EXPLORING
THE STRING THEORY
LANDSCAPE




Early String Theory Expectations: (~ 1985)

“The hope is that the constraints imposed on such theories solely by the need for mathe-
matical consistency are so strong that they essentially determine a single possible theory
uniquely, and that by working out the consequences of the theory in detail one might even-
tually be able to show that there must be particles with precisely the masses, interactions,
and so on, of the known elementary particles: in other words, that the world we live in 1s

the only possible one.”
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Early String Theory Expectations: (~ 1985)

“The hope is that the constraints imposed on such theories solely by the need for mathe-
matical consistency are so strong that they essentially determine a single possible theory
uniquely, and that by working out the consequences of the theory in detail one might even-
tually be able to show that there must be particles with precisely the masses, interactions,
and so on, of the known elementary particles: in other words, that the world we live in 1s

the only possible one.”

From “The Problems of Physics” by Antony Legget (1987)
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A.N. Schellekens,
Contribution to the proceedings of the EPS conference, Uppsala, June 1987

The prevailing attitude seems to be that 'non-perturbative string
effects" will somehow select a unique vacuum. This 1is unreasonable and
unnecessary wishful thinking. We do not know at present how to discuss such
effects, and have no idea whether they impose any restrictioms at all. COne
cannot reasonably expect that a mathematical coundition will have a unique
solution corresponding to the standard model with three generations and a
blzarre mass matrix,. It 1s 1mportant to realize that this quest for
uniqueness is based on philosophy, not on physics. There is no logical reason
why the 'theory of everything' should have a unique vacuum.
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A.N. Schellekens,
Contribution to the proceedings of the EPS conference, Uppsala, June 1987

The prevailing attitude seems to be that 'non-perturbative string
effects" will somehow select a unique vacuum. This 1is unreasonable and
unnecessary wishful thinking. We do not know at present how to discuss such
effects, and have no idea whether they impose any restrictioms at all. COne
cannot reasonably expect that a mathematical coundition will have a unique
solution corresponding to the standard model with three generations and a
blzarre mass matrix,. It 1s 1mportant to realize that this quest for
uniqueness is based on philosophy, not on physics. There is no logical reason
why the 'theory of everything' should have a unique vacuum.

A. Strominger (1986)

All of this points to the overwhelming need to find a dynamical principle for
determining the ground state, which now appears more imperative than ever.
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STRING THEORY AND THE
STANDARD MODEL

e String theory is a candidate theory of quantum gravity.

e In string theory, gravity is mediated by exchange of
loops of closed strings.

e Only couples to matter that is also made out of strings.

e Hence the Standard Model and everything else must be
made out of strings as well.

e But nothing suggests that this should be unique.
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UNIQUENESS?

e [Initially (1984) string consistency constraints (in 10 dimensions) seemed
extremely restrictive.
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e But this apparent uniqueness disappears rapidly below 10 dimensions.
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UNIQUENESS?

e Initially (1984) string consistency constraints (in 10 dimensions) seemed
extremely restrictive.

e But this apparent uniqueness disappears rapidly below 10 dimensions.

e Lerche, Liist, Schellekens, 1986:
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UNIQUENESS?

e Initially (1984) string consistency constraints (in 10 dimensions) seemed
extremely restrictive.

e But this apparent uniqueness disappears rapidly below 10 dimensions.

e Lerche, Liist, Schellekens, 1986:

(Tpp x D3x(D7)9)L, a Euclidean lattice of dimension 88. A lower limit on the total é
number of such lattices is provided by the Siegel mass formula [21] [22] i
... this number is of order 101500

PSR e—— * ———-———-d
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UNIQUENESS?

e Initially (1984) string consistency constraints (in 10 dimensions) seemed
extremely restrictive.

e But this apparent uniqueness disappears rapidly below 10 dimensions.

e Lerche, Liist, Schellekens, 1986:

(Tpp x D3x(D7)9)L, a Euclidean lattice of dimension 88. A lower limit on the total é
number of such lattices is provided by the Siegel mass formula [21] [22] i
... this number is of order 101500

PSR e—— * ———-———-d

* Douglas, 2003
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UNIQUENESS?

e Initially (1984) string consistency constraints (in 10 dimensions) seemed
extremely restrictive.

e But this apparent uniqueness disappears rapidly below 10 dimensions.

e Lerche, Liist, Schellekens, 1986:

(Tpp x D3x(D7)9)L, a Euclidean lattice of dimension 88. A lower limit on the total

number of such lattices is provided by the Siegel mass formula [21] [22] i

... this number is of order 101590 1

AR r—— | —-——-—-—-—J

* Douglas, 2003

N o (2w L)5/?
vac (K/Q)!
Typical K ~ 100 — 400 and L ~ 500 — 5000, leading ‘

tO Nfua,c g 10500. i

n] 4
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... but this does not mean that any QFT can be
obtained.

