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Experimental Results

• All known particles have electric charges that are an integer 
multiple of the electron charge.

• Fractional charges have been looked for in bulk matter, 
particles accelerators and cosmic rays. Nothing was found.

• Relative abundance on earth is less that 10-20

• The lightest fractionally charged particle must be stable.

• Unsuitable as a dark matter candidate. 

• Unlikely to appear at the LHC.

Searches for fractionally charged particles.
Martin L. Perl (SLAC), Eric R. Lee, Dinesh Loomba (New Mexico U.). 2009. 19 pp. 
Published in Ann.Rev.Nucl.Part.Sci. 59 

Recent review:
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Theoretical 
understanding?

su(3)⊕ su(2)⊕ u(1)Standard Model Lie Algebra
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Theoretical 
understanding?

S(U(3)× U(2))

SU(3)× SU(2)× U(1)

su(3)⊕ su(2)⊕ u(1)

Particle physics experiments only probe the Lie-algebra structure 
of the Standard Model.
But a given Lie algebra may correspond to several Lie-groups

No restriction on y
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Theoretical 
understanding?

Dirac (1931)
Coexistence of electric and magnetic charges leads to a quantization 
condition (because a system of an electric and a magnetic charge has 
angular momentum, which must be quantized).

2
qeqm

�c
∈ Z

If there exists even a single monopole, this would force qe to be 
quantized.

But also the search for monopoles has been negative so far.
In most theories they are expected to be “inflated away”.
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Grand Unification

S(U(3)× U(2)) ⊂ SU(5)
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Grand Unification
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• SU(5) GUTs explain charge quantization.

Monday, 20 June, 2011



Grand Unification

• SU(5) GUTs explain charge quantization.

• Standard model group extends to SU(5) at high energies 
(≈ 1015 GeV).

Monday, 20 June, 2011



Grand Unification

• SU(5) GUTs explain charge quantization.

• Standard model group extends to SU(5) at high energies 
(≈ 1015 GeV).

• The three coupling constants appear to unify at that scale.

Monday, 20 June, 2011



Grand Unification

• SU(5) GUTs explain charge quantization.

• Standard model group extends to SU(5) at high energies 
(≈ 1015 GeV).

• The three coupling constants appear to unify at that scale.

• Precise unification only works in combination with low 
energy supersymmetry (or other additional particles).

Monday, 20 June, 2011



Grand Unification

• SU(5) GUTs explain charge quantization.

• Standard model group extends to SU(5) at high energies 
(≈ 1015 GeV).

• The three coupling constants appear to unify at that scale.

• Precise unification only works in combination with low 
energy supersymmetry (or other additional particles).

Monday, 20 June, 2011



Grand Unification

• SU(5) GUTs explain charge quantization.

• Standard model group extends to SU(5) at high energies 
(≈ 1015 GeV).

• The three coupling constants appear to unify at that scale.

• Precise unification only works in combination with low 
energy supersymmetry (or other additional particles).

Monday, 20 June, 2011



Grand Unification

• SU(5) GUTs explain charge quantization.

• Standard model group extends to SU(5) at high energies 
(≈ 1015 GeV).

• The three coupling constants appear to unify at that scale.

• Precise unification only works in combination with low 
energy supersymmetry (or other additional particles).

• Predicts proton decay (rules out simplest non-susy GUT).

Monday, 20 June, 2011



Grand Unification

• SU(5) GUTs explain charge quantization.

• Standard model group extends to SU(5) at high energies 
(≈ 1015 GeV).

• The three coupling constants appear to unify at that scale.

• Precise unification only works in combination with low 
energy supersymmetry (or other additional particles).

• Predicts proton decay (rules out simplest non-susy GUT).

• Has monopole solutions (‘t Hooft, Polyakov (1974)).

Monday, 20 June, 2011



Grand Unification

• SU(5) GUTs explain charge quantization.

• Standard model group extends to SU(5) at high energies 
(≈ 1015 GeV).

• The three coupling constants appear to unify at that scale.

• Precise unification only works in combination with low 
energy supersymmetry (or other additional particles).

• Predicts proton decay (rules out simplest non-susy GUT).

• Has monopole solutions (‘t Hooft, Polyakov (1974)).

• Beautiful further extension to SO(10).
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One family(*) 
fits exactly
in an SO(10)
spinor

(*) plus one right-handed neutrino
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String Theory

• If the GUT idea is correct, one may hope to find an 
underlying principle leading to GUT unification.

