Discrete Symmetries in

Discrete Orientifolds

Bert Schellekens,
Nikhef, Amsterdam

String Phenomenology 2012,
Cambridge, UK, 29 june.

Discrete symmetries

- May prevent fast proton decay and/or lepton number violation due to dimension 4 operators in the MSSM (R-parity, baryon triality...)
- May prevent proton decay due to dimension 5 operators in the MSSM (QQQL, $U^{c} U^{c} D^{c} E^{c}$).
- But they may also forbid operators that are desirable
(Yukawa couplings, Majorana masses for neutrinos,....)
- Many other uses in a variety of BSM ideas.
- So far, however, nature does not seem to need them (except for the nearly inevitable CPT).
- How generic are discrete symmetries in the landscape?
- Quantum gravity: folk theorems against existence of ungauged symmetries (continuous or discrete).
- Gauged discrete symmetries are allowed. (Kraus, Wilczek,..., 1989)
- In string theory, specific "gauged, anomaly free" discrete symmetries are possible. (Ibanez, Ross, 1991).

Discrete symmetries in string theory

- An obvious way to get an anomaly free discrete symmetry is to break a $U(1)$ to \mathbb{Z}_{N}.
- Orientifolds have lots of $U(1)^{\prime}$'s, one for every complex brane stack. A good place to look for discrete symmetries!
- These $U(1)$'s are often broken due to axion mixing. This happens always if the $U(1)$ is anomalous, and sometimes (usually?) if it is not.
- We need to determine if, and how often an unbroken discrete abelian symmetry remains.

Axion couplings

$$
\sum_{a, m} N_{a} V_{a m} B_{m} \wedge F_{a}
$$

B_{m} : axions, typically ~ 10 ... 100
$F_{a}: \quad U(1)$ gauge field strength.
N_{a} : Chan-Paton multiplicity of stack a
in CFT:

$$
V_{a m}=R_{a m}-R_{a^{c} m}
$$

$R_{a m} \quad$ Coupling strength of bulk mode m ("Ishibashi state") to boundary a

Consider a linear combination of $U(1)^{\prime} \mathrm{s}$

$$
\sum_{a} x_{a} Y_{a}
$$

$Y_{a} \quad U(1)$ generator of brane a
This remains massless if and only if

$$
\sum_{a} x_{a} N_{a}\left(R_{a m}-R_{a^{c} m}\right)=0 \text { for all } m
$$

If Y_{a} acquires a mass, the $U(1)$ is not always completely broken. A discrete subgroup may remain.
How can we detect this?

Instantons

- Brane stack U(1)'s broken by axion mixing are respected by all perturbative amplitudes.
- Instanton amplitudes may break these symmetries. These can be gauge instantons or "exotic", "stringy" instantons from stacks without a gauge group.

Blumenhagen, Cvetic, Weigand
Ibáñez,Uranga
Florea, Kachru, McGreevy, Saulina

* If there is a \mathbb{Z}_{N} discrete symmetry, any instanton amplitude can only violate the corresponding symmetry by N units.

Dual description of the axion couplings in terms of RR scalars ϕ_{m} (with $\phi_{m} \sim \phi_{m}+1$)

$$
\sum_{m}\left[\partial_{\mu} \phi_{m}-\left(\sum_{a} x_{a} N_{a} V_{a m}\right) A_{\mu}\right]^{2}
$$

U(1) gauge transformation

$$
A_{\mu} \rightarrow A_{\mu}+\partial_{\mu} \lambda \quad ; \quad \phi_{m} \rightarrow \phi_{m}+\left(\sum_{a} x_{a} N_{a} V_{a m}\right) \lambda
$$

Then an instanton amplitude transforms as

$$
e^{-2 \pi i \phi_{m}} \rightarrow e^{-2 \pi i \phi_{m}} \exp \left[-2 \pi i\left(\sum_{a} x_{a} N_{a} V_{a m}\right) \lambda\right]
$$

$e^{-2 \pi i \phi_{m}} \rightarrow e^{-2 \pi i \phi_{m}} \exp \left[-2 \pi i\left(\sum_{a} x_{a} N_{a} V_{a m}\right) \lambda\right]$

This suggests the following characterization of a discrete symmetry
$\sum_{a} x_{a} N_{a}\left(R_{a m}-R_{a^{c} m}\right)=0 \bmod N$ for all m.
No instantons can exist violating this symmetry.

