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Discrete symmetries
May prevent fast proton decay and/or lepton number violation due to dimension 4 operators in the 
MSSM (R-parity, baryon triality...)

May prevent proton decay due to dimension 5 operators in the MSSM   (QQQL, UcUcDcEc). 

But they may also forbid operators that are desirable 
(Yukawa couplings, Majorana masses for neutrinos,....)

Many other uses in a variety of BSM ideas.

So far, however, nature does not seem to need them (except for the nearly inevitable CPT).

How generic are discrete symmetries in the landscape?

Quantum gravity: folk theorems against existence of ungauged symmetries (continuous or discrete).

Gauged discrete symmetries are allowed. (Kraus, Wilczek,...,1989)

In string theory, specific “gauged, anomaly free” discrete symmetries are possible.  (Ibanez, Ross, 1991).



Discrete symmetries in string theory

An obvious way to get an anomaly free discrete symmetry is to break a 
U(1) to ℤN. 

Orientifolds have lots of U(1)’s, one for every complex brane stack.
A good place to look for discrete symmetries!

These U(1)’s are often broken due to axion mixing. This happens 
always if the U(1) is anomalous, and sometimes (usually?) if it is not.

We need to determine if, and how often an unbroken discrete abelian 
symmetry remains.



3 Axion couplings

3.1 Discrete ZN symmetries from open string U(1)’s

The key to understand the appearance of discrete Z
N

gauge symmetries from open

string U(1)’s are the coe�cients R
am

, which determine the BF couplings.

Consider a 4d string model, with a set of branes labelled with a and their orientifold

images ac, with BF couplings to a set of RR 2-forms B
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Massive U(1)’s are broken by brane instantons coupling to the axion RR scalars

�
m

dual to the 2-forms. With a suitable normalization, the amplitudes go like e�2⇡i�m ,
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X

m

[ @
µ

�
m

� (
P

a

x
a

N
a

V
am

)A
µ

]2 (3.4)

where the U(1) is normalized such that the minimal charge is 1. Under U(1) transfor-
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Instanton amplitudes transform as

e�2⇡i�m ! e�2⇡i�m exp[�2⇡i(
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V
am
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4It is useful to maintain the convenient normalization that U(1)’s have minimal charge 1; this

requires the xa to be integer, with gcd(xa) = 1.

8

3 Axion couplings

3.1 Discrete ZN symmetries from open string U(1)’s

The key to understand the appearance of discrete Z
N

gauge symmetries from open

string U(1)’s are the coe�cients R
am

, which determine the BF couplings.

Consider a 4d string model, with a set of branes labelled with a and their orientifold

images ac, with BF couplings to a set of RR 2-forms B
m

X

a,m

N
a

V
am

B
m

^ F
a

(3.1)

Here V
am

= R
am

�R
a

c
m

, with the relative minus sign arising because the physical U(1)

gauge boson is the di↵erence of those supported on the brane and its orientifold image.

Consider now a linear combination4
P

a

x
a

Y
a

of the U(1) generators Y
a

of brane a.

Its BF couplings are

X

m

�P
a

x
a

N
a

V
am

�
B

m

^ F (3.2)

It thus remains massless if and only if

X

a

x
a

N
a

(R
am

�R
a

c
m

) = 0 for all m. (3.3)

In general, the set of massless U(1)’s correspond to the space of zero eigenvectors x
a

of the non-symmetric matrix M
am

= N
a

(R
am

�R
a

c
m

).

Massive U(1)’s are broken by brane instantons coupling to the axion RR scalars

�
m

dual to the 2-forms. With a suitable normalization, the amplitudes go like e�2⇡i�m ,

and the axions have an identification �
m

' �
m

+ 1. It is useful to introduce the dual

description of (3.2) in terms of �
m

. The relevant lagrangian is

X

m

[ @
µ

�
m

� (
P

a

x
a

N
a

V
am

)A
µ

]2 (3.4)

where the U(1) is normalized such that the minimal charge is 1. Under U(1) transfor-

mations,

A
µ

! A
µ

+ @
µ

� ; �
m

! �
m

+ (
P

a

x
a

N
a

V
am

)� (3.5)

Instanton amplitudes transform as

e�2⇡i�m ! e�2⇡i�m exp[�2⇡i(
P

a

x
a

N
a

V
am

)�] (3.6)

4It is useful to maintain the convenient normalization that U(1)’s have minimal charge 1; this

requires the xa to be integer, with gcd(xa) = 1.

8

Axion couplings

Bm:   axions, typically ~ 10 ... 100
Fa:    U(1) gauge field strength.
Na:   Chan-Paton multiplicity of stack a 
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Coupling strength of bulk mode m (“Ishibashi state”) to boundary a

in CFT:
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U(1) generator of brane a

This remains massless if and only if
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If Ya acquires a mass, the U(1) is not always completely broken. 
A discrete subgroup may remain.
How can we detect this?



Instantons
Brane stack U(1)’s broken by axion mixing are respected by 
all perturbative amplitudes. 

Instanton amplitudes may break these symmetries. These can 
be gauge instantons or “exotic”, “stringy” instantons from 
stacks without a gauge group.

If there is a ℤN discrete symmetry, any instanton amplitude 
can only violate the corresponding symmetry by N units.

Blumenhagen, Cvetic, Weigand
Ibáñez,Uranga
Florea, Kachru, McGreevy, Saulina
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Dual description of the axion couplings in terms of 
RR scalars !m (with  !m ~ !m+1)
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U(1) gauge transformation
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Then an instanton amplitude transforms as



and this transformation is cancelled by the insertion of an operator in the charged
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with the Higgsing of the U(1) by a charge N scalar (whose phase is played by a suitable

linear combination of the RR scalars).

In other words, to find Z
N

discrete symmetries, we should look for zero eigenvectors

modulo N of the matrix M
am

, in the convenient normalization used above. In a

geometric setting, they can be made integer by choosing a suitable basis for the axions,

in terms of basic 3-cycles on the compactification manifold (in type-IIA language), see

[22]. But this notion (and so the automatic appearance of the convenient normalization)

is not readily available for Gepner models, although in some very special cases (the

quintic Calabi-Yau) similar bases have been discussed [57]. A specialized geometric

discussion for each separate case is not likely to get us to the desired result, since we

will have to deal with all possible simple current MIPFs of the 168 Gepner models, and

all their orientifolds, a total of 32990 distinct possibilities with non-vanishing orientifold

tension.

The general formula for the boundary coe�cients in such a CFT takes the form

(2.1). Here SJ

am

is a modular transformation matrix of a conformal field theory, and  

is a phase, and the pre-factor is a square root of a rational number. Neither of these

factors are integers. Indeed, in general these boundary coe�cients are complex. It is

not clear how to even define condition (3.7). The key towards the resolution, is to search

for a basic set of instanton branes, whose boundary coe�cients thus define the axion

periodicities; this then allows to e↵ectively move onto the convenient normalization in

which coe�cients are integers, whose gcd then gives the order of the discrete symmetry.

3.2 Axions in RCFT and basis of boundary states

In this section we describe the structure of axions in RCFT orientifolds, and explain

the relevance of the above mentioned basis of boundary states in RCFT terms.

An Ishibashi state (m, J) contains an axion if the representation m contains a

massless space-time spinor. The ground state may contain N
L

left-handed and N
R

right-handed massless spinors. In the closed string one gets the square of the character
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3 Axion couplings

3.1 Discrete ZN symmetries from open string U(1)’s

The key to understand the appearance of discrete Z
N

gauge symmetries from open

string U(1)’s are the coe�cients R
am

, which determine the BF couplings.

Consider a 4d string model, with a set of branes labelled with a and their orientifold

images ac, with BF couplings to a set of RR 2-forms B
m
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a

V
am

B
m

^ F
a

(3.1)

Here V
am

= R
am

�R
a

c
m

, with the relative minus sign arising because the physical U(1)

gauge boson is the di↵erence of those supported on the brane and its orientifold image.

Consider now a linear combination4
P
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Y
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of the U(1) generators Y
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of brane a.

Its BF couplings are
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It thus remains massless if and only if
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) = 0 for all m. (3.3)

In general, the set of massless U(1)’s correspond to the space of zero eigenvectors x
a

of the non-symmetric matrix M
am

= N
a

(R
am
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a

c
m

).

Massive U(1)’s are broken by brane instantons coupling to the axion RR scalars

�
m

dual to the 2-forms. With a suitable normalization, the amplitudes go like e�2⇡i�m ,

and the axions have an identification �
m

' �
m

+ 1. It is useful to introduce the dual

description of (3.2) in terms of �
m

. The relevant lagrangian is
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m
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]2 (3.4)

where the U(1) is normalized such that the minimal charge is 1. Under U(1) transfor-

mations,

A
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� ; �
m

! �
m

+ (
P
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x
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N
a

V
am

)� (3.5)

Instanton amplitudes transform as

e�2⇡i�m ! e�2⇡i�m exp[�2⇡i(
P

a

x
a

N
a

V
am

)�] (3.6)

4It is useful to maintain the convenient normalization that U(1)’s have minimal charge 1; this

requires the xa to be integer, with gcd(xa) = 1.
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This suggests the following characterization of a 
discrete symmetry

No instantons can exist violating this symmetry.

But this condition makes little sense, as it stands, 
because the coefficients R are complex numbers.



In a geometric setting (type-IIA on CY) one can define these 
numbers in terms of a basis of 3-cycles on the manifold. Then one 
can write the condition for discrete symmetries entirely in terms of 
integers, and one can use this to construct explicit examples.
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Condition for continuous U(1)

Condition for ℤN

Berasaluce González, Ibáñez, Soler, Uranga, 2011



Discrete Orientifolds

Start with a c=9, N=2 rational conformal field theory, used as an “internal” sector of a 
type-II compactification.

Define the corresponding boundary CFT on surfaces with boundaries and crosscaps, by 
adding boundary and crosscap states consistent with the RCFT symmetries.

This allows the explicit construction of Annulus amplitudes, yielding exact open string 
partition functions, and Möbius and Klein bottle amplitudes defining the orientifold 
projections.

This gives rise to exact perturbative string spectra, with all massless and massive states 
explicitly known.

Cardy (1989); Sagnotti, Pradisi, Stanev (1995); ....



Discrete Orientifolds
In principle, one expects a huge number of such RCFTs to exist.

In practice, we are limited to tensor products of N=2 minimal models(1) (in 
total 168 c=9 combinations) and some permutation orbifolds(2) 
(modding out the exchange of two identical factors).

The first steps towards realistic spectra started in 2003(3), and led to chirally 
exact MSSM spectra in 2004(4).

(1) Gepner, 1987 (heterotic)
     Angelantonj, M. Bianchi, G. Pradisi, A. Sagnotti and Y. S. Stanev, 1996 (Orientifolds)
(2) Maio, Schellekens (2011)
(3) Aldazabal, Andres, Leston, Nunez; Blumenhagen, Weigand
(4) Dijkstra, Huiszoon, Schellekens



Discrete Orientifolds
The resulting spectra are presumably best though of as discrete points in an 
open and closed string moduli space, hence the term “discrete orientifold”.

