RCFT

 ORIENTIFOLDS

 ORIENTIFOLDS}

BERT SCHELLEKENS
PARIS, SEPTEMBER 32008

What we can compute

Q Exact perturbative string spectra
9 Gauge couplings in rational points
Q RCFT instanton corrections
What we can't do (yet)
Q Compute Yukawa couplings
Q Compute couplings to moduli
Q Perturbations around rational points
Q Moduli stabilization
Q ...

ORIENTIFOLDS

ORIENTIFOLD PARTITION FUNCTIONS

ORIENTIFOLD PARTITION FUNCTIONS

9 Closed $\frac{1}{2}\left[\sum_{i j} \chi_{i}(\tau) Z_{i j} \chi_{i}(\bar{\tau})+\sum_{i} K_{i} \chi_{i}(2 \tau)\right]$

Q Open $\frac{1}{2}\left[\sum_{i, a, n} N_{a} N_{b} A_{a b}^{i} \chi_{i}\left(\frac{\tau}{2}\right)+\sum_{i, a} N_{a} M_{a}^{i} \hat{\chi}_{i}\left(\frac{\tau}{2}+\frac{1}{2}\right)\right]$
i : Primary field label (finite range)
a : Boundary label (finite range)
χ_{i} : Character
N_{a} : Chan-Paton (CP) Multiplicity

RCFT TOOLS

TRANSVERSE CHANNEL

TRANSVERSE CHANNEL

TRANSVERSE CHANNEL

COEFFICIENTS

9 Klein bottle

$$
K^{i}=\sum_{m, J, J^{\prime}} \frac{S^{i}{ }_{m} U_{(m, J)} g_{J, J^{\prime}}^{\Omega, U^{\prime}} U_{\left(m, J^{\prime}\right)}}{S_{0 m}}
$$

Q Annulus

$$
A_{\left[a, \psi_{a}\right]\left[b, \psi_{b}\right]}^{i}=\sum_{m, J, J^{\prime}} \frac{S^{i}{ }_{m} R_{\left[a, \psi_{a}\right](m, J)} g_{J, J^{\prime}}^{\Omega, m} R_{\left[b, \psi_{b}\right]\left(m, J^{\prime}\right)}}{S_{0 m}}
$$

9 Moebius

$$
M_{\left[a, \psi_{a}\right]}^{i}=\sum_{m, J, J^{\prime}} \frac{P^{i}{ }_{m} R_{\left[a, \psi_{a}\right](m, J)} g_{J, J^{\prime}}^{\Omega, m} U_{\left(m, J^{\prime}\right)}}{S_{0 m}}
$$

$g_{J, J^{\prime}}^{\Omega, m}=\frac{S_{m 0}}{S_{m K}} \beta_{K}(J) \delta_{J^{\prime}, J^{c}}$

Algebraic CHOICES

Q Basic CFT ($\mathrm{N}=2$ tensor ${ }^{(1)}$, free fermions ${ }^{(2)}$...)
Q Chiral algebra extension*
May imply space-time symmetry (e.g. Susy: GSO projection).
But this is optional!
Reduces number of characters.
Q Modular Invariant Partition Function (MIPF)*
May imply bulk symmetry (e.g Susy), not respected by all boundaries.
Defines the set of boundary states
(Sagnotti-Pradisi-Stanev completeness condition)

- Orientifold choice*
${ }^{(1)}$ Dijkstra, Huiszoon, Schellekens (2005);
Anastasopoulos, Dijkstra, Kiritsis, Schellekens (2006)
${ }^{(2)}$ Kiritsis, Lennek, Schellekens, to appear.
(*) Simple Current related

BOUNDARIES AND CROSSCAPS

9 Boundary coefficients

$$
R_{\left[a, \psi_{a}\right](m, J)}=\sqrt{\frac{|\mathcal{H}|}{\left|\mathcal{C}_{a}\right|\left|\mathcal{S}_{a}\right|}} \psi_{a}^{*}(J) S_{a m}^{J}
$$

9 Crosscap coefficients

$$
U_{(m, J)}=\frac{1}{\sqrt{|\mathcal{H}|}} \sum_{L \in \mathcal{H}} e^{\pi i\left(h_{K}-h_{K L}\right)} \beta_{K}(L) P_{L K, m} \delta_{J, 0}
$$

Cardy (1989)
Sagnotti, Pradisi, Stanes (~1995)
Huiszoon, Fuchs, Schellekens, Schweigert, Walcher (2000)

A MIPF

A MIPF

$$
\begin{gathered}
\quad(0+2)^{\wedge} 2+(1+3)^{\wedge} 2+(4+6)^{*}(13+15)+(5+7)^{*}(12+14) \\
+(8+10)^{\wedge} 2+(9+11)^{\wedge} 2+(12+14)^{*}(5+7)+(13+15)^{*}(4+6) \\
+(16+18)^{*}(25+27)+(17+19)^{*}(24+26)+(20+22)^{\wedge} 2+(21+23)^{\wedge} 2 \\
+(24+26)^{*}(17+19)+(25+27) *(16+18)+(28+30)^{\wedge} 2+(29+31)^{\wedge} 2 \\
+(32+34)^{\wedge} 2+(33+35)^{\wedge} 2+(36+38)^{*}(45+47)+(37+39)^{*}(44+46) \\
+(40+42)^{\wedge} 2+(41+43)^{\wedge} 2+(44+46)^{*}(37+39)+(45+47)^{*}(36+38) \\
+(48+50) *(57+59)+(49+51)^{*}(56+58)+(52+54)^{\wedge} 2+(53+55)^{\wedge} 2 \\
+(56+58) *(49+51)+(57+59) *(48+50)+(60+62)^{\wedge} 2+(61+63)^{\wedge} 2
\end{gathered}
$$

