only possible one.

If this had been true, this would have led us to straight to the anthropic dilemma
explained in section (3). So how does string theory avoid this?

The answer to that question emerged during two periods of revolutionary change in
our understanding, one occurring around 1986, and the the other during the first years of
this century. I will refer to these periods as the first and second string vacuum revolution.
Although string theorists love revolutions, these two are usually not on their list.

It is important to distinguish two concepts of uniqueness: uniqueness of the theory
itself, or uniqueness of its “ground states” or “vacua”. I will use these notions in a loose
sense here, because one of the issues under dispute is even how they are defined (which is
especially problematic in a universe with a positive cosmological constant, as ours seems
to have). By “vacuum” I will simply mean anything that is suitable to describe our
universe, and anything that merely differs from it by being located in a different point
in the Gauge Theory Plane. I am not trying to argue that such vacua exist, but merely
that if they do exist there are likely to exist in huge quantities. The picture that seems to
emerge is that of a perhaps unique theory, but with a huge number of vacua. Although
this picture has started emerging more than twenty years ago, most people refused to
accept it as the final outcome, and instead were (and in surprisingly many cases still are)
hoping that one of the many candidate vacua would be singled out by some still to be

12
This book also contains a remarkably prescient description of what might be called an “anthropic

landscape”, even with references to an important rôle for higher-dimensional theories, a notion that also

appeared in equally prescient work by Andrei Sakharov from 1984 [36] about a possible anthropic solution

to the cosmological constant problem. However, precisely because of the cited text about string theory,

this remained an overlooked link in the idea for more than a decade.
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From “The Problems of Physics” by Antony Legget (1987)

  Early String Theory Expectations: (≈ 1985)
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Contribution to the proceedings of the EPS conference, Uppsala, June 1987
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String Theory and the 
Standard Model

• String theory is a candidate theory of quantum gravity.

• In string theory, gravity is mediated by exchange of 
loops of closed strings.

• Only couples to matter that is also made out of strings.

• Hence the Standard Model and everything else must be 
made out of strings as well.

• But nothing suggests that this should be unique.
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interest into subsets, such that correlations are possible
only within each subset, we can hope to divide up the
problem into manageable pieces.

These arguments and examples illustrate how, under
certain possible outcomes for the actual number and
distribution of vacua, we could make well motivated
predictions. Of course the actual numbers and distri-
bution are not up to us to chose, and one can equally
well imagine scenarios in which this type of predictiv-
ity is not possible. For example, Nvac ∼ 101000 would
probably not lead to predictions, unless the distribu-
tion were very sharply peaked, or unless we make fur-
ther assumptions which drastically cut down the num-
ber of vacua.

5. Absolute numbers

The basic estimate for numbers of flux vacua [4] is

Nvac ∼ (2πL)K/2

(K/2)!
[cn]

where K is the number of distinct fluxes (K = 2b3 for
IIb on CY3) and L is a “tadpole charge” (L = χ/24 in
terms of the related CY4). The “geometric factor” [cn]
does not change this much, while other multiplicities
are probably subdominant to this one.

Typical K ∼ 100− 400 and L ∼ 500− 5000, leading
to Nvac ∼ 10500 . This is probably too large for statis-
tical selection to work.

On the other hand, this estimate did not put in all the
consistency conditions. Here are two ideas, still rather
speculative.
– Perhaps stabilizing the moduli not yet considered

in detail (e.g. brane moduli) is highly non-generic,
or perhaps most of the flux vacua become unstable
after supersymmetry breaking due to KK or stringy
modes becoming tachyonic. At present there is no
evidence for these ideas, but neither have they been
ruled out.

