

THE RCFT ORIENTIFOLD "LANDSCHAP"

BASED ON WORK WITH:

- Huiszoon, Fuchs, Schweigert and Walcher [Formalism] Phys.Lett.B495:427-434,2000
- Huiszoon, Dijkstra Phys.Lett.B609:408-417,2005, Nucl.Phys.B710:3-57,2005

[SM Search]

- Anastasopoulos, Dijkstra, Kiritsis [SM Search] Nucl.Phys.B759:83-146,2006
- Ibañez, Uranga [Majorana masses from instantons] (arXiv:0704.1079, JHEP, to appear)
- Gato-Rivera [Non-supersymmetric strings] (arXiv:0709.1426, Phys. Lett. B, to appear)

STRING THEORY

A candidate theory of quantum gravity.

Candidate: we only know some promising perturbative expansions, not the theory itself. We do not even know for sure if it exists!

There are reasons to believe that any theory of quantum gravity must include all other matter and interactions as well.

EARLY INSIGHT (~1982)...

Soon after starting graduate school, I went to see Howard Georgi. "What are you thinking about?" he asked me. I rattled off several things that seemed interesting to me, ending with, "... and quantum gravity." **"Don't waste your time!"** he barked, "There's no decoupling limit in which it's sensible to consider quantum gravity effects, while neglecting other interactions. Unless you know particle physics all the way up to the Planck scale, you can never hope to say anything predictive about quantum gravity." Howard was, of course, completely correct.

Jacques Distler, "Musings"

EARLY INSIGHT (~1982)...

Soon after starting graduate school, I went to see Howard Georgi. "What are you thinking about?" he asked me. I rattled off several things that seemed interesting to me, ending with, "... and quantum gravity." "**Don't waste your time!**" he barked, "There's no decoupling limit in which it's sensible to consider quantum gravity effects, while neglecting other interactions. Unless you know particle physics all the way up to the Planck scale, you can never hope to say anything predictive about quantum gravity." Howard was, of course, completely correct.

Jacques Distler, "Musings"

MATTER

String Theory addresses this by already having all matter (and all interactions) built in from the start.

Therefore it must include the Standard Model, Dark Matter and anything that might exist beyond the SM.

PREDICTIONS?

PREDICTIONS?

This does not imply that it must make any low energy predictions.

If it does, we are just lucky.

If it does not, we are at worst in the same situation one should have expected for a theory of quantum gravity: one can only check it by means of consistency conditions.

PREDICTIONS?

This does not imply that it must make any low energy predictions.

If it does, we are just lucky.

If it does not, we are at worst in the same situation one should have expected for a theory of quantum gravity: one can only check it by means of consistency conditions.

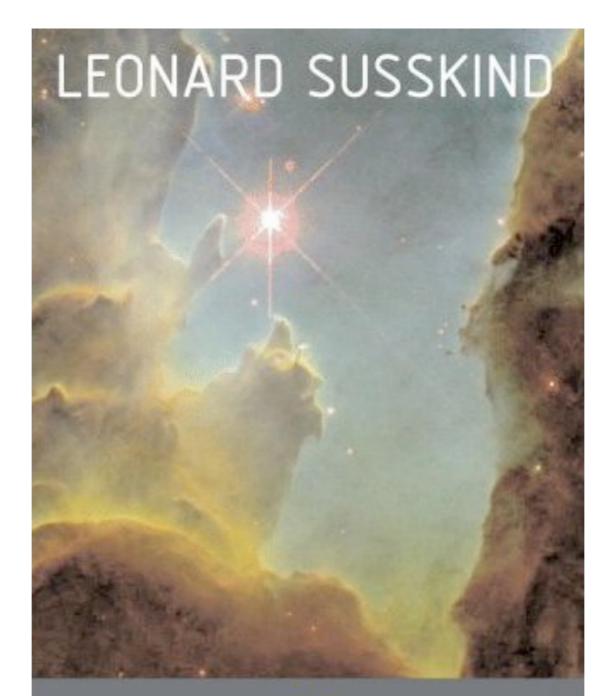
In fact, we are in a much better situation: we have a Landscape!

The "Landscape"

Lerche, Lüst, Schellekens "Chiral, Four-dimensional Heterotic Strings From Self-Dual Lattices", 1986

this number is of order 10^{1500} !

Even if all that string theory could achieve would be a completely finite theory of all interactions including gravity, but with no further restrictions on the gauge groups and the representations, it would be a considerable success.


Douglas, DeNef (2004):

10⁵⁰⁰ vacua

Dutch version (1998)

physics/0604134

COSMIC LANDSCAPE

STRING THEORY AND THE ILLUSION OF INTELLIGENT DESIGN

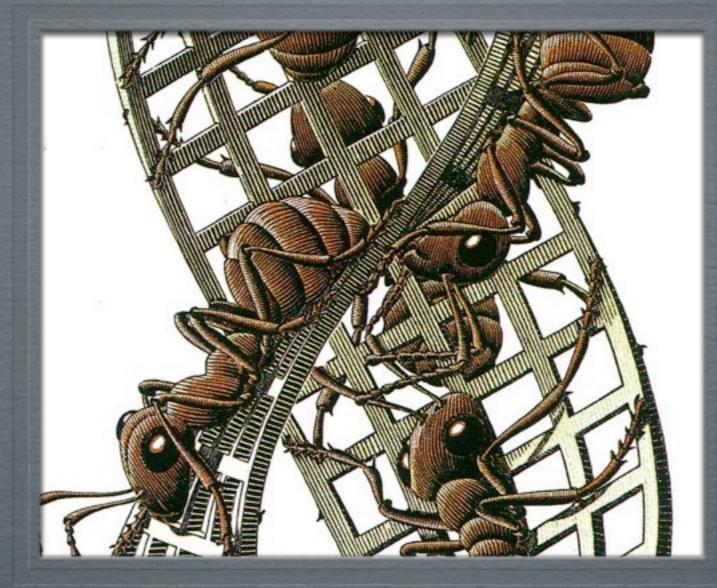
All of this is wrong if the SM is not contained in String Theory.

All of this is wrong if the SM is not contained in String Theory.

This is non-trivial. String Theory does not contain every gauge theory we can build.

All of this is wrong if the SM is not contained in String Theory.

This is non-trivial. String Theory does not contain every gauge theory we can build.


For example, try embedding the Periodic System!

TWO ROADS TO THE SM

Gravity and SM from closed strings: The Heterotic String

 Gravity from closed strings, The SM from open strings:
 Orientifold models

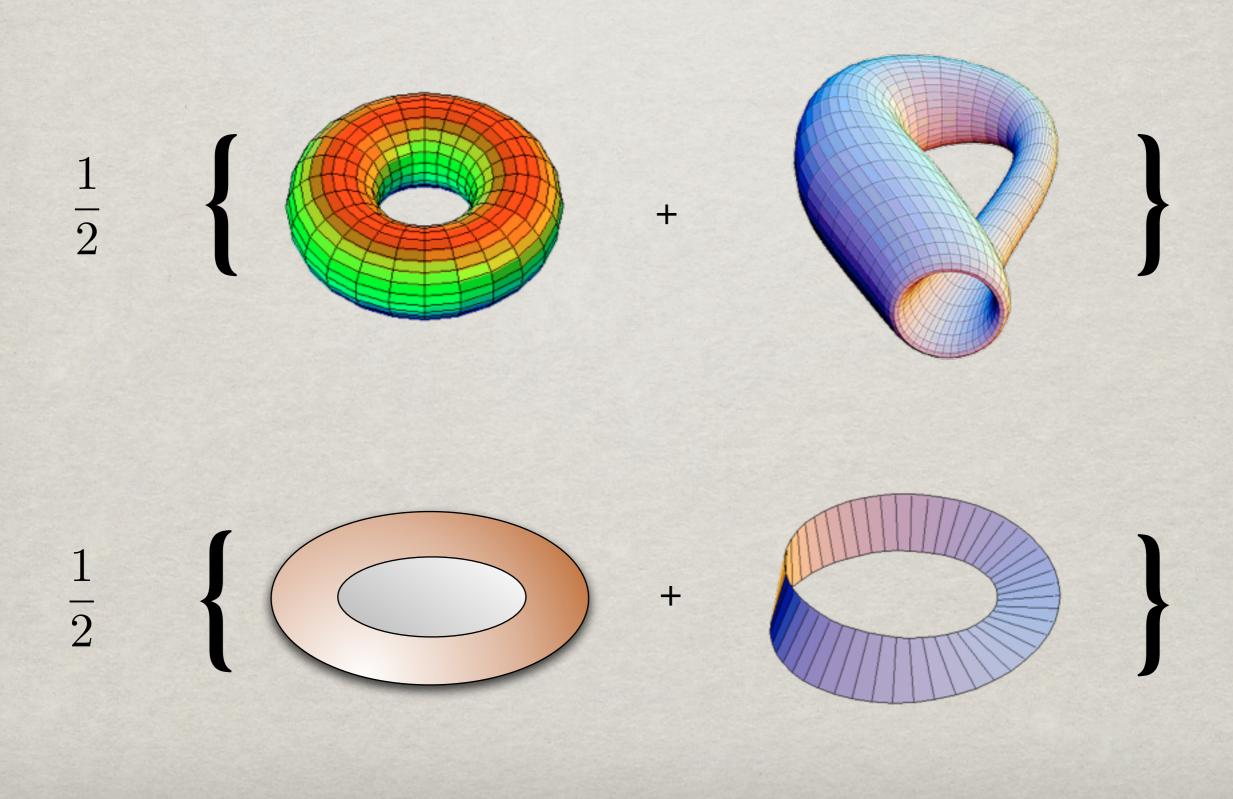
We can only access a very small part of the Landscape with these methods.