It also does not mean that the Standard Model is
nothing more than a random choice from a huge
ensemble.

There is structure in the Standard Model, and there
is structure in the string theory Landscape.

for more, see: The Emperor's Last Clothes?
Rept. Prog. Phys. 71:072201,2008. (20 pages) Extended version: arXiv:0807.3249 (87 pages)
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EMBEDDING THE STANDARD MODEL

There are a priori two* basic classes:

1. Standard model from closed strings

2. Standard model from open strings

In both cases, gravity comes from closed strings

(*) Exact perturbative string realizations, not including e.g. F-theory
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EMBEDDING THE STANDARD MODEL

Remarkably, in both cases the gross features of the Standard Model
come out very easily

1. Standard model from closed strings:
Heterotic strings naturally lead to a number of (16)‘s of SO(10).

2. Standard model from open strings:
Three classes of intersecting brane realizations.

But in all cases some details are problematic.
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SOME BASIC
STRING THEORY




Polyakov action:

1

Ao

DG — /dO’dT\/— det'yZ’yo‘ﬁé?aX“agXu

ap

X#"(0,T) defines the embedding of the string in space-time.
w=0,...,D—1) Only consistent if D=26.

This can be overcome by replacing part of the action by a more
general conformal field theory.
Such a CFT provides a representation of the Virasoro algebra.
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Virasoro algebra:

1 3

e — (m —n)L,,., + Ec(m

i m)5m+n

The constant ¢ measures the contribution of a term in the action. It is additive,
and has to add up to 26.

Typically, the theory is build out of some simple building blocks, in order to get
some computational control.

In closed strings, there are separate algebras for left-moving and right-moving
modes.

One may build the left-moving sector and the right-moving separately out of
different building blocks.
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Basic Bosonic String
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Compactified Bosonic String

XN
e—)—1

c=26

j CFT building block

[NV [N/ F— —

T —




MODULAR INVARIANCE

The freedom of associating left and right building blocks is
severely limited by a constraint arising from the consistency of the
simplest one-loop diagram, the torus.
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MODULAR INVARIANCE

The freedom of associating left and right building blocks is
severely limited by a constraint arising from the consistency of the
simplest one-loop diagram, the torus.
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MODULAR INVARIANCE

7= ol

Integrand must be invariant under {

T

" >&T+b, a.bcdeZ: ad—be =1
¢t + d
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MODULAR INVARIANCE

dgn —ImTH
/ (g 22t e

7= ol

Integrand must be invariant under {
-

" >&T+b, a.bcdeZ: ad—be =1
¢t + d
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MODULAR INVARIANCE

The integrand can be expressed in terms of Virasoro characters
Yi = Tr; 62’7T'L'(L0—c/24)

Then the integrand is
Z X@ ’Lj gj

In this formulation, modular invariance reduces to the condition

e — (M S| — (0

Canonical solution: Mij = 5z‘j

Monday, 17 May, 2010



FERMIONIC STRINGS

c=D=10

wﬂ

D=10, c=5




FERMIONIC STRINGS

Modular invariance allows two solutions

ITA 1B
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HETEROTIC STRINGS

XH
c=D=10

J Y* D=10, =5

) p—




Modular invariance restricts this severely. Solutions exist because
of isomorphisms between modular group representations.

SO(16)

| —

Y D=10 Ex

SO(16), Ejg are special CFT building blocks called affine Lie algebras.
They appear in the spectrum as gauge symmetries
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Another solution:

] — SO(32)

YY"  D=10
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THE BOSONIC STRING MAP

This also works in 4 dimensions:

] SO(10)

Lerche, Liist, Schellekens (1986)
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Now we can build 4-dimensional strings

XK
c=D=4
I I Internal CFT
I I Must have c=9
. l and IN=P susy.
E
SO(10) l | B
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The resulting 4D strings have gauge bosons of the GUT group
SO(10) (x Es). Furthermore the bosonic string map guarantees

that massless, chiral matter consists of a certain number of
families in the (16) of SO(10).

A (perhaps) more familiar statement is that string theory
“naturally” gives rise to (27)’s of Es. This follows from
“Calabi-Yau” compactification®, and is a special case of the
bosonic string map with the simplest realization of space-time
supersymmetry.