– Perhaps cosmological selection is important: almost
all vacua have negligible probability to come from
the “preferred initial conditions.” Negligible means
P <<< 1/Nvac, and almost all existing proposals for
wave functions or probabilty factors are not so highly
peaked, but eternal inflation has been claimed to
be (as reviewed in [26]), and it is important to know
if this is relevant for string theory (see for example
[20]).
Such considerations might drastically cut the num-

ber of vacua. While we would then need to incorpo-
rate these effects in the distribution, it is conceivable
that to a good approximation these effects are statisti-
cally independent of the properties of the distribution
which concern us, so that the statistics we are com-

puting now are the relevant ones. Even if not, it seems
very unlikely to us that cosmology will select a unique
vacuum a priori; rather we believe the problem with
these considerations taken into account will not look so
different formally (and perhaps even physically) from
the problem without them, and thus we proceed.

6. Stringy naturalness

The upshot of the previous discussion is that in this
picture, either string theory is not predictive because
there are too many vacua, or else the key to making
predictions is to count vacua, find their distributions,
and apply the principles of statistical selection.

To summarize this, we again oversimplify and de-
scribe statistical selection as follows: we propose to
show that a property X̄ cannot come out of string the-
ory by arguing that no vacuum realizing X̄ reproduces
the observed small c.c. (actually, we are considering all
properties along with the c.c.). One might ask how we
can hope to do this, given that computing the c.c. in a
specific vacuum to the required accuracy is far beyond
our abilities. The point is that it should be far easier to
characterize the distribution of c.c.’s than to compute
the c.c. in any specific vacuum. To illustrate, suppose
we can compute it at tree level, but that these results
receive complicated perturbative and non-perturbative
corrections. Rather than compute these exactly in each
vacuum, we could try to show that they are uncorre-
lated with the tree level c.c.; if true and if the tree level
distribution is simple (say uniform), the final distribu-
tion will also be simple.

If so, tractable approximations to the true distri-
bution of vacua can estimate how much unexplained
fine tuning is required to achieve the desired EFT, and
this is the underlying significance of the definition of
“stringy naturalness” we gave above.

Thus, we need to establish that vacua satisfying the
various requirements exist, and estimate their distri-
bution. We now discuss results on these two problems,
and finally return to the question of the distribution of
supersymmetry breaking scales.

7. Constructing KKLT vacua

The problem of stabilizing all moduli in a concrete
way in string compactification has been studied for al-
most 20 years. One of the early approaches was to de-
rive an effective Lagrangian by KK reduction, find a
limit in which nonperturbative effects are small, and
add sufficiently many nonperturbative corrections to
produce a generic effective potential. Such a generic
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... but this does not mean that any QFT can be 
obtained.

It also does not mean that the Standard Model is 
nothing more than a random choice from a huge 
ensemble.  

There is structure in the Standard Model, and there 
is structure in the string theory Landscape. 

The Emperor's Last Clothes?
Rept. Prog. Phys. 71:072201,2008. (20 pages)   Extended version: arXiv:0807.3249  (87 pages)

for more, see:
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Embedding the Standard Model

There are a priori two* basic classes:

1.  Standard model from closed strings

2.  Standard model from open strings

In both cases, gravity comes from  closed strings

(*) Exact perturbative string realizations, not including e.g. F-theory 
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Embedding the Standard Model

Remarkably, in both cases the gross features of the Standard Model 
come out very easily

1.  Standard model from closed strings:
     Heterotic strings naturally lead to a number of (16)‘s of SO(10).

     
2.  Standard model from open strings:
      Three classes of intersecting brane realizations.

But in all cases some details are problematic.
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Some basic 
string theory
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Polyakov action:

2.3 Symmetries

The bosonic string action S[X, γ] has the following symmetries

• Poincaré invariance in D dimensions. This transformation acts only on X, not on
γαβ

X �µ(σ, τ) = Λµ
νX

ν(σ, τ) + aµ (2.17)