ORIENTIFOLDS

THE LONG ROAD TO THE CHIRAL SSM

Se Angelantonj, Bianchi, Pradisi, Sagnotti, Stanev (1996) Chiral spectra from Orbifold-Orientifolds

 Aldazabal, Franco, Ibanez, Rabadan, Uranga (2000) Blumenhagen, Görlich, Körs, Lüst (2000) Ibanez, Marchesano, Rabadan (2001) Non-supersymmetric SM-Spectra with RR tadpole cancellation


Cvetic, Shiu, Uranga (2001) Supersymmetric SM-Spectra with chiral exotics

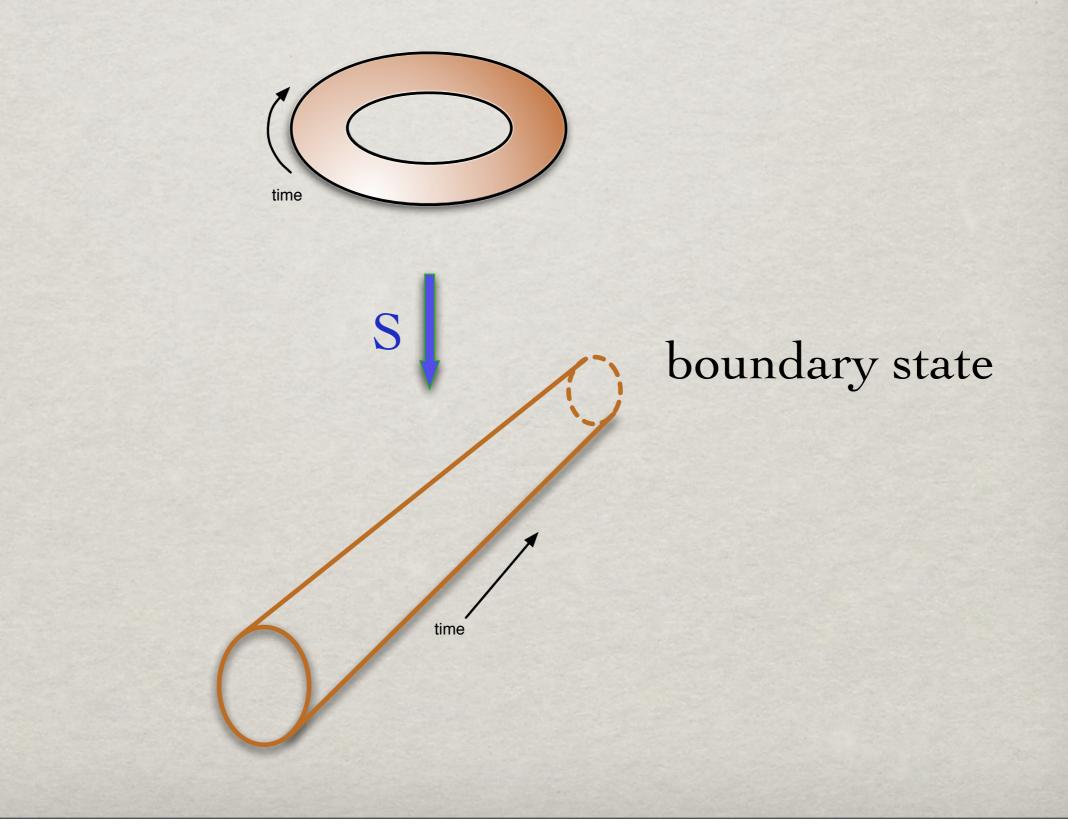
Selumenhagen, Görlich, Ott (2002) Honecker (2003) Supersymmetric Pati-Salam Spectra with brane recombination

Dijkstra, Huiszoon, Schellekens (2004) Supersymmetric Standard Model (Gepner Orientifolds)

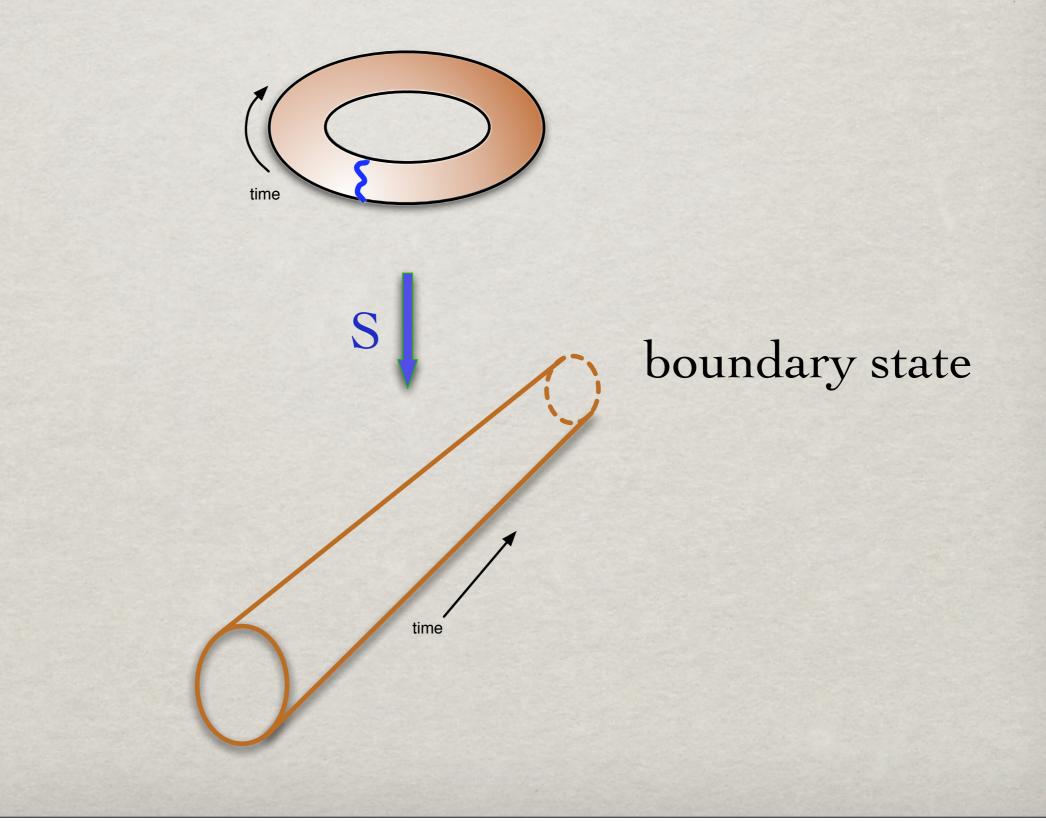
Supersymmetric Standard Model (Z6 orbifold/orientifold)

ORIENTIFOLD PARTITION FUNCTIONS

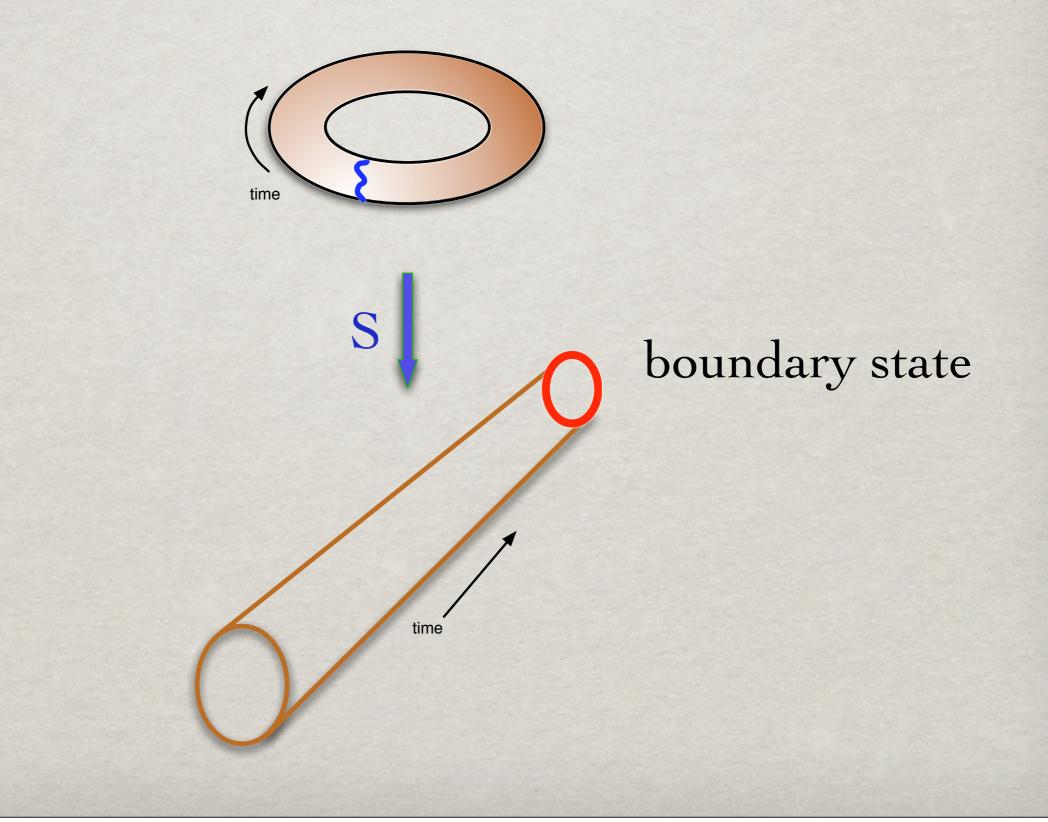
Sunday, 2 May 2010


ORIENTIFOLD PARTITION FUNCTIONS

$$\bigcirc \text{Closed} \qquad \frac{1}{2} \left[\sum_{ij} \chi_i(\tau) Z_{ij} \chi_i(\bar{\tau}) + \sum_i K_i \chi_i(2\tau) \right]$$


$$\bigcirc \text{Open} \qquad \frac{1}{2} \left[\sum_{i,a,n} N_a N_b A^i{}_{ab} \chi_i(\frac{\tau}{2}) + \sum_{i,a} N_a M^i{}_a \hat{\chi}_i(\frac{\tau}{2} + \frac{1}{2}) \right]$$

- i: Primary field label (finite range)
- a: Boundary label (finite range)
- χ_i : Character
- N_a : Chan-Paton (CP) Multiplicity


TRANSVERSE CHANNEL

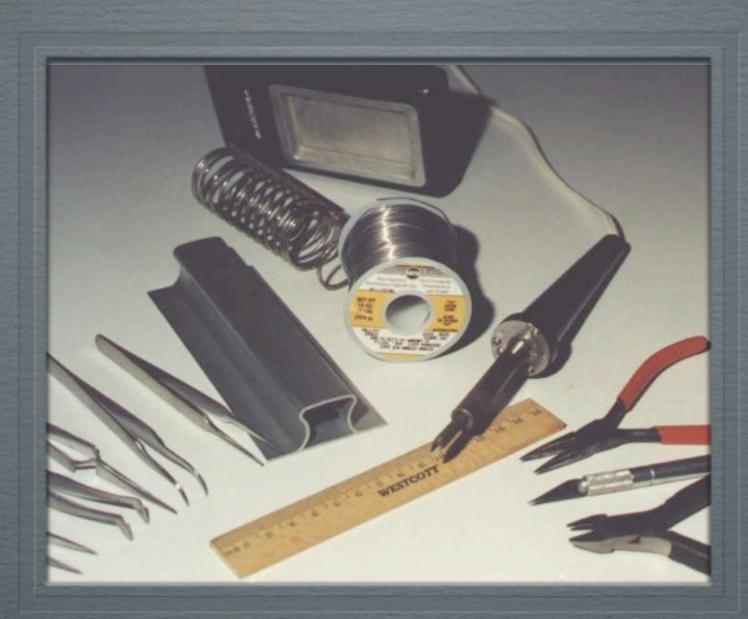
TRANSVERSE CHANNEL

TRANSVERSE CHANNEL

COEFFICIENTS

Se Klein bottle

 $K^{i} = \sum_{m,J,J'} \frac{S^{i}{}_{m}U_{(m,J)}g^{\Omega,m}_{J,J'}U_{(m,J')}}{S_{0m}}$


Annulus

 $A^{i}_{[a,\psi_{a}][b,\psi_{b}]} = \sum_{m,J,J'} \frac{S^{i}_{\ m} R_{[a,\psi_{a}](m,J)} g^{\Omega,m}_{J,J'} R_{[b,\psi_{b}](m,J')}}{S_{0m}}$