Most features of geometric orientifolds can be analysed in this context: tadpole 
cancellation, hidden sectors, axion-vector boson mixing, absence of global 
anomalies(1), stringy instantons(2). We would like to extend that to discrete 
symmetries.

(Note that orientifold discreteness has no relation to the discrete symmetries.)

To investigate the presence of discrete symmetries we need to know
the boundary coefficients Rma

(1) Gato-Rivera and Schellekens, 2006
(2) Ibáñez, Schellekens, Uranga, 2007
      Kiritsis, Lennek, Schellekens, 2010
      Anastasopoulos, Leontaris, Richter, Schellekens, 2011



Discrete Orientifolds
We use the FHSSW(1) formalism, applied to the 168 Gepner models and all their 
simple current partition functions(2). 

This gives us a total of 32990 non-zero tension orientifolds (for 5392 MIPFs).  The 
MSSM spectra appear for a large subset of these. 

Geometric intuition suggests that we should try to find a suitable integral basis for 
the boundary coefficients. 

Something similar was done by Brunner, Hori, Hosomichi and Walcher (2004) for the 
(3,3,3,3,3) Gepner model realization of the quintic Calabi-Yau, by explicit 
construction. But that is just one of the 32990 cases.  

(1) Fuchs, Huiszoon, Schellekens, Schweigert, Walcher (2000)
(2) Gato-Rivera, Schellekens (1991);  Kreuzer, Schellekens (1993)



Boundary coefficients

identical data.

On top of this there are choices to define the orientifold quotient [58]. Taking all of

these into account brings the total number of possibilities to about 49000. However,

some of them have zero tension, which implies that no branes can be added without

violating the dilaton tadpole condition. After eliminating these cases we end up with

32990 in principle distinct orientifolds (as with the MIPFs, in practice there are always

a few “accidental” degeneracies that are apparent in the spectrum, but do not have a

very obvious fundamental origin. This is irrelevant in practice).

A simple current MIPF is characterized by a discrete group H of simple currents,

and a matrix of rational numbers X(M,J) defined on H. On Riemann surfaces with

boundaries each MIPF has a definite set of Ishibashi states and a corresponding set

of boundary states. The former are simply in one-to-one correspondence with the

elements M
ii

c of the multiplicity matrix, where ic denotes the two-dimensional charge

conjugate of i. In a simple current MIPF these states are labelled by a label m referring

to a representation of the chiral algebra of the tensor product, and a degeneracy label

J . For each m, this degeneracy label is the simple current in H that fixes it, i.e.

Jm = m, with M
mm

c 6= 0. So Ishibashi states will be denoted as (m, J).

The set of boundary states that respects all the symmetries of the original chiral

algebra is known to be equal to the number of Ishibashi states [56]. They are charac-

terized by the orbits of H on the chiral algebra representations. These orbits can be

labelled by an integer a that belongs to the set of representation labels of the full chiral

algebra. An orbit is a set of representation labels related by the action of H. For the

boundary label we choose one representative from this set. Also in this case there may

be degeneracies, which occur if the H-action has fixed points. The degeneracy labels

can be conveniently chosen as the discrete group character  of certain subgroup (called

the “central stabilizer”) C
a

of the stabilizer S
a

of a (the stabilizer is the subgroup of H
of that fixes a representation a). The boundary labels are then [a, 

a

]. Note that the

set of characters depends on the boundary label. If the central stabilizer is a discrete

group with |C
a

| elements, than there exists exactly |C
a

| distinct characters (complex

functions on C
a

that respect the group property).

Now we have two sets (m, J) and [a, 
a

] of Ishibashi and boundary labels. These

can be shown to be of equal size, although this is not manifest. On this basis we now

define boundary reflection coe�cients [58]

R[a, a](m,J) =

s
|H|

|C
a

||S
a

| 
⇤
a

(J)SJ

am

(2.1)

6

[a,�a], �a is a character of the group Ca

Ca is the Central Stabilizer of a

The quantity Fi is called the simple current twist, and the untwisted stabilizer Ui is the subgroup
of Si of currents that have twist 1 with respect to all currents in Si. To combine the results for
automorphisms and extensions, we introduce a modified twist F X

i by

F X
i (K, J) := e2πiX(K,J) Fi(K, J)∗ , (8)

and we define the central stabilizer Ci as

Ci := {J ∈Si |F X
i (K, J) = 1 for all K ∈Si} . (9)

(The prescription (8) is motivated as follows. The modified twist is an alternating bihomomor-
phism i.e. obeys F X

i (J, J) = 1 for all J ∈G. Such bihomomorphisms F X
i of an abelian group G

are in one-to-one correspondence to cohomology classes FX
i in H2(G, U(1)), thus leading to a

cohomological interpretation [27]. In particular, the central stabilizer provides a basis of the
centre of the twisted group algebra CFX

i
Si, which also motivates its name.)

The action (by the fusion product) of the simple currents in G organizes the labels i of
the Ā-theory into orbits. Moreover, in all known cases the boundary degeneracy is correctly
described by the order of the central stabilizer, and hence this is our ansatz for the general
case as well. We then choose the characters of Ci as the degeneracy labels. The boundaries are
therefore given by

a = [i, ψ] , (10)

where i is the label of a representative of a G-orbit, and ψ a character of Ci.

4. The boundary formula

Ishibashi states are nothing but conformal blocks for one-point correlation functions on the disk,
i.e. specific two-point blocks on the sphere. But we can think of the Ishibashi state labelled
by (i, J) also more as a three-point block on the sphere, with insertions i, ic and J . (This
is actually the natural interpretation when one wants to express such Ishibashi states in the
three-dimensional topological picture that was established in [28].) Moreover, already from [1]
it is known that the relation between Ishibashi and boundary states essentially expresses the
effect of a modular S-transformation. Together with the previous observation, it is then natural
to expect that the fixed point resolution matrices SJ appear in the boundary coefficients.

We are therefore ready to write down the following ansatz for the boundary coefficients:

B(i,J),[j,ψ] =

√

|G|
|Sj| |Cj|

α(J) SJ
i,j

√

S0,i

ψ(J)∗ , (11)

where α(J) is a phase to be discussed later, but which must satisfy α(0) = 1. All previously
studied cases are correctly reproduced by the remarkably simple formula (11). We have also
verified that the matrix (11) has a left- and right-inverse, given by (B−1)[j,ψ],(i,J) =S0,i B∗

(i,J),[j,ψ].
This establishes in particular the result that the number of boundaries equals the number of
Ishibashi labels, i.e. “completeness”. This implies rather non-trivial relations involving the
number of orbits of various kinds and the orders of stabilizers.

One can also check that the annuli obtained from (11) possess non-negative integral ex-
pansion coefficients Ai

ab with respect to the Ā-characters χi. (We assume, as usual, that the
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integers, where Ns is the order of Js. If Ns is odd, RssNs is always even, and hence Xss is
determined. If Ns is even, RssNs may be odd. Then there is no solution for Xss. In that case
the current Js does not belong to the “effective center”, and cannot be used to build modular
invariants. A second case in which 2X = R has no solutions is when Ns is even and NsRst is
odd for some value of t != s. Then there are only non-symmetric invariants. In all other cases
at least one solution exists. If both Ns and Nt are even the off-diagonal element Xst may be
shifted by a half-integer.

3. Ishibashi and boundary labels

The modular invariant Z(G, X) specified by X is to be multiplied with the charge conjugation
matrix. Hence the Ishibashi states correspond to the diagonal elements of Z(G, X), counting
multiplicities. The only currents that can contribute are those that satisfy Ji = i. They form a
group, the stabilizer Si of i. If this group is non-trivial, multiplicities larger than 1 may occur,
possibly leading to Ishibashi label degeneracies. For pure extensions this was analysed in [8,11],
and the conclusion is that the Ishibashi label degeneracy is actually equal to the fixed point
degeneracy. 3 It is natural to extend this result to the general case, and to label the degeneracy
by the currents that cause it. Hence our ansatz for the Ishibashi labels is

m = (i, J); J ∈Si with QK(i) +X(K, J) = 0 mod 1 for all K ∈G . (5)

This ansatz produces also the correct count for pure extension invariants, but the labelling
chosen here is not the same as in [8, 11]. In those papers the dual basis – the characters ψα of
Si – was used for the degeneracy labels. This is not possible for pure automorphisms because
the currents satisfying (5) do not form a group in that case. For pure extensions, the new basis
differs by a Fourier transformation from the old one. This allows us to compute the degeneracy
metric, given the fact that it was diagonal in the old basis. We find

gJ,K
j =

∑

αβ

ψα(J) ψβ(K) δα,β = δJ,Kc

. (6)

Now we turn to the boundary labels. The results for pure extensions and automorphisms
without fixed points is that the boundaries are in one-to-one correspondence with the complete
set of G orbits (of arbitrary monodromy charge). As usual, fixed points lead to degeneracies.
For pure automorphism invariants due to a half-integer spin simple current, the degeneracy
was found to be given by the order of the stabilizer of the orbit, whereas for pure extensions it
is the order of the untwisted stabilizer. The latter is defined as follows [24]. For every simple
current J with fixed points there exists a “fixed point resolution matrix” SJ ; these matrices
can be used to express the unitary modular S-transformation matrix of the extended theory
through quantities of the unextended theory. The matrices SJ are conjectured to be equal to
the modular S-transformation matrices for the J-one-point conformal blocks on the torus, and
are explicitly known for all WZW models [25,24], their simple current extensions [26] and also
for coset conformal field theories. Elements of the matrix SJ whose labels are related by the
action of a simple current K obey

SJ
Ki,j = Fi(K, J) e2πiQK(j) SJ

i,j . (7)
3 This result is non-trivial because the degeneracy in the extended theory is in general not equal to the fixed

point degeneracy, i.e. the order of the stabilizer, but rather to the size of a subgroup, the untwisted stabilizer.

5

(m,J) : J � Sm

with QL(m) + X(L, J) = 0 mod 1 for all L � H

Sm : J � H with J ·m = m

(Stabilizer of m)

SJ
am : matrix element of the modular transformation

matrix of the fixed point CFT

In general, a complex number



Finding an integral basis

3 Axion couplings

3.1 Discrete ZN symmetries from open string U(1)’s

The key to understand the appearance of discrete Z
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description of (3.2) in terms of �
m

. The relevant lagrangian is

X
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[ @
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� (
P
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a
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am
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µ
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where the U(1) is normalized such that the minimal charge is 1. Under U(1) transfor-

mations,

A
µ

! A
µ

+ @
µ

� ; �
m

! �
m

+ (
P

a

x
a

N
a

V
am

)� (3.5)

Instanton amplitudes transform as

e�2⇡i�m ! e�2⇡i�m exp[�2⇡i(
P

a

x
a

N
a

V
am

)�] (3.6)

4It is useful to maintain the convenient normalization that U(1)’s have minimal charge 1; this

requires the xa to be integer, with gcd(xa) = 1.
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Axion couplings

N
axion

= O(10, . . . 100) (maximally 480),

N
bound

= O(100 . . . 1000)

Try to find a subset c of Naxion “basic” boundaries so that

Vaµ =
N

axionX

µ=1

QaµVc(µ)⌫ , Qaµ 2 Z

a = 1, . . . N
bound

, m = 1, . . . N
Ishibashi

Remove vanishing and identical columns

Vaµ, a = 1, . . . N
bound

, µ = 1, . . . N
axion

This assumes that the basis can be related to RCFT boundary states.



of the original transverse channel labels (m, J): there may be more than one (m, J)

corresponding to any given ⌫. More details will be given in the next section.