But this condition makes little sense, as it stands, because the coefficients R are complex numbers.

Condition for continuous U(1)

$$
\sum_{a} x_{a} N_{a}\left(R_{a m}-R_{a^{c} m}\right)=0 \text { for all } m .
$$

Condition for \mathbb{Z}_{N}

$$
\sum_{a} x_{a} N_{a}\left(R_{a m}-R_{a^{c} m}\right)=0 \bmod N \text { for all } m .
$$

In a geometric setting (type-IIA on CY) one can define these numbers in terms of a basis of 3-cycles on the manifold. Then one can write the condition for discrete symmetries entirely in terms of integers, and one can use this to construct explicit examples.

Discrete Orientifolds

Start with a $c=9, N=2$ rational conformal field theory, used as an "internal" sector of a type-II compactification.

Define the corresponding boundary CFT on surfaces with boundaries and crosscaps, by adding boundary and crosscap states consistent with the RCFT symmetries.

This allows the explicit construction of Annulus amplitudes, yielding exact open string partition functions, and Möbius and Klein bottle amplitudes defining the orientifold projections.

This gives rise to exact perturbative string spectra, with all massless and massive states explicitly known.

Discrete Orientifolds

In principle, one expects a huge number of such RCFTs to exist.

In practice, we are limited to tensor products of $N=2$ minimal models ${ }^{(1)}$ (in total $168 \mathrm{c}=9$ combinations) and some permutation orbifolds ${ }^{(2)}$ (modding out the exchange of two identical factors).

The first steps towards realistic spectra started in $2003^{(3)}$, and led to chirally exact MSSM spectra in $2004^{(4)}$.

```
(1) Gepner, }1987\mathrm{ (heterotic)
    Angelantonj, M. Bianchi, G. Pradisi, A. Sagnotti and Y. S. Stanev, }1996\mathrm{ (Orientifolds)
(2) Maio,Schellekens (2011)
(3) Aldazabal, Andres, Leston, Nunez; Blumenhagen, Weigand
(4) Dijkstra, Huiszoon, Schellekens
```


Discrete Orientifolds

The resulting spectra are presumably best though of as discrete points in an open and closed string moduli space, hence the term "discrete orientifold".

Most features of geometric orientifolds can be analysed in this context: tadpole cancellation, hidden sectors, axion-vector boson mixing, absence of global anomalies ${ }^{(1)}$, stringy instantons ${ }^{(2)}$. We would like to extend that to discrete symmetries.

(Note that orientifold discreteness has no relation to the discrete symmetries.)

To investigate the presence of discrete symmetries we need to know the boundary coefficients $R_{m a}$
(1) Gato-Rivera and Schellekens, 2006
(2) Ibáñez, Schellekens, Uranga, 2007

We use the FHSSW ${ }^{(1)}$ formalism, applied to the 168 Gepner models and all their simple current partition functions ${ }^{(2)}$.

This gives us a total of 32990 non-zero tension orientifolds (for 5392 MIPFs). The MSSM spectra appear for a large subset of these.

Geometric intuition suggests that we should try to find a suitable integral basis for the boundary coefficients.

Something similar was done by Brunner, Hori, Hosomichi and Walcher (2004) for the (3,3,3,3,3) Gepner model realization of the quintic Calabi-Yau, by explicit construction. But that is just one of the 32990 cases.
(1) Fuchs, Huiszoon, Schellekens, Schweigert, Walcher (2000)
(2) Gato-Rivera, Schellekens (1991); Kreuzer, Schellekens (1993)

Boundary coefficients

$R_{\left[a, \psi_{a}\right](m, J)}=$

$(m, J): \quad J \in \mathcal{S}_{m}$
with $Q_{L}(m)+X(L, J)=0 \bmod 1$ for all $L \in \mathcal{H}$
$\mathcal{S}_{m}: J \in \mathcal{H}$ with $J \cdot m=m$
(Stabilizer of m)
$S_{a m}^{J}$: matrix element of the modular transformation matrix of the fixed point CFT
$\left[a, \psi_{a}\right], \quad \psi_{a}$ is a character of the group \mathcal{C}_{a}
\mathcal{C}_{a} is the Central Stabilizer of a
$\mathcal{C}_{i}:=\left\{J \in \mathcal{S}_{i} \mid F_{i}^{X}(K, J)=1\right.$ for all $\left.K \in \mathcal{S}_{i}\right\}$
$F_{i}^{X}(K, J):=\mathrm{e}^{2 \pi i X(K, J)} F_{i}(K, J)^{*}$
$S_{K i, j}^{J}=F_{i}(K, J) \mathrm{e}^{2 \pi i Q_{K}(j)} S_{i, j}^{J}$