Moebius

 $M_{[a,\psi_a]}^i = \sum_{m,J,J'} \frac{P_m^i R_{[a,\psi_a](m,J)} g_{J,J'}^{\Omega,m} U_{(m,J')}}{S_{0m}}$

 $g_{J,J'}^{\Omega,m} = \frac{S_{m0}}{S_{mK}} \beta_K(J) \delta_{J',J^c}$

RCFT TOOLS

Sunday, 2 May 2010

BOUNDARIES AND CROSSCAPS

Soundary coefficients

$$R_{[a,\psi_a](m,J)} = \sqrt{\frac{|\mathcal{H}|}{|\mathcal{C}_a||\mathcal{S}_a|}} \psi_a^*(J) S_{am}^J$$

Generation Crosscap coefficients

$$U_{(m,J)} = \frac{1}{\sqrt{|\mathcal{H}|}} \sum_{L \in \mathcal{H}} e^{\pi i (h_K - h_{KL})} \beta_K(L) P_{LK,m} \delta_{J,0}$$

Cardy (1989) Sagnotti, Pradisi, Stanev (~1995) Huiszoon, Fuchs, Schellekens, Schweigert, Walcher (2000)

 $\chi_i(\tau) Z_{ij} \bar{\chi}_j(\bar{\tau})$

ij

A MIPF

 $\begin{array}{l} (0+2)^{2} + (1+3)^{2} + (4+6)^{*}(13+15) + (5+7)^{*}(12+14) \\ + (8+10)^{2} + (9+11)^{2} + (12+14)^{*}(5+7) + (13+15)^{*}(4+6) \\ + (16+18)^{*}(25+27) + (17+19)^{*}(24+26) + (20+22)^{2} + (21+23)^{2} \\ + (24+26)^{*}(17+19) + (25+27)^{*}(16+18) + (28+30)^{2} + (29+31)^{2} \\ + (32+34)^{2} + (33+35)^{2} + (36+38)^{*}(45+47) + (37+39)^{*}(44+46) \\ + (40+42)^{2} + (41+43)^{2} + (44+46)^{*}(37+39) + (45+47)^{*}(36+38) \\ + (48+50)^{*}(57+59) + (49+51)^{*}(56+58) + (52+54)^{2} + (53+55)^{2} \\ + (56+58)^{*}(49+51) + (57+59)^{*}(48+50) + (60+62)^{2} + (61+63)^{2} \end{array}$

 $+ 2^{*}(2913)^{*}(2915) + 2^{*}(2914)^{*}(2912) + 2^{*}(2915)^{*}(2913)$ $+ 2^{*}(2916)^{2} + 2^{*}(2917)^{2} + 2^{*}(2918)^{2} + 2^{*}(2919)^{2}$ $+ 2^{*}(2920)^{2} + 2^{*}(2921)^{2} + 2^{*}(2922)^{2} + 2^{*}(2923)^{2}$ $+ 2^{*}(2924)^{*}(2926) + 2^{*}(2925)^{*}(2927) + 2^{*}(2926)^{*}(2924)$ $+ 2^{*}(2927)^{*}(2925) + 2^{*}(2928)^{2} + 2^{*}(2929)^{2} + 2^{*}(2930)^{2}$ $+ 2^{*}(2931)^{2} + 2^{*}(2932)^{*}(2934) + 2^{*}(2933)^{*}(2935)$ $+ 2^{*}(2934)^{*}(2932) + 2^{*}(2935)^{*}(2933) + 2^{*}(2936)^{*}(2938)$ $+ 2^{*}(2937)^{*}(2939) + 2^{*}(2938)^{*}(2936) + 2^{*}(2939)^{*}(2937)$ $+ 2^{*}(2940)^{2} + 2^{*}(2941)^{2} + 2^{*}(2942)^{2} + 2^{*}(2943)^{2}$

ISHIBASHI STATES

 $(0+2)^2 + (1+3)^2 + (4+6)^*(13+15) + (5+7)^*(12+14) + (8+10)^2 + (9+11)^2 + (12+14)^*(5+7) + (13+15)^*(4+6)$

 $+ 2^{*}(2937)^{*}(2939) + 2^{*}(2938)^{*}(2936) + 2^{*}(2939)^{*}(2937)$ $+ 2^{*}(2940)^{2} + 2^{*}(2941)^{2} + 2^{*}(2942)^{2} + 2^{*}(2943)^{2}$

ISHIBASHI STATES

 $(0+2)^2 + (1+3)^2 + (4+6)^*(13+15) + (5+7)^*(12+14) + (8+10)^2 + (9+11)^2 + (12+14)^*(5+7) + (13+15)^*(4+6)$

+ 2*(2937)*(2939) + 2*(2938)*(2936) + 2*(2939)*(2937) $+ 2*(2940)^2 + 2*(2941)^2 + 2*(2942)^2 + 2*(2943)^2$

ISHIBASHI STATES

 $(0+2)^2 + (1+3)^2 + (4+6)^*(13+15) + (5+7)^*(12+14) + (8+10)^2 + (9+11)^2 + (12+14)^*(5+7) + (13+15)^*(4+6)$

$$+ 2*(2937)*(2939) + 2*(2938)*(2936) + 2*(2939)*(2937) + 2*(2940)^2 + 2*(2941)^2 + 2*(2942)^2 + 2*(2943)^2$$

 $(m, J): J \in S_m$ with $Q_L(m) + X(L, J) = 0 \mod 1$ for all $L \in \mathcal{H}$ $S_m: J \in \mathcal{H}$ with $J \cdot m = m$ (Stabilizer of m)

Sunday, 2 May 2010

BOUNDARY STATES

 $(0+2)^2 + (1+3)^2 + (4+6)^*(13+15) + (5+7)^*(12+14) + (8+10)^2 + (9+11)^2 + (12+14)^*(5+7) + (13+15)^*(4+6)$

 $+ 2^{*}(2937)^{*}(2939) + 2^{*}(2938)^{*}(2936) + 2^{*}(2939)^{*}(2937)$ $+ 2^{*}(2940)^{2} + 2^{*}(2941)^{2} + 2^{*}(2942)^{2} + 2^{*}(2943)^{2}$

BOUNDARY STATES

 $(0+2)^{2} + (1+3)^{2} + (4+6)^{*}(13+15) + (5+7)^{*}(12+14) + (8+10)^{2} + (9+11)^{2} + (12+14)^{*}(5+7) + (13+15)^{*}(4+6)$

+ 2*(2937)*(2939) + 2*(2938)*(2936) + 2*(2939)*(2937) $+ 2*(2940)^2 + 2*(2941)^2 + 2*(2942)^2 + 2*(2943)^2$

BOUNDARY STATES

 $(0+2)^{2} + (1+3)^{2} + (4+6)^{*}(13+15) + (5+7)^{*}(12+14) + (8+10)^{2} + (9+11)^{2} + (12+14)^{*}(5+7) + (13+15)^{*}(4+6)$

+ 2*(2937)*(2939) + 2*(2938)*(2936) + 2*(2939)*(2937) $+ 2*(2940)^2 + 2*(2941)^2 + 2*(2942)^2 + 2*(2943)^2$

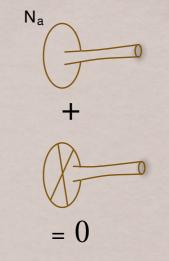
 $\begin{bmatrix} a, \psi_a \end{bmatrix}, \quad \psi_a \text{ is a character of the group } \mathcal{C}_a$ $\mathcal{C}_a \text{ is the Central Stabilizer of } a$ $\mathcal{C}_i := \{J \in \mathcal{S}_i \mid F_i^X(K, J) = 1 \text{ for all } K \in \mathcal{S}_i\}$ $F_i^X(K, J) := e^{2\pi i X(K, J)} F_i(K, J)^*$ $S_{Ki,j}^J = F_i(K, J) e^{2\pi i Q_K(j)} S_{i,j}^J.$

ACCESSIBLE RCFT'S

- Free fermions (4n real + (9-2n) complex)
- Sazama-Suzuki models (requires exact spectrum computation)
- Permutation orbifolds

....

(*) See also: Angelantonj et. al. Blumenbagen et. al. Aldazabal et. al. Brunner et. al.

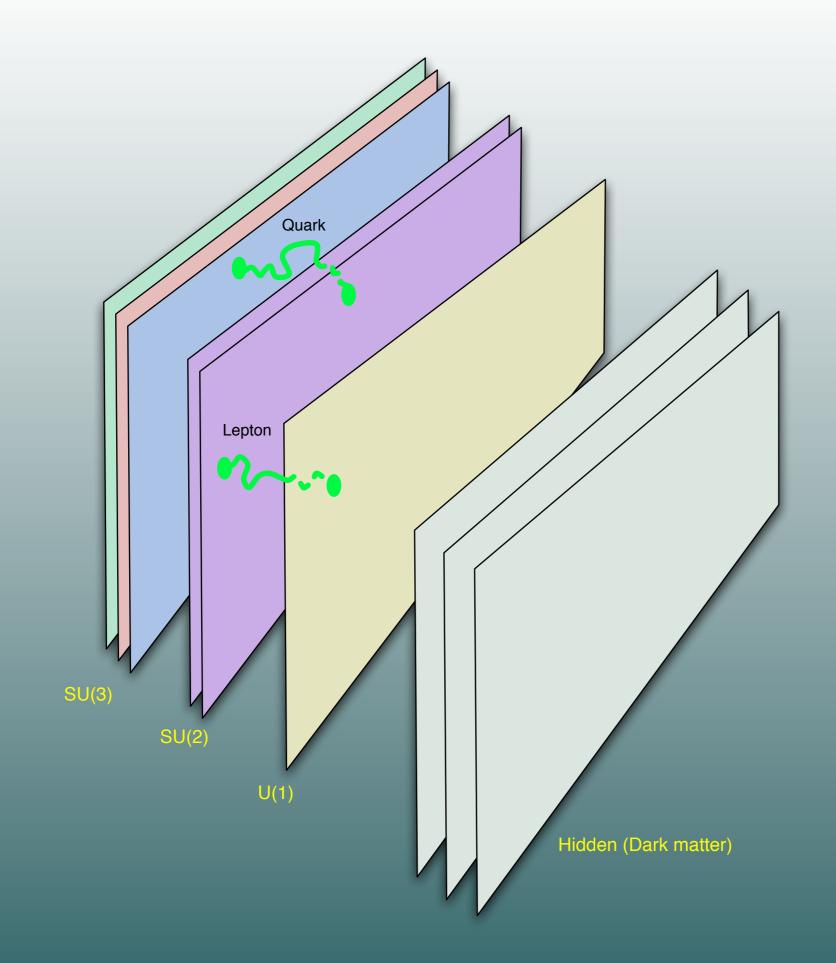

ALGEBRAIC CHOICES

- Basic CFT (N=2 tensor, free fermions...)
 (Type IIB closed string theory)
- Chiral algebra extension(*)
 May imply space-time symmetry (e.g. Susy: GSO projection).
 Reduces number of characters.
- Modular Invariant Partition Function (MIPF)(*) May imply bulk symmetry (e.g Susy), not respected by all boundaries. Defines the set of boundary states (Sagnotti-Pradisi-Stanev completeness condition)