If (3.9) can indeed be realized, it defines a basis in the space of all complex bound-

aries such that all other boundaries can be expanded in that basis with integer co-

e�cients. In this way we obtain a lattice of charges, so that each boundary state

corresponds to a point on that lattice. In general we expect that this basis is not

unique, just as the basis of a lattice is not unique. Note however that not every lattice

point is occupied. This is obvious because there is only a finite number of boundary

states and an infinite number of lattice points, but also near the origin there are in

general unoccupied sites. This implies that not every lattice basis can be realized in

terms of boundary states.

The basic boundary states defines a set of ‘smallest instantons’ (at least in the RCFT

realm), whose couplings to the axions define the axion periodicities. The quantities

Q
aµ

thus correspond to the coe�cients of the BF couplings in the desired normalization

in which the axions have unit periodicity, and can therefore be used to look for the

discrete Z
N

symmetry. Namely a U(1) integer linear combination Y =
P

a

x
a

Y
a

(with

the conventions in footnote 4) has an unbroken Z
N

subgroup if it satisfies the condition

X

a

x
a

N
a

Q
aµ

= 0 mod N (3.10)

There is an alternative description of the physical relevance of the basis, which

instead of leaning on the axion periodicities, is based on expressing the amount of

instanton U(1) violation in terms of the basic instantons, as follows (both viewpoints

are clearly related since (3.5) links U(1) gauge transformations and axion shifts). As

described in [25, 26], the amount I
b

(a) of U(1)
a

violation by an instanton supported

on a brane b is given by the net number of charged fermion zero modes arising from

massless open strings stretching between both boundaries. In the RCFT setup, and

accounting for orientifold images, we have a combination of the annulus coe�cients

(2.3)

I
b

(a) = N
a

X

i

w
i

(Ai

ba

� Ai

ba

c) (3.11)

where w
i

is the Witten index in the open string sector, which e↵ectively extracts the

net chiral contribution. Using (2.2) we have

I
b

(a) = N
a

X

i

w
i

X

m,J

0
,J

"
S
im

R
b(m,J

0)g
⌦,m

J

0
J

S0m

#
(R

a(m,J) �R
a

c(m,J)) (3.12)
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Note that these quantities are integer, and moreover can be defined for any boundary

states a, b, regardless of whether a actually realizes a U(1) symmetry in the model or

not. Decomposing the boundary coe�cients using (3.9), and reconstructing back to

annulus amplitudes, we obtain

I
b

(a) =
X

µ

N
a

Q
aµ

I
b

(c(µ)) (3.13)

Here I
b

(c(µ)) are formally defined as in (3.12); in physical terms, they are integers

measuring the violation by the instanton brane b of a putative U(1) carried by brane c(µ)

(which need not support an actual U(1) of the model). For a U(1) linear combination

Y =
P

a

x
a

Y
a

(with the conventions in footnote 4), the charge violation by an instanton

brane b is

I
b

(x) =
X

a

x
a

I
b

(a) =
X

µ

� X

a

x
a

N
a

Q
aµ

�
I
b

(c(µ)) (3.14)

Since I
b

(c(µ)) are integer, if the coe�cients
P

a

x
a

N
a

Q
aµ

have a common factor N ,

all instantons violate U(1) charge in multiples of N , so that a discrete Z
N

subgroup

remains unbroken. Hence we recover condition (3.10) for the existence of a discrete Z
N

symmetry.

Although this derivation exploited the RCFT formulas, eq. (3.13) makes full phys-

ical sense even for non-RCFT instantons. This strongly supports that the result holds

for any instanton b, and therefore that the proposed condition (3.10) is correct in gen-

eral. Still, it is possible that the basic quantities I
b

(c(µ)) already have a common factor.

If they do not, we will get a Z
N

discrete symmetry, as read o↵ from the coe�cients

Q
aµ

; otherwise, we can only get more discrete symmetries than naively expected. We

believe this possibility to be fairly unlikely. The fact that we were able to find an in-

tegral lattice of charges in all cases strongly suggests that (3.10) identifies the discrete

symmetries correctly.

4 Finding an integral basis

We will now explain a method that turns out to be very e↵ective to find the integral

basis described above.

Our starting point is the matrix V
a⌫

, where rows a label boundary states and

columns ⌫ label axion fields. First we will normalize the coe�cients V
a⌫

in a convenient

way. In their raw form, these coe�cients are not even relatively real. However, on

12
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Note that these quantities are integer, and moreover can be defined for any boundary

states a, b, regardless of whether a actually realizes a U(1) symmetry in the model or

not. Decomposing the boundary coe�cients using (3.9), and reconstructing back to

annulus amplitudes, we obtain
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Here I
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(c(µ)) are formally defined as in (3.12); in physical terms, they are integers

measuring the violation by the instanton brane b of a putative U(1) carried by brane c(µ)

(which need not support an actual U(1) of the model). For a U(1) linear combination
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have a common factor N ,

all instantons violate U(1) charge in multiples of N , so that a discrete Z
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subgroup

remains unbroken. Hence we recover condition (3.10) for the existence of a discrete Z
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symmetry.

Although this derivation exploited the RCFT formulas, eq. (3.13) makes full phys-

ical sense even for non-RCFT instantons. This strongly supports that the result holds

for any instanton b, and therefore that the proposed condition (3.10) is correct in gen-

eral. Still, it is possible that the basic quantities I
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(c(µ)) already have a common factor.

If they do not, we will get a Z
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discrete symmetry, as read o↵ from the coe�cients

Q
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; otherwise, we can only get more discrete symmetries than naively expected. We

believe this possibility to be fairly unlikely. The fact that we were able to find an in-

tegral lattice of charges in all cases strongly suggests that (3.10) identifies the discrete

symmetries correctly.

4 Finding an integral basis

We will now explain a method that turns out to be very e↵ective to find the integral

basis described above.

Our starting point is the matrix V
a⌫

, where rows a label boundary states and

columns ⌫ label axion fields. First we will normalize the coe�cients V
a⌫

in a convenient

way. In their raw form, these coe�cients are not even relatively real. However, on
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The instanton charge violation for a U(1) associated with brane a due to an instanton on 
brane b is given by the chiral zero mode count

Here wi is the Witten index of representation i, and Aiab are Annulus coefficients.
The latter can be expressed in terms of boundary coefficients as

If we have an integral basis, we can express this in terms of that basis

For a U(1) Y =

X

a

xaYa
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Manifestly integer in the new basis
(if it exists...)
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If all basis coefficients                         are a 

multiple of N, we have a ℤN discrete symmetry



Finding an integral basis

already explained physical grounds, they can be made real with a independent phase

redefinitions, which are duly accounted in the following normalization. Consider in

each column the first non-vanishing entry, starting at the top. If there is such an entry,

divide all entries in the column by it, so that the top entry is equal to 1. If there are

any columns that are completely zero, we discard them, since they describe decoupled

axions; also, if two columns are identical, we keep only one of the two, since there is

a decoupled linear combination of axions. This procedure only eliminates vanishing

or identical columns. This is in general not su�cient to ensure that the columns are

linearly independent, although this turns out to be the case in practice in the whole

class of models. We call the dimension of this axion space N
A

. As expected, it turns

out that after normalizing the top entry of each column to 1, all entries in the matrix

become real numbers.

This normalization removes some convention-dependent factors in the boundary co-

e�cients. For instance, as mentioned below (2.2), we could have defined the boundary

coe�cients di↵erently by absorbing the square root of g⌦,m

J,J

0 in them; this is conveniently

done by choosing a basis in degeneracy space so that g⌦,m

J,J

0 is diagonal, so it can be ab-

sorbed into the boundary coe�cients by multiplying each column by a certain complex

factor. The normalization procedure discussed in the foregoing paragraph removes any

possible dependence on such conventions.

Note that this normalization procedure depends on the way the boundaries are

ordered. This ordering is not just arbitrary, because it descends from the ordering of

the representations of the chiral X , but the ordering is not in any way canonical either.

Roughly speaking, it has the property that if i > j, then S0i > S0j, but even that

ordering is not strict. However, the final result will not depend on this normalization

procedure.

In this way we now obtain a real matrix V
aµ

, where a labels boundaries and µ the

reduced set of axionic Ishibashi states. Now we consider the inner product matrix

N
ab

=
X

µ

V
aµ

V
bµ

⌘ V
a

· V
b

(4.1)

Upon explicit computation, it turns out that this is a rational matrix in all models,

even though the coe�cients V are real, and in general not rational. Note that if

we renormalize an entire column by
p
q, q 2 Z this does not a↵ect the rationality.

However, it is not uncommon to encounter other irrational numbers such as p +
p
q

and sine and cosines of rational multiples of ⇡. It is therefore far from obvious that

the rationality of V will persist if we order the boundaries di↵erently, thus obtaining a
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Choose a suitable normalization for the 
columns of the matrix Va!:  Va! →  X(!) Va!

For a suitable choice, all Nab are rational numbers,
in all 33290 cases.

Now choose a set of independent vectors Vc(!)"



Finding an integral basis

multiply by �q
µ̂

. Then we get

V
c(µ̂)⌫ =

X

µ,µ 6=µ̂

�p
µ

q
µ̂

q
µ

V
c(µ)⌫ + q

µ̂

W
⌫

(4.7)

Now we may remove V
c(µ̂) from the basis and replacing it by W , thus defining a new

map, ĉ(⌫). The advantage is that now one of the charges has changed from 1/q
µ̂

to

q
µ̂

. Furthermore, if q
µ

and q
µ̂

have common factors, the remaining denominators are

reduced (in the majority of cases all denominators in (4.6) are in fact equal to q
µ̂

, so

that all coe�cients become integer).

Now we iterate this process: compute all charges of the boundary vectors with

respect to all basis vectors, and as soon as we encounter one with charge 1/q, we

interchange the corresponding basis vector and boundary vector. Note that in every

step the the determinant of the inner product matrix of the basis vectors (which is the

square of the volume of the unit cell of the lattice) is reduced5 by a factor q2 . This

means that the procedure must end after a finite number of steps.

The only way the procedure can fail is if no charge 1/q can be found. A simple

example demonstrating such a failure is a one-axion case with just two boundary vectors

v1 = (2) and v2 = (3). There are two possible bases, and the only charges we encounter

are either 2
3 or 3

2 . This situation never occurs for any of the 32990 Gepner orientifolds.

However, it may also happen that an integer basis exists, but that the algorithm

converges to an incorrect basis. We did indeed encounter just three cases where we

ended up with a basis with respect to which all charges are either integer, or half-

integer, with values q/2, |q| � 3. Then no further progress is possible. These three

cases could be handled by reordering the initial set of boundaries, so that the algorithm

converges to a di↵erent set. For all 32990 orientifolds a maximum of 19 iterations was

necessary to reach an integer basis.