• Reparametrization invariance in 2 dimensions. This is taken over from the repara-
metrization invariance of the Nambu-Goto action, and must be present for the
same reason. It is also called diffeomorphism invariance, and is in fact nothing
but a general coordinate transformation in two dimensions. Such a transforma-
tion is performed as follows. We can introduce a new function X �µ(σ�, τ �) which
describes the space-time position of every point on the string in terms of a new
parametrization σ�(σ, τ) and τ �(σ, τ). By definition this new function is therefore
X �µ(σ�, τ �) = Xµ(σ, τ). Now we write the action entirely in terms of the new vari-
ables X �, σ� and τ �. For most variables, this simply implies that we replace them in
(2.4) by the primed variables. In particular, dσdτ is replaced by dσ�dτ � and ∂α by
∂�

α. Any action could be rewritten in this manner, but this is only a symmetry if we
re-obtain the original action when we express the primed variables back in terms of
the original ones. In this particular, changing back to the original variables intro-
duces two potential problems: the change of integration measure when expressing
σ�

α in terms of σα, and the change from ∂�
α back to ∂α. Even without prior knowledge

of general relativity, one realizes that in order for this to be a symmetry we have to
transform γ as well. The complete transformation is then:

X �µ(σ�, τ �) = Xµ(σ, τ)

γ�
γδ(σ

�, τ �) =
∂σα

∂σ�γ
∂σβ

∂σ�δ γαβ(σ, τ) ,
(2.18)

where the new coordinates σ� and τ � are functions of the old ones τ and σ. Note
that we are free to change γ as we wish. If we manage to find a transformation that
gives us back the original action, then we can call the combined transformation of
X and γ a symmetry.

• Weyl invariance. This is a symmetry not seen in the Nambu-Goto action, and is a
consequence of the free function Λ we found above. Indeed, it is easy to see that
the action is invariant under

γ�
αβ(σ, τ) = Λ(σ, τ)γαβ(σ, τ) (2.19)

without changing Xµ.

The last two symmetries are redundancies of the two-dimensional theory on the world
sheet. This means that the two-dimensional action has fewer variables than it seems to
have. This is completely analogous to gauge symmetry in electrodynamics: the invariance

13

defines the embedding of the string in space-time. 
Only consistent if D=26.(µ = 0, . . . ,D − 1)

This can be overcome by replacing part of the action by a more 
general conformal field theory. 
Such a CFT provides a representation of the Virasoro algebra.

S[X, γ] = − 1
4πα�

�
dσdτ

�
−det γ

�

αβ

γαβ∂αXµ∂βXµ
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This is a recursion relation for the coefficients. Since A(1) = 0 the equation becomes

A(n + 1) =

�
n + 2

n − 1

�
A(n) (3.53)

The solution is

A(n) =
1

12
cn(n + 1)(n − 1) , (3.54)

and c can be fixed by means of the special case n = 2: this gives c = D. The final result
is a famous commutation relation,

[Lm, Ln] = (m − n)Lm+n +
1

12
c(m3 − m)δm+n , (3.55)

which is called the Virasoro algebra.

3.10 The Virasoro algebra

The Virasoro algebra is an example of a Lie-algebra, just as the familiar angular momen-
tum algebra [Ji, Jj] = i�ijkJk. Strictly speaking the Virasoro algebra given above is not
really a Lie-algebra. One of the properties of a Lie-algebra is a “product” that closes
and satisfies the Jacobi identities. For physicists, that product is usually a commutator.
However, if we regard the Ln’s as the elements, then the product does not close unless
c = 0. The solution is to add one extra element to the algebra, C, which commutes with
all the other elements and whose eigenvalues are c. An element that commutes with all
others but appears on the right hand side of commutators is called a central charge.

The Virasoro algebra has appeared here in a theory of D free bosons, with c = D. It
appears in fact in all two-dimensional field theories that have conformal invariance, but
with different values of c. Field theories with conformal invariance are called conformal
field theories.

There is another way to look at c. Remember that in the classical theory c = 0, but
that c �= 0 is generated by quantum effects. The classical form of the algebra is changed by
quantum effects. This means that the classical symmetry is broken. When this happens,
we speak of an anomaly. The coefficient c is often called the conformal anomaly.