$$
\begin{aligned}
& +2 \text { * } 2913 \text {) }{ }^{*}(2915)+2^{*}(2914) *(2912)+2^{*}(2915) *(2913) \\
& +2^{*}(2916)^{\wedge} 2+2^{*}(2917)^{\wedge} 2+2^{*}(2918)^{\wedge} 2+2^{*}(2919)^{\wedge} 2 \\
& +2^{*}(2920)^{\wedge} 2+2^{*}(2921)^{\wedge} 2+2^{*}(2922)^{\wedge} 2+2^{*}(2923)^{\wedge} 2 \\
& +2^{*}(2924) *(2926)+2 *(2925) *(2927)+2 *(2926) *(2924) \\
& +2 \text { * } 2927 \text {)*(2925) }+2^{* *}(2928)^{\wedge} 2+2 *(2929)^{\wedge} 2+2 *(2930)^{\wedge} 2 \\
& +2 *(2931)^{\wedge} 2+2 *(2932) *(2934)+2^{*}(2933) *(2935) \\
& +2 *(2934) *(2932)+2 *(2935) *(2933)+2 *(2936) *(2938) \\
& +2 \text { * } 2937 \text {) }{ }^{*}(2939)+2^{*}(2938) *(2936)+2 *(2939) *(2937) \\
& +2{ }^{*}(2940)^{\wedge} 2+2 *(2941)^{\wedge} 2+2^{*}(2942)^{\wedge} 2+2 *(2943)^{\wedge} 2
\end{aligned}
$$

Ishibashi States

$$
\begin{gathered}
(0+2)^{\wedge} 2+(1+3)^{\wedge} 2+(4+6) *(13+15)+(5+7) *(12+14) \\
+(8+10)^{\wedge} 2+(9+11)^{\wedge} 2+(12+14) *(5+7)+(13+15) *(4+6)
\end{gathered}
$$

$$
+2 *(2937) *(2939)+2 *(2938) *(2936)+2 *(2939) *(2937)
$$

$$
+2^{*}(2940)^{\wedge} 2+2^{*}(2941)^{\wedge} 2+2 *(2942)^{\wedge} 2+2 *(2943)^{\wedge} 2
$$

ISHIBASHI STATES

$$
\begin{gathered}
(0+2)^{\wedge} 2+(1+3)^{\wedge} 2+(4+6)^{*}(13+15)+(5+7)^{*}(12+14) \\
+(8+10)^{\wedge} 2+(9+11)^{\wedge} 2+(12+14) *(5+7)+(13+15) *(4+6)
\end{gathered}
$$

$$
\begin{aligned}
& +2 *(2937) *(2939)+2 *(2938) *(2936)+2 *(2939) *(2937) \\
& +2 *(2940)^{\wedge} 2+2 *(2941)^{\wedge} 2+2 *(2942)^{\wedge} 2+2 *(2943)^{\wedge} 2
\end{aligned}
$$

ISHIBASHI STATES

$$
\begin{gathered}
(0+2)^{\wedge} 2+(1+3)^{\wedge} 2+(4+6)^{*}(13+15)+(5+7)^{*}(12+14) \\
+(8+10)^{\wedge} 2+(9+11)^{\wedge} 2+(12+14) *(5+7)+(13+15)^{*}(4+6)
\end{gathered}
$$

$+2 *(2937) *(2939)+2^{*}(2938) *(2936)+2 *(2939) *(2937)$
$+2^{*}(2940)^{\wedge} 2+2^{*}(2941)^{\wedge} 2+2^{*}(2942)^{\wedge} 2+2^{*}(2943)^{\wedge} 2$
$(m, J): \quad J \in \mathcal{S}_{m}$
with $Q_{L}(m)+X(L, J)=0 \bmod 1$ for all $L \in \mathcal{H}$
$\mathcal{S}_{m}: J \in \mathcal{H}$ with $J \cdot m=m$
(Stabilizer of m)

BOUNDARY STATES

$$
\begin{gathered}
(0+2)^{\wedge} 2+(1+3)^{\wedge} 2+(4+6) *(13+15)+(5+7) *(12+14) \\
+(8+10)^{\wedge} 2+(9+11)^{\wedge} 2+(12+14) *(5+7)+(13+15) *(4+6)
\end{gathered}
$$

$+2^{*}(2937) *(2939)+2 *(2938) *(2936)+2 *(2939) *(2937)$
$+2 *(2940)^{\wedge} 2+2 *(2941)^{\wedge} 2+2 *(2942)^{\wedge} 2+2 *(2943)^{\wedge} 2$

BOUNDARY STATES

$$
\begin{gathered}
\left((0+2)^{\wedge} 2+(1+3)^{\wedge} 2+(4+6) *(13+15)+(5+7) *(12+14)\right. \\
+(8+10)^{\wedge} 2+(9+11){ }^{\wedge} 2+(12+14) *(5+7)+(13+15) *(4+6)
\end{gathered}
$$

+2 * 2937$)^{*}(2939)+2 *(2938) *(2936)+2 *(2939) *(2937)$
$+2^{*}(2940)^{\wedge} 2+2^{*}(2941)^{\wedge} 2+2 *(2942)^{\wedge} 2+2^{*}(2943)^{\wedge} 2$

BOUNDARY STATES

$$
\begin{gathered}
\left((0+2)^{\wedge} 2+(1+3)^{\wedge} 2+(4+6)^{*}(13+15)+(5+7)^{*}(12+14)\right. \\
\left.\left.+(8+10)^{\wedge} 2+(9+11)^{\wedge} 2+(12+14)\right)^{*}(5+7)+(13+15)\right)^{*}(4+6)
\end{gathered}
$$

+2 * (2937) * $(2939)+2^{*}(2938) *(2936)+2 *(2939) *(2937)$
$+2^{*}(2940)^{\wedge} 2+2^{*}(2941)^{\wedge} 2+2^{*}(2942)^{\wedge} 2+2^{*}(2943)^{\wedge} 2$
$\left[a, \psi_{a}\right], \quad \psi_{a}$ is a character of the group \mathcal{C}_{a}
\mathcal{C}_{a} is the Central Stabilizer of a
$\mathcal{C}_{i}:=\left\{J \in \mathcal{S}_{i} \mid F_{i}^{X}(K, J)=1\right.$ for all $\left.K \in \mathcal{S}_{i}\right\}$
$F_{i}^{X}(K, J):=\mathrm{e}^{2 \pi \mathrm{i} X(K, J)} F_{i}(K, J)^{*}$
$S_{K i, j}^{J}=F_{i}(K, J) \mathrm{e}^{2 \pi \mathrm{i} Q_{K}(j)} S_{i, j}^{J}$.