Note that all charges are defined in terms of boundary vectors, as announced in

(3.9), through

V
a⌫

=
X

µ

Q
aµ

V
c(µ)⌫ (4.8)

so that the original basis in which the boundary vectors are expressed is irrelevant. In

particular, the unusual normalization procedure of the columns drops out between the

5Proof: Consider the lattice spanned by the NA�1 vectors Vc(µ), with Vc(µ̂) removed. The volume

of the full unit cell is the volume of the unit cell in this NA � 1 dimensional sub-lattice, times the

length of Vc(µ̂) times sin ✓, where ✓ is the angle between Vc(µ̂) and the plane of the sub-lattice. The

new vector W can be decomposed in a component along Vc(µ̂) and a component in the plane of the

sub-lattice. The component of W along Vc(µ̂) has a length 1/q of Vc(µ̂), and the projection on the

sub-lattice is irrelevant for the computation of the volume. Hence the volume decreases by 1/q.

15

The “charges” with respect to this basis are defined as

and can be computed by contracting both sides with the basis 
vectors

definition of the charges now becomes

N
ac(⌫) =

X

µ

Q
aµ

N
c(µ)c(⌫) (4.9)

We now invert the rational matrix N
c(µ)c(⌫). In this case it is a 100 ⇥ 100 matrix,

which can be inverted exactly on a computer using unlimited size integer numerators

and denominators. In this way we can avoid accuracy problems with real numbers.

This is essential, because in the most di�cult case we have to deal with a 480 ⇥ 480

matrix. Using the inverse we now compute the charges. Obviously the charges of the

basis vectors themselves are integers by construction, Q
c(⌫)µ = �

⌫µ

, but this leaves 1884

non-trivial vectors to be checked, each with 100 charges. In this example, boundaries

1, . . . , 46 are in the basis, boundary 47 is not, but turns out to have integral charges,

but boundary 48 has charge 1
2 with respect to the second basis vector. So following

the algorithm explained above we now take boundary 48 as our second basis vector.

We recompute the inverse of the new matrix N
c

0(µ)c0(⌫), where c0 denote the new basis

choice. In the next iteration boundary 53 turns out to have charge 1
2 with respect to

basis vector 15. So we put it in the basis and try again. Now boundary 104 turns

out to gave charge 3
2 with respect to basis vector 6, a charge that is unsuitable, but it

has charge �1
2 with respect to basis vector 7. After putting boundary 104 in the basis

instead of this vector, we find that all 1984 boundaries now have integer charges.

5 Results

In [48] 19345 distinct chiral classes of brane configurations were found that agree with

the standard model chirally.6 These spectra are distinguished by comparing them mod-

ulo non-chiral (vector-like) matter. They all contain a group SU(3) ⇥ SU(2) ⇥ U(1),

and all matter that is chiral with respect to that group must form exactly three families

of quarks and charged leptons. They are distinguished by their complete Chan-Paton

group, the chiral matter with respect to that group, and the massless vector bosons

that exists in addition to Y . These Chan-Paton chiral spectra may contain matter that

is SU(3) ⇥ SU(2) ⇥ U(1) non-chiral, such as Higgs pairs and right-handed neutrinos,

as well as less desirable vector-like particles. Individual models in each class di↵er in

6All spectra are available online at http://www.nikhef.nl/⇠/t58/Site/String Spectra.html.

They were assigned a unique number to identify them, and to which we will refer henceforth. To

examine an explicit sample of a spectrum in one of the 19345 classes, follow the instructions given on

this webpage.
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Here Nab are the numbers which we just found to be rational.
We can compute Qa! by inverting the rational matrix Nc(")c(#)



4691720666585196984989903021565517118921/4206361037817712426172307166805027949946515 
193443343983065334214499764618844669481/2804240691878474950781538111203351966631010 
-207399622455815902738819214482421025853/841272207563542485234461433361005589989303 
280345406933324040864185086648435527982/4206361037817712426172307166805027949946515 
-3487399664882312548403449298220026691019/841272207563542485234461433361005589989303 
-2356527325219910903428901754662427149894/4206361037817712426172307166805027949946515 
2784948741071505418128346476378730597441/2804240691878474950781538111203351966631010 

-25854997362159483572806567865246572322/221387423043037496114331956147633049997185 
6898072845027098208081359744435277277501/8412722075635424852344614333610055899893030 
108976715681408986890964337671823077977/2804240691878474950781538111203351966631010 

-1407366818272278715495258035537737402701/2804240691878474950781538111203351966631010 
-730274370305189614187212583238604721979/280424069187847495078153811120335196663101 

-14703146264089789695021850876752032362043/8412722075635424852344614333610055899893030 
-966409001634779323603278299112884580763/600908719688244632310329595257861135706645 

-983094598776348113430087003140068085383/8412722075635424852344614333610055899893030 
61131869065677337879021843505880263189/73795807681012498704777318715877683332395 

-3745320497786158555270850835304275943121/8412722075635424852344614333610055899893030 
1693796173771342973378581388458204267177/2804240691878474950781538111203351966631010 
1205444211082390872412284617701674410251/2804240691878474950781538111203351966631010 
2221438778472648889039857348099343644511/4206361037817712426172307166805027949946515 
2778141893267937173717166855104761029721/1201817439376489264620659190515722271413290 

-328790319741952612198224637596271270733/57229401875070917362888532881701060543490 
-10696945894841597435006188896341594656409/1682544415127084970468922866722011179978606 

-374380487381205651662553956908976153343/73795807681012498704777318715877683332395 
13388558609255142019160683601848443422339/16825444151270849704689228667220111799786060 

-130053795740416119037210695464378190133/1121696276751389980312615244481340786652404 
-187502171731804948980940781489189370283/120181743937648926462065919051572227141329 
-619867031959993792564626230220965209683/2804240691878474950781538111203351966631010 

-1925028850509606135456711776999153695741/1402120345939237475390769055601675983315505 
-553339345722660901165259922735534862799/841272207563542485234461433361005589989303 

3622588600596306878973447873960345776869/8412722075635424852344614333610055899893030 
-2917363519755564971360418309577721840489/4206361037817712426172307166805027949946515 

91388444650076553837228402321133800447/2804240691878474950781538111203351966631010 



Finding an integral basis
...but this gives us only rational charges. This is not good enough.
Now consider a boundary that has a rational charge 

di↵erent normalization prescription. However, it is an empirical fact that in all 32990

cases of di↵erent MIPFs and orientifolds all these numbers N
ab

come out rational, and

this will turn out to be a very fortunate outcome.

Based on the intuitions in earlier sections, the hope is to find a basis in the space

of Ishibashi states such that all coe�cients V
aµ

are transformed into integers, i.e. find

a real and invertible matrix R such that

Q
a⌫

=
X

µ

V
aµ

R
µ⌫

2 Z (4.2)

If such a basis exists, the coe�cients V
aµ

can be written as

V
a⌫

=
X

µ

Q
aµ

R�1
µ⌫

(4.3)

We may think of the matrix R�1
µ⌫

as a set of basis vectors B(µ)
⌫

labelled by µ, and then

what we are looking for is a set of basis vectors in terms of which all vectors V
a⌫

have

integer expansions. In other words, all vectors V
a⌫

lie on the lattice spanned by the

basis vectors. If we express the inner products N
ab

in (4.1) in terms of the basis vectors

we get

N
ab

=
X

µ

X

⌫

Q
aµ

Q
b⌫

X

⇢

R�1
µ⇢

R�1
⌫⇢

=
X

µ

X

⌫

Q
aµ

Q
b⌫

Bµ · B⌫ (4.4)

This tells us that if the basis vectors have integer (or rational) inner products, then

integrality (rationality) of all N
ab

follows automatically.

It is then natural to conjecture that the basis vectors might themselves be chosen

as a subset of the boundary vectors V
aµ

. A necessary condition is that we should be

able to find N
A

independent vectors V
aµ

. Here it is important that the N
A

columns

are linearly independent, as explained above. A basis of this kind is defined by a map

c(µ) from the set of axion labels to the set of boundaries, and we write

R�1
µ⌫

= B(µ)
⌫

= V
c(µ)⌫ (4.5)

After inverting this matrix we can compute the charges using (4.2). The fact that

all N
ab

are rational guarantees that the charges are rational. But we can do better

than that. Suppose some boundary vector W has the following expansion in terms of

the basis

W
⌫

=
X

µ

Q
µ

V
c(µ)⌫ =

X

µ

p
µ

q
µ

V
c(µ)⌫ , (4.6)

where p
µ

and q
µ

are relative prime. Now suppose there is one µ, denoted µ̂, so that

p
µ̂

= 1. We may then bring the corresponding term to the left, W
⌫

to the right and

14
multiply by �q

µ̂

. Then we get

V
c(µ̂)⌫ =

X

µ,µ 6=µ̂

�p
µ

q
µ̂

q
µ

V
c(µ)⌫ + q

µ̂

W
⌫

(4.7)

Now we may remove V
c(µ̂) from the basis and replacing it by W , thus defining a new

map, ĉ(⌫). The advantage is that now one of the charges has changed from 1/q
µ̂

to

q
µ̂

. Furthermore, if q
µ

and q
µ̂

have common factors, the remaining denominators are

reduced (in the majority of cases all denominators in (4.6) are in fact equal to q
µ̂

, so

that all coe�cients become integer).

Now we iterate this process: compute all charges of the boundary vectors with

respect to all basis vectors, and as soon as we encounter one with charge 1/q, we

interchange the corresponding basis vector and boundary vector. Note that in every

step the the determinant of the inner product matrix of the basis vectors (which is the

square of the volume of the unit cell of the lattice) is reduced5 by a factor q2 . This

means that the procedure must end after a finite number of steps.

The only way the procedure can fail is if no charge 1/q can be found. A simple

example demonstrating such a failure is a one-axion case with just two boundary vectors

v1 = (2) and v2 = (3). There are two possible bases, and the only charges we encounter

are either 2
3 or 3

2 . This situation never occurs for any of the 32990 Gepner orientifolds.

However, it may also happen that an integer basis exists, but that the algorithm

converges to an incorrect basis. We did indeed encounter just three cases where we

ended up with a basis with respect to which all charges are either integer, or half-

integer, with values q/2, |q| � 3. Then no further progress is possible. These three

cases could be handled by reordering the initial set of boundaries, so that the algorithm

converges to a di↵erent set. For all 32990 orientifolds a maximum of 19 iterations was

necessary to reach an integer basis.

Note that all charges are defined in terms of boundary vectors, as announced in

(3.9), through

V
a⌫

=
X

µ

Q
aµ

V
c(µ)⌫ (4.8)

so that the original basis in which the boundary vectors are expressed is irrelevant. In

particular, the unusual normalization procedure of the columns drops out between the

5Proof: Consider the lattice spanned by the NA�1 vectors Vc(µ), with Vc(µ̂) removed. The volume

of the full unit cell is the volume of the unit cell in this NA � 1 dimensional sub-lattice, times the

length of Vc(µ̂) times sin ✓, where ✓ is the angle between Vc(µ̂) and the plane of the sub-lattice. The

new vector W can be decomposed in a component along Vc(µ̂) and a component in the plane of the

sub-lattice. The component of W along Vc(µ̂) has a length 1/q of Vc(µ̂), and the projection on the

sub-lattice is irrelevant for the computation of the volume. Hence the volume decreases by 1/q.
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Suppose for one value of            
Then we replace the corresponding basis vectors by W". In terms of the new basis, 
the old basis vector in terms of the new basis has an expansion

µ (denoted µ = µ̂), pµ̂ = 1.

