ACADEMIC LECTURES

BEYOND THE STANDARD MODEL

SUPERSYMMETRY

SUPERSYMMETRY

A symmetry between fermions and bosons

DE-MOTIVATIONS

* No mass degeneracies among SM-particles with different spin:
Not an exact symmetry.
* No SM-particles are each others partners: Doubling of the spectrum.
* Even that is not enough; Two Higgses are needed.
*Nucleon stability is not automatic.
* Huge number of parameters.

MOTIVATIONS

Q Nice
9 Finiteness
9 String Theory
QHierarchy problem
9 Dark Matter
9 Coupling constant convergence

MOTIVATIONS

Q Nice

> Confidence level
> $\sim 1 \%$

QFiniteness
~. 001%

Q String Theory
~10\%

Q Hierarchy problem
~10\%

Q Dark Matter
$~ 15 \%$

Q Coupling constant convergence
~20\%

The Hierarchy Problem

Loop correction to scalar masses

$$
\begin{aligned}
& =\int d^{4} k \frac{1}{k^{2}-m^{2}} \approx g \Lambda^{2} \\
& m_{\text {phys }}^{2}=m_{\text {bare }}^{2}+g \Lambda^{2} \ll \Lambda^{2} \\
& \text { Fine tuning }
\end{aligned}
$$

FERMIONS VS. SCALARS

Fermion

Scalar

$$
\delta_{m} \propto g^{2} m \log (\Lambda / m)
$$

$$
\delta_{m}=g \Lambda^{2}
$$

* Correction is quadratic instead of logarithmic
* Correction is not proportional to mass

Small fermion mass gets small corrections: no fine-tuning.

How does Susy solve This?

Fermion-Boson cancellation (if couplings match)

TECHNICAL NATURALNESS

Dirac Naturalness:
Parameters should be of order 1 in natural units.
堵't Hooft naturalness (Technical Naturalness):
A parameter is naturally small if setting it to zero enhances the symmetry of the theory.

NATURALNESS

Some examples
Natural: $\quad \frac{m_{\text {top }}}{M_{Z}}$
Unnatural, but technically natural: $\quad \frac{m_{e}}{m_{\tau}}$

$$
i \bar{\psi}_{L} \gamma^{\mu} D_{\mu} \psi_{L}+i \bar{\psi}_{R} \gamma^{\mu} D_{\mu} \psi_{R}+m \bar{\psi}_{L} \psi_{R}+m \bar{\psi}_{R} \psi_{L}
$$

$$
\text { for } m=0 \text { we can rotate } \psi_{L} \text { and } \psi_{R}
$$

by separate phases (chiral symmetry)

Unnatural (by any definition)
$\frac{m_{Z}}{m_{\text {Planck }}}$

SUSY \& THE HierARCHY PROBLEM

Q A priori, supersymmetry only solves the technical naturalness problem.

- It does not explain why $M_{\text {weak }}$ is much smaller than $\mathrm{M}_{\mathrm{planck}}$.
(cf. QCD and "dimensional transmutation")
- In fact, susy has a Higgs mass parameter that is unnatural (but technically natural): μ

Q In supersymmetric theories additional mechanisms exist that do explain this ratio (require large $\mathrm{M}_{\text {top }}$).

Q Cosmological constant hierarchy problem much worse, and not solved by Susy

SUSY \& THE HierARCHY PROBLEM

Q A priori, supersymmetry only solves the technical naturalness problem.

- It does not explain why $M_{\text {weak }}$ is much smaller than $\mathrm{M}_{\mathrm{planck}}$.
(cf. QCD and "dimensional transmutation")
- In fact, susy has a Higgs mass parameter that is unnatural (but technically natural): μ

Q In supersymmetric theories additional mechanisms exist that do explain this ratio (require large $\mathrm{M}_{\text {top }}$).

Q Cosmological constant hierarchy problem much worse, and not solved by Susy

> Does this justify (more than) doubling the particle spectrum?

