RCFT ORIENTIFOLDS

BERT SCHELLEKENS PARIS, SEPTEMBER 3 2008

What we can compute

Exact perturbative string spectra Gauge couplings in rational points RCFT instanton corrections

What we can't do (yet)

- Compute Yukawa couplings
- Compute couplings to moduli
- Perturbations around rational points
- Moduli stabilization

ORIENTIFOLDS

ORIENTIFOLD PARTITION FUNCTIONS

ORIENTIFOLD PARTITION FUNCTIONS

$$\bigcirc \text{ Closed } \frac{1}{2} \left[\sum_{ij} \chi_i(\tau) Z_{ij} \chi_i(\bar{\tau}) + \sum_i K_i \chi_i(2\tau) \right]$$

$$\bigcirc \text{ Open } \frac{1}{2} \left[\sum_{i,a,n} N_a N_b A^i{}_{ab} \chi_i(\frac{\tau}{2}) + \sum_{i,a} N_a M^i{}_a \hat{\chi}_i(\frac{\tau}{2} + \frac{1}{2}) \right]$$

- i: Primary field label (finite range)
- a: Boundary label (finite range)
- χ_i : Character
- N_a : Chan-Paton (CP) Multiplicity

RCFT TOOLS

TRANSVERSE CHANNEL

TRANSVERSE CHANNEL

TRANSVERSE CHANNEL

COEFFICIENTS

Se Klein bottle

$$K^{i} = \sum_{m,J,J'} \frac{S^{i}{}_{m}U_{(m,J)}g^{\Omega,m}_{J,J'}U_{(m,J')}}{S_{0m}}$$

Annulus

$$A^{i}_{[a,\psi_{a}][b,\psi_{b}]} = \sum_{m,J,J'} \frac{S^{i}_{\ m} R_{[a,\psi_{a}](m,J)} g^{\Omega,m}_{J,J'} R_{[b,\psi_{b}](m,J')}}{S_{0m}}$$

Moebius

$$M_{[a,\psi_a]}^i = \sum_{m,J,J'} \frac{P_m^i R_{[a,\psi_a](m,J)} g_{J,J'}^{\Omega,m} U_{(m,J')}}{S_{0m}}$$

 $g_{J,J'}^{\Omega,m} = \frac{S_{m0}}{S_{mK}} \beta_K(J) \delta_{J',J^c}$

ALGEBRAIC CHOICES

Basic CFT (N=2 tensor⁽¹⁾, free fermions⁽²⁾...)

Chiral algebra extension* May imply space-time symmetry (e.g. Susy: GSO projection). But this is optional! Reduces number of characters.

Modular Invariant Partition Function (MIPF)*
 May imply bulk symmetry (e.g Susy), not respected by all boundaries.
 Defines the set of boundary states
 (Sagnotti-Pradisi-Stanev completeness condition)

Orientifold choice*

 ⁽¹⁾ Dijkstra, Huiszoon, Schellekens (2005); Anastasopoulos, Dijkstra, Kiritsis, Schellekens (2006)
 ⁽²⁾ Kiritsis, Lennek, Schellekens, to appear.

(*) Simple Current related

BOUNDARIES AND CROSSCAPS

Soundary coefficients

$$R_{[a,\psi_a](m,J)} = \sqrt{\frac{|\mathcal{H}|}{|\mathcal{C}_a||\mathcal{S}_a|}} \psi_a^*(J) S_{am}^J$$

Generation Crosscap coefficients

$$U_{(m,J)} = \frac{1}{\sqrt{|\mathcal{H}|}} \sum_{L \in \mathcal{H}} e^{\pi i (h_K - h_{KL})} \beta_K(L) P_{LK,m} \delta_{J,0}$$

Cardy (1989) Sagnotti, Pradisi, Stanev (~1995) Huiszoon, Fuchs, Schellekens, Schweigert, Walcher (2000)

 $\chi_i(\tau) Z_{ij} \bar{\chi}_j(\bar{\tau})$

ij

A MIPF

 $\begin{array}{l} (0+2)^{2} + (1+3)^{2} + (4+6)^{*}(13+15) + (5+7)^{*}(12+14) \\ + (8+10)^{2} + (9+11)^{2} + (12+14)^{*}(5+7) + (13+15)^{*}(4+6) \\ + (16+18)^{*}(25+27) + (17+19)^{*}(24+26) + (20+22)^{2} + (21+23)^{2} \\ + (24+26)^{*}(17+19) + (25+27)^{*}(16+18) + (28+30)^{2} + (29+31)^{2} \\ + (32+34)^{2} + (33+35)^{2} + (36+38)^{*}(45+47) + (37+39)^{*}(44+46) \\ + (40+42)^{2} + (41+43)^{2} + (44+46)^{*}(37+39) + (45+47)^{*}(36+38) \\ + (48+50)^{*}(57+59) + (49+51)^{*}(56+58) + (52+54)^{2} + (53+55)^{2} \\ + (56+58)^{*}(49+51) + (57+59)^{*}(48+50) + (60+62)^{2} + (61+63)^{2} \end{array}$