3.11 Imposing the Virasoro constraints

In any case, the constant c �= 0 in the Virasoro algebra tells us once again that it is
inconsistent to require Ln |phys� = 0 for all n. Note however that for classical/quantum
correspondence we may accept a weaker condition, namely

�phys�| Ln |phys� = 0 (n �= 0) . (3.56)

For this to be satisfied it is sufficient to demand that

Ln |phys� = 0 for n > 0 , (3.57)

plus the reality condition L†
n = L−n. In addition there is the zero-mode condition (3.42).

26

Virasoro algebra:

The constant c measures the contribution of a term in the action. It is additive, 
and has to add up to 26.

Typically, the theory is build out of some simple building blocks, in order to get 
some computational control. 

In closed strings, there are separate algebras for left-moving and right-moving 
modes. 

One may build the left-moving sector and the right-moving separately out of 
different building blocks.
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Basic Bosonic String

c=26Xµ
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Compactified Bosonic String

CFT building block

Xµ

c=26

c=D=4
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Modular invariance

The freedom of associating left and right building blocks is 
severely limited by a constraint arising from the consistency of the 
simplest  one-loop diagram, the torus. 
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Modular invariance

Integrand must be invariant under 
τ → τ + 1

τ → −1
τ

{

− 83 −

1

!

rotated

rescaled
- 1
!

The set of such transformations of the torus forms a group, called the modular group. We
have identified two elements of that group, namely

T : τ → τ + 1

S : τ → −1

τ

It turns out that these two transformations generate the entire group. The most general
modular transformation has the form

τ → aτ + b

cτ + d
, a, b, c, d ∈ Z; ad − bc = 1 .

This group is isomorphic to SL2(Z)/Z2. The group SL2 can be defined by the set of 2 × 2
matrices

(

a b

c d

)

with determinant 1. The group SL2 contains the element −1. In the modular transfor-
mation this is indistinguishable from the identity, and for this reason the modular group is
actually isomorphic to SL2(Z)/Z2 rather than SL2(Z). One may check that the modular
transformations satisfy

(ST )3 = S2 = 1 .

We see thus that not all parameters τ give different tori.

T

S
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Modular invariance
�

d2τ

(Imτ)D/2+1
Tr e−ImτH
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Modular invariance

χi = Tri e2πi(L0−c/24)

P (τ, τ̄) =
�

ij

χi(τ)Mijξj(τ̄)

The integrand can be expressed in terms of Virasoro characters

Then the integrand is

In this formulation, modular invariance reduces to the condition

[M,T ] = [M, S] = 0

Canonical solution: Mij = δij
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Fermionic Strings

Xµ

c=D=10

D=10, c=5

ψµ
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Fermionic Strings

Modular invariance allows two solutions

IIA IIB
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Heterotic strings

Xµ

c=D=10

D=10, c=5ψµ
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Modular invariance restricts this severely. Solutions exist because 
of isomorphisms between modular group representations.

D=10ψµ

SO(16)

E8

SO(16) E8               ,        are special CFT building blocks called affine Lie algebras. 
They appear in the spectrum as gauge symmetries
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Another solution:

D=10ψµ

SO(32)
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The Bosonic String Map

This also works in 4 dimensions:

D=4ψµ E8

SO(10)

Lerche, Lüst, Schellekens (1986)
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E8

SO(10)

Xµ

c=D=4

Now we can build 4-dimensional strings

D=4ψµ

Internal CFT
Must have c=9
and N=2 susy.
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The resulting 4D strings have gauge bosons of the GUT group 
SO(10)  (× E8). Furthermore the bosonic string map guarantees 
that massless, chiral matter consists of a certain number of 
families in the (16) of SO(10). 

A (perhaps) more familiar statement is that string theory 
“naturally” gives rise to (27)’s of E6. This follows from 
“Calabi-Yau” compactification*, and is a special case of the 
bosonic string map with the simplest realization of space-time 
supersymmetry.