In general, a complex number

Finding an integral basis

Axion couplings
$V_{a m}=R_{a m}-R_{a^{c} m} \quad a=1, \ldots N_{\text {bound }}, \quad m=1, \ldots N_{\text {Ishibashi }}$
Remove vanishing and identical columns
$V_{a \mu}, \quad a=1, \ldots N_{\text {bound }}, \quad \mu=1, \ldots N_{\text {axion }}$
$N_{\text {axion }}=\mathcal{O}(10, \ldots 100)($ maximally 480),
$N_{\text {bound }}=\mathcal{O}(100 \ldots 1000)$
Try to find a subset c of $N_{\text {axion }}$ "basic" boundaries so that

$$
V_{a \mu}=\sum_{\mu=1}^{N_{\mathrm{axion}}} Q_{a \mu} V_{c(\mu) \nu}, \quad Q_{a \mu} \in \mathbb{Z}
$$

This assumes that the basis can be related to RCFT boundary states.

The instanton charge violation for a $U(1)$ associated with brane a due to an instanton on brane b is given by the chiral zero mode count

$$
I_{b}(a)=N_{a} \sum_{i} w_{i}\left(A_{b a}^{i}-A_{b a^{c}}^{i}\right)
$$

Here w_{i} is the Witten index of representation i, and $A_{a b}^{i}$ are Annulus coefficients. The latter can be expressed in terms of boundary coefficients as

$$
I_{b}(a)=N_{a} \sum_{i} w_{i} \sum_{m, J^{\prime}, J}\left[\frac{S_{i m} R_{b\left(m, J^{\prime}\right)} g_{J^{\prime} J}^{\Omega, m}}{S_{0 m}}\right]\left(R_{a(m, J)}-R_{a^{c}(m, J)}\right)
$$

If we have an integral basis, we can express this in terms of that basis

$$
I_{b}(a)=\sum_{\mu} N_{a} Q_{a \mu} I_{b}(c(\mu))
$$

For a $U(1) \quad Y=\sum_{a} x_{a} Y_{a}$

$$
I_{b}(x)=\sum_{a} x_{a} I_{b}(a)=\sum_{\mu}\left(\sum_{a} x_{a} N_{a} Q_{a \mu}\right) I_{b}(c(\mu))
$$

$$
\left.\begin{array}{c}
I_{b}(x)=\sum_{a} x_{a} I_{b}(a)=\sum_{\mu}\left(\sum_{a} x_{a} N_{a} Q_{a \mu}\right) I_{b}(c(\mu)
\end{array}\right)
$$

Instanton intersection number: Integer

If all basis coefficients $\sum_{a} x_{a} N_{a} Q_{a \mu}$ are a multiple of N, we have a \mathbb{Z}_{N} discrete symmetry

Finding an integral basis

Choose a suitable normalization for the columns of the matrix $V_{a \mu}: V_{a \mu} \rightarrow \mathrm{X}(\mu) V_{a \mu}$

$$
N_{a b}=\sum_{\mu} V_{a \mu} V_{b \mu} \equiv V_{a} \cdot V_{b}
$$

For a suitable choice, all $N_{a b}$ are rational numbers, in all 33290 cases.