BOUNDARIES AND CROSSCAPS

Q Boundary coefficients

$$
R_{\left[a, \psi_{a}\right](m, J)}=\sqrt{\frac{|\mathcal{H}|}{\left|\mathcal{C}_{a}\right|\left|\mathcal{S}_{a}\right|}} \psi_{a}^{*}(J) S_{a m}^{J}
$$

9 Crosscap coefficients

$$
U_{(m, J)}=\frac{1}{\sqrt{|\mathcal{H}|}} \sum_{L \in \mathcal{H}} e^{\pi i\left(h_{K}-h_{K L}\right)} \beta_{K}(L) P_{L K, m} \delta_{J, 0}
$$

THE FIXED POINT RESOLUTION MATRICES

$S_{a m}^{J} \quad($ of a WZW model W)

Modular transformation matrices of the WZW model W ${ }^{\mathrm{J}}$ defined by folding the extended Dynkin diagram of W by the symmetry defined by J

Orbit Lie ALgebras

$$
\stackrel{\ddots}{\sigma}=G_{2}^{(1)}
$$

MODEL BUILDING

CONSISTENCY CONDITIONS

Q Tadpole cancellation
9 Absence of axion mixing for Y
Q Global anomalies*

Same as for all other orientifold models

(*) "probe branes" (Uranga)
B. Gato-Rivera and A.N Schellekens, Phys.Lett.B632:728-732,2006

SM REALIZATION

Vector-like: mass allowed by $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$ Fully vector-like: mass allowed by all gauge symmetries

DHS RESULTS (2004-2005)

Huiszoon, Dijkstra, Schellekens

210000 distinct tadpole-free spectra found

(without chiral exotics, but distinguished by non-chiral exotics)

Best imaginable result:

The exact MSSM spectrum

```
Gauge group: U(3) x Sp(2) x U(1) x U(1)
7 x (V ,V ,0 ,0 ) chirality 3
3 x (V ,0 ,V ,0 ) chirality -3
3 x (V ,0 ,V*,0 ) chirality -3
9 x (0,v ,0 ,V ) chirality 3
5 x (0,0 ,V ,V ) chirality -3
3 x (0,0 ,V ,V*) chirality 3
6 x (V ,0 ,0 ,V )
10 x (0,V ,V ,0 )
2 x (Ad,0 ,0,0 )
2 x (A ,0 ,0 ,0 )
6 x (S ,0,0,0 )
14 x (0,A ,0,0 )
10 x (0,S ,0 ,0 )
9 x (0,0 ,Ad,0 )
6 x (0,0 ,A ,0 )
14 x (0,0 ,S ,0 )
3x (0,0,0,Ad)
4 x (0,0 ,0 ,A )
6 x (0,0,0 ,S )
```

No hidden sector
B-L Massive (axion mixing)

Gauge group:
Exactly $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$

cf. Gmeiner et. al.

ADKS RESULTS (2005-2006)

Anastasopoulos, Dijkstra, Kiritsis, Schellekens

SEARCH CRITERIA

Require only:

$9 \mathrm{U}(3)$ from a single brane
$9 \mathrm{U}(2)$ from a single brane
Q Quarks and leptons, Y from at most four branes
$9 \mathrm{G}_{\mathrm{CP}} \supset \mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$
9 Chiral $G_{C P}$ fermions reduce to quarks, leptons (plus non-chiral particles)

9 Massless Y

CHAN-PATON GROUP

$G_{C P}=U(3)_{a} \times\left\{\begin{array}{c}U(2)_{b} \\ S p(2)_{b}\end{array}\right\} \times G_{c} \quad\left(\times G_{d}\right)$
Embedding of Y:

$$
Y=\alpha Q_{a}+\beta Q_{b}+\gamma Q_{c}+\delta Q_{d}+W_{c}+W_{d}
$$

Q: Brane charges (for unitary branes)
W: Traceless generators

CLASSIFICATION

$$
Y=\left(x-\frac{1}{3}\right) Q_{a}+\left(x-\frac{1}{2}\right) Q_{b}+x \underbrace{Q_{C}+(x-1)} Q_{D}
$$

Distributed over c and d

Allowed values for x
1/2 Madrid model, Pati-Salam, Flipped SU(5)
0 (broken) SU(5)
1 Antoniadis, Kiritsis, Tomaras model
$-1 / 2,3 / 2$
any Trinification $(x=1 / 3) \quad$ (orientable)

RESULTS

Q 19345 chirally distinct spectra (19 of Maдriة type)

Q 1900 distinct ones with tadpole solutions

RESULTS

Q 19345 chirally distinct spectra (19 of Maдrid type)

Q 1900 distinct ones with tadpole solutions (≈ 1900 distinct hep-th papers)

StATISTICS

Value of x	Total
0	24483441
$1 / 2$	138837612
1	30580
$-1 / 2,3 / 2$	0
any	1250080

A CURIOSITY

Gauge group $\left.\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1) \times\left[\mathrm{U}(2)_{\text {Hidden }}\right)\right]$

U3 S2 U1 U1 U2

A CURIOSITY

Gauge group $\left.\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1) \times\left[\mathrm{U}(2)_{\text {Hidden }}\right)\right]$

U3 S2 U1 U1 U2

Truly hidden

 hidden sector
A CURIOSITY

Gauge group $\left.\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1) \times\left[\mathrm{U}(2)_{\text {Hidden }}\right)\right]$

U3 S2 U1 U1 U2

Free-field realization with (2) ${ }^{6}$ Gepner model
(Kiritsis, Schellekens, Tsulaia, arXiv:0809.0083)

FREE FERMIONS

M. Lennek, E. Kiritsis, A.N. Schellekens

Motivation:

© Compare with other approaches

9 Allow computation of more quantities

ISING MODEL

RCFT with just three primary fields

$$
\begin{aligned}
0: & h=0 \\
\psi: & h=\frac{1}{2} \\
\sigma: & h=\frac{1}{16}
\end{aligned}
$$

Fusion rules:

$$
\begin{aligned}
& {[\psi] \times[\psi]=[0]} \\
& {[\sigma] \times[\sigma]=[0]+[\psi]}
\end{aligned}
$$

Simple current

TENSORING

Central charge: $c=1 / 2$

To get $\mathrm{c}=9$ we tensor 18 copies.
But: the Ising model has no supersymmetry.
This can be overcome by imposing it on the tensor product by means of a chiral algebra extension:

KLT / ABK Triplet constraint (1986)
Current $\quad \psi^{\mu} \partial X_{\mu} \psi_{i} \psi_{j} \psi_{k}$
This is a simple current, so the FHSSW formalism applies

SPACE-TIME SUSY

This requires another chiral algebra extension
Current $\quad S_{\alpha} \sigma_{1} \sigma_{4} \sigma_{7} \sigma_{10} \sigma_{13} \sigma_{16}$

SPACE-TIME SUSY

This requires another chiral algebra extension
Current $\quad S_{\alpha} \sigma_{1} \sigma_{4} \sigma_{7} \sigma_{10} \sigma_{13} \sigma_{16}$

But this is not a simple current; we do not have a boundary state formalism for such an extension.

Solution: pair two Ising models into a real boson.

$$
\left|\chi_{0} \chi_{0}+\chi_{\psi} \chi_{\psi}\right|^{2}+\left|\chi_{0} \chi_{\psi}+\chi_{\psi} \chi_{0}\right|^{2}+2\left|\chi_{\sigma}\right|^{2}
$$

This yields the D_{1} free boson CFT

THE QUintic [GEPNER $(3,3,3,3,3)]$

```
g D 5 1
g min 2 3
current 2 10 0 0 0 0
current 2 0 10 0 0 0
current 2 0 0 10 0 0
current 2 0 0 0 10 0
current 2 0 0 0 0 10
current 1 1 1 1 1 1 1 1
compute spectrum
```


The Quintic [Gepner (3,3,3,3,3)]

```
g D 5 1
g min 2 3
gmin 2 3
gmin 2 3
g min 2 3
g min 2 3
current 2 10 0 0 0 0
current 2 0 10 0 0 0
current 2 0 0 10 0 0
current 2 0 0 0 10 0
current 2 0 0 0 0 10
current 1 1 1 1 1 1 1 1 1
compute spectrum
```


The Quintic [Gepner (3,3,3,3,3)]

```
g D 5 1
g min 2 3
current 2 10 0 0 0 0
current 2 0 10 0 0 0
current 2 0 0 10 0 0
current 2 0 0 0 10 0
current 2 0 0 0 0 10
current 1 1 1 1 1 1 1 1 1
compute spectrum
```

Lerche, Lüst, Schellekens, Nucl.Phys.B287:477,1987
D. Gepner; Nucl.Phys.B296:757,1988

THE QUintic [GEPNER (3,3,3,3,3)]

g D 51

NSR
$g \min 23$
$g \min 23$
$g \min 23$
Minimal Models
$g \min 23$
$g \min 23$
current 2100000
current 2010000
current 2001000
current 20000100
current 2000010
current $1 \begin{array}{llllll}1 & 1 & 1 & 1 & 1\end{array}$
compute spectrum
W.S. Susy

Lerche, Lüst, Schellekens, Nucl.Phys.B287:477,1987
D. Gepner; Nucl.Phys.B296:757,1988

THE QUintic [GepNer $(3,3,3,3,3)]$

g D 51

NSR
$g \min 23$
$g \min 23$
$g \min 23$
Minimal Models
$g \min 23$
$g \min 23$
current 2100000
current 2010000
current 2001000
current 20000100
current 2000010
current $1 \begin{array}{llllll}1 & 1 & 1 & 1 & 1\end{array}$
compute spectrum
S.T. Susy
W.S. Susy

Lerche, Liüst, Schellekens, Nucl.Phys.B287:477,1987
D. Gepner, Nucl.Phys.B296:757,1988

G D 51
G U 4
G U 4
G U 4
$G \min 01$
$G \min 01$
$G \min 01$
$\mathrm{G} \min 01$
$\mathrm{G} \min 01$
$G \min 01$
$\mathrm{G} \min 01$
$G \min 01$
$\mathrm{G} \min 01$
$G \min 01$
$\mathrm{G} \min 01$
$\mathrm{G} \min 01$
current $222000 c c c c c c c c c c c c$

 current $200220 c c c c c c c c c c c c$

 current $1 \begin{array}{llllllllllllllll}1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ compute spectrum

```
G D 51
G U 4
G U 4
G U 4
\(G \min 01\)
\(G \min 01\)
\(G \min 01\)
\(\mathrm{G} \min 01\)
\(\mathrm{G} \min 01\)
\(\mathrm{G} \min 01\)
\(\mathrm{G} \min 01\)
\(G \min 01\)
\(\mathrm{G} \min 01\)
\(G \min 01\)
\(\mathrm{G} \min 01\)
\(G \min 01\)
current \(222000 c 1 c c c c c c c c c c c\)
current \(222000 c c c c c c c c c c c c\)
```



```
current \(11 \begin{aligned} & 1 \\ & 1\end{aligned} 1\)
compute spectrum
```

```
G D 5 1
G U 4
G U 4
G U 4
G min 0 1
current 2 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0
current 2 2 0 0 0 0 1 1 0 0 0 0 0 0 0 0
current 2 0 2 0 0 0 0 0 1 1 0 0 0 0 0 0
current 2 0 2 0 0 0 0 0 0 0 1 1 1 0 00 0 0
current 2 0 0 2 0 0 0 0 0 0 0 0 1 1 0 0
current 2 0 0 2 0 0 0 0 0 0 0 0 0 0 1 1
current 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
compute spectrum
```

```
G D 5 1
G U 4
G U 4
G U 4
G min 0 1
```



```
current 2 2 0 0
```



```
current 2 0 2 2 0 0 0
```



```
current 2 0 0 2 0 0 0 0
```



```
compute spectrum
```