THE WESS-ZUMINO MODEL

$$
\begin{gathered}
\mathcal{L}=\mathcal{L}_{\text {boson }}+\mathcal{L}_{\text {fermion }} \\
\mathcal{L}_{\text {boson }}=\eta^{\mu \nu} \partial_{\mu} \phi^{\dagger} \partial_{\nu} \phi \\
\mathcal{L}_{\text {fermion }}=i \bar{\psi} \bar{\sigma}^{\mu} \partial_{\mu} \psi \\
\sigma^{\mu}=(1, \vec{\tau}) \\
\bar{\sigma}^{\mu}=(1,-\vec{\tau}) \\
\gamma^{\mu}=\left(\begin{array}{cc}
0 & -i \sigma^{\mu} \\
-i \bar{\sigma}^{\mu} & 0
\end{array}\right) \\
\gamma^{5}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{gathered}
$$

Free complex boson + left-handed (Weyl)fermion

Susy transformation on the scalar
(ψ is a 2 -component spinor)

$$
\delta_{\varepsilon} \phi=\sqrt{2} \varepsilon \psi \equiv \sqrt{2} \varepsilon^{\alpha} \psi_{\alpha}
$$

ϵ is a constant spinor

$$
\delta_{\varepsilon} \mathcal{L}_{\text {scalar }}=\sqrt{2}\left(\varepsilon \partial^{\mu} \psi \partial_{\mu} \phi^{\dagger}+\bar{\varepsilon} \partial^{\mu} \bar{\psi} \partial_{\mu} \phi\right)
$$

Now we look for a transformation of the fermion Lagrangian to cancel this; let us try

$$
\delta_{\varepsilon} \psi_{\alpha}=i \lambda\left(\sigma^{\mu} \bar{\varepsilon}\right)_{\alpha} \partial_{\mu} \phi=i \lambda \sigma_{\alpha \dot{\beta}}^{\mu} \bar{\varepsilon}^{\dot{\beta}} \partial_{\mu} \phi
$$

$$
\begin{aligned}
\delta_{\varepsilon} \mathcal{L}_{\text {fermion }} & =\lambda\left(\varepsilon \sigma^{\mu} \partial_{\mu} \phi^{\dagger} \bar{\sigma}^{\nu} \partial_{\nu} \psi-\bar{\psi} \bar{\sigma}^{\mu} \sigma^{\nu} \bar{\varepsilon} \partial_{\mu} \partial_{\nu} \phi\right) \\
& =\lambda\left(-\varepsilon \sigma^{\mu} \bar{\sigma}^{\nu} \psi \partial_{\mu} \partial_{\nu} \phi^{\dagger}-\bar{\psi} \bar{\sigma}^{\mu} \sigma^{\nu} \bar{\varepsilon} \partial_{\mu} \partial_{\nu} \phi\right)
\end{aligned}
$$

Because of the symmetric appearance of the derivatives we may replace $\left[\sigma^{\mu} \bar{\sigma}^{\nu}\right]_{\alpha}^{\beta}$ by

$$
\frac{1}{2}\left[\sigma^{\mu} \bar{\sigma}^{\nu}+\sigma^{\nu} \bar{\sigma}^{\mu}\right]_{\alpha}^{\beta}=\eta^{\mu \nu} \delta_{\alpha}^{\beta}
$$

Cancels bosonic variation if

$$
\lambda=-\sqrt{2}
$$

SUSY TRANSFORMATIONS

$$
\begin{aligned}
& \delta_{\varepsilon} \phi=\sqrt{2} \varepsilon \psi \equiv \sqrt{2} \varepsilon^{\alpha} \psi_{\alpha} \\
& \delta_{\varepsilon} \psi_{\alpha}=-i \sqrt{2} \sigma^{0}\left(\sigma^{\mu} \bar{\varepsilon}\right)_{\alpha} \partial_{\mu} \phi
\end{aligned}
$$

Define an operator that generates this transformation on all fields

$$
\begin{gathered}
(\varepsilon Q+\bar{Q} \bar{\varepsilon}) X=\delta_{\varepsilon} X \\
X=\phi \text { or } \psi
\end{gathered}
$$

SUSY COMMUTATOR

$$
\left[\varepsilon_{1} Q+\bar{Q} \bar{\varepsilon}_{1}, \varepsilon_{2} Q+\bar{Q} \bar{\varepsilon}_{2}\right]=-2 i\left(\varepsilon_{2} \sigma^{\mu} \bar{\epsilon}_{1}-\varepsilon_{1} \sigma^{\mu} \bar{\epsilon}_{2}\right) \partial_{\mu}
$$