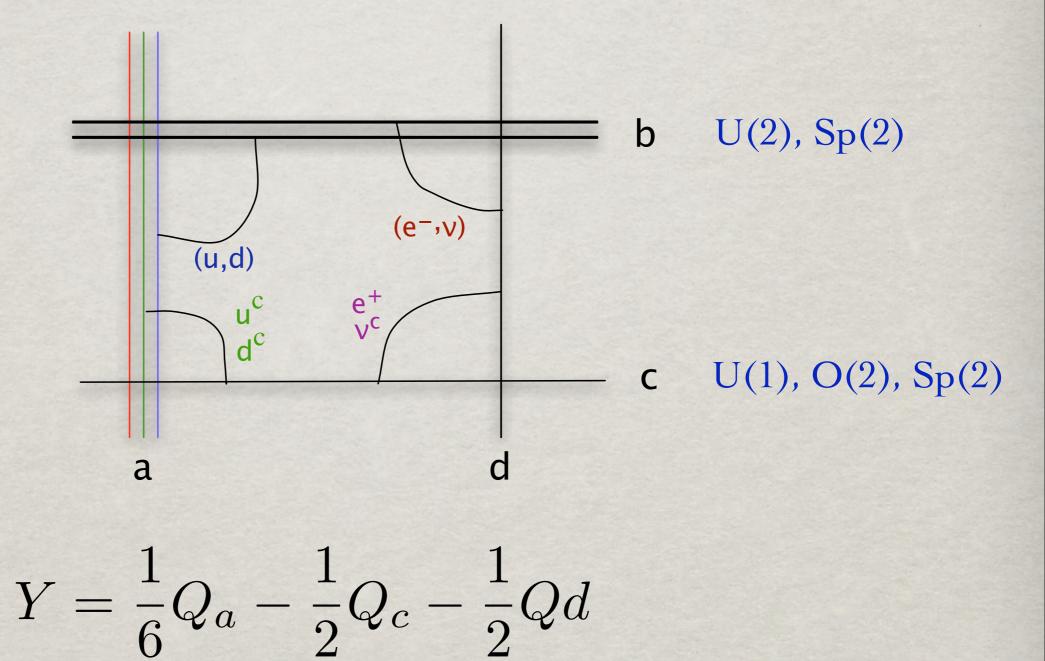
(*) all these choices are simple current related

TADPOLES & ANOMALIES

Tadpole cancellation condition:
 $\sum_{b} N_b R_{b(m,J)} = 4\eta_m U_{(m,J)}$ Cubic anomalies cancel

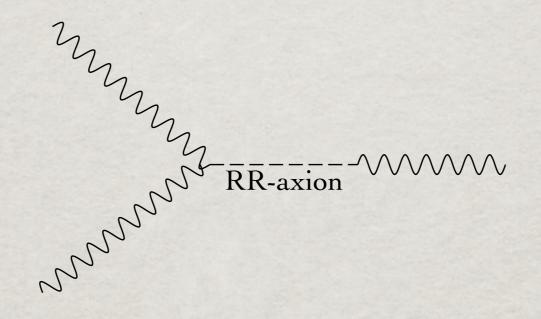


- Remaining anomalies by Green-Schwarz mechanism
- In rare cases, additional conditions for global anomaly cancellation*


*Gato-Rivera, Schellekens (2005)

MODEL BUILDING

THE MADRID MODEL*

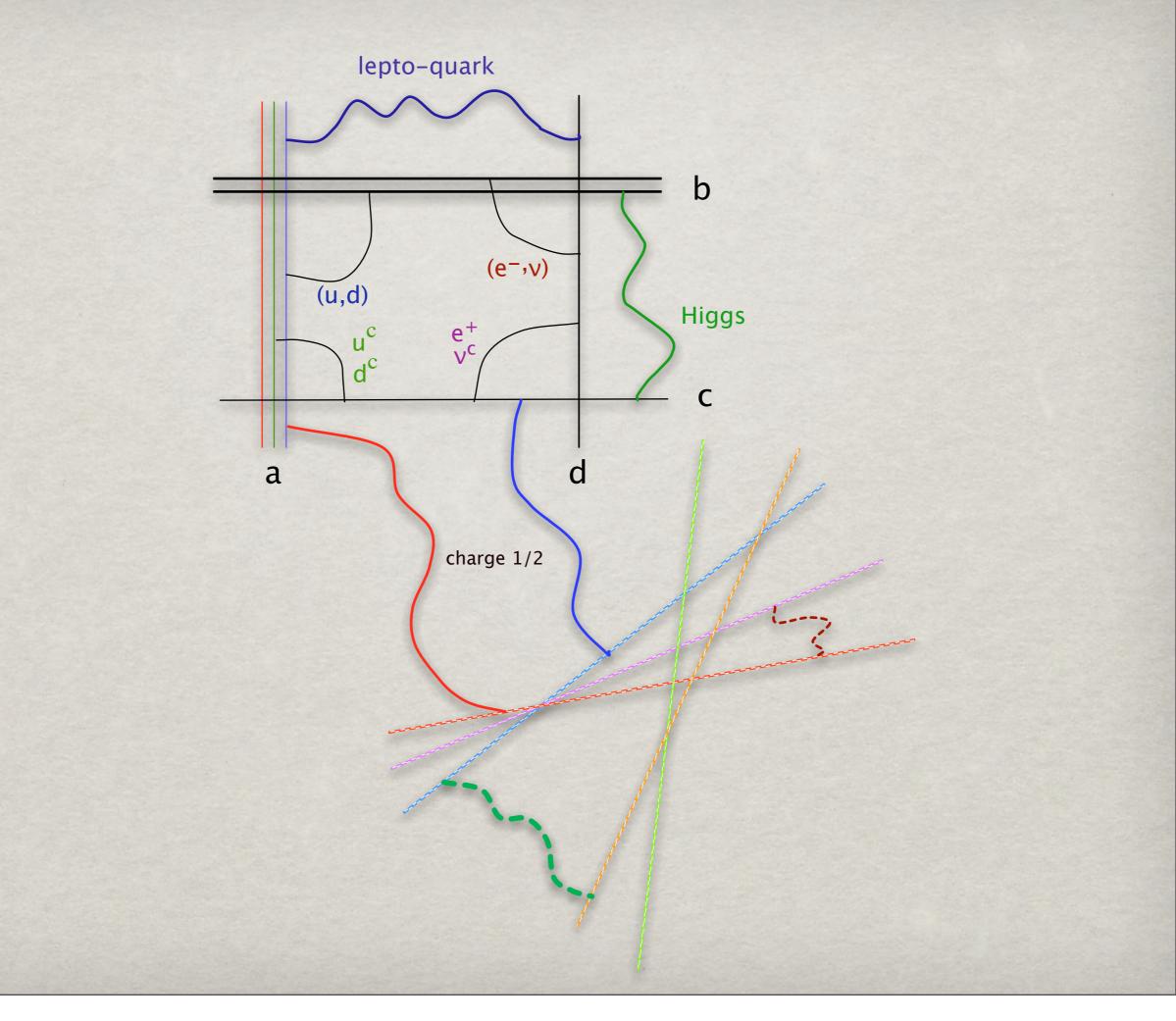


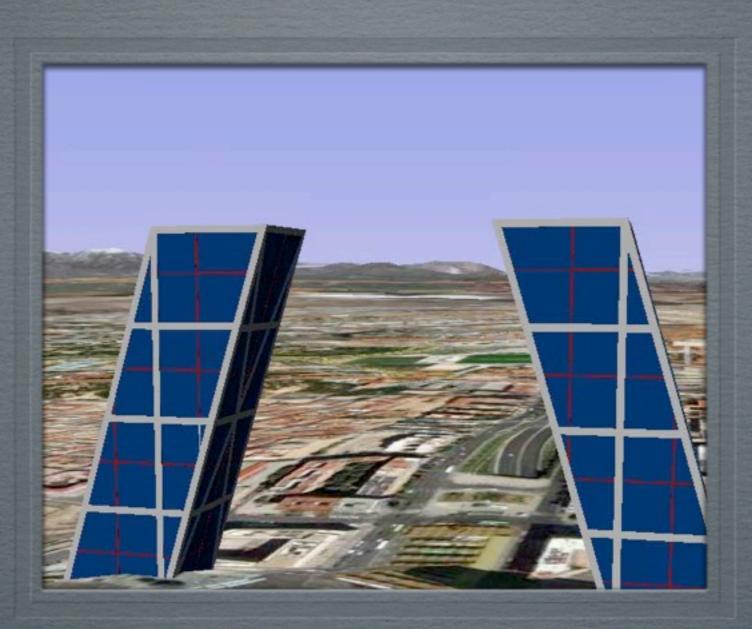
(*) Ibanez, Marchesano, Rabadan

Sunday, 2 May 2010

ABELIAN MASSES

Green-Schwarz mechanism




Axion-Vector boson vertex

·----

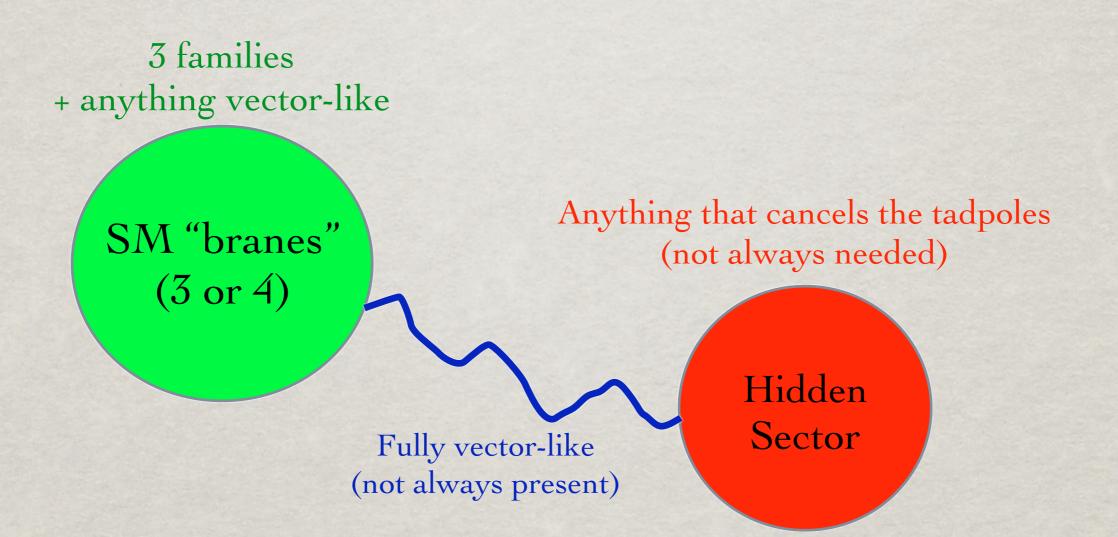
Generates mass vector bosons of anomalous symmetries (e.g. B + L) But may also generate mass for non-anomalous ones (Y, B-L)

Sunday, 2 May 2010

BEYOND MADRID

THE SM SPECTRUM

Current experimental information:


3 chiral families + vector-like states

Possible vector-like states:

Higgs? right-handed neutrinos? squarks, sleptons? gluinos? who knows what else?