• String theory was not invented for that purpose
(1969: strong interactions; 1975: quantum gravity),
but in 1984 it seemed to give Grand Unification 
automatically.
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The Heterotic String

• Gauge group E8×E8, but in ten dimensions.  (also: SO(32))
(Gross, Harvey, Martinec, Rohm (1984))

• Calabi-Yau compactification gives E6 (× E8) in four dimensions.
E6 contains SO(10) as a subgroup.
(Candelas, Horowitz, Strominger, Witten (1984))

• But this is only a special case. 
More generally one finds SO(10) with N families in spinor representations. 
(Lerche, Lüst, Schellekens (1986))  “bosonic string map”
(Gepner, (1987))
(Schellekens, Yankielowicz (1989))

This seems to be exactly what one hoped for...
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The heterotic string

... but we still have to break SO(10) to the Standard Model.

However, the usual Higgs bosons cannot appear in a massless string 
spectrum.
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The heterotic string

The Heterotic string is a theory of closed strings.

Closed strings have left- and right-moving modes that
can be treated independently for free strings.

In particular, the left-moving modes can be a bosonic 
string and the right-moving ones a fermionic string.

S = − 1
4πα�

�
dσdτ∂aXµ∂aXµ

S = − 1
4πα�

�
dσdτ

�
∂aXµ∂aXµ − iψ̄µρa∂aψµ

�
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The Bosonic String Map

This is fine for the free string, but there is an important constraint if 
interactions are allowed (splitting and joining of strings). 

The first and most important one occurs for the one-loop diagram 
without external lines, the torus.
It is called “modular invariance”.

It can be satisfied by mapping the fermionic string to a bosonic string 
(“bosonic string map”), and combining left and right symmetrically. 

Roughly speaking, the left-moving sector gives rise to gauge groups and 
the right-moving ones to Lorentz representations. 

ψ
µ ↔ 12 free bosons on the SO(10)× E8 torus

Space-time spinors ↔ SO(10) spinors
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Space-time Supersymmetry

Left and right Hamiltonians: HL, HR

Physical states |a� ⊗ |b� ↔ φa|0� ⊗ φ̄b|0�
Subject to the condition M

a
L = M

b
R

HL|a� = M
a
L|a� HR|b� = M

b
R|b�

Space-time supersymmetry: 
Requires operator    = S in the fermionic (right-moving) sector.
(S is called the “spin field”). 

But we cannot have an operator in the right-moving sector without having an isomorphic 
(for the modular group) one in the left-moving (bosonic) sector. 

The easiest solution is to take the image of S  under the bosonic string map.
This yields an operator that extends SO(10) to E6.

The state created by S on the right vacuum has MR=0;
The state created by its bosonic image has ML=0.

φa
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Asymmetric solutions

There are other solutions with ML > 0. 
These only yield massive states, and do not extend SO(10) to E6. 

Using the same idea, we can start with a subgroup of SO(10) and extend it by 
states with ML > 0 that are isomorphic to the SO(10) roots.

So we can start with SU(3) × SU(2) × U(1)Y × U(1)B-L.  

In string theory, a U(1) corresponds to a boson compactified on a circle.
The radius of the circle is fixed if we require gauge coupling unification.

For U(1)Y  the radius is such that the smallest allowed Y-charge is 1/6,
the minimal Y-charge occurring in the Standard Model. 

This charge occurs in the quark doublets, (3, 2, 1/6). 
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A no-go theorem

1
3
t3 +

1
2
t2 + y = 0 mod 1

But we must also satisfy

Theorem: 
In heterotic string theory this implies that the SU(5) roots must be in the 
massless spectrum.  (Schellekens, (1989))  (see also: Wen and Witten, 1985)

This is a direct consequence of modular invariance.

One must either have unbroken SU(5) or fractional charges.

This result applies to all perturbative heterotic strings that respect coupling unification.

Possible ways out: the fractional charges may be massive, or confined by
some additional gauge group.   
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Avoiding the no-go theorem

There may be spectra with only “vector-like” fractionally charged particles. They can 
get a mass from small perturbations of the theory.

In randomly chosen heterotic string spectra, if we only require the Standard Model 
gauge group,  we expect not even to find the usual family structure. In general there 
will be “chiral exotics”: fractionally charged particles that cannot be paired up into 
massive Dirac fermions.

Finally there may be some spectra with only massive fractionally charged particles. 

How often do each of these options occur?

To find out, we examined a large sample of heterotic spectra based on “Gepner 
models”.