Now choose a set of independent vectors $V_{\mathrm{c}(\mu) v}$

Finding an integral basis

The "charges" with respect to this basis are defined as

$$
V_{a \nu}=\sum_{\mu} Q_{a \mu} V_{c(\mu) \nu}
$$

and can be computed by contracting both sides with the basis vectors

$$
N_{a c(\nu)}=\sum_{\mu} Q_{a \mu} N_{c(\mu) c(\nu)}
$$

Here $N_{a b}$ are the numbers which we just found to be rational. We can compute $Q_{a \mu}$ by inverting the rational matrix $N_{c(\mu) c(v)}$
$-2356527325219910903428901754662427149894 / 4206361037817712426172307166805027949946515$ $2784948741071505418128346476378730597441 / 2804240691878474950781538111203351966631010$ $-25854997362159483572806567865246572322 / 221387423043037496114331956147633049997185$ $6898072845027098208081359744435277277501 / 8412722075635424852344614333610055899893030$ $108976715681408986890964337671823077977 / 2804240691878474950781538111203351966631010$ $-1407366818272278715495258035537737402701 / 2804240691878474950781538111203351966631010$ $-730274370305189614187212583238604721979 / 280424069187847495078153811120335196663101$ $-14703146264089789695021850876752032362043 / 8412722075635424852344614333610055899893030$ $-966409001634779323603278299112884580763 / 600908719688244632310329595257861135706645$ $-983094598776348113430087003140068085383 / 8412722075635424852344614333610055899893030$ $61131869065677337879021843505880263189 / 73795807681012498704777318715877683332395$ $-3745320497786158555270850835304275943121 / 8412722075635424852344614333610055899893030$ $1693796173771342973378581388458204267177 / 2804240691878474950781538111203351966631010$ $1205444211082390872412284617701674410251 / 2804240691878474950781538111203351966631010$ $2221438778472648889039857348099343644511 / 4206361037817712426172307166805027949946515$ $2778141893267937173717166855104761029721 / 1201817439376489264620659190515722271413290$ $-328790319741952612198224637596271270733 / 57229401875070917362888532881701060543490$ $-10696945894841597435006188896341594656409 / 1682544415127084970468922866722011179978606$ $-374380487381205651662553956908976153343 / 73795807681012498704777318715877683332395$ $13388558609255142019160683601848443422339 / 16825444151270849704689228667220111799786060$ $-130053795740416119037210695464378190133 / 1121696276751389980312615244481340786652404$ $-187502171731804948980940781489189370283 / 120181743937648926462065919051572227141329$ $-619867031959993792564626230220965209683 / 2804240691878474950781538111203351966631010$ $-1925028850509606135456711776999153695741 / 1402120345939237475390769055601675983315505$ $-553339345722660901165259922735534862799 / 841272207563542485234461433361005589989303$ $3622588600596306878973447873960345776869 / 8412722075635424852344614333610055899893030$

Finding an integral basis

...but this gives us only rational charges. This is not good enough. Now consider a boundary that has a rational charge

$$
W_{\nu}=\sum_{\mu} Q_{\mu} V_{c(\mu) \nu}=\sum_{\mu} \frac{p_{\mu}}{q_{\mu}} V_{c(\mu) \nu}
$$

Suppose for one value of $\mu($ denoted $\mu=\hat{\mu}), p_{\hat{\mu}}=1$.
Then we replace the corresponding basis vectors by W_{v}. In terms of the new basis, the old basis vector in terms of the new basis has an expansion

$$
V_{c(\hat{\mu}) \nu}=\sum_{\mu, \mu \neq \hat{\mu}}-\frac{p_{\mu} q_{\hat{\mu}}}{q_{\mu}} V_{c(\mu) \nu}+q_{\hat{\mu}} W_{\nu}
$$

This is "more integral" than the previous basis, and the volume spanned by the basis decreases by q.

Finding an integral basis

This process converges in a maximum of 19 steps.
In 3 out of the 32990 cases it did not converge to pure integers.

These cases could be dealt with by choosing a different starting point.

In the end we did indeed find an integer basis for all 32990 Orientifolds.

This gives a "charge lattice" for axion charges.
(But: there must be a better way of doing this...)

Examples

We have a database of ~ 19000 chirally distinct standard model realizations. (Anastasopoulos, Dijkstra, Kiritsis, Schellekens, 2006).

This contains more or less anything that can be realized with orientifolds (Madrid-type models, SU(5) GUTs, Pati-Salam, trinification,....)

In each class there may be up to 10^{7} brane configurations. (tadpole cancellation not imposed).

We have checked a small subset of the 19000 models for discrete symmetries (all Madrid models, 12 of the $700 \mathrm{SU}(5)$ models).

We found \mathbb{Z}_{2} symmetries for about 0.2% of all cases, and \mathbb{Z}_{3} for about 6.4%.

A remarkably large percentage of the latter allow a tadpole cancelling hidden sector (65%, usually around 1%).
Presumably this is due to a large degeneracy, but in principle discrete symmetries may enhance the chance of cancelling tadpoles.