(*) Candelas, Horowitz, Strominger, Witten (1984)
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E8

SO(10)

Imposing space-time supersymmetry

Space-time Susy
(GSO projection)

Required by 
modular invariance. 
Extends SO(10) to E6
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Space-time Susy
(GSO projection)

Required by 
modular invariance. 
Extends SO(10) to E6
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E8

SO(10)

But there exist other solutions to modular invariance

Space-time Susy
(GSO projection)

Extension by an isomorphic current 
of higher weight. Preserves modular 
invariance without affecting the 
massless spectrum

Schellekens, Yankielowicz (1989)
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E8

SO(10)

But there exist other solutions to modular invariance

Space-time Susy
(GSO projection)

Extension by an isomorphic current 
of higher weight. Preserves modular 
invariance without affecting the 
massless spectrum

Schellekens, Yankielowicz (1989)
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Open Strings
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Orientifold Partition Functions
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+{ {1
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Orientifold Partition Functions
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Orientifold
Partition Functions

Closed

Open

• Closed string projection

1

2





∑

ij

χi(τ)Zijχi(τ̄) +
∑

i

Kiχi(2τ)





• Open string projection

1

2





∑

i,a,n

NaNbA
i
abχi(

τ

2
) +

∑

i,a

NaM
i
aχ̂i(

τ

2
+

1

2
)





Na = Chan-Paton Multiplicity

i : Primary field label (finite range)
a : Boundary label (finite range)
χi : Character
Na : Chan-Paton (CP) Multiplicity
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The ends of open strings give rise to U(N), O(N) or Sp(2N) gauge groups. 

Since each open string has two ends, matter must be in bi-fundamentals 
(or rank-two tensors).

One may think of the endpoints as open strings ending on a membrane or 
a stack of N membranes. Traditional (pre-1995) open strings had 
Neumann boundary conditions and end on a space-time filling 
membrane. This is merely a change of language. 

By allowing Dirichlet boundary conditions one can consider membranes 
that live only in a subset of all available dimensions, for example D=4 + 
some of the internal dimensions. They may intersect each other in the 
internal dimensions. Intersections give rise to massless matter.

By considering suitable combinations of stacks of branes one may obtain 
the standard model.
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a d

c

b

(u,d)
(e-,!)

u
c e+

!
c

d
c

The Madrid Model*

Y =
1
6
Qa −

1
2
Qc −

1
2
Qd

U(2), Sp(2)

U(1), O(2), Sp(2)

(*) Ibanez, Marchesano, Rabadan (2000)
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(10)

(5*)

SU(5)
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Trinification:
SU(3) × SU(3) × SU(3)

(3, 3∗, 1) + (3∗, 1, 3) + (1, 3, 3∗)
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The different models are distinguished by the 
realization of the Standard Model generator Y

The following three possibilities exist*

1. x=½   (Madrid model, Pati-Salam model, ...)
2. x=0    (SU(5), ...)
3. x not quantized.  Then the configuration is
                                   orientable (trinification)

(*)Anastasopoulos, Dijkstra, Kiritsis, Schellekens (2006)
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Explicit 
realizations
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It’s easy enough to draw these pictures.
But finding an explicit example is another matter.
This involves: 

Finding a suitable CFT.

Finding a type-IIB modular invariant partition function. 

Computing the “boundary coefficients” and the “crosscap coefficients”(*)

Computing the Annulus, Klein bottle and Moebius coefficients.

Checking if the massless spectrum matches the Standard Model.