 $+ 2^{*}(2913)^{*}(2915) + 2^{*}(2914)^{*}(2912) + 2^{*}(2915)^{*}(2913)$ $+ 2^{*}(2916)^{2} + 2^{*}(2917)^{2} + 2^{*}(2918)^{2} + 2^{*}(2919)^{2}$ $+ 2^{*}(2920)^{2} + 2^{*}(2921)^{2} + 2^{*}(2922)^{2} + 2^{*}(2923)^{2}$ $+ 2^{*}(2924)^{*}(2926) + 2^{*}(2925)^{*}(2927) + 2^{*}(2926)^{*}(2924)$ $+ 2^{*}(2927)^{*}(2925) + 2^{*}(2928)^{2} + 2^{*}(2929)^{2} + 2^{*}(2930)^{2}$ $+ 2^{*}(2931)^{2} + 2^{*}(2932)^{*}(2934) + 2^{*}(2933)^{*}(2935)$ $+ 2^{*}(2934)^{*}(2932) + 2^{*}(2935)^{*}(2933) + 2^{*}(2936)^{*}(2938)$ $+ 2^{*}(2937)^{*}(2939) + 2^{*}(2938)^{*}(2936) + 2^{*}(2939)^{*}(2937)$ $+ 2^{*}(2940)^{2} + 2^{*}(2941)^{2} + 2^{*}(2942)^{2} + 2^{*}(2943)^{2}$

ISHIBASHI STATES

 $(0+2)^2 + (1+3)^2 + (4+6)^*(13+15) + (5+7)^*(12+14) + (8+10)^2 + (9+11)^2 + (12+14)^*(5+7) + (13+15)^*(4+6)$

 $+ 2^{*}(2937)^{*}(2939) + 2^{*}(2938)^{*}(2936) + 2^{*}(2939)^{*}(2937)$ $+ 2^{*}(2940)^{2} + 2^{*}(2941)^{2} + 2^{*}(2942)^{2} + 2^{*}(2943)^{2}$

ISHIBASHI STATES

 $(0+2)^2 + (1+3)^2 + (4+6)^*(13+15) + (5+7)^*(12+14) + (8+10)^2 + (9+11)^2 + (12+14)^*(5+7) + (13+15)^*(4+6)$

+ 2*(2937)*(2939) + 2*(2938)*(2936) + 2*(2939)*(2937) $+ 2*(2940)^2 + 2*(2941)^2 + 2*(2942)^2 + 2*(2943)^2$

ISHIBASHI STATES

 $(0+2)^2 + (1+3)^2 + (4+6)^*(13+15) + (5+7)^*(12+14) + (8+10)^2 + (9+11)^2 + (12+14)^*(5+7) + (13+15)^*(4+6)$

$$+ 2*(2937)*(2939) + 2*(2938)*(2936) + 2*(2939)*(2937) + 2*(2940)^2 + 2*(2941)^2 + 2*(2942)^2 + 2*(2943)^2$$

 $(m, J): J \in S_m$ with $Q_L(m) + X(L, J) = 0 \mod 1$ for all $L \in \mathcal{H}$ $S_m: J \in \mathcal{H}$ with $J \cdot m = m$ (Stabilizer of m)

BOUNDARY STATES

 $(0+2)^2 + (1+3)^2 + (4+6)^*(13+15) + (5+7)^*(12+14) + (8+10)^2 + (9+11)^2 + (12+14)^*(5+7) + (13+15)^*(4+6)$

 $+ 2^{*}(2937)^{*}(2939) + 2^{*}(2938)^{*}(2936) + 2^{*}(2939)^{*}(2937)$ $+ 2^{*}(2940)^{2} + 2^{*}(2941)^{2} + 2^{*}(2942)^{2} + 2^{*}(2943)^{2}$

BOUNDARY STATES

 $(0+2)^{2} + (1+3)^{2} + (4+6)^{*}(13+15) + (5+7)^{*}(12+14) + (8+10)^{2} + (9+11)^{2} + (12+14)^{*}(5+7) + (13+15)^{*}(4+6)$

+ 2*(2937)*(2939) + 2*(2938)*(2936) + 2*(2939)*(2937) $+ 2*(2940)^2 + 2*(2941)^2 + 2*(2942)^2 + 2*(2943)^2$

BOUNDARY STATES

 $(0+2)^{2} + (1+3)^{2} + (4+6)^{*}(13+15) + (5+7)^{*}(12+14) + (8+10)^{2} + (9+11)^{2} + (12+14)^{*}(5+7) + (13+15)^{*}(4+6)$

+ 2*(2937)*(2939) + 2*(2938)*(2936) + 2*(2939)*(2937) $+ 2*(2940)^2 + 2*(2941)^2 + 2*(2942)^2 + 2*(2943)^2$

 $[a, \psi_a], \quad \psi_a \text{ is a character of the group } \mathcal{C}_a$ $\mathcal{C}_a \text{ is the Central Stabilizer of } a$ $\mathcal{C}_i := \{J \in \mathcal{S}_i \mid F_i^X(K, J) = 1 \text{ for all } K \in \mathcal{S}_i\}$ $F_i^X(K, J) := e^{2\pi i X(K, J)} F_i(K, J)^*$ $S_{Ki,j}^J = F_i(K, J) e^{2\pi i Q_K(j)} S_{i,j}^J.$