Or, equivalently

$$
\left\{Q_{\alpha}, \bar{Q}_{\dot{\alpha}}\right\}=2 i \sigma_{\alpha \dot{\alpha}}^{\mu} \partial_{\mu}
$$

Susy Algebra

$$
\begin{aligned}
{\left[Q_{\alpha}, P_{\mu}\right] } & =0 \\
\left\{Q_{\alpha}, Q_{\beta}\right\} & =0 \\
\left\{\bar{Q}_{\dot{\alpha}}, \bar{Q}_{\dot{\beta}}\right\} & =0 \\
\left\{Q_{\alpha}, \bar{Q}_{\dot{\beta}}\right\} & =2 \sigma_{\alpha \dot{\beta}}^{\mu} P_{\mu}
\end{aligned}
$$

Non-trivial extension of the Poincaré Algebra.

VACUUM ENERGY

$$
\begin{aligned}
& \left\{Q_{\alpha}, \bar{Q}_{\dot{\beta}}\right\}=2 \sigma_{\alpha \dot{\beta}}^{\mu} P_{\mu} \quad \text { Implies: } \\
& H=P^{0}=\frac{1}{4}\left(\bar{Q}_{1} Q_{1}+Q_{1} \bar{Q}_{1}+\bar{Q}_{2} Q_{2}+Q_{2} \bar{Q}_{2}\right)
\end{aligned}
$$

Therefore

$$
\left.\left.\left.\left.\left.\langle\Psi| H|\Psi\rangle=\left.\frac{1}{4}\left(\left|Q_{1}\right| \Psi\right\rangle\right|^{2}+\left|\bar{Q}_{1}\right| \Psi\right\rangle\left.\right|^{2}\right)+\left|Q_{2}\right| \Psi\right\rangle\left.\right|^{2}+\left|\bar{Q}_{2}\right| \Psi\right\rangle\left.\right|^{2}\right)
$$

If the vacuum is supersymmetric

$$
Q_{\alpha}|0\rangle=\bar{Q}_{\dot{\alpha}}|0\rangle=0 \quad \longrightarrow \quad\langle 0| H|0\rangle=0 .
$$

Vacuum energy is $\pm \infty$ in non-supersymmetric QFT

SUPERMULTIPLETS

橉 Chiral Multiplet（＊） complex scalar＋left－handed fermion

龉 Vector Multiplet
Vector＋Majorana fermion
歯 Graviton Multiplet
Graviton＋Gravitino
（＊）CPT－Conjugate：
complex scalar＋right－handed fermion［not needed］

(EXTENDED SUPERSYMMETRY)

$$
Q_{\alpha}^{i} ; \quad i=1, \ldots N
$$

Generates larger multiplets.

(- $\mathrm{N}=1$: previous slide.
(0) $\mathrm{N}=2$: smallest multiplet has two complex scalars, plus a left and a right-handed spinor. Non-chiral!
(9) $\mathrm{N}=4$: smallest multiplet contains a vector, six complex scalars plus four left- and right-handed spinors. Finite!
(9) $\mathrm{N}=8$: smallest multiplet contains graviton.
(0) $\mathrm{N}>8$: smallest multiplet contains spin $5 / 2$

SUPERMULTIPLETS ($\mathbf{N}=1$)

Chiral Multiplet() complex scalar + left-handed fermion
*Vector Multiplet
Vector + Majorana fermion
歯 Graviton Multiplet
Graviton + Gravitino
(*) CPT-Conjugate:
complex scalar + right-handed fermion [not needed]

PHYSICAL STATE COUNTING

Type	Example	\# d.o.f
Real Scalar	π^{0}	1
Complex Scalar	π^{+}, π^{-}	2
Dirac fermion	$e_{L}^{-}, e_{R}^{-}, e_{L}^{+}, e_{R}^{+}$	4
Weyl fermion	$e_{L}^{-}, e_{R}^{+}($mass $=0)$	2
Majorana fermion	$\nu_{R}, \nu_{L}^{c}(\operatorname{charge}=0)$	2
Vector boson	photon	2
Gravitino		2
Graviton		2