Nr	U / S	$U(1)$	$\mathbf{a b}$	$\mathbf{a b}^{*}$	$\mathbf{a}^{*} \mathbf{c}$	$\mathbf{a}^{*} \mathbf{c}^{*}$	$\mathbf{a}^{*} \mathbf{d}$	$\mathbf{a}^{*} \mathbf{d}^{*}$	$\mathbf{b d}^{*}$	$\mathbf{b}^{*} \mathbf{d}^{*}$	$\mathbf{c}^{*} \mathbf{d}$	$\mathbf{c d}$	$\mathbf{b c}$	$\mathbf{b c}^{*}$	Total	\mathbb{Z}_{2}	\mathbb{Z}_{3}	Tadp.
			Q	Q	U^{c}	D^{c}	D^{c}	U^{c}	L	L	E^{c}	$\mathrm{~N}^{c}$	$\mathrm{H}_{d} / \mathrm{L}$	H_{u}				
7506	S	1	3	-	3	3	0	0	3	-	3	3	0	0	40590	2152	16	$320\left(\mathbb{Z}_{2}\right)$
2751	S	2	3	-	3	3	0	0	3	-	3	3	0	0	869428	0	59808	41136
14704	S	1	3	-	1	2	1	2	0	-	3	0	3	0	380	0	0	0
14062	S	1	3	-	2	2	1	1	2	-	3	1	1	0	304	0	0	0
8745	S	1	3	-	3	2	1	0	4	-	3	2	0	1	92	0	0	0
11196	S	1	3	-	3	4	-1	0	2	-	3	4	1	0	40	0	0	0
10551	U	1	1	2	3	3	0	0	3	0	3	3	0	0	116	0	0	0
1352	U	2	1	2	3	3	0	0	3	0	3	3	0	0	20176	0	1472	0
13058	U	1	1	2	3	3	0	0	1	2	3	3	2	2	68	0	0	0
7573	U	2	1	2	3	3	0	0	1	2	3	3	2	2	14744	0	0	0
16074	U	1	0	3	3	3	0	0	3	0	3	3	3	3	128	0	0	0
7967	U	2	0	3	3	3	0	0	3	0	3	3	3	3	5856	0	0	0
12106	U	1	1	2	3	3	0	0	2	1	3	3	1	1	32	0	0	0
7976	U	2	1	2	3	3	0	0	2	1	3	3	1	1	5764	0	192	0
13844	U	2	1	2	3	3	0	0	0	3	3	3	3	3	1096	0	0	0
14793	U	2	2	1	3	3	0	0	4	-1	3	3	-1	-1	400	0	0	0
13762	U	2	0	3	3	3	0	0	6	-3	3	3	0	0	320	0	0	0
14850	U	2	0	3	3	3	0	0	4	-1	3	3	2	2	96	0	0	0
14792	U	2	0	3	3	3	0	0	0	3	3	3	6	6	32	0	32	0
7488	U	1	1	2	1	2	1	2	0	0	3	0	3	0	2864	0	144	0
13015	U	2	1	2	1	2	1	2	0	0	3	0	3	0	352	0	0	0
18086	U	1	2	1	2	4	-1	1	0	0	3	3	3	0	68	0	0	0
13644	U	1	0	3	1	3	0	2	1	-2	3	1	5	1	8	0	0	0
653	U	1	0	3	0	3	0	3	0	-3	3	0	6	0	4	0	0	0

Nr	Type	$U(1)$	$A_{\mathbf{a}}$	$\mathbf{a}^{*} \mathbf{b}$	$\mathbf{a}^{*} \mathbf{b}^{*}$	$\mathbf{a c}$	$\mathbf{b c}$	$\mathbf{b c}^{*}$	A_{2}	S_{2}	A_{3}	S_{3}	Total	\mathbb{Z}_{2}	\mathbb{Z}_{3}	Tadp.
7	UO	1	3	3	-	-	-	-	-	-	-	-	16845	0	0	0
218	UU	2	3	3	0	-	-	-	0	-3	-	-	1049	0	0	0
345	UU	1	3	3	0	-	-	-	0	-3	-	-	1136	18	0	0
742	UU	1	3	2	1	-	-	-	0	-1	-	-	146	0	0	0
18371	UU	1	3	6	-3	-	-	-	0	-9	-	-	12	0	0	0
57	UUO	1	3	3	3	3	0	0	0	0	-	-	13402	552	0	0
998	UUO	2	3	3	3	3	0	0	0	0	-	-	18890	0	0	0
1000	UUU	3	3	3	3	3	-3	3	0	0	3	0	7276	0	0	0
4004	UUU	2	3	3	3	3	-3	3	0	0	3	0	1706	4	0	0
4316	UUU	2	3	3	3	3	-3	3	0	0	3	0	5236	180	120	0
4324	UUU	1	3	3	3	3	-3	3	0	0	3	0	1278	8	0	0
4325	UUU	1	3	3	3	3	-4	4	0	0	4	1	96	48	0	0