BOUNDARIES AND CROSSCAPS

Soundary coefficients

$$R_{[a,\psi_a](m,J)} = \sqrt{\frac{|\mathcal{H}|}{|\mathcal{C}_a||\mathcal{S}_a|}} \psi_a^*(J) S_{am}^J$$

Q Crosscap coefficients

$$U_{(m,J)} = \frac{1}{\sqrt{|\mathcal{H}|}} \sum_{L \in \mathcal{H}} e^{\pi i (h_K - h_{KL})} \beta_K(L) P_{LK,m} \delta_{J,0}$$

THE FIXED POINT RESOLUTION MATRICES

S_{am}^J (of a WZW model W)

Modular transformation matrices of the WZW model W^J defined by folding the extended Dynkin diagram of W by the symmetry defined by J

> Schellekens, Yankielowicz (1989) Fuchs, Schellekens, Schweigert (1995)

ORBIT LIE ALGEBRAS

$$\breve{\mathsf{g}} = G_2^{(1)} \quad \bullet \quad \bullet \quad \bullet \quad \bullet$$

Fuchs, Schellekens, Schweigert (1995)

MODEL BUILDING

CONSISTENCY CONDITIONS

- Generation
 Generation
- Absence of axion mixing for Y
- Global anomalies*

Same as for all other orientifold models

(*) "probe branes" (Uranga) B. Gato-Rivera and A.N Schellekens, Phys.Lett.B632:728-732,2006

SM REALIZATION

Vector-like: mass allowed by SU(3) × SU(2) × U(1) Fully vector-like: mass allowed by all gauge symmetries

DHS RESULTS (2004-2005)

Huiszoon, Dijkstra, Schellekens

210000 distinct tadpole-free spectra found

(without chiral exotics, but distinguished by non-chiral exotics)

Best imaginable result:

The exact MSSM spectrum

Gauge group: $U(3) \times Sp(2) \times U(1) \times U(1)$

7 x (V,V,0,0) chirality 3 3 x (V,0,V,0) chirality -3 3 x (V,0,V*,0) chirality -3 9 x (0, V, 0, V) chirality 3 5 x (0 ,0 ,V ,V) chirality -3 3 x (0 ,0 ,V ,V*) chirality 3 6 x (V, 0, 0, V) 10 x (0 ,V ,V ,0) 2 x (Ad, 0, 0, 0) 2 x (A , 0 , 0 , 0) 6 x (S , 0 , 0 , 0) 14 x (0 , A , 0 , 0) 10 x (0 , S , 0 , 0) 9 x (0 ,0 ,Ad,0) 6 x (0 ,0 ,A ,0) 14 x (0 ,0 ,S ,0) 3 x (0 ,0 ,0 ,Ad) 4 x (0 ,0 ,0 ,A) 6 x (0,0,0,S)

No hidden sector B-L Massive (axion mixing)

Gauge group: Exactly SU(3)×SU(2)×U(1)

cf. Gmeiner et. al.

ADKS RESULTS (2005-2006)

Anastasopoulos, Dijkstra, Kiritsis, Schellekens
SEARCH CRITERIA

Require only:

 \bigcirc U(3) from a single brane

 \bigcirc U(2) from a single brane

Quarks and leptons, Y from at most four branes

 $\bigcirc G_{CP} \supset SU(3) \times SU(2) \times U(1)$

Chiral G_{CP} fermions reduce to quarks, leptons (plus non-chiral particles)

CHAN-PATON GROUP

 $G_{CP} = U(3)_a \times \left\{ \begin{array}{l} U(2)_b \\ Sp(2)_b \end{array} \right\} \times G_c \quad (\times G_d)$

Embedding of Y:

 $Y = \alpha Q_a + \beta Q_b + \gamma Q_c + \delta Q_d + W_c + W_d$

Q: Brane charges (for unitary branes)W: Traceless generators

CLASSIFICATION

 $Y = (x - \frac{1}{3})Q_a + (x - \frac{1}{2})Q_b + xQ_C + (x - 1)Q_D$

Distributed over c and d

Allowed values for x

1/2Madrid model, Pati-Salam, Flipped SU(5)0(broken) SU(5)1Antoniadis, Kiritsis, Tomaras model-1/2, 3/2Trinification (x = 1/3) (orientable)

I 19345 chirally distinct spectra (19 of Madrid type)

9 1900 distinct ones with tadpole solutions

9 19345 chirally distinct spectra
(19 of Madrid type)

1900 distinct ones with tadpole solutions
 (≈ 1900 distinct hep-th papers)

STATISTICS

Value of x	Total
0	24483441
1/2	138837612
1	30580
-1/2, 3/2	0
any	1250080

A CURIOSITY

Gauge group $SU(3) \times SU(2) \times U(1) \times [U(2)_{Hidden})]$

U3 S2 U1 U1 U2

3 x (V	,V	,0	,0	,0) chirality 3	Q
3 x (0	,0	,V	,V	,0) chirality -3	E*
1 x (V	,0	,0	,V*	,0) chirality -1	U*
2 x (V	,0	,V	,0	,0) chirality -2	D*
2 x (0	,V	,0	,V	,0) chirality 2	L
3 x (V	,0	,0	,V	,0) chirality -1	$D^*+(D+D^*)$
3 x (0	,V	,V	,0	,0) chirality 1	$L+H_1+H_2$
2 x (V	,0	,V*	,0	,0) chirality -2	U*
1 x (0	,0	,V	,V*	,0) chirality 1	N*
4 x (A	,0	,0	,0	,0)	U+U*
2 x (0	,0	,0	,S	,0)	E+E*