With B. Gato-Rivera (2010)
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SO(10) CFT sub-algebras

Nr. Name Current Order Gauge group Grp. CFT

0 SM, Q=1/6 (1, 1, 0, 0) 1 SU(3)× SU(2)× U(1)× U(1)
1
6

1
6

1 SM, Q=1/3 (1, 2, 15, 0) 2 SU(3)× SU(2)× U(1)× U(1)
1
6

1
3

2 SM, Q=1/2 (3, 1, 10, 0) 3 SU(3)× SU(2)× U(1)× U(1)
1
6

1
2

3 LR, Q=1/6 (1, 1, 6, 4) 5 SU(3)× SU(2)L × SU(2)R × U(1)
1
6

1
6

4 SU(5) GUT (3̄, 2, 5, 0) 6 SU(5)× U(1) 1 1

5 LR, Q=1/3 (1, 2, 3,−8) 10 SU(3)× SU(2)L × SU(2)R × U(1)
1
6

1
3

6 Pati-Salam (3̄, 0, 2, 8) 15 SU(4)× SU(2)L × SU(2)R
1
2

1
2

7 SO(10) GUT (3, 2, 1, 4) 30 SO(10) 1 1

Table 1: List of all Standard Model extensions within SO(10) and the resulting group theory

and CFT charge quantization (last two columns). We refer to these subgroups either by the

label in column 1 or by the name in column 2, where “LR” stands for left-right symmetric.

29
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0.9%
4.9%

11.3%

8.1%

19.4%

8.2%

14.4%

32.8%

SO(10) Pati-Salam LR, Q=1/3 SU(5)
LR, Q=1/6 SM, Q=1/2 SM, Q=1/3 SM, Q=1/6

Group Type 
Distribution
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27.1%

4.0%

18.6%

45.7%

SO(10) Pati-Salam LR, Q=1/3 SU(5)
LR, Q=1/6 SM, Q=1/2 SM, Q=1/3 SM, Q=1/6

No chiral
exotics
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74.8%

4.6%

19.8%

SO(10) Pati-Salam LR, Q=1/3 SU(5)
LR, Q=1/6 SM, Q=1/2 SM, Q=1/3 SM, Q=1/6

Chiral, 
N-family

N>0
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13.3%

85.5%

SO(10) Pati-Salam LR, Q=1/3 SU(5)
LR, Q=1/6 SM, Q=1/2 SM, Q=1/3 SM, Q=1/6

Chiral, N-family,
No GUTs
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of [22, 23, 24].7 All lines refer to Gepner models, except the one labelled “free fermions”.
The results on free fermions are based on a special class that can be analysed with simple
current in a way analogous to Gepner models, as explained in [22]. It does not represent
the entire class of free fermionic models. For other work on this kind of construction,
including three family models, see [48, 42] and references therein.

Type Chiral Exotics GUT Non-chiral N > 0 fam. No frac.

Standard∗ 37.4% 32.7% 20.5 % 9.3% 0
Standard, perm. 29.7% 33.4 % 27.9 % 8.9% 0
Free fermionic 1.5% 2.9% 94.4% 1.1% 0.072%
Lifted 28.3% 18.7% 51.9% 1.1% 0.00051%
Lifted, perm. 26.8% 8.9% 62.7 % 1.6% 0.00078%
(B-L)∗Type-A 21.3% 28.0% 50.4 % 0.3% 0.00017%

(B-L)Type-A, perm. 22.8% 8.1 % 69.1 % 0.03% 0
(B-L)∗Type-B 38.5% 8.7% 52.1% 0.6% 0

(B-L)Type-B, perm. 27.6% 7.3 % 65.0 % 0.1% 0

Table 2: Relative frequency of various types of spectra. An asterisk indicates that excep-
tional minimal model MIPFs are included.

In table (3) we specify the absolute number of distinct MIPFs (more precisely, distinct
spectra, based on the criteria spelled out in [22, 23, 24]) with non-chirally-exotic spectra.
The column marked “Total” specifies the total number of distinct spectra without chiral
exotics, the third column lists the number of distinct 3-family spectra and the last column
the number of distinct N -family spectra, in both cases regardless of gauge group and
without modding out mirror symmetry.

7.4 Family number

In this subsection we would like to say something about the distributions of the number
of families emerging from the spectra of permuted Gepner models. The common features
of all the different cases is that an even number of families is always more favourable than
an odd one and these distributions decrease exponentially when the number of families
increases.

7We thank the authors for making their raw data available to us.

29

Summary (all constructions)

Vector-like
Exotics

No
Exotics

No-exotics models have an even number of families
For three-family examples see

 
Assel, Christodoulides, Faraggi, Kounnas and Rizos (2010)     [Free fermions]
Blaszczyk, Nibbelink, Ratz, Ruehle, Trapletti, Vaudrevange (2010)     [Freely acting symmetries]
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Open Strings
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The ends of open strings give rise to U(N), O(N) or Sp(2N) gauge groups.
(with unrelated gauge couplings) 

Since each open string has two ends, matter must be in bi-fundamentals 
(or rank-two tensors).

One may think of the endpoints as open strings ending on a membrane or 
a stack of N membranes. 

By considering suitable combinations of stacks of intersecting branes one 
may obtain the standard model.