(Some constraints from unification, if you believe it)

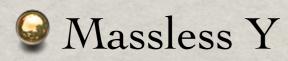
Vector-like: mass allowed by $SU(3) \times SU(2) \times U(1)$ (Higgs, right-handed neutrino, gauginos, sparticles....)

MODELS

 $G_{CP} \supset SU(3) \times SU(2) \times U(1)$

Chiral fermions \rightarrow 3 families

Criteria for distinguishing spectra


- 1. Chiral GCP spectrum ("chiral type"), e.g SU(5), Pati-Salam,
- 2. Massless GCP spectrum
- 3. Massless G_{CP} spectrum +

SEARCH CRITERIA

Require only:

- \bigcirc U(3) from a single brane
- \bigcirc U(2) from a single brane
- Quarks and leptons, Y from at most four branes
- $\bigcirc G_{CP} \supset SU(3) \times SU(2) \times U(1)$
- Chiral G_{CP} fermions reduce to quarks, leptons (plus non-chiral particles)

ALLOWED FEATURES

Q (Anti)-quarks from anti-symmetric tensors

Q Leptons from anti-symmetric tensors

G Family symmetries

Se Non-standard Y-charge assignments

Q Unification (Pati-Salam, (flipped) SU(5), trinification)*

Searyon and/or lepton number violation

*a,b,c,d may be identical

CHAN-PATON GROUP

 $G_{CP} = U(3)_a \times \left\{ \begin{array}{l} U(2)_b \\ Sp(2)_b \end{array} \right\} \times G_c \quad (\times G_d)$

Embedding of Y:

 $Y = \alpha Q_a + \beta Q_b + \gamma Q_c + \delta Q_d + W_c + W_d$

Q: Brane charges (for unitary branes)W: Traceless generators

CLASSIFICATION

 $Y = (x - \frac{1}{3})Q_a + (x - \frac{1}{2})Q_b + xQ_C + (x - 1)Q_D$

Distributed over c and d

Allowed values for x

1/2Madrid model, Pati-Salam, Flipped SU(5)0(broken) SU(5)1Antoniadis, Kiritsis, Tomaras model-1/2, 3/2Trinification (x = 1/3) (orientable)

SEARCHES

Sunday, 2 May 2010

TORUS CFT: TYPE-IIB GEPNER MODELS

Building Blocks: Minimal N=2 CFT

$$c = \frac{3k}{k+2}, \quad k = 1, \dots, \infty$$

168 ways of solving

$$\sum_{i} c_{k_i} = 9$$

Spectrum:

$$h_{l,m} = \frac{l(l+2) - m^2}{4(k+2)} + \frac{s^2}{8}$$

 $(l = 0, \dots k; \quad q = -k, \dots k + 2; \quad s = -1, 0, 1, 2)$ (plus field identification)

4(k+2) simple currents

DATA

	2004-2005*	2005-2006†	
Trigger	"Madrid"	All 3 family models	
Chiral types	19	19345	
Tadpole-free(per type)	18	1900	
Total configs	$45 \ge 10^6$	145 x 10 ⁶	
Tadpole free, distinct	210.000	1900	
Max. primaries	∞	1750	

(*) Huiszoon, Dijkstra, Schellekens

(†) Anastasopoulos, Dijkstra, Kiritsis, Schellekens

A "MADRID" MODEL

Gauge group: Exactly $SU(3) \times SU(2) \times U(1)!$ [U(3)×Sp(2)×U(1)×U(1), Massive B-L, No hidden sector]

$3 \times (V)$ $3 \times (V)$ $3 \times (V)$ $3 \times (O)$ $5 \times (O)$ $3 \times (O)$ $18 \times (O)$ $2 \times (V)$ $2 \times (A)$ $2 \times (A)$ $6 \times (S)$ $14 \times (O)$ $9 \times (O)$ $6 \times (O)$ $14 \times (O)$ $3 \times (O$,0 d ,0 ,0 ,0 ,A ,S ,0 ,0 ,0	,0 ,V ,V ,V ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,Ad ,A ,S	<pre>,0) chirality 3 ,0) chirality -3 ,0) chirality -3 ,V) chirality 3 ,V) chirality 3 ,V*) chirality 3 ,0) ,0) ,0) ,0) ,0) ,0) ,0) ,0)</pre>	
3 x (0 4 x (0	,0 ,0	,0 ,0	,Ad) ,A)	
	,-	, -		

6 x (0 ,0 ,0 ,S)

A "MADRID" MODEL

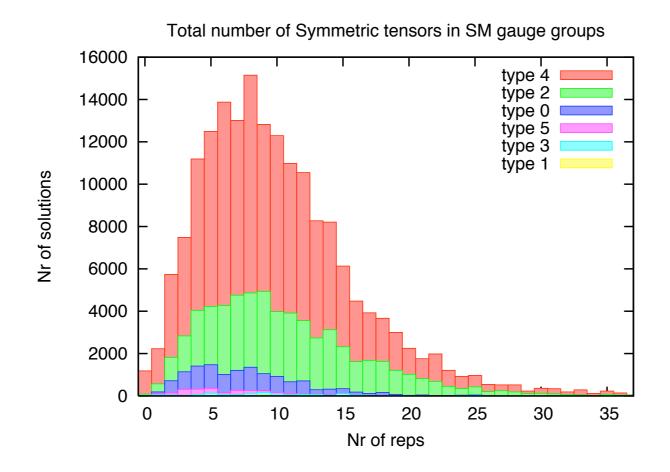
Gauge group: Exactly $SU(3) \times SU(2) \times U(1)!$ [U(3)×Sp(2)×U(1)×U(1), Massive B-L, No hidden sector]

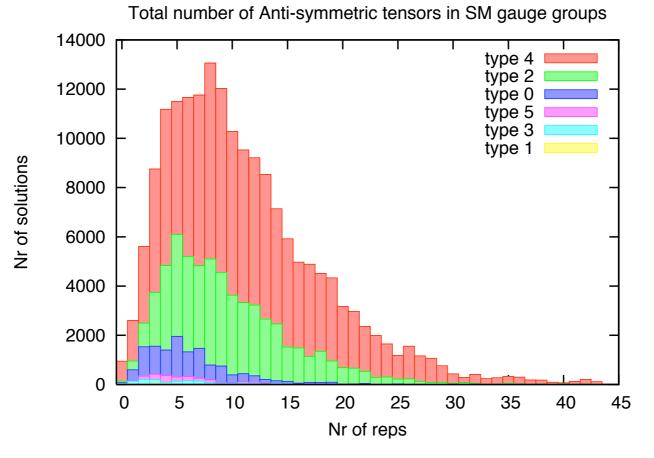
3 x (V	,V	,0	,0)	cł	hirality	3	Q
3 x ('	V	,0	,V	,0)	cł	hirality	-3	Ū*
3 x ('	V	,0	,V*	,0)	cł	nirality	-3	D*
3 x (0	,V	,0	,V)	cł	hirality	3	L
5 x (0	,0	,V	,V)	cł	hirality	-3	$E^{*}+(E+E^{*})$
3 x (0	,0	,V	,V*	•)	cł	nirality	3	N*
18 x (0	,V	,V	,0)				Higgs
2 x ()	V	,0	,0	,V)				
2 x ()	Ad	,0	,0	,0)				
2 x ()	A	,0	,0	,0)				
6 x (S	,0	,0	,0)		Vec	tor-lil	ke matter
14 x (0	,А	,0	,0)		V=v	vector	State States
6 x (0	,S	,0	,0)		A=4	Anti-sy	ymm. tensor
9 x (0	,0	,Ad	,0)			•	etric tensor
6 x (0	,0	,А	,0)		Ad	-Adjoi	nt
14 x (0	,0	,S	,0)				
3 x (0	,0	,0	,Ac	1)				
	$3 \times ($ $3 \times ($ $3 \times ($ $3 \times ($ $5 \times ($ $3 \times ($ $18 \times ($ $2 \times ($ $2 \times ($ $2 \times ($ $2 \times ($ $6 \times ($ $14 \times ($ $6 \times ($ $9 \times ($ $14 \times ($ $14 \times ($	3 x (V) $3 x (0)$ $5 x (0)$ $5 x (0)$ $3 x (0)$ $18 x (0)$ $2 x (V)$ $2 x (Ad)$ $2 x (Ad)$ $2 x (Ad)$ $6 x (S)$ $14 x (0)$ $6 x (0)$ $9 x (0)$ $6 x (0)$ $14 x (0)$	$3 \times (V ,0)$ $3 \times (V ,0)$ $3 \times (0 ,V)$ $5 \times (0 ,0)$ $3 \times (0 ,0)$ $18 \times (0 ,V)$ $2 \times (V ,0)$ $2 \times (Ad ,0)$ $2 \times (Ad ,0)$ $2 \times (A ,0)$ $6 \times (S ,0)$ $14 \times (0 ,A)$ $6 \times (0 ,S)$ $9 \times (0 ,0)$ $14 \times (0 ,0)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$3 \times (V , 0 , V , 0) \text{ chirality} 3 \times (V , 0 , V^* , 0) \text{ chirality} 3 \times (0 , V , 0 , V) \text{ chirality} 5 \times (0 , 0 , V , V) \text{ chirality} 5 \times (0 , 0 , V , V) \text{ chirality} 3 \times (0 , 0 , V , V) \text{ chirality} 18 \times (0 , V , V , 0) 2 \times (V , 0 , 0 , 0) 2 \times (Ad , 0 , 0 , 0) 2 \times (Ad , 0 , 0 , 0) 4 \times (0 , A , 0 , 0) 6 \times (0 , S , 0 , 0) 9 \times (0 , 0 , Ad , 0) 6 \times (0 , 0 , A , 0) 14 \times (0 , 0 , A , 0) 4 \times (0 , 0 , A , 0) 14 \times (0 , 0 , A , 0) 4 \times (0 , 0 , A , 0) 14 \times (0 , 0 , S , 0) 6 \times (0 , 0 , A , 0) 14 \times (0 , 0 , S , 0) 6 \times (0 , 0 , A , 0) 14 \times (0 , 0 , S , 0) 6 \times (0 , 0 , A , 0) 14 \times (0 , 0 , S , 0) 14 \times (0 , 0 , S , 0) 14 \times (0 , 0 , S , 0) 14 \times (0 , 0 , S , 0) 14 \times (0 , 0 , S , 0) 14 \times (0 , 0 , S , 0) 14 \times (0 , 0 , S , 0) 15 \times (0 , 0 , S , 0) 16 \times (0 , 0 , S , 0) 17 \times (0 , 0 , S , 0) 18 \times (0 , 0 , S , 0) 19 \times (0 , 0 , S , 0) 10 \times (0 , 0 , S , 0) 10 \times (0 , 0 , S , 0) 10 \times (0 , 0 , S , 0) 10 \times (0 , 0 , S , 0) 10 \times (0 , 0 , S , 0) 11 \times (0 , 0 , S , $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