$\mathrm{G} \min 01$
$\mathrm{G} \min 01$
$\mathrm{G} \min 01$
$\mathrm{G} \min 01$
$G \min 01$
current $222000 c c c c c c c c c c c c$
current $222000 c c c c c c c c c c c c$

current $200220000 c c c c c c c c c c$
W.S. Susy
current $2000812000 c c c c c c c c c$

S.T. Susy
compute spectrum
Kawai, Lewellen, Tye, Phys.Rev.Lett.57:1832,1986
Antoniadis, Bachas, Kounnas, Nucl.Phys.B289:87,1987

ACCESSIBLE MIPFS

6 of the 18 fermions must be paired into bosons to get a susy simple current.

The other fermions may be paired into bosons in a definite way.

Such a pairing produces a new class of models because the spinor currents are now available as simple currents.

There are 62 possible pairing choices

DEGENERACIES

The number of simple current MIPFs is extremely large ($>10^{28}$ for (NSR) $\left(\mathrm{D}_{1}\right)^{3}$ (Ising) ${ }^{12}$).

But there are many degeneracies

- Permutations of identical factors.
[occurs also in Gepner models with identical factors]
9 Ising degeneracy $\quad[\psi] \times[\sigma]=\sigma$
(some generically distinct MIPFs are identical)
[occurs also in Gepner models with $\mathrm{k}=2$ factors]
9 Non-trivial free field theory relations. [occurs also in Gepner models with $\mathrm{k}=1$ factors]

NUMBER OF MIPFS

Pairings within triplets:

(NSR) $\left(\mathrm{D}_{1}\right)^{9}$
(NSR) $\left(\mathrm{D}_{1}\right)^{7}$ (Ising) ${ }^{4}$
(NSR) $\left(\mathrm{D}_{1}\right)^{5}(\text { Ising })^{8}$
(NSR) $\left(\mathrm{D}_{1}\right)^{3}$ (Ising) $)^{12}$

685 MIPFs
7466 MIPFs
75427 MIPFs
534700 MIPFs

Pairings across triplets:
58 additional possibilities, still being analysed

Far more MIPFs than for Gepner Models (≈ 5000)

Hodge numbers

359	$(51,3,4)$
359	$(3,51,4)$
2962	$(31,7,4)$
2962	$(7,31,4)$
4066	$(27,3,4)$
4066	$(3,27,4)$
6	$(25,1,4)$
6	$(1,25,4)$
1720	$(21,9,4)$
1720	$(9,21,4)$
16866	$(19,7,4)$
16866	$(7,19,4)$
29118	$(17,5,4)$
29118	$(5,17,4)$
11132	$(15,3,4)$
11132	$(3,15,4)$
65072	$(12,6,4)$
65072	$(6,12,4)$

917	$(21,21,8)(\mathrm{K} 3 \times \mathrm{T} 2)$
2214	$(19,19,4)$
13225	$(15,15,4)$
6152	$(13,13,8)$
12	$(13,13,4)$
92684	$(11,11,4)$
1187	$(9,9,16)($ Tori $)$
3550	$(9,9,8)$
100838	$(9,9,4)$
103414	$(7,7,4)$
4252	$(5,5,8)$
15018	$(5,5,4)$
12209	$(3,3,4)$
4	$(1,1,8)$
cf. Donagi and Faraggi, 2004	
Donagi and Wendland (to appear)	
(Z2 $\times Z_{2}$ orbifolds)	

SEARCH RESULTS

(NSR) $\left(\mathrm{D}_{1}\right)^{9}$
SM configuration, no tadpole cancellation
$(\mathrm{NSR})\left(\mathrm{D}_{1}\right)^{7}$ (Ising) ${ }^{4}$
(NSR) $\left(\mathrm{D}_{1}\right)^{5}$ (Ising) ${ }^{8}$
(NSR) $\left(\mathrm{D}_{1}\right)^{3}$ (Ising) $)^{12}$
Nothing

Nothing

Nothing
(using random MIPF selection)

SM CONFIGURATION (FREE BOSONS)

$\mathrm{U}(4)$	$\mathrm{U}(2)$	$\mathrm{U}(2)$	mult.
0	$\mathrm{~V}^{*}$	V	2
$\mathrm{~V}^{*}$	0	V	1
V	V	0	2
$\mathrm{~V}^{*}$	0	$\mathrm{~V}^{*}$	2
V	$\mathrm{~V}^{*}$	0	1

Exact! No non-chiral states!
Also a $\mathrm{U}(3) \times \mathrm{U}(1)$ version

NON-SUPERSYMMETRIC SPECTRA

B. Gato-Rivera and A.N. Schellekens, Phys.Lett.B656:127-131,2007 and to appear.

THE QUintic [GEPNER (3,3,3,3,3)]

g D 51

NSR
$g \min 23$
$g \min 23$
$g \min 23$
Minimal Models
$g \min 23$
$g \min 23$
current 2100000
current 2010000
current 20001000
current 2000100
current 2000010
current $1 \begin{array}{llllll}1 & 1 & 1 & 1 & 1\end{array}$
W.S. Susy
compute spectrum

The Quintic [Gepner (3,3,3,3,3)]

ARGUMENTS IN FAVOR OF LOW ENERGY SUSY

Q Stabilizes weak hierarchy
Q Coupling convergence
© LSP and Dark Matter

ARGUMENTS IN FAVOR OF LOW ENERGY SUSY

Not needed for C.C.
 Q Stabilizes wak hierarchy

Q Coupling convergence
© LSP and Dark Matter

Dijkstra, Huiszoon, Schellekens, Nucl.Phys.B710:3-57,2005

ARGUMENTS IN FAVOR OF SUSY

Not needed for C.C.
 Q Stabilizes wak hierarchy

Q Coupling convergence
9 LSP and Dark Matter

ARGUMENTS IN FAVOR OF SUSY

Not needed for C.C.
 Q Stabilizes wak hierarchy

Q Coupling conergence
Coincidence in orientifolds
© LSP and Dark Matter

ARGUMENTS IN FAVOR OF SUSY

Q Stabilizes wak hierarchy
Q Coupling convergence
Coincidence in orientifolds
© LSP and Dark Matter
For the record: I am NOT making an LHC prediction here!