Checking if Y remains massless

Cancelling the disk and crosscap tadpoles

(*) Cardy (1989), Sagnotti, Pradisi, Stanev, Bianchi (1990-1996),
Fuchs, Schweigert, Huiszoon, Sousa, Walcher (1995-2000), ...
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Angelantonj, Bianchi, Pradisi, Sagnotti, Stanev (1996)
Chiral spectra from Orbifold-Orientifolds

Aldazabal, Franco, Ibanez, Rabadan, Uranga  (2000)
Blumenhagen,Görlich,Körs,Lüst (2000)
Ibanez, Marchesano, Rabadan (2001)
Non-supersymmetric SM-Spectra with RR tadpole cancellation

Cvetic, Shiu, Uranga  (2001)
Supersymmetric SM-Spectra with chiral exotics

Blumenhagen, Görlich, Ott  (2002)
Honecker (2003)
Supersymmetric Pati-Salam Spectra with brane recombination

Dijkstra, Huiszoon, Schellekens (2004)
 Supersymmetric Standard Model (Gepner Orientifolds)

Honecker, Ott (2004)
Supersymmetric Standard Model (Z6 orbifold/orientifold)

The long road to the SM
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      3 x ( V  ,V  ,0  ,0 ) chirality 3
      3 x ( V  ,0  ,V  ,0 ) chirality -3
      3 x ( V  ,0  ,V* ,0 ) chirality -3
      3 x ( 0  ,V  ,0  ,V ) chirality 3
      5 x ( 0  ,0  ,V  ,V ) chirality -3
      3 x ( 0  ,0  ,V  ,V*) chirality 3
     18 x ( 0  ,V  ,V  ,0 ) 
      2 x ( V  ,0  ,0  ,V ) 
      2 x ( Ad ,0  ,0  ,0 ) 
      2 x ( A  ,0  ,0  ,0 ) 
      6 x ( S  ,0  ,0  ,0 ) 
     14 x ( 0  ,A  ,0  ,0 ) 
      6 x ( 0  ,S  ,0  ,0 ) 
      9 x ( 0  ,0  ,Ad ,0 ) 
      6 x ( 0  ,0  ,A  ,0 ) 
     14 x ( 0  ,0  ,S  ,0 ) 
      3 x ( 0  ,0  ,0  ,Ad) 
      4 x ( 0  ,0  ,0  ,A ) 
      6 x ( 0  ,0  ,0  ,S ) 

Gauge group: Exactly SU(3) × SU(2) × U(1)!

[U(3)×Sp(2)×U(1)×U(1),  Massive B-L, No hidden sector]

Q 
U*
D*
L
E*+(E+E*)
N*
Higgs

Dijkstra, Huiszoon, Schellekens (2004)
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Vector-like matter
V=vector
A=Anti-symm. tensor
S=Symmetric tensor
Ad=Adjoint

      3 x ( V  ,V  ,0  ,0 ) chirality 3
      3 x ( V  ,0  ,V  ,0 ) chirality -3
      3 x ( V  ,0  ,V* ,0 ) chirality -3
      3 x ( 0  ,V  ,0  ,V ) chirality 3
      5 x ( 0  ,0  ,V  ,V ) chirality -3
      3 x ( 0  ,0  ,V  ,V*) chirality 3
     18 x ( 0  ,V  ,V  ,0 ) 
      2 x ( V  ,0  ,0  ,V ) 
      2 x ( Ad ,0  ,0  ,0 ) 
      2 x ( A  ,0  ,0  ,0 ) 
      6 x ( S  ,0  ,0  ,0 ) 
     14 x ( 0  ,A  ,0  ,0 ) 
      6 x ( 0  ,S  ,0  ,0 ) 
      9 x ( 0  ,0  ,Ad ,0 ) 
      6 x ( 0  ,0  ,A  ,0 ) 
     14 x ( 0  ,0  ,S  ,0 ) 
      3 x ( 0  ,0  ,0  ,Ad) 
      4 x ( 0  ,0  ,0  ,A ) 
      6 x ( 0  ,0  ,0  ,S ) 

Gauge group: Exactly SU(3) × SU(2) × U(1)!