THE SSM

SM particle	SSM partner	Multiplet
$e_{L}^{-} \quad\left(l_{L}^{-}\right)$	selectron $_{1} \quad\left(\right.$ slepton $\left._{1}\right)$	Chiral
$e_{L}^{+} \quad\left(l_{L}^{+}\right)$	selectron2 (slepton2)	Chiral
q_{L}	squark ${ }_{1}$	Chiral
q_{R}	squark 2	Chiral
photon	photino (Majorana fermion)	Vector
gluon	gluino (Eight Majorana fermions)	Vector
W^{+}, W^{-}, Z	Winot, Zino (Three Majorana fermions)	Vector
Higgs	???	Chiral

The Susy Higgs

$$
\begin{aligned}
& \phi:\left(1,2, \frac{1}{2}\right) \rightarrow \text { Weyl fermion }\left(1,2, \frac{1}{2}\right)_{L} \\
& \\
& \downarrow^{\phi} \text { CPT } \\
& \phi^{*}: \quad\left(1,2,-\frac{1}{2}\right) \rightarrow \text { Weyl fermion }\left(1,2,-\frac{1}{2}\right)_{L}
\end{aligned}
$$

The Susy Higgs

$$
\begin{aligned}
& \phi:\left(1,2, \frac{1}{2}\right) \rightarrow \text { Weyl fermion }\left(1,2, \frac{1}{2}\right)_{L} \\
& \downarrow \text { CPT } \\
& \phi^{*}:\left(1,2,-\frac{1}{2}\right) \rightarrow \text { Weyl fermion }\left(1,2,-\frac{1}{2}\right)_{L}
\end{aligned}
$$

The Susy Higgs

$$
\begin{aligned}
& \phi:\left(1,2, \frac{1}{2}\right) \rightarrow \text { Weyl fermion }\left(1,2, \frac{1}{2}\right)_{L} \\
& \downarrow \mathrm{CPT} \\
& \phi^{*}: \quad\left(1,2,-\frac{1}{2}\right) \rightarrow \text { Weyl fermion }\left(1,2,-\frac{1}{2}\right)_{L}
\end{aligned}
$$

Two distinct options for supermultiplet of SM Higgs

The Susy Higgs

$$
\begin{array}{cl}
\phi:\left(1,2, \frac{1}{2}\right) \rightarrow \text { Weyl fermion }\left(1,2, \frac{1}{2}\right)_{L} & \mathrm{H}_{2} \\
\downarrow \text { СРT } \\
\phi^{*}:\left(1,2,-\frac{1}{2}\right) \rightarrow \text { Weyl fermion }\left(1,2,-\frac{1}{2}\right)_{L} & \mathrm{H}_{1}
\end{array}
$$

Two distinct options for supermultiplet of SM Higgs

Both are needed to cancel anomalies

THE MSSM (1)

MSSM spectrum:

Q Quarks + sQuarks
Q Leptons+sLeptons
Q Gauge bosons + gauginos
Q $\mathrm{H}_{1}, \mathrm{H}_{2}+$ Higgsinos
$\theta+$ NOTHING

INTERACTIONS

SSM action:

$$
\begin{gathered}
\int d^{4} x\left(d^{2} \theta \mathcal{L}_{F}+\text { c.c }\right)+\int d^{4} x d^{4} \theta \mathcal{L}_{D} \\
\text { "F-terms" }
\end{gathered}
$$

Origin of:

Most interactions;
Gauge kinetic terms

Scalar and fermion kinetic terms and their gauge couplings

Easy
Hard

Standard Model Lagrangian

$$
\begin{aligned}
& -\frac{1}{4} \sum_{I=1}^{12} F_{\mu \nu}^{I} F^{\mu \nu, I}+i \sum_{\ell=1}^{15} \bar{\psi}_{\ell} \gamma^{\mu} D_{\mu} \psi_{\ell} \\
+ & \left(D_{\mu} \phi\right)^{\dagger}\left(D^{\mu} \phi\right)-\mu^{2} \phi^{\dagger} \phi-\frac{1}{4} \lambda\left(\phi^{\dagger} \phi\right)^{2}
\end{aligned}
$$

$$
+
$$

$g_{\mathcal{U}}^{\alpha \beta} \bar{\psi}_{L}^{\mathcal{Q}, \alpha}\left[\mathbf{C} \phi^{*}\right] \psi_{R}^{\mathcal{U}, \beta}+g_{\mathcal{D}}^{\alpha \beta} \bar{\psi}_{L}^{\mathcal{Q}, \alpha} \phi \psi_{R}^{\mathcal{D}, \beta}+g_{\mathcal{E}}^{\alpha \beta} \bar{\psi}_{L}^{\mathcal{L}, \alpha} \phi \psi_{R}^{\mathcal{E}, \beta}+$ с.c.
(+ neutrino contributions)
$\left(+F_{\mu \nu} \tilde{F}^{\mu \nu}\right.$ terms $)$