ARGUMENTS IN FAVOR OF SUSY

Q Stabilizec eak hierarchy
Q Coupling con ergence
Coincidence in orientifolds
© LSP and Dark Matter

For the record: I am NOT making an LHC prediction here!
But: does string theory predict low energy supersymmetry or GUT unification at $10^{16} \mathrm{GeV}$?

NON-SUPERSYMMETRIC STRING THEORIES

A surprisingly common misconception:
"Absence of tachyons requires supersymmetry."

NON-SUPERSYMMETRIC STRING THEORIES

A surprisingly common misconception:
"Absence of tachyons requires supersymmetry."
Counter example: $\mathrm{O}(16) \times \mathrm{O}(16)$ Heterotic string.

NON-SUPERSYMMETRIC STRING THEORIES

A surprisingly common misconception:
"Absence of tachyons requires supersymmetry."
Counter example: $\mathrm{O}(16) \times \mathrm{O}(16)$ Heterotic string.

Many examples in four dimensions, e.g.

Kawai, Tye, Lewellen, Lerche, Lüst, A.N.S, Kachru, Silverstein, Kumar, Shiu,
Dienes, Blum, Angelantonj, Sagnotti, Blumenhagen, Font,

NON-SUPERSYMMETRIC STRINGS

Additional complications:

Q Tachyons: Closed sector, Open sector
Q Tadpoles: Separate equations for NS and R.

Best imaginable outcome:
Q Exactly the standard model (open sector)

But even then, there will be plenty of further problems: tadpoles at genus 1, how to compute anything of interest without the help of supersymmetry, etc.
cf. Ibañez, Marchesano, Rabadan

CLOSED SECTOR

Four ways of removing closed string tachyons:

9 Chiral algebra extension (non-susy) All characters non-supersymmetric, but tachyon-free.
Q Automorphism MIPF
No tachyons in left-right pairing of characters.
Q Susy MIPF
Non-supersymmetric CFT, but supersymmetric bulk.
Allows boundaries that break supersymmetry.
Q Klein Bottle
This introduces crosscap tadpoles. Requires boundaries with non-zero CP multiplicity.

CLOSED SECTOR

Do these possibilities occur?

9 Chiral algebra extension (non-susy)
Q Automorphism MIPF
Q Susy MIPF
Q Klein Bottle

CLOSED SECTOR

Do these possibilities occur?

9 Chiral algebra extension (non-susy)
9 Automorphism MIPF
Q Susy MIPF
Q Klein Bottle

EXAMPLES OF TADPOLE AND TACHYON-FREE SPECTRA

Orientifolds of tachyon-free non-supersymmetric oriented closed strings (automorphism MIPFs)

CFT 11111111, Extension 176, MIPF 35, orientifold 0
Gauge group Sp(4)
Bosons: $2 \times(\mathrm{S}) \quad$ (Symmetric Tensor)
Fermions: None

CFT 11111111, Extension 70, MIPF 56, orientifold 0

Gauge group $\operatorname{Sp}(4)$
Bosons: None (Symmetric Tensor)
Fermions: $2 \times(\mathrm{S})$

CFT 11111111, Extension 176, MIPF 21, orientifold 0
Gauge group $\operatorname{Sp}(4)$
Bosons: None
Fermions: None

CFT 1112410, Extension 157, MIPF 63, orientifold 0

Gauge group $\mathrm{O}(4) \times \mathrm{U}(1) \times \mathrm{U}(2)$

Fermions

```
2x(V,0,V ) chirality -2
2x(0,V,V) chirality 2
2x(0,V,V*) chirality -2
6x (0,0,A ) chirality -2
4x(V,V,0)
2x(S,0,0)
6x(0,Ad,0)
4x(0,S,0)
2x(0,0,Ad)
2x(V,0,V )
2x(A,0,0)
3x(V,V,0)
6x(0,Ad,0)
3x(0,A,0)
4x(0,S,0)
3x(0,0,Ad)
4x(0,0,S )
Chiral!
```


CFT 11111111, Extension 67, MIPF 508, orientifold 0

Gauge group $\mathrm{Sp}(2) \times \mathrm{U}(1)$

Fermions

$$
\begin{aligned}
& 8 \times(\mathrm{V}, \mathrm{~V}) \\
& 6 \times(\mathrm{S}, 0) \\
& 6 \times(0, \mathrm{Ad}) \\
& 8 \times(0, \mathrm{~S}) \\
& 8 \times(\mathrm{V}, \mathrm{~V}) \\
& 5 \times(\mathrm{S}, 0) \\
& 5 \times(0, \mathrm{Ad}) \\
& 8 \times(0, \mathrm{~S})
\end{aligned}
$$