A CURIOSITY

Gauge group $SU(3) \times SU(2) \times U(1) \times [U(2)_{Hidden})]$

U3 S2 U1 U1 U2

3 x (V	V	0	0	0)	chirality	3	0
$3 \times (0$,•	,0 ,V	,0 ,V	,0 ∩)	chirolity	2	\mathbf{i}
5 X (U	,0	, v	,۷	,0)	chirality	-2	E*
1 x (V	,0	,0	,V*	,0)	chirality	-1	U*
2 x (V	,0	,V	,0	,0)	chirality	-2	D*
2 x (0	,V	,0	,V	,0)	chirality	2	L
3 x (V	,0	,0	,V	,0)	chirality	-1	$D^* + (D + D^*)$
3 x (0	,V	,V	,0	,0)	chirality	1	$L+H_1+H_2$
2 x (V	,0	,V*	,0	,0)	chirality	-2	U*
1 x (0	,0	,V	,V*	,0)	chirality	1	N*
4 x (A	,0	,0	,0	,0)			U+U*
2 x (0	,0	,0	,S	,0)			E+E*

Truly hidden hidden sector

A CURIOSITY

Gauge group $SU(3) \times SU(2) \times U(1) \times [U(2)_{Hidden})]$

U3 S2 U1 U1 U2

3 x (V	,V	,0	,0	,0)	chirality	3	Q
3 x (0	,0	,V	,V	,0)	chirality	-3	E*
1 x (V	,0	,0	,V*	,0)	chirality	-1	U*
2 x (V	,0	,V	,0	,0)	chirality	-2	D*
2 x (0	,V	,0	,V	,0)	chirality	2	L
3 x (V	,0	,0	,V	,0)	chirality	-1	$D^*+(D+D^*)$
3 x (0	,V	,V	,0	,0)	chirality	1	$L+H_1+H_2$
2 x (V	,0	,V*	,0	,0)	chirality	-2	U*
1 x (0	,0	,V	,V*	,0)	chirality	1	N*
4 x (A	,0	,0	,0	,0)			U+U*
2 x (0	,0	,0	,S	,0)			E+E*

Free-field realization with (2)⁶ Gepner model (Kiritsis, Schellekens, Tsulaia, arXiv:0809.0083)

FREE FERMIONS

M. Lennek, E. Kiritsis, A.N. Schellekens

Motivation:

Q Compare with other approaches

Allow computation of more quantities

ISING MODEL

RCFT with just three primary fields

$$0: \quad h = 0$$
$$\psi: \quad h = \frac{1}{2}$$
$$\sigma: \quad h = \frac{1}{16}$$

Fusion rules:

 $[\psi] \times [\psi] = [0]$ $[\sigma] \times [\sigma] = [0] + [\psi]$

Simple current

TENSORING

Central charge: c = 1/2

To get c=9 we tensor 18 copies. But: the Ising model has no supersymmetry.

This can be overcome by imposing it on the tensor product by means of a chiral algebra extension:

KLT / ABK Triplet constraint (1986)

Current $\psi^{\mu}\partial X_{\mu}\psi_{i}\psi_{j}\psi_{k}$

This is a simple current, so the FHSSW formalism applies

SPACE-TIME SUSY

This requires another chiral algebra extension

Current $S_{\alpha}\sigma_{1}\sigma_{4}\sigma_{7}\sigma_{10}\sigma_{13}\sigma_{16}$

SPACE-TIME SUSY

This requires another chiral algebra extension

Current $S_{\alpha}\sigma_{1}\sigma_{4}\sigma_{7}\sigma_{10}\sigma_{13}\sigma_{16}$

But this is *not* a simple current; we do not have a boundary state formalism for such an extension. Solution: pair two Ising models into a real boson.

This yields the D₁ free boson CFT

A look into the kitchen

NSR

g	D	5	1							
g	mi	n	2	3						
g	mi	n	2	3						
g	mi	n	2	3						
g	mi	n	2	3						
g	mi	n	2	3						
Cl	ırr	rer	nt	2	10	0	0	С)	0
Cl	ırr	rer	nt	2	0	10	0	С)	0
Cl	ırr	rer	nt	2	0	0	10	С)	0
Cl	ırr	rer	nt	2	0	0	0	10)	0
сι	ırr	rer	nt	2	0	0	0	0	1	0
сι	ırr	rer	nt	1	1	1	1	1	1	
CC	g min 2 3 g min 2 3 current 2 10 0 0 0 0 current 2 0 10 0 0 0 current 2 0 10 0 0 0 current 2 0 0 10 0 0 current 2 0 0 0 10 0 current 1 1 1 1 1 1 compute spectrum									