This is “more integral” than the previous basis, and the volume spanned by the 
basis decreases by q.



Finding an integral basis

This process converges in a maximum of 19 steps.
In 3 out of the 32990 cases it did not converge to pure integers.  

These cases could be dealt with by choosing a different starting point.

In the end we did indeed find an integer basis for all 32990 Orientifolds.

This gives a “charge lattice” for axion charges.

(But: there must be a better way of doing this...)



Examples



We have a database of ~19000 chirally distinct standard model 
realizations. (Anastasopoulos, Dijkstra, Kiritsis, Schellekens, 2006).

This contains more or less anything that can be realized with orientifolds 
(Madrid-type models, SU(5) GUTs, Pati-Salam, trinification,....) 

In each class there may be up to 107 brane configurations. 
(tadpole cancellation not imposed).

We have checked a small subset of the 19000 models for discrete 
symmetries (all Madrid models, 12 of the 700 SU(5) models).

We found ℤ2 symmetries for about 0.2% of all cases, and ℤ3 for about 6.4%.

A remarkably large percentage of the latter allow a tadpole cancelling 
hidden sector (65%, usually around 1%). 
Presumably this is due to a large degeneracy, but in principle discrete 
symmetries may enhance the chance of cancelling tadpoles.



a d

c

b

(u,d)
(e-,ν)

u
c e+

ν
c

d
c

(10)

(5*)
“Madrid Model”

Hu,Hd

U/S



Nr U/S U(1) ab ab⇤ a⇤c a⇤c⇤ a⇤d a⇤d⇤ bd⇤ b⇤d⇤ c⇤d cd bc bc⇤ Total Z2 Z3 Tadp.

Q Q Uc Dc Dc Uc L L Ec Nc Hd/L Hu

7506 S 1 3 � 3 3 0 0 3 � 3 3 0 0 40590 2152 16 320 (Z2)

2751 S 2 3 � 3 3 0 0 3 � 3 3 0 0 869428 0 59808 41136

14704 S 1 3 � 1 2 1 2 0 � 3 0 3 0 380 0 0 0

14062 S 1 3 � 2 2 1 1 2 � 3 1 1 0 304 0 0 0

8745 S 1 3 � 3 2 1 0 4 � 3 2 0 1 92 0 0 0

11196 S 1 3 � 3 4 -1 0 2 � 3 4 1 0 40 0 0 0

10551 U 1 1 2 3 3 0 0 3 0 3 3 0 0 116 0 0 0

1352 U 2 1 2 3 3 0 0 3 0 3 3 0 0 20176 0 1472 0

13058 U 1 1 2 3 3 0 0 1 2 3 3 2 2 68 0 0 0

7573 U 2 1 2 3 3 0 0 1 2 3 3 2 2 14744 0 0 0

16074 U 1 0 3 3 3 0 0 3 0 3 3 3 3 128 0 0 0

7967 U 2 0 3 3 3 0 0 3 0 3 3 3 3 5856 0 0 0

12106 U 1 1 2 3 3 0 0 2 1 3 3 1 1 32 0 0 0

7976 U 2 1 2 3 3 0 0 2 1 3 3 1 1 5764 0 192 0

13844 U 2 1 2 3 3 0 0 0 3 3 3 3 3 1096 0 0 0

14793 U 2 2 1 3 3 0 0 4 -1 3 3 -1 -1 400 0 0 0

13762 U 2 0 3 3 3 0 0 6 -3 3 3 0 0 320 0 0 0

14850 U 2 0 3 3 3 0 0 4 -1 3 3 2 2 96 0 0 0

14792 U 2 0 3 3 3 0 0 0 3 3 3 6 6 32 0 32 0

7488 U 1 1 2 1 2 1 2 0 0 3 0 3 0 2864 0 144 0

13015 U 2 1 2 1 2 1 2 0 0 3 0 3 0 352 0 0 0

18086 U 1 2 1 2 4 -1 1 0 0 3 3 3 0 68 0 0 0

13644 U 1 0 3 1 3 0 2 1 -2 3 1 5 1 8 0 0 0

653 U 1 0 3 0 3 0 3 0 -3 3 0 6 0 4 0 0 0

Table 1: Chiral Spectra of the 24 classes of models. Column 1 specifies the number assigned to the spectrum class in the database, column 2

indicates if the b-brane is unitary or symplectic, column 3 lists the number of massless U(1)’s, including Y , and the subsequent columns list

the chiral brane intersections. The last three columns indicate the total number of spectra in each class that is present in the database, and

the total number with a certain discrete symmetry. The last column indicates in how many cases there was also a solution to the tadpole

conditions.
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Nr Type U(1) A
a

a⇤b a⇤b⇤ ac bc bc⇤ A2 S2 A3 S3 Total Z2 Z3 Tadp.

7 UO 1 3 3 � � � � � � � � 16845 0 0 0

218 UU 2 3 3 0 � � � 0 -3 � � 1049 0 0 0

345 UU 1 3 3 0 � � � 0 -3 � � 1136 18 0 0

742 UU 1 3 2 1 � � � 0 -1 � � 146 0 0 0

18371 UU 1 3 6 -3 � � � 0 -9 � � 12 0 0 0

57 UUO 1 3 3 3 3 0 0 0 0 � � 13402 552 0 0

998 UUO 2 3 3 3 3 0 0 0 0 � � 18890 0 0 0

1000 UUU 3 3 3 3 3 -3 3 0 0 3 0 7276 0 0 0

4004 UUU 2 3 3 3 3 -3 3 0 0 3 0 1706 4 0 0

4316 UUU 2 3 3 3 3 -3 3 0 0 3 0 5236 180 120 0

4324 UUU 1 3 3 3 3 -3 3 0 0 3 0 1278 8 0 0

4325 UUU 1 3 3 3 3 -4 4 0 0 4 1 96 48 0 0

Table 2: Chiral Spectra of the SU(5) GUT models considered here. Here a denotes the U(5) brane, and b and c the additional branes.

Column 2 specifies the brane types, and column 3 the number of massless U(1)’s including Y (which is embedded entirely in SU(5). The

di↵erence between 4004 and 4316 is the embedding of the additional U(1), which is Y
b

in nr. 4004 and Y
a

� 5Y
c

in nr. 4316.
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Majorana neutrino masses, as well as the Weinberg operator LLH
u

H
u

which can also

give rise to such masses is allowed. All odd powers of the neutrino superfield are for-

bidden. In this case there are 16 independent axions (out of a total of 28+1) coupling

non-trivially to branes, and the couplings to the standard model branes is as follows.

a: 0 -3 0 0 -3 -3 -3 3 0 -3 0 3 3 6 3 6

c: 0 0 0 0 0 0 -2 0 0 0 0 0 0 0 0 0

d: 0 1 0 0 1 1 -1 -1 0 1 0 -1 -1 -2 -1 -2

(5.2)

Example 2: Z3 in U(3)⇥ Sp(2)⇥ U(1)⇥ U(1) with broken B�L (class 7506)

The Z3 discrete symmetries in this class do not overlap with the Z2 symmetries de-

scribed above. An example with Z3 symmetries is tensor 2101010; MIPF 63; Orientifold

0, boundaries (192, 503, 227, 237) and Hodge numbers h21 = 7, h11 = 67, h+
11 = 64 and

h�
11 = 3. The Z3 nul vector is (0,1,1), as one can read o↵ from the axion couplings.

a: 0 0 -6 0 3

c: -6 6 5 -3 -4

d: -6 6 7 -3 -5

(5.3)

This symmetry corresponds to R3L2
3 in table 2 of [22]. Note that the definition of the

generator L in this paper di↵ers by a sign from the standard definition of lepton number,

which might easily lead to a confusion between R3L3 and R3L2
3. This has been taken

into account, and furthermore we have checked explicitly that the discrete symmetries

forbid all couplings of type UDD, QDL, LLE, LH
u

, QQQL, and UUDE, confirming

that it indeed corresponds to R3L2
3. The µ term and all Yukawas are perturbatively

allowed but neutrino Majorana masses and the Weinberg operator are forbidden. Up

to fourth order, there is just one coupling that is perturbatively forbidden but non-

perturbatively allowed, and that is the third power of the neutrino superfield.

Example 3: Z3 in U(3)⇥ Sp(2)⇥ U(1)⇥ U(1) with unbroken B�L (class 2751)

This example occurs for tensor 2101010; MIPF 64 and orientifold 0 and boundaries

(46, 5, 48, 415), Hodge numbers h21 = 7, h11 = 43, h+
11 = 40 and h�

11 = 3. All B�L

violating couplings are forbidden by the unbroken B�L, and the operators QQQL and

22

We will now describe each of these cases in a bit more detail. Note that the num-

bers in table 1 specify the number of distinct brane label combinations (a,b, c,d)

that yield a given chiral spectrum. Those spectra are in principle non-chirally dis-

tinct (although in practice there are often huge degeneracies), and also the precise

axion couplings may be di↵erent. But the di↵erences are small, and hence it suf-

fices to present just one example per class. In order to make the results repro-

ducible, we specify for each example the tensor product, MIPF and orientifold, and

the brane labels for which they occur. However, it is di�cult to present this infor-

mation in a basis-independent way. Instead we give labels as used and recognized by

the computer program kac used to produce these spectra, and which is publicly avail-

able. Instructions for exactly reproducing these spectra can be found on the webpage

http://www.nikhef.nl/⇠/t58/Site/String Spectra.html.

5.1.1 Examples: USUU and UUUU models

We now turn to several illustrative examples, and their discrete symmetries, which are

classified according to the notation in [2]. To help identify these examples we specify

the Hodge numbers of the corresponding Calabi-Yau manifold, by comparing the closed

string spectrum to a type-IIA compactification. In addition, we specify how the h11

N = 2 hyper multiplets split into chiral multiplets and vector multiplets. Precise

definitions of all these quantities in terms of the partition function are given in the

appendix. In each case we indicate which couplings of phenomenological interest are

perturbatively allowed, which ones are forbidden by the discrete symmetry, and which

ones are non-perturbatively allowed. Couplings in the latter category are not forbidden

by any discrete symmetry, and hence can in principle be generated by instantons.

However, we are not claiming that those instantons actually exist in a given model.