Example 1

\mathbb{Z}_{2} in $U(3) \times S p(2) \times U(1) \times U(1)$ with broken $B-L$
Class 7506, Tensor (2,4,14,46), MIPF 10, Orientifold 2, boundaries (630,41,1070,631)

Axion Charges (including Chan-Paton multiplicity factor)

a:	0	-3	0	0	-3	-3	-3	3	0	-3	0	3	3	6	3	6
c:	0	0	0	0	0	0	-2	0	0	0	0	0	0	0	0	0
d:	0	1	0	0	1	1	-1	-1	0	1	0	-1	-1	-2	-1	-2

Null vectors

$3 Q_{\mathbf{d}}-3 Q_{\mathbf{c}}+Q_{\mathbf{a}}=0 \rightarrow Y$ unbroken
$3 Q_{\mathbf{d}}+Q_{\mathbf{a}} \neq 0 \rightarrow B-L$ broken
$Q_{\mathbf{a}}=0 \bmod 3 \rightarrow$ Conservation of color
$Q_{\mathbf{a}}+Q_{\mathbf{d}}=0 \bmod 2 \rightarrow$ R-parity

```
Type: U S U U
Dimension: 3 2 1 1
    5 x ( V ,0 , V*,0 ) chirality -3
    5 x ( 0 ,0 ,V ,V ) chirality -3
    3 x ( V ,0 ,V ,0 ) chirality -3
    3 x ( 0 ,0,V ,V*) chirality 3
    5 x ( V ,V ,0 ,0 ) chirality 3
    5 x ( 0 ,V ,0 ,V ) chirality 3
    6 x ( V ,0 ,0, , *) chirality 0
    2 x ( 0, S ,0,0 ) chirality 0
12 x ( 0 ,0 ,S ,0 ) chirality 0
    4 x ( A ,0,0,0 ) chirality 0
    6 x ( V ,0 ,0 ,V ) chirality 0
    4 x ( 0 ,0 ,0 ,A ) chirality 0
    4 x ( S ,0 ,0 ,0 ) chirality 0
    4 x ( 0 ,0 ,0,S ) chirality 0
    1 x ( Ad,0 ,0,0 ) chirality 0
    2 x ( 0 ,A ,0 ,0 ) chirality 0
    6 x ( 0 ,0 ,Ad,0 ) chirality 0
    1 x ( 0,0,0,Ad) chirality 0
    6 x ( 0 ,0 ,A ,0 ) chirality 0
    8 x ( 0 ,V ,V ,0 ) chirality 0
```


Example 1

\mathbb{Z}_{2} in $U(3) \times S p(2) \times U(1) \times U(1)$ with broken $B-L$
Class 7506, Tensor (2,4,14,46), MIPF 10, Orientifold 2, boundaries (630,41,1070,631)

Axion Charges (including Chan-Paton multiplicity factor)

a:	0	-3	0	0	-3	-3	-3	3	0	-3	0	3	3	6	3	6
c:	0	0	0	0	0	0	-2	0	0	0	0	0	0	0	0	0
d:	0	1	0	0	1	1	-1	-1	0	1	0	-1	-1	-2	-1	-2

Null vectors

$3 Q_{\mathbf{d}}-3 Q_{\mathbf{c}}+Q_{\mathbf{a}}=0 \rightarrow Y$ unbroken
$3 Q_{\mathbf{d}}+Q_{\mathbf{a}} \neq 0 \rightarrow B-L$ broken
$Q_{\mathbf{a}}=0 \bmod 3 \rightarrow$ Conservation of color
$Q_{\mathbf{a}}+Q_{\mathbf{d}}=0 \bmod 2 \rightarrow$ R-parity

Example 2

\mathbb{Z}_{3} in $U(3) \times S p(2) \times U(1) \times U(1)$ with broken $B-L$
Class 7506, Tensor ($2,10,10,10$), MIPF 63, Orientifold 0 , boundaries $(192,503,227,237)$