Intersecting branes

(hundreds of papers since ~ 2000)

Monday, 20 June, 2011



a d

c

b

(u,d)
(e-,!)

u
c e+

!
c

d
c

The Madrid Model*

Y =
1
6
Qa −

1
2
Qc −

1
2
Qd

U(2), Sp(2)

U(1), O(2), Sp(2)

(*) Ibanez, Marchesano, Rabadan (2000)
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(10)

(5*)

SU(5)
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Trinification:
SU(3) × SU(3) × SU(3)

(3, 3∗, 1) + (3∗, 1, 3) + (1, 3, 3∗)
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Classes of open String Models

Non-orientable
“x=½”

Non-orientable
“x=0”

Orientable

ΔQ=½ ΔQ=½

ΔQ=0 ΔQ=0

ΔQ=x ΔQ=−x

Anastasopoulos, Dijkstra, Kiritsis, Schellekens (2006)

(assumption: Standard Model with at most 4 branes
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Open Strings: 
Fractional charges

• x=½ class:               Half-integer fractional charges.

• x=0 class:                Only integer charges:

• orientable class:     Fractional charge x.
                                 (e.g. third-integer for trinification)

All matter from intersections of standard model branes has integral charge.

But often there are additional “hidden sector” branes, intersecting the SM.
These may have fractional charges x:

Note: fractionally charged matter must couple to the hidden sector, and 
may be confined by it.

Input: SM particles from three of four branes. 
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      3 x ( V  ,V  ,0  ,0 ) chirality 3
      3 x ( V  ,0  ,V  ,0 ) chirality -3
      3 x ( V  ,0  ,V* ,0 ) chirality -3
      3 x ( 0  ,V  ,0  ,V ) chirality 3
      5 x ( 0  ,0  ,V  ,V ) chirality -3
      3 x ( 0  ,0  ,V  ,V*) chirality 3
     18 x ( 0  ,V  ,V  ,0 ) 
      2 x ( V  ,0  ,0  ,V ) 
      2 x ( Ad ,0  ,0  ,0 ) 
      2 x ( A  ,0  ,0  ,0 ) 
      6 x ( S  ,0  ,0  ,0 ) 
     14 x ( 0  ,A  ,0  ,0 ) 
      6 x ( 0  ,S  ,0  ,0 ) 
      9 x ( 0  ,0  ,Ad ,0 ) 
      6 x ( 0  ,0  ,A  ,0 ) 
     14 x ( 0  ,0  ,S  ,0 ) 
      3 x ( 0  ,0  ,0  ,Ad) 
      4 x ( 0  ,0  ,0  ,A ) 
      6 x ( 0  ,0  ,0  ,S ) 

Gauge group: Exactly SU(3) × SU(2) × U(1)!

Q 
U*
D*
L
E*+(E+E*)
N*
Higgs

Dijkstra, Huiszoon, Schellekens (2004)

U(3)  Sp(2)   U(1)  U(1)
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Vector-like matter
V=vector
A=Anti-symm. tensor
S=Symmetric tensor
Ad=Adjoint

      3 x ( V  ,V  ,0  ,0 ) chirality 3
      3 x ( V  ,0  ,V  ,0 ) chirality -3
      3 x ( V  ,0  ,V* ,0 ) chirality -3
      3 x ( 0  ,V  ,0  ,V ) chirality 3
      5 x ( 0  ,0  ,V  ,V ) chirality -3
      3 x ( 0  ,0  ,V  ,V*) chirality 3
     18 x ( 0  ,V  ,V  ,0 ) 
      2 x ( V  ,0  ,0  ,V ) 
      2 x ( Ad ,0  ,0  ,0 ) 
      2 x ( A  ,0  ,0  ,0 ) 
      6 x ( S  ,0  ,0  ,0 ) 
     14 x ( 0  ,A  ,0  ,0 ) 
      6 x ( 0  ,S  ,0  ,0 ) 
      9 x ( 0  ,0  ,Ad ,0 ) 
      6 x ( 0  ,0  ,A  ,0 ) 
     14 x ( 0  ,0  ,S  ,0 ) 
      3 x ( 0  ,0  ,0  ,Ad) 
      4 x ( 0  ,0  ,0  ,A ) 
      6 x ( 0  ,0  ,0  ,S ) 

Gauge group: Exactly SU(3) × SU(2) × U(1)!

Q 
U*
D*
L
E*+(E+E*)
N*
Higgs

Dijkstra, Huiszoon, Schellekens (2004)

U(3)  Sp(2)   U(1)  U(1)
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Conclusions

• So far, no convincing explanation for the observed absence of 
fractional charges has been given in string theory.

• Examples without light fractional charges can be found, both 
with heterotic strings and in open strings, but they are 
constructed for that purpose, and not “generic”. 

• From this point of view the x=0 open string models look most 
promising (related to “F-theory GUTs”), but there is no reason 
why that class would be preferred.
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