[U(3)×Sp(2)×U(1)×U(1),  Massive B-L, No hidden sector]

Q 
U*
D*
L
E*+(E+E*)
N*
Higgs

Dijkstra, Huiszoon, Schellekens (2004)
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An SU(5) model

      3 x  (A  ,0  ,0 ) chirality 3
     11 x  (V  ,V  ,0 ) chirality -3
      8 x  (S  ,0  ,0 ) 
      3 x  (Ad ,0  ,0 ) 
      1 x  (0  ,A  ,0 ) 
      3 x  (0  ,V  ,V ) 
      8 x  (V  ,0  ,V ) 
      2 x  (0  ,S  ,0 ) 
      4 x  (0  ,0  ,S ) 
      4 x  (0  ,0  ,A ) 

Gauge group is just SU(5)!

U5 O1 O1U(5)

(10)

(5*)

(*)Anastasopoulos, Dijkstra, Kiritsis, Schellekens (2006)
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• Stabilizing moduli
• Breaking supersymmetry
• Getting the right parameter values 

(fermion masses, couplings)

Challenges

Generically:
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• The number of families

• GUTs versus charge quantization

Challenges

Here I will focus on two issues

In both cases we can get the right answer (see the examples), but 
does it really come out naturally?

In neither case there is a clear “anthropic” explanation available.
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N r of chira l families

S tandard model spectrum with 1  till 9  chira l families

type 4
type 2
type 0
type 5
type 3
type 1

Dijkstra, Huiszoon, Schellekens (2004)
See also Gmeiner et. al. “One in a billion”

Monday, 17 May, 2010



Electric Charge 
Quantization

• All color singlets in the Standard Model have 
integer charges. 

• This can be most easily understood by 
assuming an embedding in SU(5) (or SO(10)).

• But how does this work in string theory?
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Electric Charge 
Quantization

• The heterotic string provides SO(10) naturally. 
But a theorem I proved in 1989 shows that once SO(10) is broken to
 SU(3) × SU(2) × U(1) the spectrum must contain fractional electric 
charges (though they may be massive).

• In the Madrid configuration each string endpoint contributes ½ to the 
unconfined electric charge.
 So this is OK as long as there are no extra (“hidden”) branes.
 On the other hand, the three gauge couplings are completely unrelated.

• In the SU(5)-type brane models the couplings unify and charge 
quantization is automatic. But in the entire scan such models occur 
rarely. So string theory then provides no compelling reasons for 
unification.
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A return to the 
heterotic string

I. SO(10) breaking
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The future has finally arrived (Gato-Rivera, Schellekens, 2010)
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RCFT:
Heterotic vs Orientifold

During the last five years, orientifolds were scanned systematically for Standard Model spectra

Dijkstra, Huiszoon, Schellekens  
Gmeiner, Blumenhagen, Honecker, Lust, T. Weigand
Anastasopoulos, Dijkstra, Kiritsis, Schellekens
Douglas, Taylor
Kiritsis, Lennek, Schellekens
Gmeiner, Honecker

Few comparable results exist for heterotic strings. All we have are Hodge number scans1, and fermionic 
construction scans2 

Lutken, Ross (1988)
Schellekens, Yankielowicz (1989)
Fuchs, Klemm, Scheich, Schmidt (1989)
Kreuzer, Skarke (1992)
Donagi, Faraggi (2004), 
Ploger, Ramos-Sanchez, Ratz, Vaudrevange (2007)
Donagi, Wendland (2008) 
Kiritsis, Lennek, Schellekens (2008)

Dienes, Senechal (2007)
Assel, Christodoulides, Faraggi,  Kounnas, Rizos (2009)

(1)

(2)
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http://www-spires.fnal.gov/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Kounnas%2C%20Costas%22
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} D=4ψµ
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Gauge group H ⊂ SO(10) (× H’ ⊂ E8 × ....)

SO(10) currents replaced by 
operators of higher weight } D=4ψµ
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Consider* SU(3) × SU(2) × U(1)30 × U(1)20  ⊂  SO(10)

This should give chiral families of SU(3) × SU(2) × U(1) 
with standard gauge coupling unification. 

Indeed, it does, but there was a major disappointment:
All these spectra contain fractionally charged particles.

This was easily seen to be a very general result.
(A.N. Schellekens, Phys. Lett. B237, 363, 1990).