Example 1: Z2 in U(3)⇥ Sp(2)⇥ U(1)⇥ U(1) with broken B�L (class 7506)

An example was found for tensor product 241446, MIPF 10, Orientifold 2, boundary

states (630, 41, 1070, 631). The Hodge numbers of the corresponding Calabi-Yau man-

ifold are h21 = 28, h11 = 40, and in the orientifold h+
11 = 35 (leading to 35 Kahler

moduli) and h�
11 = 5 (5 RR vector bosons). In this class all Yukawa couplings are

perturbatively allowed, as is the µ-term. This is generally true in USUU -type Madrid

models. The Z2 is a a subgroup of the broken B�L, and this is standard R-parity. All

dimension-4 baryon and lepton violating couplings are forbidden, including LH
u

, but

the couplings QQQL and UUDE are non-perturbatively allowed. On the other hand

21

Example 1
Class 7506, Tensor (2,4,14,46), MIPF 10, Orientifold 2, boundaries (630,41,1070,631)

Axion Charges (including Chan-Paton multiplicity factor)

Null vectors
3Qd � 3Qc +Qa = 0 ! Y unbroken

3Qd +Qa 6= 0 ! B�L broken

Qa = 0 mod 3 ! Conservation of color

Qa +Qd = 0 mod 2 ! R-parity



Majorana neutrino masses, as well as the Weinberg operator LLH
u

H
u

which can also

give rise to such masses is allowed. All odd powers of the neutrino superfield are for-

bidden. In this case there are 16 independent axions (out of a total of 28+1) coupling

non-trivially to branes, and the couplings to the standard model branes is as follows.

a: 0 -3 0 0 -3 -3 -3 3 0 -3 0 3 3 6 3 6

c: 0 0 0 0 0 0 -2 0 0 0 0 0 0 0 0 0

d: 0 1 0 0 1 1 -1 -1 0 1 0 -1 -1 -2 -1 -2

(5.2)

Example 2: Z3 in U(3)⇥ Sp(2)⇥ U(1)⇥ U(1) with broken B�L (class 7506)

The Z3 discrete symmetries in this class do not overlap with the Z2 symmetries de-

scribed above. An example with Z3 symmetries is tensor 2101010; MIPF 63; Orientifold

0, boundaries (192, 503, 227, 237) and Hodge numbers h21 = 7, h11 = 67, h+
11 = 64 and

h�
11 = 3. The Z3 nul vector is (0,1,1), as one can read o↵ from the axion couplings.

a: 0 0 -6 0 3

c: -6 6 5 -3 -4

d: -6 6 7 -3 -5

(5.3)

This symmetry corresponds to R3L2
3 in table 2 of [22]. Note that the definition of the

generator L in this paper di↵ers by a sign from the standard definition of lepton number,

which might easily lead to a confusion between R3L3 and R3L2
3. This has been taken

into account, and furthermore we have checked explicitly that the discrete symmetries

forbid all couplings of type UDD, QDL, LLE, LH
u

, QQQL, and UUDE, confirming

that it indeed corresponds to R3L2
3. The µ term and all Yukawas are perturbatively

allowed but neutrino Majorana masses and the Weinberg operator are forbidden. Up

to fourth order, there is just one coupling that is perturbatively forbidden but non-

perturbatively allowed, and that is the third power of the neutrino superfield.

Example 3: Z3 in U(3)⇥ Sp(2)⇥ U(1)⇥ U(1) with unbroken B�L (class 2751)

This example occurs for tensor 2101010; MIPF 64 and orientifold 0 and boundaries

(46, 5, 48, 415), Hodge numbers h21 = 7, h11 = 43, h+
11 = 40 and h�

11 = 3. All B�L

violating couplings are forbidden by the unbroken B�L, and the operators QQQL and

22

We will now describe each of these cases in a bit more detail. Note that the num-

bers in table 1 specify the number of distinct brane label combinations (a,b, c,d)

that yield a given chiral spectrum. Those spectra are in principle non-chirally dis-

tinct (although in practice there are often huge degeneracies), and also the precise

axion couplings may be di↵erent. But the di↵erences are small, and hence it suf-

fices to present just one example per class. In order to make the results repro-

ducible, we specify for each example the tensor product, MIPF and orientifold, and

the brane labels for which they occur. However, it is di�cult to present this infor-

mation in a basis-independent way. Instead we give labels as used and recognized by

the computer program kac used to produce these spectra, and which is publicly avail-

able. Instructions for exactly reproducing these spectra can be found on the webpage

http://www.nikhef.nl/⇠/t58/Site/String Spectra.html.

5.1.1 Examples: USUU and UUUU models

We now turn to several illustrative examples, and their discrete symmetries, which are

classified according to the notation in [2]. To help identify these examples we specify

the Hodge numbers of the corresponding Calabi-Yau manifold, by comparing the closed

string spectrum to a type-IIA compactification. In addition, we specify how the h11

N = 2 hyper multiplets split into chiral multiplets and vector multiplets. Precise

definitions of all these quantities in terms of the partition function are given in the

appendix. In each case we indicate which couplings of phenomenological interest are

perturbatively allowed, which ones are forbidden by the discrete symmetry, and which

ones are non-perturbatively allowed. Couplings in the latter category are not forbidden

by any discrete symmetry, and hence can in principle be generated by instantons.

However, we are not claiming that those instantons actually exist in a given model.

Example 1: Z2 in U(3)⇥ Sp(2)⇥ U(1)⇥ U(1) with broken B�L (class 7506)

An example was found for tensor product 241446, MIPF 10, Orientifold 2, boundary

states (630, 41, 1070, 631). The Hodge numbers of the corresponding Calabi-Yau man-

ifold are h21 = 28, h11 = 40, and in the orientifold h+
11 = 35 (leading to 35 Kahler

moduli) and h�
11 = 5 (5 RR vector bosons). In this class all Yukawa couplings are

perturbatively allowed, as is the µ-term. This is generally true in USUU -type Madrid

models. The Z2 is a a subgroup of the broken B�L, and this is standard R-parity. All

dimension-4 baryon and lepton violating couplings are forbidden, including LH
u

, but

the couplings QQQL and UUDE are non-perturbatively allowed. On the other hand
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Example 1
Class 7506, Tensor (2,4,14,46), MIPF 10, Orientifold 2, boundaries (630,41,1070,631)

Axion Charges (including Chan-Paton multiplicity factor)

Null vectors
3Qd � 3Qc +Qa = 0 ! Y unbroken

3Qd +Qa 6= 0 ! B�L broken

Qa = 0 mod 3 ! Conservation of color

Qa +Qd = 0 mod 2 ! R-parity

Type:       U  S  U  U 
Dimension:  3  2  1  1
      5 x ( V ,0 ,V*,0 ) chirality -3
      5 x ( 0 ,0 ,V ,V ) chirality -3
      3 x ( V ,0 ,V ,0 ) chirality -3
      3 x ( 0 ,0 ,V ,V*) chirality 3
      5 x ( V ,V ,0 ,0 ) chirality 3
      5 x ( 0 ,V ,0 ,V ) chirality 3
      6 x ( V ,0 ,0 ,V*) chirality 0
      2 x ( 0 ,S ,0 ,0 ) chirality 0
     12 x ( 0 ,0 ,S ,0 ) chirality 0
      4 x ( A ,0 ,0 ,0 ) chirality 0
      6 x ( V ,0 ,0 ,V ) chirality 0
      4 x ( 0 ,0 ,0 ,A ) chirality 0
      4 x ( S ,0 ,0 ,0 ) chirality 0
      4 x ( 0 ,0 ,0 ,S ) chirality 0
      1 x ( Ad,0 ,0 ,0 ) chirality 0
      2 x ( 0 ,A ,0 ,0 ) chirality 0
      6 x ( 0 ,0 ,Ad,0 ) chirality 0
      1 x ( 0 ,0 ,0 ,Ad) chirality 0
      6 x ( 0 ,0 ,A ,0 ) chirality 0
      8 x ( 0 ,V ,V ,0 ) chirality 0



Majorana neutrino masses, as well as the Weinberg operator LLH
u

H
u

which can also

give rise to such masses is allowed. All odd powers of the neutrino superfield are for-

bidden. In this case there are 16 independent axions (out of a total of 28+1) coupling

non-trivially to branes, and the couplings to the standard model branes is as follows.

a: 0 -3 0 0 -3 -3 -3 3 0 -3 0 3 3 6 3 6

c: 0 0 0 0 0 0 -2 0 0 0 0 0 0 0 0 0

d: 0 1 0 0 1 1 -1 -1 0 1 0 -1 -1 -2 -1 -2

(5.2)

Example 2: Z3 in U(3)⇥ Sp(2)⇥ U(1)⇥ U(1) with broken B�L (class 7506)

The Z3 discrete symmetries in this class do not overlap with the Z2 symmetries de-

scribed above. An example with Z3 symmetries is tensor 2101010; MIPF 63; Orientifold

0, boundaries (192, 503, 227, 237) and Hodge numbers h21 = 7, h11 = 67, h+
11 = 64 and

h�
11 = 3. The Z3 nul vector is (0,1,1), as one can read o↵ from the axion couplings.

a: 0 0 -6 0 3

c: -6 6 5 -3 -4

d: -6 6 7 -3 -5

(5.3)

This symmetry corresponds to R3L2
3 in table 2 of [22]. Note that the definition of the

generator L in this paper di↵ers by a sign from the standard definition of lepton number,

which might easily lead to a confusion between R3L3 and R3L2
3. This has been taken

into account, and furthermore we have checked explicitly that the discrete symmetries

forbid all couplings of type UDD, QDL, LLE, LH
u

, QQQL, and UUDE, confirming

that it indeed corresponds to R3L2
3. The µ term and all Yukawas are perturbatively

allowed but neutrino Majorana masses and the Weinberg operator are forbidden. Up

to fourth order, there is just one coupling that is perturbatively forbidden but non-

perturbatively allowed, and that is the third power of the neutrino superfield.

Example 3: Z3 in U(3)⇥ Sp(2)⇥ U(1)⇥ U(1) with unbroken B�L (class 2751)

This example occurs for tensor 2101010; MIPF 64 and orientifold 0 and boundaries

(46, 5, 48, 415), Hodge numbers h21 = 7, h11 = 43, h+
11 = 40 and h�

11 = 3. All B�L

violating couplings are forbidden by the unbroken B�L, and the operators QQQL and

22

We will now describe each of these cases in a bit more detail. Note that the num-

bers in table 1 specify the number of distinct brane label combinations (a,b, c,d)

that yield a given chiral spectrum. Those spectra are in principle non-chirally dis-

tinct (although in practice there are often huge degeneracies), and also the precise

axion couplings may be di↵erent. But the di↵erences are small, and hence it suf-

fices to present just one example per class. In order to make the results repro-

ducible, we specify for each example the tensor product, MIPF and orientifold, and

the brane labels for which they occur. However, it is di�cult to present this infor-

mation in a basis-independent way. Instead we give labels as used and recognized by

the computer program kac used to produce these spectra, and which is publicly avail-

able. Instructions for exactly reproducing these spectra can be found on the webpage

http://www.nikhef.nl/⇠/t58/Site/String Spectra.html.

5.1.1 Examples: USUU and UUUU models

We now turn to several illustrative examples, and their discrete symmetries, which are

classified according to the notation in [2]. To help identify these examples we specify

the Hodge numbers of the corresponding Calabi-Yau manifold, by comparing the closed

string spectrum to a type-IIA compactification. In addition, we specify how the h11

N = 2 hyper multiplets split into chiral multiplets and vector multiplets. Precise

definitions of all these quantities in terms of the partition function are given in the

appendix. In each case we indicate which couplings of phenomenological interest are

perturbatively allowed, which ones are forbidden by the discrete symmetry, and which

ones are non-perturbatively allowed. Couplings in the latter category are not forbidden

by any discrete symmetry, and hence can in principle be generated by instantons.