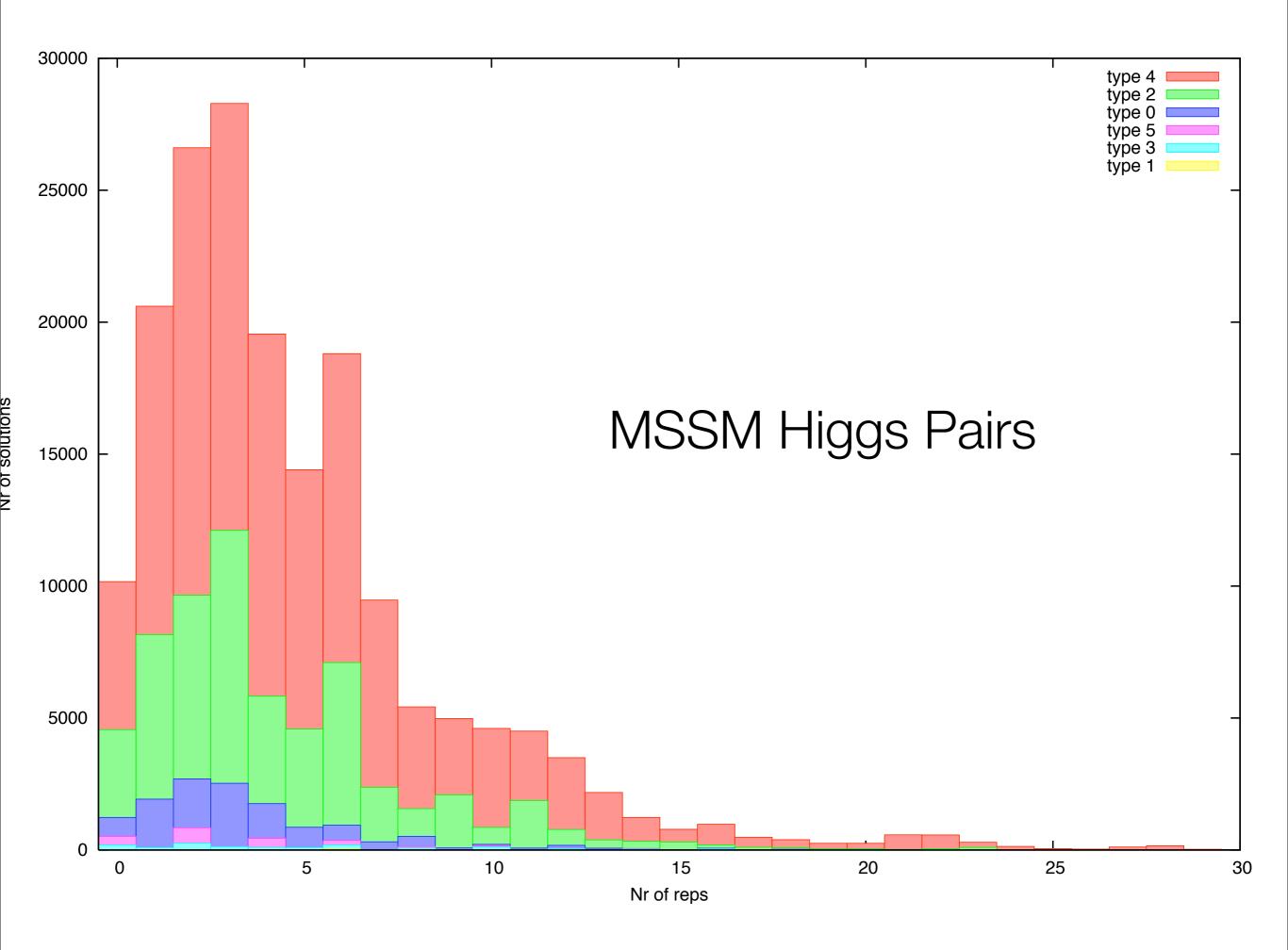
4 x (0 ,0 ,0 ,A) 6 x (0 ,0 ,0 ,S)

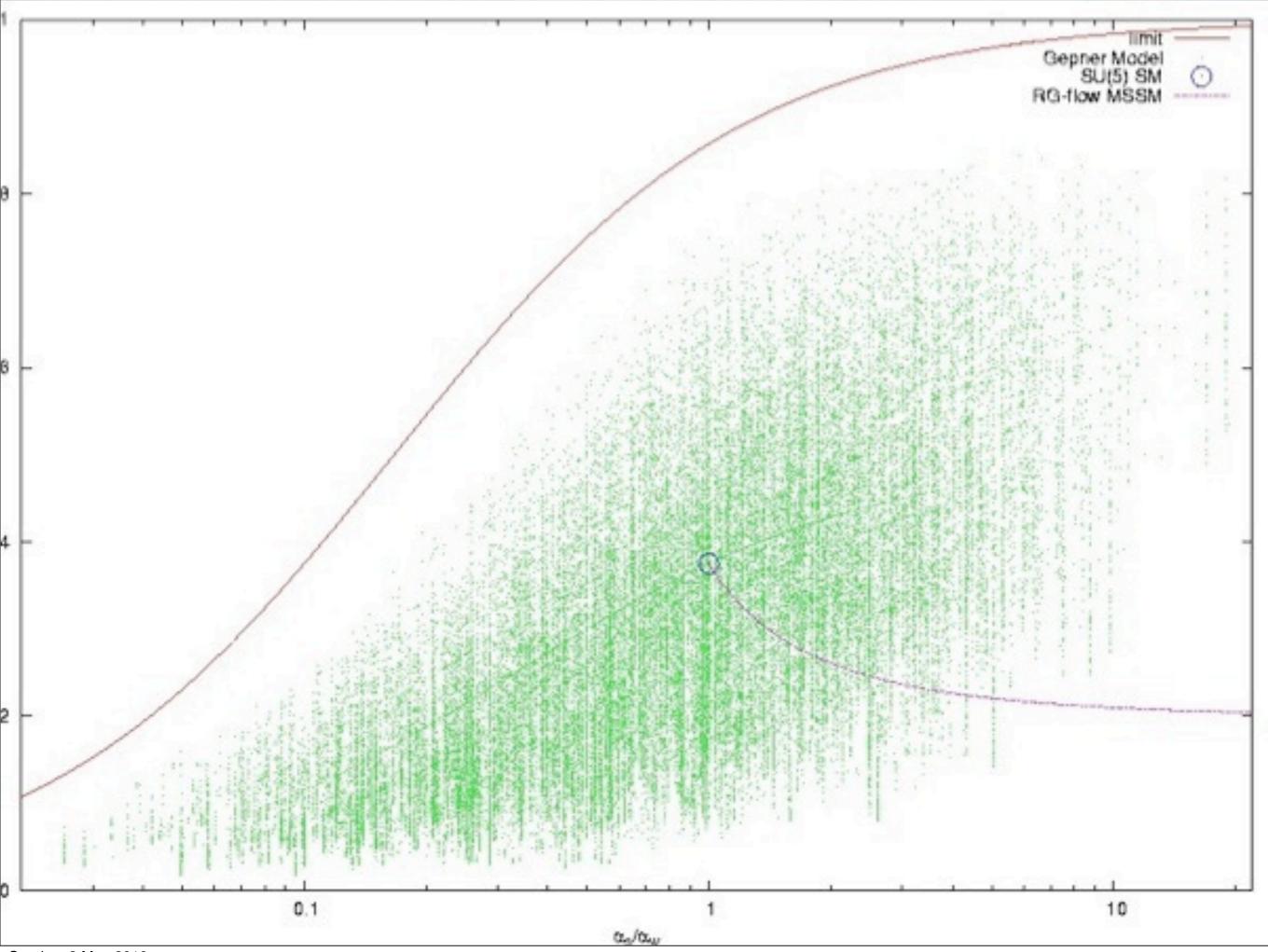
Sunday, 2 May 2010

NO MIRRORS, NO RANK-2 TENSORS

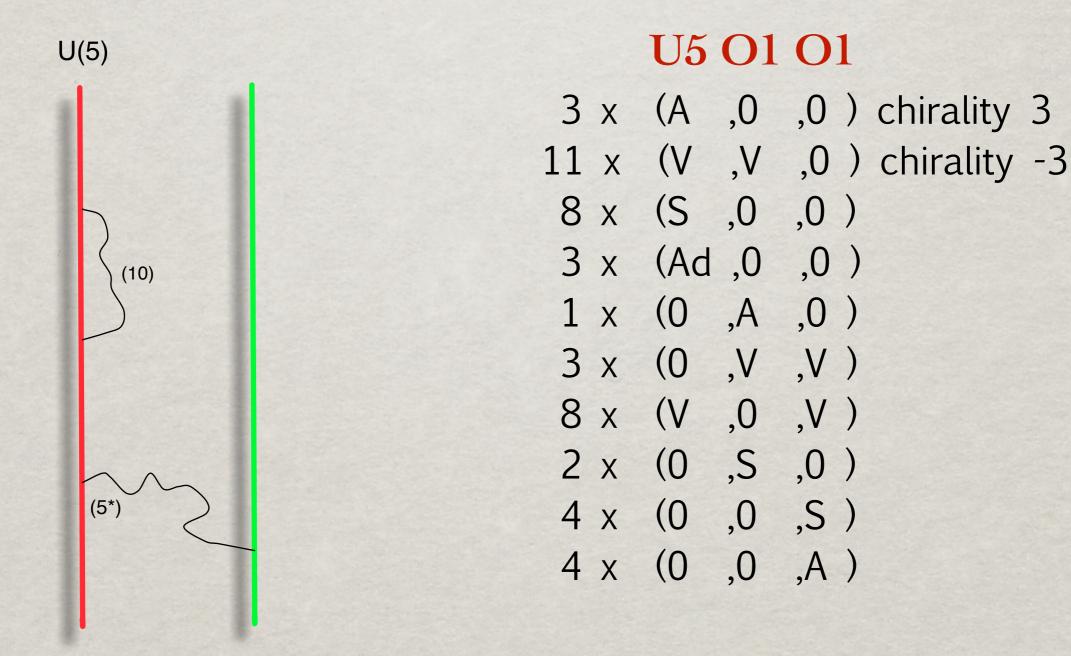

(Left-right symmetric model)


U3 S2 S2 U1 S6 S4 S2


	3 x	(V	,V	,0	,0	,0	,0	,0) c	chirality	3
	3 x	(V	,0	,V	,0	,0	,0	,0) c	hirality	-3
	3 x	(0)	,V	,0	,V	,0	,0	,0) c	hirality	3
	3 x	(0	,0	,V	,V	,0	,0	,0) c	hirality	-3
	2 x	(V	,0	,0	,V	,0	,0	,0)		
	2 x	(0	,V	,V	,0	,0	,0	,0)		
Γ	2 x	(V	,0	,0	,0	,V	,0	,0)		
	2 x	(V	,0	,0	,0	,0	,V	,0)		
	2 x	(V	,0	,0	,0	,0	,0	,V)		
	1 x	(0	,V	,0	,0	,V	,0	,0)		
	1 x	(0	,0	,V	,0	,V	,0	,0)		
	2 x	(0	,0	,0	,V	,0	,V	,0)		
	1 x	(0	,0	,0	,0	,V	,0	,V)		
	2 x	(0	,0	,0	,0	,0	,V	,V)		
	2 x	(0	,0	,0	,0	,A	,0	,0)		
	1 x	(0	,0	,0	,0	,S	,0	,0)		
	5 x	(0	,0	,0	,0	,0	,A	,0)		
	5 x	(0	,0	,0	,0	,0	,S	,0)		
	1 x	(0	,0	,0	,0	,0	,0	,S)		
	Т Л	. (0	,0	,0	,0	,0	,0	,5 /	and the second	


L E*,N* <mark>Leptoquark pair</mark> 2 Higgs pairs

Q U*,D*


STATISTICS

Value of x	Total
0	24483441
1/2	138837612*
1	30580
-1/2, 3/2	0
any	1250080

*Previous search: 45051902

AN SU(5) MODEL

Gauge group is just SU(5)!