Bosons

EXAMPLES OF TADPOLE AND TACHYON-FREE SPECTRA

II. Orientifolds of tachyonic closed strings, with tachyons projected out by the Klein bottle

CFT 22266, Extension 710, MIPF 635, orientifold 6

 Gauge group $\mathrm{U}(1) \times \mathrm{U}(1) \times \mathrm{U}(4) \times \mathrm{U}(2)$```
3x(V,0,0,V) chirality 3
3x(V,0,0,V*) chirality -3
3x(0,V,0,V) chirality -3
3x(0,V ,0,V*) chirality 3
1x(V ,0,V,0) chirality 1
1x(V,0,\mp@subsup{V}{}{*},0) chirality -1
1\times(0,V,V,0) chirality -1
1\times(0,V,V*,0) chirality 1
6x(V,V ,0,0)
6x(V,V*,0,0)
2x(0,0,V,V)
1x (0,0,Ad,0)
3x(0,0,0,Ad)
4x(0,0,V,V*)
2x(Ad,0,0,0)
4x (A,0,0,0)
4x(S,0,0,0)
2x(0,Ad,0,0)
4x(0,A,0,0)
4x(0,S,0,0)
4x(0,0,0,S)
```

$$
\begin{aligned}
& 3 x(\mathrm{~V}, 0,0, \mathrm{~V}) \\
& 3 x\left(\mathrm{~V}, 0,0, \mathrm{~V}^{*}\right) \\
& 3 x(0, V, 0, V) \\
& 3 x\left(0, V, 0, V^{*}\right) \\
& 1 \times(\mathrm{V}, 0, \mathrm{~V}, 0) \\
& 1 \times\left(\mathrm{V}, 0, \mathrm{~V}^{*}, 0\right) \\
& 1 \times(0, V, V, 0) \\
& 1 \times\left(0, V, V^{*}, 0\right) \\
& 6 x(\mathrm{~V}, \mathrm{~V}, 0,0) \\
& 6 x\left(\mathrm{~V}, \mathrm{~V}^{*}, 0,0\right) \\
& 2 \times(0,0, V, V) \\
& 2 \times(0,0,0, A d) \\
& 3 \times(\text { Ad, } 0,0,0 \text { ) } \\
& 2 \times(\mathrm{A}, 0,0,0) \\
& 2 \times(S, 0,0,0) \\
& 3 \times(0, A d, 0,0) \\
& 2 \times(0, A, 0,0) \\
& 2 x(0, S, 0,0) \\
& 2 \times(0,0, A, 0) \\
& 2 \times(0,0, S, 0) \\
& 6 \times(0,0,0, A) \\
& 2 \times(0,0,0, S)
\end{aligned}
$$

## FINDING THE SM

## SEARCH FOR NON-SUSY SM CONFIGURATIONS

Total number of tachyon-free boundary state combinations satisfying our criteria:

$$
3456601
$$

Subdivided as follows

| Bulk Susy | 3389835 | $98.1 \%$ |
| :--- | :--- | :--- |
| Tachyon-free <br> automorphism | 66378 | $1.9 \%$ |
| Tachyon-free <br> Klein bottle projection | 388 | $0.01 \%$ |

## An EXAMPLE

CFT 44716, Extension 124, MIPF 27, Orientifold 0 N=1 Susy Bulk symmetry

Spectrum type 20088 (Not on ADKS list) Gauge Group $\mathrm{U}(3) \times \mathrm{U}(2) \times \mathrm{Sp}(4) \times \mathrm{U}(1)$
(broken by axion couplings to $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{Sp}(4) \times \mathrm{U}(1)$ )

| $3 \times(\mathrm{A}, 0,0,0)$ chirality 3 | $3 \times(\mathrm{S}, 0,0,0)$ |
| :--- | :--- |
| $3 \times(0, \mathrm{~A}, 0,0)$ chirality 3 | $3 \times(0, \mathrm{~S}, 0,0)$ |
| $4 \times(0,0,0, \mathrm{~A})$ chirality -2 | $4 \times(0,0,0, \mathrm{~A})$ |
| $5 \times(0,0,0, \mathrm{~S})$ chirality -3 | $5 \times(0,0,0, \mathrm{~S})$ |
| $3 \times(\mathrm{V}, 0, \mathrm{~V}, 0)$ chirality -1 | $3 \times(\mathrm{V}, 0, \mathrm{~V}, 0)$ |
| $1 \times(\mathrm{V}, 0,0, \mathrm{~V})$ chirality 1 | $2 \times(\mathrm{V}, 0,0, \mathrm{~V})$ |
| $1 \times(0, \mathrm{~V}, 0, \mathrm{~V})$ chirality 1 | $2 \times(0, \mathrm{~V}, 0, \mathrm{~V})$ |
| $1 \times(0,0, \mathrm{~V}, \mathrm{~V})$ chirality 1 | $3 \times(0,0, \mathrm{~V}, \mathrm{~V})$ |
| $5 \times(\mathrm{V}, \mathrm{V}, 0,0)$ chirality 3 | $5 \times(\mathrm{V}, \mathrm{V}, 0,0)$ |
| $1 \times(0, \mathrm{~V}, \mathrm{~V}, 0)$ chirality -1 | $1 \times(0, \mathrm{~V}, \mathrm{~V}, 0)$ |
| $3 \times(\mathrm{Ad}, 0,0,0)$ | $2 \times(\mathrm{Ad}, 0,0,0)$ |
| $3 \times(0, \mathrm{Ad}, 0,0)$ | $2 \times(0, \mathrm{Ad}, 0,0)$ |
| $4 \times(0,0,0, \mathrm{Ad})$ | $3 \times(0,0,0, \mathrm{Ad})$ |
| $2 \times(0,0, \mathrm{~A}, 0)$ | $1 \times(0,0, \mathrm{~S}, 0)$ |
| $4 \times(\mathrm{S}, 0,0,0)$ | $4 \times(\mathrm{A}, 0,0,0)$ |
| $4 \times(0, \mathrm{~S}, 0,0)$ | $4 \times(0, \mathrm{~A}, 0,0)$ |
| $2 \times\left(\mathrm{V}, 0,0, \mathrm{~V}^{*}\right)$ |  |
| $2 \times\left(0, \mathrm{~V}, 0, \mathrm{~V}^{*}\right)$ | $2 \times\left(\mathrm{V}, \mathrm{V}^{*}, 0,0\right)$ |


|  | $3 \times(\mathrm{A}, 0,0,0)$ chirality 3 |
| :--- | :--- |