(*) Candelas, Horowitz, Strominger, Witten (1984)
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Imposing space-time supersymmetry

Required by
modular invariance.
Extends SO(10) to Es Pl R
Space-time Susy
P (GSO projection)
.
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Imposing space-time supersymmetry

Required by
modular invariance.
Extends SO(10) to Es L
Space-time Susy
(GSO projection)
SO(10)

E
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But there exist other solutions to modular invariance

Extension by an isomorphic current
of higher weight. Preserves modular
invariance without affecting the

h--

massless spectrum |—|
Space-time Susy
(GSO projection)
SO(10)
Eg

HF--

Schellekens, Yankielowicz (1989)
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But there exist other solutions to modular invariance

Extension by an isomorphic current
of higher weight. Preserves modular
invariance without affecting the

massless spectrum |—|
Space-time Susy
(GSO projection)
SO(10)
Eg

Schellekens, Yankielowicz (1989)
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OPEN STRINGS




ORIENTIFOLD PARTITION FUNCTIONS

+
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ORIENTIFOLD PARTITION FUNCTIONS

+
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ORIENTIFOLD
PARTITION FUNCTIONS

1
@ Closed 5 ZXi(T)Zz'in(f) 3 Z Kixi(27)
17 ) 4
9 Open % Z NaNbAiabxz A ZN Mzaf@

i :  Primary field label (finite range)
a : Boundary label (finite range)

i : Character
N, : Chan-Paton (CP) Multiplicity

Monday, 17 May, 2010




The ends of open strings give rise to U(N), O(N) or Sp(2N) gauge groups.

Since each open string has two ends, matter must be in bi-fundamentals
(or rank-two tensors).

One may think of the endpoints as open strings ending on a membrane or
a stack of N membranes. Traditional (pre-1995) open strings had
Neumann boundary conditions and end on a space-time filling
membrane. This is merely a change of language.

By allowing Dirichlet boundary conditions one can consider membranes
that live only in a subset of all available dimensions, for example D=4 +
some of the internal dimensions. They may intersect each other in the
internal dimensions. Intersections give rise to massless matter.

By considering suitable combinations of stacks of branes one may obtain
the standard model.
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(*) Ibanez, Marchesano, Rabadan (2000)

THE MADRID MODEL.*

k.

(u,d)

=

(e=»V)

+
e

1 1 1
Y= DR o d
6Q QQ ZQ

d

b

C

U(2), Sp(2)

u(1), O(2), Sp(2)
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SU(5)




Trinification:

SU(3) x SU(3) x SU(3) /‘\
/> AN

(3.8 1) (3" . 1.3)+ (1.3.3°)
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The different models are distinguished by the
realization of the Standard Model generator Y

i — (r — %)Qa—F b %)Qb+$Qc+ (z —1)Qa

The following three possibilities exist”

1. x=¥% (Madrid model, Pati-Salam model, ...)

a1 (SU(5), ...)

3. x not quantized. Then the configuration is
orientable (trinification)

(*)Anastasopoulos, Dijkstra, Kiritsis, Schellekens (2006)
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EXPLICIT
REALIZATIONS




[t's easy enough to draw these pictures.
But finding an explicit example is another matter.
This involves:

@ Finding a suitable CFT.
@ Finding a type-IIB modular invariant partition function.
Q@ Computing the “boundary coefficients” and the “crosscap coefficients” (*)

@ Computing the Annulus, Klein bottle and Moebius coefficients.

Q@ Checking if the massless spectrum matches the Standard Model.
Q@ Checking if Y remains massless

Q@ Cancelling the disk and crosscap tadpoles

(*) Cardy (1989), Sagnotti, Pradisi, Stanev, Bianchi (1990-1996),
Fuchs, Schweigert, Huiszoon, Sousa, Walcher (1995-2000), ...