Top quark Yukawa's?

A CURIOSITY

Gauge group $SU(3) \times SU(2) \times U(1) \times [U(2)_{Hidden})]$

U3 S2 U1 U1 U2

3 x (V	,V	,0	,0	,0) chirality 3	Q
3 x (0	,0	,V	,V	,0) chirality -3	E*
1 x (V	,0	,0	,V*	,0) chirality -1	U*
2 x (V	,0	,V	,0	,0) chirality -2	D*
2 x (0	,V	,0	,V	,0) chirality 2	L
3 x (V	,0	,0	,V	,0) chirality -1	$D^*+(D+D^*)$
3 x (0	,V	,V	,0	,0) chirality 1	$L+H_1+H_2$
2 x (V	,0	,V*	,0	,0) chirality -2	U*
1 x (0	,0	,V	,V*	,0) chirality 1	N*
4 x (A	,0	,0	,0	,0)	U+U*
2 x (0	,0	,0	,S	,0)	E+E*

A CURIOSITY

Gauge group $SU(3) \times SU(2) \times U(1) \times [U(2)_{Hidden})]$

U3 S2 U1 U1 U2

3 x (V	,V	,0	,0	,0) chirality 3	Q
3 x (0	,0	,V	,V	,0) chirality -3	E*
1 x (V	,0	,0	,V*	,0) chirality -1	U*
2 x (V	,0	,V	,0	,0) chirality -2	D*
2 x (0	,V	,0	,V	,0) chirality 2	L
3 x (V	,0	,0	,V	,0) chirality -1	$D^* + (D + D^*)$
3 x (0	,V	,V	,0	,0) chirality 1	$L+H_1+H_2$
2 x (V	,0	,V*	,0	,0) chirality -2	U*
1 x (0	,0	,V	,V*	,0) chirality 1	N*
4 x (A	,0	,0	,0	,0)	U+U*
2 x (0	,0	,0	,S	,0)	E+E*

Truly hidden hidden sector

A CURIOSITY

Gauge group $SU(3) \times SU(2) \times U(1) \times [U(2)_{Hidden})]$

U3 S2 U1 U1 U2

3 x (V	,V	,0	,0	,0)	chirality	3	Q
3 x (0	,0	,V	,V	,0)	chirality	-3	E*
1 x (V	,0	,0	,V*	,0)	chirality	-1	U*
2 x (V	,0	,V	,0	,0)	chirality	-2	D*
2 x (0	,V	,0	,V	,0)	chirality	2	L
3 x (V	,0	,0	,V	,0)	chirality	-1	$D^*+(D+D^*)$
3 x (0	,V	,V	,0	,0)	chirality	1	$L+H_1+H_2$
2 x (V	,0	,V*	,0	,0)	chirality	-2	U*
1 x (0	,0	,V	,V*	,0)	chirality	1	N*
4 x (A	,0	,0	,0	,0)			U+U*
2 x (0	,0	,0	,S	,0)			E+E*

Free-field realization with (2)⁶ Gepner model

THE STANDARD MODEL?

General Hodge numbers scanned: 880 (out of ~ 30000 known*) [but far more than free-field models (orbifolds, free fermions)]

Orientifolds cover an unknown percentage of the full landscape.

Only rational points in moduli space. (but perhaps we reach the right moduli space...)

No chance unless SM is extremely abundant.

(*) Kreuzer, Skarke

ONE IN HOW MANY?

 $\frac{\text{Madrid configurations}}{\text{All 4-brane configurations}} = 10^{-12}$

Dijkstra et. al. (2005)

 $\frac{\text{With tadpole solution}}{\text{All 4-brane configurations}} = 3.8 \times 10^{-14}$

 $\frac{\text{Madrid configurations}}{\text{All SM configurations}} = 1/6$

Anastasopoulos et. al. (2006)

Gmeiner, Blumenbagen, Honecker, Lüst, Weigand (2005) Douglas, Taylor (2006)

 $\frac{\text{Madrid configurations with tadpole solution}}{\text{All tadpole solutions}} \sim 1 \times 10^{-9}$

 T^6/Z_6 orientifolds

 $T^6/Z_2 \times Z_2$ orientifolds

Gmeiner, Lüst, Stein (2007)

 $\frac{\text{Madrid configurations with tadpole solution}}{\text{All tadpole solutions}} \sim 1 \times 10^{-22}$

Sunday, 2 May 2010

Holistic Wellness with Tachyons

A practical guide to the use of tachyons

Martina Bochnik & Tommy Thomsen

MATERIA TACHYON INCOGNITA

NON-SUPERSYMMETRIC MODELS

NON-SUPERSYMMETRIC MODELS*

Four ways of removing closed string tachyons

Chiral algebra extension (non-susy)
Automorphism MIPF
Susy MIPF (non-susy extension)
Klein Bottle

(*) with Beatriz Gato-Rivera

NON-SUPERSYMMETRIC MODELS*

Four ways of removing closed string tachyons

Chiral algebra extension (non-susy)
Automorphism MIPF
Susy MIPF (non-susy extension)
Klein Bottle

(44054 MIPFs)
(40261 MIPFs)
(186951 Orientifolds)

(*) with Beatriz Gato-Rivera

NON-SUPERSYMMETRIC MODELS*

Four ways of removing closed string tachyons

Chiral algebra extension (non-susy)
Automorphism MIPF
Susy MIPF (non-susy extension)
Klein Bottle

(44054 MIPFs)
(40261 MIPFs)
(186951 Orientifolds)

Huge number of possibilities!

(*) with Beatriz Gato-Rivera

NEUTRINO MASSES

Sunday, 2 May 2010

NEUTRINO MASSES*

 In field theory: easy; several solutions.
 Most popular: add three right-handed neutrinos add "natural" Dirac & Majorana masses (see-saw)

 $m_{\nu} = \frac{(M_D)^2}{M_M}; \quad M_D \approx 100 \text{ MeV}, \qquad M_M \approx 10^{11} \dots 10^{13} \text{ GeV}$

In string theory: non-trivial.(String theory is much more falsifiable!).

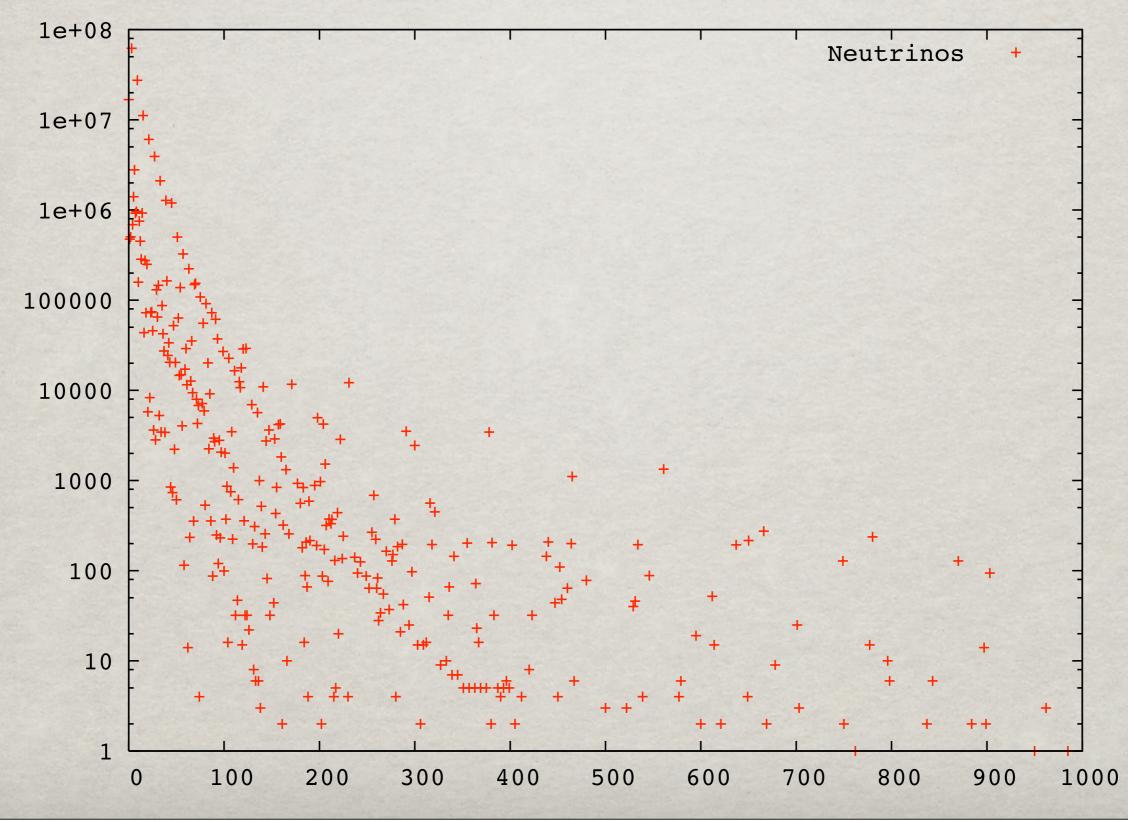
Potentially anthropic.

(*) Ibañez, Schellekens, Uranga, arXiv:0704.1079, JHEP (to appear) Blumenhagen, Cvetic, Weigand, hep-th/0609191 Ibañez, Uranga, hep-th/0609213

Other ideas: see e.g. Conlon, Cremades; Giedt, Kane, Langacker, Nelson; Buchmuller, Hamaguchi, Lebedev, Ratz, The following ingredients cannot be taken for granted in String Theory:

Se Existence of a Weinberg operator.

$$\mathcal{L}_W = \frac{\lambda}{M} (L\overline{H}L\overline{H})$$


Se Existence of right-handed neutrinos.

Se Existence of non-zero Dirac masses.

Absence of massless B-L vector bosons.

Se Existence of Majorana masses.

RIGHT-HANDED NEUTRINOS

Sunday, 2 May 2010

NEUTRINO MASSES IN MADRID MODELS

All these models have three right-handed neutrinos (required for cubic anomaly cancellation)

In most of these models: B-L survives as an exact gauge symmetry

Neutrino's can get Dirac masses, but not Majorana masses (both needed for see-saw mechanism).

In a very small* subset, B-L acquires a mass due to axion couplings.