Lerche, Lüst, Schellekens, Nucl. Phys. B287:477,1987

g	D 5	T		
g	min	2	3	
g	min	2	3	
g	min	2	3	
g	min	2	3	
g	min	2	3	

Minimal Models

NSR

current 2 10 0 0 0 0 current 2 0 10 0 0 0 current 2 0 0 10 0 0 current 2 0 0 0 10 0 current 2 0 0 0 10 0 current 1 1 1 1 1 1 compute spectrum

Lerche, Lüst, Schellekens, Nucl.Phys.B287:477,1987 D. Gepner, Nucl.Phys.B296:757,1988

D. Gepner; Nucl.Phys.B296:757,1988

compute spectrum

Lerche, Lüst, Schellekens, Nucl.Phys.B287:477,1987 D. Gepner, Nucl.Phys.B296:757,1988

```
G D 5 1
G U 4
G U 4
G U 4
G min 0 1
current 2 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
current 2 2 0 0 0 0 1 1 0 0 0 0 0 0 0 0
current 2 0 2 0 0 0 0 0 1 1 0 0 0 0 0 0
current 2 0 2 0 0 0 0 0 0 0 1 1 0 0 0 0
current 2 0 0 2 0 0 0 0 0 0 0 0 1 1 0 0
current 2 0 0 2 0 0 0 0 0 0 0 0 0 1 1
current 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
compute spectrum
```

G D 5 1																NSR
G U 4																
G U 4																
G U 4																
G min 0	1															
G min 0	1															
G min 0	1															
G min 0	1															
G min 0	1															
G min 0	1															
G min 0	1															
G min 0	1															
G min 0	1															
G min 0	1															
G min 0	1															
G min 0	1															
current	2	2	0	0	1	1	0	0	0	0	0	0	0	0	0	0
current	2	2	0	0	0	0	1	1	0	0	0	0	0	0	0	0
current	2	0	2	0	0	0	0	0	1	1	0	0	0	0	0	0
current	2	0	2	0	0	0	0	0	0	0	1	1	0	0	0	0
current	2	0	0	2	0	0	0	0	0	0	0	0	1	1	0	0
current	2	0	0	2	0	0	0	0	0	0	0	0	0	0	1	1
current	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
compute	SI	pec	cti	cur	n											

G D 5 1																NSR
G U 4																
G U 4														F	re	ee Bosons
G U 4																
G min 0	1															
G min 0	1															
G min 0	1															
G min 0	1															
G min 0	1															
G min O	1															
G min 0	1															
G min 0	1															
G min 0	1															
G min 0	1															
G min 0	1															
G min 0	1															
current	2	2	0	0	1	1	0	0	0	0	0	0	0	0	0	0
current	2	2	0	0	0	0	1	1	0	0	0	0	0	0	0	0
current	2	0	2	0	0	0	0	0	1	1	0	0	0	0	0	0
current	2	0	2	0	0	0	0	0	0	0	1	1	0	0	0	0
current	2	0	0	2	0	0	0	0	0	0	0	0	1	1	0	0
current	2	0	0	2	0	0	0	0	0	0	0	0	0	0	1	1
current	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
compute	SI	pec	cti	cun	n											

Kawai, Lewellen, Tye, Phys.Rev.Lett.57:1832,1986 Antoniadis, Bachas, Kounnas, Nucl.Phys.B289:87,1987

Kawai, Lewellen, Tye, Phys.Rev.Lett.57:1832,1986 Antoniadis, Bachas, Kounnas, Nucl.Phys.B289:87,1987

ACCESSIBLE MIPFS

6 of the 18 fermions *must* be paired into bosons to get a susy simple current.

The other fermions *may* be paired into bosons in a definite way.

Such a pairing produces a new class of models because the spinor currents are now available as simple currents.

There are 62 possible pairing choices

DEGENERACIES

The number of simple current MIPFs is extremely large $(> 10^{28} \text{ for (NSR)} (D_1)^3 (\text{Ising})^{12}).$

But there are many degeneracies

Permutations of identical factors.
 [occurs also in Gepner models with identical factors]

 $\begin{aligned} & \Theta \\ & \text{Ising degeneracy} \\ & \text{(some generically distinct MIPFs are identical)} \\ & \text{[occurs also in Gepner models with k=2 factors]} \end{aligned}$

Non-trivial free field theory relations. [occurs also in Gepner models with k=1 factors]

NUMBER OF MIPFS

Pairings within triplets:

(NSR) (D₁)⁹ (NSR) (D₁)⁷ (Ising)⁴ (NSR) (D₁)⁵ (Ising)⁸ (NSR) (D₁)³ (Ising)¹²

685 MIPFs 7466 MIPFs 75427 MIPFs 534700 MIPFs

Pairings across triplets:

58 additional possibilities, still being analysed

Far more MIPFs than for Gepner Models (≈ 5000)

Hodge numbers

1

359	(51, 3, 4)
359	(3, 51, 4)
2962	(31, 7, 4)
2962	(7, 31, 4)
4066	(27, 3, 4)
4066	(3,27,4)
6	(25, 1, 4)
6	(1, 25, 4)
1720	(21, 9, 4)
1720	(9, 21, 4)
16866	(19,7,4)
16866	(7, 19, 4)
29118	(17, 5, 4)
29118	(5, 17, 4)
11132	(15, 3, 4)
11132	(3, 15, 4)
65072	(12, 6, 4)
65072	(6, 12, 4)