Monday, 17 May, 2010



THE LONG ROAD TO THE SM

A

% Angelantonj, Bianchi, Pradisi, Sagnotti, Stanev (1996)
Chiral spectra from Orbifold-Orientifolds

% Aldazabal, Franco, Ibanez, Rabadan, Uranga (2000)
Blumenhagen, Gorlich, Kérs, Liist (2000)

Ibanez, Marchesano, Rabadan (2001)
Non-supersymmetric SM-Spectra with RR tadpole cancellation

% Cvetic, Shiu, Uranga (2001)
Supersymmetric SM-Spectra with chiral exotics

Al

NA

¢ Blumenhagen, Gérlich, Ott (2002)
Honecker (2003)

Supersymmetric Pati-Salam Spectra with brane recombination

% Dryjkstra, Huiszoon, Schellekens (2004)
Supersymmetric Standard Model (Gepner Orientifolds)

S

¢ Honecker, Ott (2004)
Supersymmetric Standard Model (Zs orbifold/orientifold)
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Gauge group: Exactly SU(3) x SU(2) x U(1)!
[U(3)xSp(2)xU(1)xU(1), Massive B-L, No hidden sector]

B 0F 0 ) chirality:3 Q
BRSO 0 chirality s U
B0 e haliye=2 D*

B0 w V ) chirality 3 T

Hioai0 20 N ) chirality -3 B E e
e (00 V*) chirality 3 N*

I8 (0N e
G 0 )
2 x(Ad 0 05
2o (G A0 0 )
6ix (1S 05
14070 0 1)
B0 0520
9x (0
60
b (0
i)
A5t
6 a0

<
3

Bl O — < < O

Higgs

-

i i e R il e B o T 0 Hiy R
[ p=
o
N

-

()

-

-

0
025 Dijkstra, Huiszoon, Schellekens (2004)
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Gauge group: Exactly SU(3) x SU(2) x U(1)!

[U(B)xSp(2)xU(1)xU(1), Massive B-L, No hidden sector]

3x(V V 0 0)chralty3 Q
W 0 )ehiraling =3 & U

By 2.0

S Y AR ) B VA
Boe 02\ 0

T | B R R

B 0000V
18x(0 V V ,0)
2x(V 0 0 V)
2x(Ad,0 ,0 ,0)
2x (A 0 0 ,0)
6x(S 0 0 ,0)
14x(0 A 0 ,0)
6x(0 ,S ,0 ,0)
9x(0 0 ,Ad ,0)
6x(0 0 ,A ,0)
14x(0 0 S ,0)
3x(0 0 ,0 ,Ad)
4x(0 0 ,0 A)
6x(0 ,0 0 ,S)

00 chivali: 3 e
V ) chirality 3 L

N ) chirality -3 B E e
V*) chirality 3 N*

Higgs

Vector-like matter

V=vector
A=Anti-symm. tensor

S=Symmetric tensor
Ad=Adjoint

Dijkstra, Huiszoon, Schellekens (2004)
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AN SU(5) MODEL

Gauge group is just SU(5)!

U(5) USs Ol Ol

3x (A ,0 ,0) chirality 3
11 x (Vv ,V ,0) chirality -3

B3¢ (S 0505

o 3x (Ad,0 ,0)
10 As 05

A0 NN

S (Vo 0EN)

205 S )

1B 455 (05056
A5 A =)

(*)Anastasopoulos, Dijkstra, Kiritsis, Schellekens (2006)
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CHALLENGES

Generically:

e Stabilizing moduli
* Breaking supersymmetry

e Getting the right parameter values
(fermion masses, couplings)




CHALLENGES

Here I will focus on two issues

¢ The number of families

e GUTs versus charge quantization

In both cases we can get the right answer (see the examples), but
does it really come out naturally?

In neither case there is a clear “anthropic” explanation available.

Monday, 17 May, 2010



100000

10000

1000

Nr of solutions

100

10

Dijkstra, Huiszoon, Schellekens (2004)
See also Gmeiner et. al. “One in a billion”

|
type 4
type 2
type 0
type 5
type 3
type 1

5
Nr of chiral families
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ELECTRIC CHARGE
QUANTIZATION

e All color singlets in the Standard Model have
integer charges.

e This can be most easily understood by
assuming an embedding in SU(5) (or SO(10)).

e But how does this work in string theory?
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ELECTRIC CHARGE
QUANTIZATION

The heterotic string provides SO(10) naturally.

But a theorem I proved in 1989 shows that once SO(10) is broken to
SU(3) x SU(2) x U(1) the spectrum must contain fractional electric
charges (though they may be massive).

In the Madrid configuration each string endpoint contributes % to the
unconfined electric charge.

So this is OK as long as there are no extra (“hidden”) branes.

On the other hand, the three gauge couplings are completely unrelated.