Axion Charges (including Chan-Paton multiplicity factor)

a:	0	0	-6	0	3
c:	-6	6	5	-3	-4
d:	-6	6	7	-3	-5

Null vectors

$3 Q_{\mathbf{d}}-3 Q_{\mathbf{c}}+Q_{\mathbf{a}}=0 \rightarrow Y$ unbroken
$3 Q_{\mathbf{d}}+Q_{\mathbf{a}} \neq 0 \rightarrow B-L$ broken
$Q_{\mathbf{a}}=0 \bmod 3 \rightarrow$ Conservation of color
$Q_{\mathbf{b}}+Q_{\mathbf{c}}=0 \bmod 3 \rightarrow \mathbb{Z}_{3} \quad \begin{aligned} & \text { Forbids UUD, QDL, LLE, LH, QQQL, } \\ & \text { UUDE, } \vee \text { Majorana mass } \\ & \text { Allows all Yukawa's, } \mu \text {-term }\end{aligned}$

Example 3

\mathbb{Z}_{3} in $U(3) \times S p(2) \times U(1) \times U(1)$ with unbroken $B-L$
Class 2751, Tensor ($2,10,10,10$), MIPF 64, Orientifold 0 , boundaries $(46,5,48,415)$

Axion Charges (including Chan-Paton multiplicity factor)

a:	9	0	0	0	0
c:	0	0	0	0	0
d:	3	0	0	0	0

Null vectors

$3 Q_{\mathbf{d}}-3 Q_{\mathbf{c}}+Q_{\mathbf{a}}=0 \rightarrow Y$ unbroken
$3 Q_{\mathbf{d}}+Q_{\mathbf{a}}=0 \rightarrow B-L$ unbroken
$Q_{\mathbf{a}}=0 \bmod 3 \rightarrow$ Conservation of color
$Q_{\mathbf{d}}=0 \bmod 3 \rightarrow \mathbb{Z}_{3}$
Forbids QQQL, UUDE (not forbidden by B-L)

Example 4

\mathbb{Z}_{3} in $U(3) \times U(2) \times U(1) \times U(1)$ with unbroken $B-L$
Class 1352, Tensor ($2,10,10,10$), MIPF 59, Orientifold 0 , boundaries $(932,650,881,1302)$

Axion Charges (including Chan-Paton multiplicity factor)

a:	0	0	0	9	0	0	0	9	0	0	9	0	0	0	9	9	9
b:	2	2	2	4	4	2	0	0	4	0	2	0	2	2	0	0	0
c:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
d:	0	0	0	3	0	0	0	3	0	0	3	0	0	0	3	3	3

Null vectors

$3 Q_{\mathbf{d}}-3 Q_{\mathbf{c}}+Q_{\mathbf{a}}=0 \rightarrow Y$ unbroken
$3 Q_{\mathbf{d}}+Q_{\mathbf{a}}=0 \rightarrow B-L$ unbroken
$Q_{\mathbf{a}}=0 \bmod 3 \rightarrow$ Conservation of color
$Q_{\mathbf{b}}=0 \bmod 2 \rightarrow S U(2)$ duality
$Q_{\mathbf{d}}=0 \bmod 3 \rightarrow \mathbb{Z}_{3}$ Forbids QQQL, UUDE (not forbidden by B-L)

Example 13

\mathbb{Z}_{2} in $U(5) \times U(1) \times U(1)$
Class 4325, Tensor $(1,10,22,22)$, MIPF 27, Orientifold 0 , boundaries $(365,365,1506,818)$

Axion Charges (including Chan-Paton multiplicity factor)

$Q_{\mathbf{a}}=0 \bmod 5 \rightarrow S U(5)$ pentality
$Q_{\mathbf{a}}+Q_{\mathbf{b}}+Q_{\mathbf{c}}=0 \bmod 2 \rightarrow$ Matter Parity
Matter sector strings have parity 0 , Matter/Hidden sector strings have parity 1

Conclusions

- We know how to determine discrete symmetries in Gepner orientifolds.
- Room for improvement in underlying formalism.
- How does this work in generic RCFT?
- Many known field theory examples can indeed be found.
- Discrete symmetries do not seem to be very common in this class (a few percent). But:
- More than random.
- Tadpole cancellation, massless Y and discrete symmetries appear to have a positive correlation. (all three favoured by small h_{21}).