Standard Model Lagrangian

$$
\begin{aligned}
& -\frac{1}{4} \sum_{I=1}^{12} F_{\mu \nu}^{I} F^{\mu \nu, I}+i \sum_{\ell=1}^{15} \bar{\psi}_{\ell} \gamma^{\mu} D_{\mu} \psi_{\ell} \\
& +\quad\left(D_{\mu} \phi\right)^{\dagger}\left(D^{\mu} \phi\right)-\mu^{2} \phi^{\dagger} \phi-\frac{1}{4} \lambda\left(\phi^{\dagger} \phi\right)^{2}
\end{aligned}
$$

$$
+
$$

$$
g_{\mathcal{U}}^{\alpha \beta} \bar{\psi}_{L}^{\mathcal{Q}, \alpha}\left[\mathbf{C} \phi^{*}\right] \psi_{R}^{\mathcal{U}, \beta}+g_{\mathcal{D}}^{\alpha \beta} \bar{\psi}_{L}^{\mathcal{Q}, \alpha} \phi \psi_{R}^{\mathcal{D}, \beta}+g_{\mathcal{E}}^{\alpha \beta} \bar{\psi}_{L}^{\mathcal{L}, \alpha} \phi \psi_{R}^{\mathcal{E}, \beta}+\text { c.c. }
$$

(+ neutrino contributions)

$\left(+F_{\mu \nu} \tilde{F}^{\mu \nu}\right.$ terms $)$

Standard Model Lagrangian

$$
\frac{-\frac{1}{4} \sum_{I=1}^{12} F_{\mu \nu}^{I} F^{\mu \nu, I}+i \sum_{\ell=1}^{15} \bar{\psi}_{\ell} \gamma^{\mu} D_{\mu} \psi_{\ell}}{+\left(D_{\mu} \phi\right)^{\dagger}\left(D^{\mu} \phi\right)-\mu^{2} \phi^{\dagger} \phi-\frac{1}{4} \lambda\left(\phi^{\dagger} \phi\right)^{2}+}
$$

$$
g_{\mathcal{U}}^{\alpha \beta} \bar{\psi}_{L}^{\mathcal{Q}, \alpha}\left[\mathbf{C} \phi^{*}\right] \psi_{R}^{\mathcal{U}, \beta}+g_{\mathcal{D}}^{\alpha \beta} \bar{\psi}_{L}^{\mathcal{Q}, \alpha} \phi \psi_{R}^{\mathcal{D}, \beta}+g_{\mathcal{E}}^{\alpha \beta} \bar{\psi}_{L}^{\mathcal{L}, \alpha} \phi \psi_{R}^{\mathcal{E}, \beta}+\text { с.c. }
$$

(+ neutrino contributions)
$\left(+F_{\mu \nu} \tilde{F}^{\mu \nu}\right.$ terms $)$

Standard Model Lagrangian

$$
\begin{aligned}
& -\frac{1}{4} \sum_{I=1}^{12} F_{\mu \nu}^{I} F^{\mu \nu, I}+i \sum_{\ell=1}^{15} \bar{\psi}_{\ell} \gamma^{\mu} D_{\mu} \psi_{\ell} \\
& +\left(D_{\mu} \phi\right)^{\dagger}\left(D^{\mu} \phi\right)-\mu^{2} \phi^{\dagger} \phi-\frac{1}{4} \lambda\left(\phi^{\dagger} \phi\right)^{2}+
\end{aligned}
$$

$$
g_{\mathcal{U}}^{\alpha \beta} \bar{\psi}_{L}^{\mathcal{Q}, \alpha}\left[\mathbf{C} \phi^{*}\right] \psi_{R}^{\mathcal{U}, \beta}+g_{\mathcal{D}}^{\alpha \beta} \bar{\psi}_{L}^{\mathcal{Q}, \alpha} \phi \psi_{R}^{\mathcal{D}, \beta}+g_{\mathcal{E}}^{\alpha \beta} \bar{\psi}_{L}^{\mathcal{L}, \alpha} \phi \psi_{R}^{\mathcal{E}, \beta}+\text { c.c. }
$$