In the SU(5)-type brane models the couplings unify and charge
quantization is automatic. But in the entire scan such models occur
rarely. So string theory then provides no compelling reasons for
unification.
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A RETURN TO THE
HETEROTIC STRING

. SO(10) BREAKING




% N
-8 - 252
EIABEE

CERN-TH.5440/89

‘NEW MODULAR INVARIANTS FOR N=2 TENSOR PRODUCTS
AND FOUR-DIMENSIONAL STRINGS

A. N. Schellekens

and

S. Yankielowicz™ |

CERN, 1211 Geneva 23, Switzerland

ABSTRACT

The construction of modular invariant partition functions of tensor products of N = 2
superconformal field theories is clarified and extended by means of a recently proposed
method using simple currents, i.e. primary fields with simple fusion rules. Apart from
providing a conceptually much simpler way of understanding space-time and world-sheet
supersymmetry projections in modular invariant string theories, this makes a large class of
modular invariant partition functions accessible for investigation. We demonstrate this by
constructing thousands of (2,2), (1,2) and (0,2} string theories in four dimensions, including

more than 40 new three generation models.
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6. Outlook and conclusions

Clearly the method we have advocated in this paper greatly extends the list of four-
dimensional string theories accessible to exploration. However, this is by no means all one
can do. Up to now we have always kept an unbroken SO(10) x Es Kac-Moody algebra
on the left. However, just as one can break the left-moving “space-tiine” and world-sheet
supersymmetries, one can break this KM-algebra as well. To do so, one simply starts with
characters of some conformal sub-algebra of SO(10) x Es. Of course one wants to get the
full SO(10) x Es algebra on the right, in order to be able to map this sector to a fermionic
one. But this can always be achieved by putting some projection matrices in front of the

right-moving characters to add the missing SO(10) x Ej roots.

This opens the way to constructing string theories whose gauge group is something a bit
closer to the standard model than SO(10), perhaps even SU(3) x SU(2) x U(1)* (where n
1s almost inevitably larger than 1). There is no reason why one could not get 3 generations
in such a model, and in fact there could well be many more models than those listed in
table III, since the center of the conformal field theory one starts with is even larger. We

hope to come back to this in the future.
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6. Outlook and conclusions

Clearly the method we have advocated in this paper greatly extends the list of four-
dimensional string theories accessible to exploration. However, this is by no means all one
can do. Up to now we have always kept an unbroken SO(10) x Es Kac-Moody algebra
on the left. However, just as one can break the left-moving “space-tiine” and world-sheet
supersymmetries, one can break this KM-algebra as well. To do so, one simply starts with
characters of some conformal sub-algebra of SO(10) x Es. Of course one wants to get the
full SO(10) x Es algebra on the right, in order to be able to map this sector to a fermionic
one. But this can always be achieved by putting some projection matrices in front of the

right-moving characters to add the missing SO(10) x Ej roots.

This opens the way to constructing string theories whose gauge group is something a bit
closer to the standard model than SO(10), perhaps even SU(3) x SU(2) x U(1)* (where n
1s almost inevitably larger than 1). There is no reason why one could not get 3 generations
in such a model, and in fact there could well be many more models than those listed in
table III, since the center of the conformal field theory one starts with is even larger. We

hope to come back to this in the future.

The future has finally arrived (Gato-Rivera, Schellekens, 2010)

Monday, 17 May, 2010



RCFT:
HETEROTIC VS ORIENTIFOLD

During the last five years, orientifolds were scanned systematically for Standard Model spectra

Dijkstra, Huiszoon, Schellekens

Gmeiner, Blumenhagen, Honecker, Lust, T. Weigand
Anastasopoulos, Dijkstra, Kiritsis, Schellekens
Douglas, Taylor

Kiritsis, Lennek, Schellekens

Gmeiner, Honecker

Few comparable results exist for heterotic strings. All we have are Hodge number scans!, and fermionic
construction scans?

il
( )Lutken, Ross (1988)

Schellekens, Yankielowicz (1989)
Fuchs, Klemm, Scheich, Schmidt (1989)
Kreuzer, Skarke (1992)
Donagi, Faraggi (2004),
Ploger, Ramos-Sanchez, Ratz, Vaudrevange (2007)
Donagi, Wendland (2008)
Kiritsis, Lennek, Schellekens (2008)
(2)<
Dienes, Senechal (2007)
Assel, Christodoulides, Faraggi, Kounnas, Rizos (2009)
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http://www-spires.fnal.gov/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Christodoulides%2C%20Kyriakos%22
http://www-spires.fnal.gov/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Christodoulides%2C%20Kyriakos%22
http://www-spires.fnal.gov/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Faraggi%2C%20Alon%20E%2E%22
http://www-spires.fnal.gov/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Faraggi%2C%20Alon%20E%2E%22
http://www-spires.fnal.gov/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Kounnas%2C%20Costas%22
http://www-spires.fnal.gov/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Kounnas%2C%20Costas%22
http://www-spires.fnal.gov/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Rizos%2C%20John%22
http://www-spires.fnal.gov/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Rizos%2C%20John%22
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SO(10) currents replaced by
operators of higher weight