However, we are not claiming that those instantons actually exist in a given model.

Example 1: Z2 in U(3)⇥ Sp(2)⇥ U(1)⇥ U(1) with broken B�L (class 7506)

An example was found for tensor product 241446, MIPF 10, Orientifold 2, boundary

states (630, 41, 1070, 631). The Hodge numbers of the corresponding Calabi-Yau man-

ifold are h21 = 28, h11 = 40, and in the orientifold h+
11 = 35 (leading to 35 Kahler

moduli) and h�
11 = 5 (5 RR vector bosons). In this class all Yukawa couplings are

perturbatively allowed, as is the µ-term. This is generally true in USUU -type Madrid

models. The Z2 is a a subgroup of the broken B�L, and this is standard R-parity. All

dimension-4 baryon and lepton violating couplings are forbidden, including LH
u

, but

the couplings QQQL and UUDE are non-perturbatively allowed. On the other hand
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Example 1
Class 7506, Tensor (2,4,14,46), MIPF 10, Orientifold 2, boundaries (630,41,1070,631)

Axion Charges (including Chan-Paton multiplicity factor)

Null vectors
3Qd � 3Qc +Qa = 0 ! Y unbroken

3Qd +Qa 6= 0 ! B�L broken

Qa = 0 mod 3 ! Conservation of color

Qa +Qd = 0 mod 2 ! R-parity



Example 2

Class 7506, Tensor (2,10,10,10), MIPF 63, Orientifold 0, boundaries (192,503,227,237)

Axion Charges (including Chan-Paton multiplicity factor)

Null vectors
3Qd � 3Qc +Qa = 0 ! Y unbroken

3Qd +Qa 6= 0 ! B�L broken

Qa = 0 mod 3 ! Conservation of color

Majorana neutrino masses, as well as the Weinberg operator LLH
u

H
u

which can also

give rise to such masses is allowed. All odd powers of the neutrino superfield are for-

bidden. In this case there are 16 independent axions (out of a total of 28+1) coupling

non-trivially to branes, and the couplings to the standard model branes is as follows.

a: 0 -3 0 0 -3 -3 -3 3 0 -3 0 3 3 6 3 6

c: 0 0 0 0 0 0 -2 0 0 0 0 0 0 0 0 0

d: 0 1 0 0 1 1 -1 -1 0 1 0 -1 -1 -2 -1 -2

(5.2)

Example 2: Z3 in U(3)⇥ Sp(2)⇥ U(1)⇥ U(1) with broken B�L (class 7506)

The Z3 discrete symmetries in this class do not overlap with the Z2 symmetries de-

scribed above. An example with Z3 symmetries is tensor 2101010; MIPF 63; Orientifold

0, boundaries (192, 503, 227, 237) and Hodge numbers h21 = 7, h11 = 67, h+
11 = 64 and

h�
11 = 3. The Z3 nul vector is (0,1,1), as one can read o↵ from the axion couplings.

a: 0 0 -6 0 3

c: -6 6 5 -3 -4

d: -6 6 7 -3 -5

(5.3)

This symmetry corresponds to R3L2
3 in table 2 of [22]. Note that the definition of the

generator L in this paper di↵ers by a sign from the standard definition of lepton number,

which might easily lead to a confusion between R3L3 and R3L2
3. This has been taken

into account, and furthermore we have checked explicitly that the discrete symmetries

forbid all couplings of type UDD, QDL, LLE, LH
u

, QQQL, and UUDE, confirming

that it indeed corresponds to R3L2
3. The µ term and all Yukawas are perturbatively

allowed but neutrino Majorana masses and the Weinberg operator are forbidden. Up

to fourth order, there is just one coupling that is perturbatively forbidden but non-

perturbatively allowed, and that is the third power of the neutrino superfield.

Example 3: Z3 in U(3)⇥ Sp(2)⇥ U(1)⇥ U(1) with unbroken B�L (class 2751)

This example occurs for tensor 2101010; MIPF 64 and orientifold 0 and boundaries

(46, 5, 48, 415), Hodge numbers h21 = 7, h11 = 43, h+
11 = 40 and h�

11 = 3. All B�L

violating couplings are forbidden by the unbroken B�L, and the operators QQQL and
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Majorana neutrino masses, as well as the Weinberg operator LLH
u

H
u

which can also

give rise to such masses is allowed. All odd powers of the neutrino superfield are for-

bidden. In this case there are 16 independent axions (out of a total of 28+1) coupling

non-trivially to branes, and the couplings to the standard model branes is as follows.

a: 0 -3 0 0 -3 -3 -3 3 0 -3 0 3 3 6 3 6

c: 0 0 0 0 0 0 -2 0 0 0 0 0 0 0 0 0

d: 0 1 0 0 1 1 -1 -1 0 1 0 -1 -1 -2 -1 -2

(5.2)

Example 2: Z3 in U(3)⇥ Sp(2)⇥ U(1)⇥ U(1) with broken B�L (class 7506)

The Z3 discrete symmetries in this class do not overlap with the Z2 symmetries de-

scribed above. An example with Z3 symmetries is tensor 2101010; MIPF 63; Orientifold

0, boundaries (192, 503, 227, 237) and Hodge numbers h21 = 7, h11 = 67, h+
11 = 64 and

h�
11 = 3. The Z3 nul vector is (0,1,1), as one can read o↵ from the axion couplings.

a: 0 0 -6 0 3

c: -6 6 5 -3 -4

d: -6 6 7 -3 -5

(5.3)

This symmetry corresponds to R3L2
3 in table 2 of [22]. Note that the definition of the

generator L in this paper di↵ers by a sign from the standard definition of lepton number,

which might easily lead to a confusion between R3L3 and R3L2
3. This has been taken

into account, and furthermore we have checked explicitly that the discrete symmetries

forbid all couplings of type UDD, QDL, LLE, LH
u

, QQQL, and UUDE, confirming

that it indeed corresponds to R3L2
3. The µ term and all Yukawas are perturbatively

allowed but neutrino Majorana masses and the Weinberg operator are forbidden. Up

to fourth order, there is just one coupling that is perturbatively forbidden but non-

perturbatively allowed, and that is the third power of the neutrino superfield.

Example 3: Z3 in U(3)⇥ Sp(2)⇥ U(1)⇥ U(1) with unbroken B�L (class 2751)

This example occurs for tensor 2101010; MIPF 64 and orientifold 0 and boundaries

(46, 5, 48, 415), Hodge numbers h21 = 7, h11 = 43, h+
11 = 40 and h�

11 = 3. All B�L

violating couplings are forbidden by the unbroken B�L, and the operators QQQL and

22

Forbids UUD, QDL, LLE, LHu, QQQL, 
             UUDE, ν Majorana mass
Allows all Yukawa’s, µ-term

Qb +Qc = 0 mod 3 ! Z3



Example 3

Class 2751, Tensor (2,10,10,10), MIPF 64, Orientifold 0, boundaries (46,5,48,415)

Axion Charges (including Chan-Paton multiplicity factor)

Null vectors
3Qd � 3Qc +Qa = 0 ! Y unbroken

Qa = 0 mod 3 ! Conservation of color

Forbids QQQL, UUDE (not forbidden by B-L)

Majorana neutrino masses, as well as the Weinberg operator LLH
u

H
u

which can also

give rise to such masses is allowed. All odd powers of the neutrino superfield are for-

bidden. In this case there are 16 independent axions (out of a total of 28+1) coupling

non-trivially to branes, and the couplings to the standard model branes is as follows.

a: 0 -3 0 0 -3 -3 -3 3 0 -3 0 3 3 6 3 6

c: 0 0 0 0 0 0 -2 0 0 0 0 0 0 0 0 0

d: 0 1 0 0 1 1 -1 -1 0 1 0 -1 -1 -2 -1 -2

(5.2)

Example 2: Z3 in U(3)⇥ Sp(2)⇥ U(1)⇥ U(1) with broken B�L (class 7506)

The Z3 discrete symmetries in this class do not overlap with the Z2 symmetries de-

scribed above. An example with Z3 symmetries is tensor 2101010; MIPF 63; Orientifold

0, boundaries (192, 503, 227, 237) and Hodge numbers h21 = 7, h11 = 67, h+
11 = 64 and

h�
11 = 3. The Z3 nul vector is (0,1,1), as one can read o↵ from the axion couplings.

a: 0 0 -6 0 3

c: -6 6 5 -3 -4

d: -6 6 7 -3 -5

(5.3)

This symmetry corresponds to R3L2
3 in table 2 of [22]. Note that the definition of the

generator L in this paper di↵ers by a sign from the standard definition of lepton number,

which might easily lead to a confusion between R3L3 and R3L2
3. This has been taken

into account, and furthermore we have checked explicitly that the discrete symmetries

forbid all couplings of type UDD, QDL, LLE, LH
u

, QQQL, and UUDE, confirming

that it indeed corresponds to R3L2
3. The µ term and all Yukawas are perturbatively

allowed but neutrino Majorana masses and the Weinberg operator are forbidden. Up

to fourth order, there is just one coupling that is perturbatively forbidden but non-

perturbatively allowed, and that is the third power of the neutrino superfield.

Example 3: Z3 in U(3)⇥ Sp(2)⇥ U(1)⇥ U(1) with unbroken B�L (class 2751)

This example occurs for tensor 2101010; MIPF 64 and orientifold 0 and boundaries

(46, 5, 48, 415), Hodge numbers h21 = 7, h11 = 43, h+
11 = 40 and h�

11 = 3. All B�L

violating couplings are forbidden by the unbroken B�L, and the operators QQQL and
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UUDE are forbidden by the discrete symmetry. All Majorana neutrino mass contri-

butions are also forbidden by B�L. The µ-term and all Yukawas are perturbatively

allowed. The axion couplings in this example are:

a: 9 0 0 0 0

c: 0 0 0 0 0

d: 3 0 0 0 0

(5.4)

This obviously has an L3 discrete symmetry: lepton number can only be violated in

units of three. Since B�L is conserved the same is then automatically true for baryon

number as well. Note that Y conservation forces the a-brane couplings to be three

times those of the d. The resulting factor 9 incorporates both SU(3) triality and the

B3 discrete symmetry.