(+ neutrino contributions)
$\left(+F_{\mu \nu} \tilde{F}^{\mu \nu}\right.$ terms $)$

SUPERSPACE

Extend space-time by four anti-commuting variables

$$
\begin{gathered}
\theta_{\alpha}, \alpha=1,2 \quad \bar{\theta}_{\alpha}, \alpha=1,2 \\
\left\{\theta_{\alpha}, \theta_{\beta}\right\}=0 \\
\left\{\bar{\theta}_{\alpha}, \theta_{\beta}\right\}=0 \\
\left\{\bar{\theta}_{\alpha}, \bar{\theta}_{\beta}\right\}=0
\end{gathered}
$$

$$
\theta^{2} \equiv \theta_{1} \theta_{2}
$$

$$
\bar{\theta}^{2} \equiv \bar{\theta}_{1} \bar{\theta}_{2}
$$

$$
\theta_{1}^{2}=\theta_{2}^{2}=\bar{\theta}_{1}^{2}=\bar{\theta}_{2}^{2}=0
$$

Superspace integrals $\left\{\begin{array}{l}\int d^{4} x d^{2} \theta \\ \int d^{4} x d^{2} \theta d^{2} \bar{\theta} \equiv \int d^{4} x d^{4} \theta\end{array}\right.$

CHIRAL SUPERFIELDS

For each supermultiplet $\left(\phi, \psi_{L}\right)$ define a Chiral Superfield

$$
\begin{aligned}
\phi_{L}(x, \theta)= & \varphi(x)+\sqrt{2} \theta \psi_{L}(x)+\theta^{2} F(x) \\
& F(x): \text { auxiliary field }
\end{aligned}
$$

Conjugate:
$\phi_{L}^{\dagger}(x, \bar{\theta})=\varphi^{*}(x)+\sqrt{2} \bar{\psi}_{L}(x) \bar{\theta}+\bar{\theta}^{2} F^{*}(x)$

CHIRAL SUPERFIELDS

For each supermultiplet $\left(\phi, \psi_{L}\right)$ define a Chiral Superfield

$$
\begin{aligned}
\phi_{L}(x, \theta)= & \varphi(x)+\sqrt{2} \theta \psi_{L}(x)+\theta^{2} F(x)+\text { Nothing } \\
& F(x): \text { auxiliary field }
\end{aligned}
$$

Conjugate:
$\phi_{L}^{\dagger}(x, \bar{\theta})=\varphi^{*}(x)+\sqrt{2} \bar{\psi}_{L}(x) \bar{\theta}+\bar{\theta}^{2} F^{*}(x) \quad+$ Nothing

VECTOR SUPERFIELDS

To describe vector bosons we need an additional kind of superfield

Vector Superfield
$V(x, \theta, \bar{\theta})=-\theta \rho_{\mu} \bar{\theta} V^{\mu}+i \theta^{2} \bar{\theta} \bar{\lambda}-i \bar{\theta}^{2} \theta \lambda+\frac{1}{2} \theta^{2} \bar{\theta}^{2} D$
V^{μ} is a vector boson
λ is a Majorana fermion
D is the auxiliary field
Satisfies $V=V^{\dagger}$

INTERACTIONS

SSM action:

$$
\int d^{4} x\left(d^{2} \theta \mathcal{L}_{F}+\text { c.c }\right)+\int d^{4} x d^{4} \theta \mathcal{L}_{D}
$$

Supersymmetric if and only if
\mathcal{L}_{F} is only a function of θ (and NOT of $\bar{\theta}$)
$\rightarrow \mathcal{L}_{F}$ is a chiral superfield
$\mathcal{L}_{D}=\left(\mathcal{L}_{D}\right)^{\dagger}$
$\rightarrow \mathcal{L}_{D}$ is a vector superfield