But there are ways out: they can be massive, vector-like 
(or confined by another gauge group)

Breaking SO(10)

(*)  A.N. Schellekens and S. Yankielowicz (1989)
      Other subgroups were considered by Blumenhagen, Wisskirchen, Schimmrigk (1995, 1996)
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SO(10) sub-algebras

Nr. Name Current Order Gauge group Grp. CFT

0 SM, Q=1/6 (1, 1, 0, 0) 1 SU(3)× SU(2)× U(1)× U(1)
1
6

1
6

1 SM, Q=1/3 (1, 2, 15, 0) 2 SU(3)× SU(2)× U(1)× U(1)
1
6

1
3

2 SM, Q=1/2 (3, 1, 10, 0) 3 SU(3)× SU(2)× U(1)× U(1)
1
6

1
2

3 LR, Q=1/6 (1, 1, 6, 4) 5 SU(3)× SU(2)L × SU(2)R × U(1)
1
6

1
6

4 SU(5) GUT (3̄, 2, 5, 0) 6 SU(5)× U(1) 1 1

5 LR, Q=1/3 (1, 2, 3,−8) 10 SU(3)× SU(2)L × SU(2)R × U(1)
1
6

1
3

6 Pati-Salam (3̄, 0, 2, 8) 15 SU(4)× SU(2)L × SU(2)R
1
2

1
2

7 SO(10) GUT (3, 2, 1, 4) 30 SO(10) 1 1

Table 1: List of all Standard Model extensions within SO(10) and the resulting group theory

and CFT charge quantization (last two columns). We refer to these subgroups either by the

label in column 1 or by the name in column 2, where “LR” stands for left-right symmetric.

29
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Results: 

Half-integer or third-integer charges can be avoided by clever 
choices of the CFT, but not simultaneously.

In about half of the cases the fractional charges are present, 
but at least they are vector-like: they can get masses under 
perturbations 
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A return to the 
heterotic string

II The number of families
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 Gato-Rivera, Schellekens (2010):                (2,2) , (1,2), (0,2), broken SO(10)

Number of families:

Turned out to be quantized in terms of a quantity Δ for each class of CFT’s (there 
are 168+59 classes, each containing thousands of distinct spectra)

The following values of Δ occur for the 168 minimal model combinations and 58 of 
the 59 exceptional ones:   120, 96, 72, 60, 48, 40, 36, 32, 24, 12, 8, 6, 4 and 0.

Schellekens, Yankielowicz (1989):                (2,2) , (1,2) unbroken SO(10)

There is one class with Δ=3, which indeed does contain 3-family models (Gepner, 1987)
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 Gato-Rivera, Schellekens (2010):                (2,2) , (1,2), (0,2), broken SO(10)

Number of families:

Turned out to be quantized in terms of a quantity Δ for each class of CFT’s (there 
are 168+59 classes, each containing thousands of distinct spectra)

The following values of Δ occur for the 168 minimal model combinations and 58 of 
the 59 exceptional ones:   12,6,2,0

Schellekens, Yankielowicz (1989):                (2,2) , (1,2) unbroken SO(10)

There is one class with Δ=3, which indeed does contain 3-family models (Gepner, 1987)
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Heterotic weight 
lifting
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General Heterotic String

N=0 building block

N=2 building block

SO(10)

E8

} D=4ψµ
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... but we have to find a N=0 CFT with the 
same S, T, and central charge as some N=2 
model, without being identical to it. 

This looks difficult.

But there is something else we could try:
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Gato-Rivera, Schellekens, 2009
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Gato-Rivera, Schellekens, 2009
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Gato-Rivera, Schellekens, 2009
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Conclusions

• The rough features of the Standard Model come out 
very easily and in several ways in string theory.

• But there is a problem with GUTs: either they don’t 
arise naturally, or they don’t work as they should.  

• The number of families is another worry. 

• But on closer inspection, for heterotic strings both 
worries are reduced.
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