917	(21, 21, 8)	$(K3 \times T2)$
2214	(19, 19, 4)	()
13225	(15,15,4)	
6152	(13, 13, 8)	
12	(13, 13, 4)	
92684	(11, 11, 4)	
1187	(9,9,16)	(Tori)
3550	(9,9,8)	
00838	(9,9,4)	
03414	(7,7,4)	
4252	(5,5,8)	
15018	(5, 5, 4)	
12209	(3,3,4)	
4	(1, 1, 8)	

cf. Donagi and Faraggi, 2004 Donagi and Wendland (to appear) $(Z_2 \times Z_2 \text{ orbifolds})$

SEARCH RESULTS

$(NSR) (D_1)^9$

SM configuration, no tadpole cancellation

 $(NSR) (D_1)^7 (Ising)^4$

 $(NSR) (D_1)^5 (Ising)^8$

 $(NSR) (D_1)^3 (Ising)^{12}$

Nothing

Nothing

Nothing (using random MIPF selection)

SM CONFIGURATION (FREE BOSONS)

U(4)	U(2)	U(2)	mult.
0	V*	V	2
V*	0	V	1
V	V	0	2
V*	0	V*	2
V	V*	0	1

Exact! No non-chiral states! Also a U(3)×U(1) version

NON-SUPERSYMMETRIC SPECTRA

B. Gato-Rivera and A.N. Schellekens, Phys.Lett.B656:127-131,2007 and to appear.

THE QUINTIC [GEPNER (3,3,3,3,3)]

compute spectrum

ÅRGUMENTS IN FAVOR OF LOW ENERGY SUSY

Stabilizes weak hierarchy

Coupling convergence

Q LSP and Dark Matter

ÅRGUMENTS IN FAVOR OF LOW ENERGY SUSY

Coupling convergence

Q LSP and Dark Matter

Dijkstra, Huiszoon, Schellekens, Nucl.Phys.B710:3-57,2005

Coupling convergence

Q LSP and Dark Matter

Q LSP and Dark Matter

Stabilizes - Lak hierarchy

Se Coupling con rergence

Q LSP and Dark Matter

For the record: I am NOT making an LHC prediction here!

Coincidence in orientifolds

Stabilizes - Lak hierarchy

Se Coupling con ergence

Q LSP and Dark Matter

For the record: I am NOT making an LHC prediction here!

Coincidence in orientifolds

But: does string theory predict low energy supersymmetry or GUT unification at 10¹⁶ GeV?

NON-SUPERSYMMETRIC STRING THEORIES

A surprisingly common misconception: ``*Absence of tachyons requires supersymmetry.*"

NON-SUPERSYMMETRIC STRING THEORIES

A surprisingly common misconception: *``Absence of tachyons requires supersymmetry.''*

Counter example: O(16) x O(16) Heterotic string.

NON-SUPERSYMMETRIC STRING THEORIES

A surprisingly common misconception: *``Absence of tachyons requires supersymmetry.''*

Counter example: $O(16) \times O(16)$ Heterotic string.

Many examples in four dimensions, e.g.

Kawai, Tye, Lewellen, Lerche, Lüst, A.N.S, Kachru, Silverstein, Kumar, Shiu, Dienes, Blum, Angelantonj, Sagnotti, Blumenhagen, Font,

NON-SUPERSYMMETRIC STRINGS

Additional complications:

Tachyons: Closed sector, Open sector
 Tadpoles: Separate equations for NS and R.

Best imaginable outcome:

Solution Exactly the standard model (open sector)

But even then, there will be plenty of further problems: tadpoles at genus 1, how to compute anything of interest without the help of supersymmetry, etc.

cf. Ibañez, Marchesano, Rabadan

CLOSED SECTOR

Four ways of removing closed string tachyons:

Security Chiral algebra extension (non-susy)

All characters non-supersymmetric, but tachyon-free.

Q Automorphism MIPF

No tachyons in left-right pairing of characters.

Susy MIPF

Non-supersymmetric CFT, but supersymmetric bulk.

Allows boundaries that break supersymmetry.

Generation Klein Bottle

This introduces crosscap tadpoles. Requires boundaries with non-zero CP multiplicity.

CLOSED SECTOR

Do these possibilities occur?

Chiral algebra extension (non-susy)
Automorphism MIPF
Susy MIPF
Klein Bottle

B. Gato-Rivera and A.N. Schellekens, Phys.Lett.B656:127-131,2007

CLOSED SECTOR

Do these possibilities occur?