| $3 \times(0, \mathrm{~A}, 0,0)$ chirality 3 | $3 \times(\mathrm{S}, 0,0,0)$ |
| $4 \times(0,0,0, \mathrm{~A})$ chirality -2 | $3 \times(0, \mathrm{~S}, 0,0)$ |
| $5 \times(0,0,0, S)$ chirality -3 | $4 \times(0,0,0, \mathrm{~A})$ |
| $3 \times(\mathrm{V}, 0, \mathrm{~V}, 0)$ chirality -1 | $5 \times(0,0,0, \mathrm{~S})$ |
| $1 \times(\mathrm{V}, 0,0, \mathrm{~V})$ chirality 1 | $3 \times(\mathrm{V}, 0, \mathrm{~V}, 0)$ |
| $1 \times(0, \mathrm{~V}, 0, \mathrm{~V})$ chirality 1 | $2 \times(\mathrm{V}, 0,0, \mathrm{~V})$ |
| $1 \times(0,0, \mathrm{~V}, \mathrm{~V})$ chirality 1 | $2 \times(0, \mathrm{~V}, 0, \mathrm{~V})$ |
| $5 \times(\mathrm{V}, \mathrm{V}, 0,0)$ chirality 3 | $3 \times(0,0, \mathrm{~V}, \mathrm{~V})$ |
| $1 \times(0, \mathrm{~V}, \mathrm{~V}, 0)$ chirality -1 | $5 \times(\mathrm{V}, \mathrm{V}, 0,0)$ |
| $3 \times(\mathrm{Ad}, 0,0,0)$ | $1 \times(0, \mathrm{~V}, \mathrm{~V}, 0)$ |
| $3 \times(0, \mathrm{Ad}, 0,0)$ | $2 \times(\mathrm{Ad}, 0,0,0)$ |
| $4 \times(0,0,0, \mathrm{Ad})$ | $2 \times(0, \mathrm{Ad}, 0,0)$ |
| $2 \times(0,0, \mathrm{~A}, 0)$ | $3 \times(0,0,0, \mathrm{Ad})$ |
| $4 \times(\mathrm{S}, 0,0,0)$ | $1 \times(0,0, \mathrm{~S}, 0)$ |
| $4 \times(0, \mathrm{~S}, 0,0)$ | $4 \times(\mathrm{A}, 0,0,0)$ |
| $2 \times\left(\mathrm{V}, 0,0, \mathrm{~V}^{*}\right)$ | $4 \times(0, \mathrm{~A}, 0,0)$ |
| $2 \times\left(0, \mathrm{~V}, 0, \mathrm{~V}^{*}\right)$ |  |
| $2 \times\left(\mathrm{V}, \mathrm{V}^{*}, 0,0\right)$ | $2 \times\left(\mathrm{V}, \mathrm{V}^{*}, 0,0\right)$ |


| $3 \times(\mathrm{A}, 0,0,0)$ chirality 3 | $3 \times(\mathrm{S}, 0,0,0)$ |
| :--- | :--- |
| $3 \times(0, \mathrm{~A}, 0,0)$ chirality 3 | $3 \times(0, \mathrm{~S}, 0,0)$ |
| $4 \times(0,0,0, \mathrm{~A})$ chirality -2 | $4 \times(0,0,0, \mathrm{~A})$ |
| $5 \times(0,0,0, S)$ chirality -3 | $5 \times(0,0,0, \mathrm{~S})$ |
| $3 \times(\mathrm{V}, 0, \mathrm{~V}, 0)$ chirality -1 | $3 \times(\mathrm{V}, 0, \mathrm{~V}, 0)$ |
| $1 \times(\mathrm{V}, 0,0, \mathrm{~V})$ chirality 1 | $2 \times(\mathrm{V}, 0,0, \mathrm{~V})$ |
| $1 \times(0, \mathrm{~V}, 0, \mathrm{~V})$ chirality 1 | $2 \times(0, \mathrm{~V}, 0, \mathrm{~V})$ |
| $1 \times(0,0, \mathrm{~V}, \mathrm{~V})$ chirality 1 | $3 \times(0,0, \mathrm{~V}, \mathrm{~V})$ |
| $5 \times(\mathrm{V}, \mathrm{V}, 0,0)$ chirality 3 | $5 \times(\mathrm{V}, \mathrm{V}, 0,0)$ |
| $1 \times(0, \mathrm{~V}, \mathrm{~V}, 0)$ chirality -1 | $1 \times(0, \mathrm{~V}, \mathrm{~V}, 0)$ |
| $3 \times(\mathrm{Ad}, 0,0,0)$ | $2 \times(\mathrm{Ad}, 0,0,0)$ |
| $3 \times(0, \mathrm{Ad}, 0,0)$ | $2 \times(0, \mathrm{Ad}, 0,0)$ |
| $4 \times(0,0,0, \mathrm{Ad})$ | $3 \times(0,0,0, \mathrm{Ad})$ |
| $2 \times(0,0, \mathrm{~A}, 0)$ | $1 \times(0,0, \mathrm{~S}, 0)$ |
| $4 \times(\mathrm{S}, 0,0,0)$ | $4 \times(\mathrm{A}, 0,0,0)$ |
| $4 \times(0, \mathrm{~S}, 0,0)$ | $4 \times(0, \mathrm{~A}, 0,0)$ |
| $2 \times\left(\mathrm{V}, 0,0, \mathrm{~V}^{*}\right)$ |  |
| $2 \times\left(0, \mathrm{~V}, 0, \mathrm{~V}^{*}\right)$ | $2 \times\left(\mathrm{V}, \mathrm{V}^{*}, 0,0\right)$ |
| $2 \times\left(\mathrm{V}, \mathrm{V}^{*}, 0,0\right)$ |  |

## FINDING HIDDEN SECTORS

A tachyon-free, tadpole-free hidden sector could be found for 896 of the 3456601 SM configurations.

All of these have bulk susy.
"Statistically" 16 would be expected for the tachyon-free automorphism, 0 for tachyon-free Klein bottles.

All 896 have a supersymmetric spectrum (exact boson fermion matching). They are probably identical to supersymmetric models from earlier searches.

## CONCLUSIONS

Q Interacting CFT's are "richer" than free CFT's.
Q Non-supersymmetric, tadpole and tachyonfree standard models must exist, but are still hidden in the noise.

Q Better chance with 1,2 or 4 families.
Q Supersymmetry is very persistent.
Q Perhaps try $\mathrm{N}=1$ tensor products?