Example 4: Z3 in U(3)⇥ U(2)⇥ U(1)⇥ U(1) with unbroken B�L (class 1352)

An example of this kind occurs for tensor 2101010; MIPF 59; Orientifold 0, bound-

aries (932, 650, 881, 1302). The Hodge numbers are h21 = 19, h31 = 59, h+
11 = 29 and

h�
11 = 2. The axion couplings are:

a: 0 0 0 9 0 0 0 9 0 0 9 0 0 0 9 9 9

b: 2 2 2 4 4 2 0 0 4 0 2 0 2 2 0 0 0

c: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

d: 0 0 0 3 0 0 0 3 0 0 3 0 0 0 3 3 3

(5.5)

from which we can read o↵ that there is indeed a massless Y and B�L, and that fur-

thermore there is a Z2 null vector (0, 1, 0, 0) and a Z3 null vector (0, 0, 0, 1). The former

just imposes SU(2) duality, and the second corresponds to an L3 discrete symmetry,

as in example 3. In this class of models, two of the three quark masses (for up as well

as down quarks) must be generated non-perturbatively, but the discrete symmetries do

not forbid that. All lepton Yukawas are perturbatively allowed. We are assuming here,

as in the USUU examples, that the Higgs comes from the non-chiral spectrum, from

bi-fundamentals between the b and c branes. The B�L forbids the usual dimension-4

terms as well as Majorana neutrino masses, while QQQL and UUDE are forbidden

by the Z3 symmetry. A µ-term can in principle be generated non-perturbatively, and

is not forbidden by the Z3.
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Qd = 0 mod 3 ! Z3

3Qd +Qa = 0 ! B�L unbroken



Example 4

Class 1352, Tensor (2,10,10,10), MIPF 59, Orientifold 0, boundaries (932,650,881,1302)

Axion Charges (including Chan-Paton multiplicity factor)

Null vectors
3Qd � 3Qc +Qa = 0 ! Y unbroken

Qa = 0 mod 3 ! Conservation of color

Forbids QQQL, UUDE (not forbidden by B-L)Qd = 0 mod 3 ! Z3

3Qd +Qa = 0 ! B�L unbroken

UUDE are forbidden by the discrete symmetry. All Majorana neutrino mass contri-

butions are also forbidden by B�L. The µ-term and all Yukawas are perturbatively

allowed. The axion couplings in this example are:

a: 9 0 0 0 0

c: 0 0 0 0 0

d: 3 0 0 0 0

(5.4)

This obviously has an L3 discrete symmetry: lepton number can only be violated in

units of three. Since B�L is conserved the same is then automatically true for baryon

number as well. Note that Y conservation forces the a-brane couplings to be three

times those of the d. The resulting factor 9 incorporates both SU(3) triality and the

B3 discrete symmetry.

Example 4: Z3 in U(3)⇥ U(2)⇥ U(1)⇥ U(1) with unbroken B�L (class 1352)

An example of this kind occurs for tensor 2101010; MIPF 59; Orientifold 0, bound-

aries (932, 650, 881, 1302). The Hodge numbers are h21 = 19, h31 = 59, h+
11 = 29 and

h�
11 = 2. The axion couplings are:

a: 0 0 0 9 0 0 0 9 0 0 9 0 0 0 9 9 9

b: 2 2 2 4 4 2 0 0 4 0 2 0 2 2 0 0 0

c: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

d: 0 0 0 3 0 0 0 3 0 0 3 0 0 0 3 3 3

(5.5)

from which we can read o↵ that there is indeed a massless Y and B�L, and that fur-

thermore there is a Z2 null vector (0, 1, 0, 0) and a Z3 null vector (0, 0, 0, 1). The former

just imposes SU(2) duality, and the second corresponds to an L3 discrete symmetry,

as in example 3. In this class of models, two of the three quark masses (for up as well

as down quarks) must be generated non-perturbatively, but the discrete symmetries do

not forbid that. All lepton Yukawas are perturbatively allowed. We are assuming here,

as in the USUU examples, that the Higgs comes from the non-chiral spectrum, from

bi-fundamentals between the b and c branes. The B�L forbids the usual dimension-4

terms as well as Majorana neutrino masses, while QQQL and UUDE are forbidden

by the Z3 symmetry. A µ-term can in principle be generated non-perturbatively, and

is not forbidden by the Z3.
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UUDE are forbidden by the discrete symmetry. All Majorana neutrino mass contri-

butions are also forbidden by B�L. The µ-term and all Yukawas are perturbatively

allowed. The axion couplings in this example are:

a: 9 0 0 0 0

c: 0 0 0 0 0

d: 3 0 0 0 0

(5.4)

This obviously has an L3 discrete symmetry: lepton number can only be violated in

units of three. Since B�L is conserved the same is then automatically true for baryon

number as well. Note that Y conservation forces the a-brane couplings to be three

times those of the d. The resulting factor 9 incorporates both SU(3) triality and the

B3 discrete symmetry.

Example 4: Z3 in U(3)⇥ U(2)⇥ U(1)⇥ U(1) with unbroken B�L (class 1352)

An example of this kind occurs for tensor 2101010; MIPF 59; Orientifold 0, bound-

aries (932, 650, 881, 1302). The Hodge numbers are h21 = 19, h31 = 59, h+
11 = 29 and

h�
11 = 2. The axion couplings are:

a: 0 0 0 9 0 0 0 9 0 0 9 0 0 0 9 9 9

b: 2 2 2 4 4 2 0 0 4 0 2 0 2 2 0 0 0

c: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

d: 0 0 0 3 0 0 0 3 0 0 3 0 0 0 3 3 3

(5.5)

from which we can read o↵ that there is indeed a massless Y and B�L, and that fur-

thermore there is a Z2 null vector (0, 1, 0, 0) and a Z3 null vector (0, 0, 0, 1). The former

just imposes SU(2) duality, and the second corresponds to an L3 discrete symmetry,

as in example 3. In this class of models, two of the three quark masses (for up as well

as down quarks) must be generated non-perturbatively, but the discrete symmetries do

not forbid that. All lepton Yukawas are perturbatively allowed. We are assuming here,

as in the USUU examples, that the Higgs comes from the non-chiral spectrum, from

bi-fundamentals between the b and c branes. The B�L forbids the usual dimension-4

terms as well as Majorana neutrino masses, while QQQL and UUDE are forbidden

by the Z3 symmetry. A µ-term can in principle be generated non-perturbatively, and

is not forbidden by the Z3.
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Qb = 0 mod 2 ! SU(2) duality



Example 13

Class 4325, Tensor (1,10,22,22), MIPF 27, Orientifold 0, boundaries (365,365,1506,818)

Axion Charges (including Chan-Paton multiplicity factor)

Null vectors

These are perturbatively forbidden, but may be generated by instantons. The second

is the forbidden vector-like down-quark mass (i.e. the down quark triplets in the Higgs

multiplets). The brane charge violation of the latter terms is precisely the sum of the

charge violations of the up-quark Yukawas and the QQQL or UUDE terms. Hence

any discrete symmetries that forbid the latter but not the former will automatically

forbid the lifting of the down quark mirror pair. This is just a manifestation of the

doublet-triplet splitting problem in SU(5) models.

Example 13: Z2 in U(5)⇥ U(1)⇥ U(1) (class 4325)

This was found for tensor 1102222; MIPF 27; Orientifold 0 and boundary states

(365, 365, 1506, 818), with Hodge numbers h21 = 12, h11 = 96, h+
11 = 90 and h�

11 = 6.

This class is very similar to 4324. It has some additional neutral chiral matter, but as

in class 4324 there is no additional massless U(1). The axion couplings are

a: 0 5 -5 -10 -5 0 -10 0 5

b: 1 0 0 0 0 0 0 0 0

c: -1 1 -3 -2 -1 0 -2 0 1

(5.14)

The discrete symmetry is Z2. The corresponding null vector is (1, 1, 1). This implies

that all matter is uncharged with respect to it, because all matter is either in rank two

tensors or bi-fundamentals. Hence no couplings are a↵ected by this symmetry. One

point worth noting is that if there are hidden sectors, any observable-hidden matter is

necessarily odd under the Z2. Hence this symmetry is like an exotic (i.e observable-

hidden) matter parity.10 All exotic matter can only be created in pairs, and there will

be a lightest exotic state that cannot decay into standard model particles, and hence,

if neutral, could be a dark matter candidate. Note that in the U(5) class observable-

hidden matter has integral electric charge (whereas in Madrid type models they have

half-integer charge), and hence this conserved exotic matter parity is not a trivial

consequence of charge conservation, nor is it in disagreement with the fact that no

fractional electric charge has ever been observed. This mechanism could in principle

work equally well in non-supersymmetric models (provided examples can be found) and

hence this provides an alternative to the rôle of R-parity in solving the dark matter

problem. Furthermore the general category to which this model belongs (the “x = 0”

category of [48]) includes plenty of examples where instead of a U(5) stack there are

separate U(3) and U(2) stacks, so that there is no SU(5) relation among the couplings

10The same remark applies to the Z2 symmetry we found in the two-stack models in class 345, but

which was not presented in detail.
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These are perturbatively forbidden, but may be generated by instantons. The second

is the forbidden vector-like down-quark mass (i.e. the down quark triplets in the Higgs

multiplets). The brane charge violation of the latter terms is precisely the sum of the

charge violations of the up-quark Yukawas and the QQQL or UUDE terms. Hence

any discrete symmetries that forbid the latter but not the former will automatically

forbid the lifting of the down quark mirror pair. This is just a manifestation of the

doublet-triplet splitting problem in SU(5) models.

Example 13: Z2 in U(5)⇥ U(1)⇥ U(1) (class 4325)

This was found for tensor 1102222; MIPF 27; Orientifold 0 and boundary states

(365, 365, 1506, 818), with Hodge numbers h21 = 12, h11 = 96, h+
11 = 90 and h�

11 = 6.

This class is very similar to 4324. It has some additional neutral chiral matter, but as

in class 4324 there is no additional massless U(1). The axion couplings are

a: 0 5 -5 -10 -5 0 -10 0 5

b: 1 0 0 0 0 0 0 0 0

c: -1 1 -3 -2 -1 0 -2 0 1

(5.14)

The discrete symmetry is Z2. The corresponding null vector is (1, 1, 1). This implies

that all matter is uncharged with respect to it, because all matter is either in rank two

tensors or bi-fundamentals. Hence no couplings are a↵ected by this symmetry. One

point worth noting is that if there are hidden sectors, any observable-hidden matter is

necessarily odd under the Z2. Hence this symmetry is like an exotic (i.e observable-

hidden) matter parity.10 All exotic matter can only be created in pairs, and there will

be a lightest exotic state that cannot decay into standard model particles, and hence,

if neutral, could be a dark matter candidate. Note that in the U(5) class observable-

hidden matter has integral electric charge (whereas in Madrid type models they have

half-integer charge), and hence this conserved exotic matter parity is not a trivial

consequence of charge conservation, nor is it in disagreement with the fact that no

fractional electric charge has ever been observed. This mechanism could in principle

work equally well in non-supersymmetric models (provided examples can be found) and

hence this provides an alternative to the rôle of R-parity in solving the dark matter

problem. Furthermore the general category to which this model belongs (the “x = 0”

category of [48]) includes plenty of examples where instead of a U(5) stack there are

separate U(3) and U(2) stacks, so that there is no SU(5) relation among the couplings

10The same remark applies to the Z2 symmetry we found in the two-stack models in class 345, but

which was not presented in detail.
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Qa = 0 mod 5 ! SU(5) pentality

Qa +Qb +Qc = 0 mod 2 ! Matter Parity

Matter sector strings have parity 0, Matter/Hidden sector strings have parity 1 



Conclusions

We know how to determine discrete symmetries in Gepner orientifolds.

Room for improvement in underlying formalism.

How does this work in generic RCFT?

Many known field theory examples can indeed be found.

Discrete symmetries do not seem to be very common in this class (a few percent). 
But:

More than random.

Tadpole cancellation, massless Y and discrete symmetries appear to have a positive correlation.
(all three favoured by small h21).