♀ Chiral algebra extension (non-susy)
♀ Automorphism MIPF
♀ Susy MIPF
♀ Klein Bottle

(44054 MIPFs)
 (40261 MIPFs)
 (186951 Orientifolds)

B. Gato-Rivera and A.N. Schellekens, Phys.Lett.B656:127-131,2007

EXAMPLES OF TADPOLE AND TACHYON-FREE SPECTRA

Orientifolds of tachyon-free non-supersymmetric oriented closed strings (automorphism MIPFs)

CFT 11111111, Extension 176, MIPF 35, orientifold 0

Gauge group Sp(4) Bosons: 2 × (S) (Symmetric Tensor) Fermions: None

CFT 11111111, Extension 70, MIPF 56, orientifold 0

Gauge group Sp(4) Bosons: None (Symmetric Tensor) Fermions: 2 x (S)

CFT 11111111, Extension 176, MIPF 21, orientifold 0 Gauge group Sp(4) Bosons: None Fermions: None

CFT 1112410, Extension 157, MIPF 63, orientifold 0 Gauge group O(4) × U(1) × U(2)

Fermions

Bosons

2 x (V,0,V) chirality -2 2 x (0 ,V ,V) chirality 2 2 x (0 ,V ,V*) chirality -2 6 x (0,0,A) chirality -2 4 x (V,V,0) $2 \times (S, 0, 0)$ 6 x (0, Ad, 0) $4 \times (0, S, 0)$ 2 x (0,0,Ad) 2 x (V, 0, V)2 x (A,0,0) 3 x (V,V,0) 6 x (0, Ad, 0) $3 \times (0, A, 0)$ $4 \times (0, S, 0)$ 3 x (0,0,Ad) $4 \times (0, 0, S)$

Chiral!

CFT 11111111, Extension 67, MIPF 508, orientifold 0

Gauge group $Sp(2) \times U(1)$

Fermions	8 x (V ,V) 6 x (S ,0) 6 x (0 ,Ad) 8 x (0 ,S)
Bosons	8 x (V ,V) 5 x (S ,0) 5 x (0 ,Ad) 8 x (0 ,S)

EXAMPLES OF TADPOLE AND TACHYON-FREE SPECTRA

II. Orientifolds of tachyonic closed strings, with tachyons projected out by the Klein bottle

CFT 22266, Extension 710, MIPF 635, orientifold 6 Gauge group U(1) × U(1) × U(4) × U(2)

3 x (V,0,0,V) chirality 3 3 x (V ,0 ,0 ,V*) chirality -3 3 x (0,V,0,V) chirality -3 3 x (0,V,0,V*) chirality 3 1 x (V ,0 ,V ,0) chirality 1 1 x (V ,0 ,V*,0) chirality -1 1 x (0, V, V, 0) chirality -1 1 x (0 ,V ,V*,0) chirality 1 6 x (V,V,0,0) $6 \times (V, V^*, 0, 0)$ $2 \times (0, 0, V, V)$ $1 \times (0, 0, Ad, 0)$ 3 x (0,0,0,Ad) $4 \times (0, 0, V, V^*)$ 2 x (Ad,0,0,0) 4 x (A, 0, 0, 0)4 x (S,0,0,0) 2 x (0, Ad, 0, 0) $4 \times (0, A, 0, 0)$ $4 \times (0, S, 0, 0)$ $4 \times (0, 0, 0, S)$

3 x (V, 0, 0, V) 3 x (V, 0, 0, V*) $3 \times (0, V, 0, V)$ 3 x (0, V, 0, V*) 1 x (V,0,V,0) $1 \times (V, 0, V^*, 0)$ $1 \times (0, V, V, 0)$ $1 \times (0, V, V^*, 0)$ 6 x (V,V,0,0) $6 x (V, V^*, 0, 0)$ $2 \times (0, 0, V, V)$ 2 x (0,0,0,Ad) 3 x (Ad,0,0,0) 2 x (A,0,0,0) $2 \times (S, 0, 0, 0)$ 3 x (0, Ad, 0, 0) 2 x (0, A, 0, 0) $2 \times (0, S, 0, 0)$ 2 x (0,0,A,0) 2 x (0,0,S,0) 6 x (0,0,0,A) $2 \times (0, 0, 0, S)$

FINDING THE SM

SEARCH FOR NON-SUSY SM CONFIGURATIONS

Total number of tachyon-free boundary state combinations satisfying our criteria:

3456601

Subdivided as follows

Bulk Susy	3389835	98.1%
Tachyon-free automorphism	66378	1.9%
Tachyon-free Klein bottle projection	388	0.01%

AN EXAMPLE

CFT 44716, Extension 124, MIPF 27, Orientifold 0 N=1 Susy Bulk symmetry Spectrum type 20088 (Not on ADKS list) Gauge Group U(3) × U(2) × Sp(4) × U(1) (broken by axion couplings to SU(3) × SU(2) × Sp(4) × U(1)) 3 x (A ,0 ,0 ,0) chirality 3 3 x (0, A, 0, 0) chirality 3 4 x (0,0,0,A) chirality -2 5 x (0,0,0,S) chirality -3 3 x (V ,0 ,V ,0) chirality -1 1 x (V ,0 ,0 ,V) chirality 1 1 x (0,V,0,V) chirality 1 $1 \times (0, 0, V, V)$ chirality 1 5 x (V , V , 0 , 0) chirality 3 1 x (0,V,V,0) chirality -1 $3 \times (Ad, 0, 0, 0)$ $3 \times (0, Ad, 0, 0)$ 4 x (0,0,0,Ad) 2 x (0,0,A,0) 4 x (S, 0, 0, 0) $4 \times (0, S, 0, 0)$ $2 \times (V, 0, 0, V^*)$ $2 \times (0, V, 0, V^*)$ $2 \times (V, V^*, 0, 0)$