(*) 391 out of 10000 models with SU(3)× Sp(2)× U(1)× U(1) (out of 211000 in total)

B-L VIOLATION BY INSTANTONS

B-L still survives as a perturbative symmetry. It may be broken to a discrete subgroup by instantons.

RCFT instanton boundary state M: "Matter" boundary state m, change space-time boundary conditions from Neumann to Dirichlet.

Condition for B-L violation:

```
I_{M\mathbf{a}} - I_{M\mathbf{a}'} - I_{M\mathbf{d}} + I_{M\mathbf{d}'} \neq 0
```

Non-gauge (stringy, exotic) instanton: CP multiplicity of the assocated matter brane = 0

Does not introduce new anomalies/tadpoles
 Suppression factor not related to gauge coupling strengths

$$M_M \propto M_s e^{-\frac{1}{g_M^2}}$$

B-L ANOMALIES

$$I_{M\mathbf{a}} - I_{M\mathbf{a}'} - I_{M\mathbf{d}} + I_{M\mathbf{d}'} \neq 0$$

Implies a cubic B-L anomaly if M is a "matter" brane (Chan-Paton multiplicity $\neq 0$).

⇒ M cannot be a matter brane: non-gauge-theory instanton (stringy instanton, exotic instanton)

Implies a $(B-L)(G_M)^2$ anomaly even if we cancel the cubic anomaly

 \Rightarrow B-L must be massive

(The converse is not true: there are massive B-L models without such instanton branes)

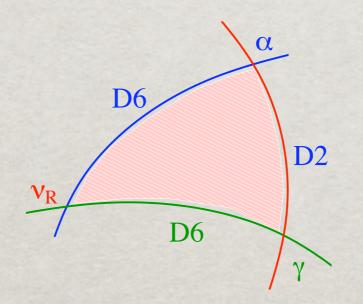
ZERO-MODES

Majorana mass term $v^c v^c$ violates c and d brane charge by two units. To compensate this, we must have

$$I_{Mc} = 2; \quad I_{Md} = -2$$

or
 $I_{Md'} = 2; \quad I_{Mc'} = -2$

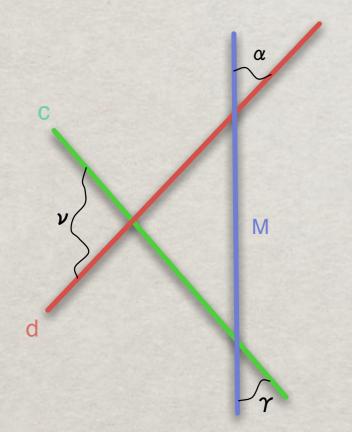
Furthermore there must be precisely two susy zeromodes to generate an F-term contribution.


And nothing else!

 I_{Ma} = chiral [# (V,V*) - # (V*,V)] between branes M and a a' = boundary conjugate of a

Sunday, 2 May 2010

NEUTRINO-ZERO MODE COUPLING


The following world-sheet disk is allowed by all symmetries (no brane charges violated)

 $L_{cubic} \propto d_a^{ij} (\alpha_i \nu^a \gamma_j) , a = 1, 2, 3$

ZERO-MODE INTEGRAL

Zero-mode/neutrino coupling

 $L_{\rm disk} \propto d_a^{ij}(\alpha_i \nu^a \gamma_j)$

$$a = 1, 2, 3; \quad i, j = 1, 2$$

$$\int d^2 \alpha \, d^2 \gamma \, e^{-d_a^{ij} \, (\alpha_i \nu^a \gamma_j)} = \nu_a \nu_b \left(\epsilon_{ij} \epsilon_{kl} d_a^{ik} d_b^{jl} \right)$$

INSTANTON TYPES

Matter brane m	Instanton brane M
U(N)	U(k)
O(N)	Sp(2k)
Sp(2N)	O(k)

Matter/Instanton zero modes: 0, ±2 Instanton-Instanton susy zero modes: 2

Possible for:

- ♀ Sp, k=1
- ♀ O, k=1,2

U(k): 4 Adj
Sp(2k): 2 A + 2 S
O(k): 2 S + 2 A

Only solution: O(1)

UNIVERSAL INSTANTON-INSTANTON ZERO-MODES

 $\bigcirc U(k): 4 Adj$ $\bigcirc Sp(2k): 2 A + 2 S$ $\bigcirc O(k): 2 S + 2 A$

Only O(1) has the required 2 zero modes

(See also: Argurio, Bertolini, Ferretti, Lerda, Peterson, arXiv:0704.0262)

Sunday, 2 May 2010

INSTANTON SCAN

Can we find such branes M in the 391 models with massive B-L?

(1 may give R-parity violation, 4 means no Majorana mass)

Some models have no RCFT instantons

- 9 1315 instantons with correct *chiral* intersections
- Some of these models has R-parity violating instantons.
- Most instantons are symplectic in this sample.
- Solution of the spurious extra susy zero-modes (Sp(2) instantons).

...almost

AN SP(2) INSTANTON MODEL

U3 S2 U1 U1 O

3	Х	(V	,V	,0	,0	,0)	chirality	3
3	х	(V	,0	,V	,0	,0)	chirality	-3
3	х	(V	,0	,V*	,0	,0)	chirality	-3
3	х	(0	,V	,0	,V	,0)	chirality	3
5	Х	(0	,0	,V	,V	,0)	chirality	-3
3	х	(0	,0	,V	,V*	,0)	chirality	3
1	х	(0	,0	,V	,0	,V)	chirality	-1
1	х	(0	,0	,0	,V	,V)	chirality	1
18	Х	(0	,V	,V	,0	,0)		
2	х	(V	,0	,0	,V	,0)		
2	Х	(Ad,	, 0	,0	,0	,0)		
2	х	(А	,0	,0	,0	,0)		
6	х	(S	,0	,0	,0	,0)		
14	Х	(0	,А	,0	,0	,0)		
6	х	(0	,S	,0	,0	,0)		
9	х	(0	,0	,Ad,	, 0	,0)		
6	Х	(0	,0	,А	,0	,0)		
14	Х	(0	,0	,S	,0	,0)		
3	х	(0	,0	,0	,Ad,	0)		
4	х	(0	,0	,0	,А	,0)		
6	Х	(0	,0	,0	,S	,0)		

AN SP(2) INSTANTON MODEL

U3 S2 U1 U1 O

3	х	(V	,V	,0	,0	,0)	chirality	3
3	х	(۷	,0	,V	,0	,0)	chirality	-3
3	х	(۷	,0	,V*	,0	,0)	chirality	-3
3	Х	(0	,V	,0	,V	,0)	chirality	3
5	х	(0	,0	,V	,V	,0)	chirality	-3
3	Х	(0	,0	,V	,V*	,0)	chirality	3
1	Х	(0	,0	,V	,0	,V)	chirality	-1
1	Х	(0	,0	,0	,V	,V)	chirality	1
18	х	(0	,V	,V	,0	,0)		
2	х	(V	,0	,0	,V	,0)		
2	Х	(Ad,	0	,0	,0	,0)		
2	х	(А	,0	,0	,0	,0)		
6	х	(S	,0	,0	,0	,0)		
14	х	(0	,А	,0	,0	,0)		
6	х	(0	,S	,0	,0	,0)		
9	х	(0	,0	,Ad,	, 0	,0)		
6	Х	(0	,0	,А	,0	,0)		
14	Х	(0	,0	,S	,0	,0)		
3	Х	(0	,0	,0	,Ad,	0)		
4	Х	(0	,0	,0	,А	,0)		
6	Х	(0	,0	,0	,S	,0)		

Tensor	MIPF	Orientifold	Instanton	Solution
(2,4,18,28)	17	0		
(2,4,22,22)	13	3	$S2^+!, S2^-!$	Yes!
(2,4,22,22)	13	2	$S2^+!, S2^-!$	Yes
(2,4,22,22)	13	1	$S2^+, S2^-$	No
(2,4,22,22)	13	0	$S2^+, S2^-$	Yes
(2,4,22,22)	31	1	$U1^+, U1^-$	No
(2,4,22,22)	20	0		
(2,4,22,22)	46	0		
(2,4,22,22)	49	1	$O2^+, O2^-, O1^+, O1^-$	Yes
(2,6,14,14)	1	1	$U1^+$	No
(2,6,14,14)	22	2		
(2,6,14,14)	60	2		
(2,6,14,14)	64	0		
(2,6,14,14)	65	0		
(2,6,10,22)	22	2		
(2,6,8,38)	16	0		
(2,8,8,18)	14	2	$S2^+!, S2^-!$	Yes
(2,8,8,18)	14	0	$S2^+!, S2^-!$	No
(2,10,10,10)	52	0	$U1^+, U1^-$	No
(4,6,6,10)	41	0		
(4,4,6,22)	43	0		
(6,6,6,6)	18	0		

THE O1 INSTANTON

Type:

Туре	:			U	S	U	U	U	0	0	U	0	0	0	U	S	S	0	S		
Dime	nsid	on		3	2	1	1	1	2	2	3	1	2	3	1	2	2	2			
	5	x	(V	,0	,v	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0)	chirality -3
	5	х	(0	,0	,v	,V*	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0)	chirality 3
	3	x	(V	,0	,V*	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0)	chirality -3
	3	х	(0	,0	,v	,v	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0)	chirality -3
	3	х	(V	,v	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0)	chirality 3
	3	х	(0	,v	,0	,v	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0)	chirality 3
	2	х	(0	,0	,0	,V	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	, V)	chirality 2
	12	х	(0	,0	,V	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	, V)	chirality -2
	1	х	(0	,0	,0	,0	,0	,0	,0	,0	,0	,V	,0	,0	,0	,0	,0	, V)	
	2	х	(0	,0	,0	,0	,v	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	, V)	
	1	х	(0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	, V	, V)	
	2	х	(0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,v	,0	,0	,V)	
	1	х	(0	,0	,0	,0	,0	,v	,0	,0	,0	,0	,0	,0	,0	,0	,0	,V)	
	3	х	(0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,s)	
			•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	,V		
	2	х	(0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	, A)	
			•																,V		
	3	х	(0	,0	,0	,0	,s	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0)	chirality -1
																					chirality 1
																				-	chirality -1
																					chirality 2
																					chirality -1
			•				-					-							-		chirality -1
																					chirality 1
			•										-		-	-	-	-	-	-	chirality -1
			•																•	'	chirality -1
																					chirality -1
																					chirality 1
																					chirality -1
																					chirality 1
)	chirality 1
			•			,0			-								-		-)	
						,0													-)	
						,0)	
						,0)	
						, V)	
					-	,0									-		-		-)	
15-26-3	1	Х	(0	,0	,0	,0	, Ac	1,0	,0	,0	,0	,0	,0	,0	,0	,0	,0	,0)	

CONCLUSIONS

Many desirable SM features can be realized in the RCFT orientifold landscape...

♀ Chiral SM spectrum

♀ No mirrors

- No adjoints, rank-2 tensors
- No hidden sector
- No hidden-observable massless matter
- Matter free hidden sector
- \bigcirc Exact SU(3)× SU(2) ×U(1)
- ♀ O1 instantons

....but not all at the same time. Seems just a matter of statistics.

Neutrino masses from instantons: probably possible, but very rare in RCFT.