NN NN | [ —

Gauge group H C SO(10) (x H' C Eg x ....)
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BREAKING SO(10)

Consider* SU(3) x SU(2) x U(1)30 x U(1)20 C SO(10)

This should give chiral families of SU(3) x SU(2) x U(1)
with standard gauge coupling unification.

Indeed, it does, but there was a major disappointment:
All these spectra contain fractionally charged particles.

This was easily seen to be a very general result.
(A.N. Schellekens, Phys. Lett. B237, 363, 1990).

But there are ways out: they can be massive, vector-like
(or confined by another gauge group)

(*) A.N. Schellekens and S. Yankielowicz (1989)
Other subgroups were considered by Blumenhagen, Wisskirchen, Schimmrigk (1995, 1996)
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SO(10) SUB-ALGEBRAS

Nr. Name Current Order Gauge group Grp. | CFT
SN O=1/6 | (1,1,0,0) 1 SU{3) x U2« Uil i@ : !
| SN O-—1/3 | (1,2,15,0) 2 SU(3). < SU2) Uil e el : :
P SN O—1/2 | (3,1,10,0) 3 SU(3) x SU(2) x U(1) x U(1) : :
IR O—1/6 | (1,1,6,4) 5 SU(3) x SU2)L x SU2)r x U1) | = !
@ SU(b) GUT | (3,2,5,0) 6 SU(5) x U(1) 1 1
e LR O 13 | (1,23 -8) || 10 | SUB)xSU@2)L x SU@)r <0} s :

6 | Pati-Salam | (3,0,2,8) 15 SU(4) x SU(2)r x SU(2)r . !
7 | SO(10) GUT | (3,2,1,4) 30 SO(10) 1 1
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Results:

@ Half-integer or third-integer charges can be avoided by clever
choices of the CFT, but not simultaneously.

@ In about half of the cases the fractional charges are present,
but at least they are vector-like: they can get masses under
perturbations
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A RETURN TO THE
HETEROTIC STRING

Il THE NUMBER OF FAMILIES




Schellekens, Yankielowicz (1989): (2,2),(1,2) unbroken SO(10)

Gato-Rivera, Schellekens (2010): (2,2),(1,2), (0,2), broken SO(10)

Number of families:

Turned out to be quantized in terms of a quantity A for each class of CFI’s (there
are 168+59 classes, each containing thousands of distinct spectra)

The following values of A occur for the 168 minimal model combinations and 58 of
the 59 exceptional ones: 120, 96, 72, 60, 48, 40, 36, 32, 24,12, 8, 6, 4 and 0.

There is one class with A=3, which indeed does contain 3-family models (Gepner, 1987)
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Schellekens, Yankielowicz (1989): (2,2),(1,2) unbroken SO(10)

Gato-Rivera, Schellekens (2010): (2,2),(1,2), (0,2), broken SO(10)

Number of families:

Turned out to be quantized in terms of a quantity A for each class of CFI’s (there
are 168+59 classes, each containing thousands of distinct spectra)

The following values of A occur for the 168 minimal model combinations and 58 of
the 59 exceptional ones: 12,6,2,0

There is one class with A=3, which indeed does contain 3-family models (Gepner, 1987)
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Family Distribution

Nr. of MIPFs
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HETEROTIC WEIGHT
LIFTING




General Heterotic String

:I N=0 building block

B N-2building block

] SO(10)

1:

[ s

D ) s s s

}ﬁ










... but we have to find a N=0 CFT with the

same S, T, and central charge as some N=2
model, without being identical to it.

This looks difficult.

But there is something else we could try:
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Gato-Rivera, Schellekens, 2009
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Gato-Rivera, Schellekens, 2009
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—————

Gato-Rivera, Schellekens, 2009
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Distinct
Spectra
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40000
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Family distribution for 435 “lifted” Gepner models
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CONCLUSIONS

The rough features of the Standard Model come out
very easily and in several ways in string theory:.

But there is a problem with GUTs: either they don’t
arise naturally, or they don’t work as they should.

The number of families is another worry.

But on closer inspection, for heterotic strings both
worries are reduced.
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