3 x (S ,0 ,0 ,0) $3 \times (0, S, 0, 0)$ $4 \times (0, 0, 0, A)$ $5 \times (0, 0, 0, S)$ $3 \times (V, 0, V, 0)$ $2 \times (V, 0, 0, V)$ $2 \times (0, V, 0, V)$ $3 \times (0, 0, V, V)$ $5 \times (V, V, 0, 0)$ $1 \times (0, V, V, 0)$ 2 x (Ad, 0, 0, 0) 2 x (0, Ad, 0, 0) 3 x (0,0,0,Ad) $1 \times (0, 0, S, 0)$ $4 \times (A, 0, 0, 0)$ $4 \times (0, A, 0, 0)$

2 x (V ,V*,0 ,0)

3 x (A ,0 ,0 ,0) chirality 3	3 x (S ,0 ,0 ,0)
3 x (0 , A , 0 , 0) chirality 3	3 x (0 , S , 0 , 0)
4 x (0 ,0 ,0 ,A) chirality -2	4 x (0 ,0 ,0 ,A)
5 x (0 ,0 ,0 ,S) chirality -3	5 x (0 ,0 ,0 ,S)
3 x (V ,0 ,V ,0) chirality -1	3 x (V ,0 ,V ,0)
1 x (V ,0 ,0 ,V) chirality 1	2 x (V ,0 ,0 ,V)
1 x (0 ,V ,0 ,V) chirality 1	2 x (0 ,V ,0 ,V)
1 x (0 ,0 ,V ,V) chirality 1	3 x (0 ,0 ,V ,V)
5 x (V ,V ,0 ,0) chirality 3	5 x (V ,V ,0 ,0)
1 x (0 , V , V , 0) chirality -1	1 x (0 ,V ,V ,0)
3 x (Ad,0 ,0 ,0)	2 x (Ad,0 ,0 ,0)
3 x (0 , Ad,0 ,0)	2 x (0 ,Ad,0 ,0)
4 x (0 ,0 ,0 ,Ad)	3 x (0 ,0 ,0 ,Ad)
2 x (0 ,0 ,A ,0)	1 x (0 ,0 ,S ,0)
4 x (S ,0 ,0 ,0)	4 x (A ,0 ,0 ,0)
4 x (0 , S , 0 , 0)	4 x (0, A, 0, 0)
2 x (V ,0 ,0 ,V*)	
2 x (0 ,V ,0 ,V*)	
2 x (V ,V*,0 ,0)	2 x (V ,V*,0 ,0)

3 x (A ,0 ,0 ,0) chirality 3	3 x (S ,0 ,0 ,0)
3 x (0 , A , 0 , 0) chirality 3	3 x (0 , S , 0 , 0)
4 x (0 ,0 ,0 ,A) chirality -2	4 x (0 ,0 ,0 ,A)
5 x (0 ,0 ,0 ,S) chirality -3	5 x (0 ,0 ,0 ,S)
3 x (V ,0 ,V ,0) chirality -1	3 x (V ,0 ,V ,0)
1 x (V ,0 ,0 ,V) chirality 1	2 x (V ,0 ,0 ,V)
1 x (0 ,V ,0 ,V) chirality 1	2 x (0 ,V ,0 ,V)
1 x (0 ,0 ,V ,V) chirality 1	3 x (0 ,0 ,V ,V)
5 x (V ,V ,0 ,0) chirality 3	5 x (V ,V ,0 ,0)
1 x (0 ,V ,V ,0) chirality -1	1 x (0 ,V ,V ,0)
3 x (Ad,0 ,0 ,0)	2 x (Ad,0 ,0 ,0)
3 x (0 , Ad, 0 , 0)	2 x (0 ,Ad,0 ,0)
4 x (0 ,0 ,0 ,Ad)	3 x (0 ,0 ,0 ,Ad)
2 x (0 ,0 ,A ,0)	1 x (0 ,0 ,S ,0)
4 x (S ,0 ,0 ,0)	4 x (A ,0 ,0 ,0)
4 x (0 , S , 0 , 0)	4 x (0 , A , 0 , 0)
2 x (V ,0 ,0 ,V*)	
2 x (0 ,V ,0 ,V*)	
2 x (V ,V*,0 ,0)	2 x (V ,V*,0 ,0)

FINDING HIDDEN SECTORS

A tachyon-free, tadpole-free hidden sector could be found for 896 of the 3456601 SM configurations.

All of these have bulk susy.

"Statistically" 16 would be expected for the tachyon-free automorphism, 0 for tachyon-free Klein bottles.

All 896 have a supersymmetric spectrum (exact boson fermion matching). They are probably identical to supersymmetric models from earlier searches.

CONCLUSIONS

- Interacting CFT's are "richer" than free CFT's.
- Non-supersymmetric, tadpole and tachyonfree standard models must exist, but are still hidden in the noise.
- Getter chance with 1, 2 or 4 families.
- Supersymmetry is very persistent.
- Perhaps try N=1 tensor products?