Built with Fundamental
Superfields

THE SUPERPOTENTIAL

$$
\text { F-terms } \quad \int d^{4} x\left(d^{2} \theta \mathcal{L}_{F}+\text { c.c }\right)
$$

$d^{2} \theta \equiv$ "Expand in θ and keep only the quadratic terms"
$\mathcal{L}_{F}=$ gauge kinetic terms $+W(\phi)$
(Superpotential)
Superpotential:
$W(\phi)=$ Any polynomial in the superfields
(but NOT their conjugates)
Contains most of the information about couplings

Rules:
Superpotential contains all allowed terms Renormalizability: at most order 3 in superfield

D-TERMS

$$
\begin{aligned}
& \int d^{4} x d^{4} \theta \mathcal{L}_{D} \\
& \mathcal{L}_{D}=\left(\mathcal{L}_{D}\right)^{\dagger}
\end{aligned}
$$

$d^{4} \theta \equiv$ "expand to order $\theta^{2} \bar{\theta}^{2}$ and take its coefficient"
Example
Yields

$$
\mathcal{L}_{D}=\phi^{\dagger} e^{2 g V} \phi
$$

$-\left|D_{\mu} \varphi\right|^{2}-i \psi \sigma^{\mu} D_{\mu} \bar{\psi}+2 i g\left[\varphi^{*} \lambda \psi-\varphi \bar{\lambda} \bar{\psi}\right]+F F^{*}+g \varphi^{*} D \varphi$

EXAMPLE

(Wess-Zumino model + interactions)

A single chiral superfield ϕ, with superpotential

$$
\begin{gathered}
W(\phi)=\frac{1}{2} m \phi^{2}+\frac{1}{3} \lambda \phi^{3} \\
\phi(x, \theta)=\varphi(x)+\sqrt{2} \theta \psi(x)+\theta^{2} F(x)
\end{gathered}
$$

Coefficient of θ^{2} :

$$
m\left(\varphi F-\frac{1}{2} \psi^{2}\right)+\lambda\left(F \varphi^{2}-\varphi \psi^{2}\right)
$$

Kinetic terms (from D-terms)

$$
-\partial_{\mu} \varphi \partial^{\mu} \varphi+i \psi \sigma^{\mu} \partial_{\mu} \bar{\psi}+F F^{*}
$$

ELIMINATION OF AUXILIARY FIELDS

Complete action:
$-\partial_{\mu} \varphi \partial^{\mu} \varphi+i \psi \rho^{\mu} \partial_{\mu} \bar{\psi}+F F^{*}+\left[m\left(\varphi F-\frac{1}{2} \psi^{2}\right)+\lambda\left(F \varphi^{2}-\varphi \psi^{2}\right)+\right.$ c.c $]$

Equation of motion for F :

$$
F=-m \varphi^{*}-\lambda^{*}\left(\varphi^{*}\right)^{2}
$$

Substitute back into action:
$\mathcal{L}=-\partial_{\mu} \varphi \partial^{\mu} \varphi+i \psi \rho^{\mu} \partial_{\mu} \bar{\psi}-\frac{1}{2} m\left(\psi^{2}+\bar{\psi}^{2}\right)-\lambda \varphi \psi^{2}-\lambda^{*} \varphi^{*} \bar{\psi}^{2}-\left|m \varphi+\lambda \varphi^{2}\right|^{2}$

ELIMINATION OF AUXILIARY FIELDS

Complete action:
$-\partial_{\mu} \varphi \partial^{\mu} \varphi+i \psi \rho^{\mu} \partial_{\mu} \bar{\psi}+F F^{*}+\left[m\left(\varphi F-\frac{1}{2} \psi^{2}\right)+\lambda\left(F \varphi^{2}-\varphi \psi^{2}\right)+\right.$ c.c $]$

Equation of motion for F :

$$
F=-m \varphi^{*}-\lambda^{*}\left(\varphi^{*}\right)^{2}
$$

Substitute back into action:

$$
\mathcal{L}=-\partial_{\mu} \varphi \partial^{\mu} \varphi+i \psi \rho^{\mu} \partial_{\mu} \bar{\psi}-\frac{1}{2} m\left(\psi^{2}+\bar{\psi}^{2}\right)-\lambda \varphi \psi^{2}-\lambda^{*} \varphi^{*} \bar{\psi}^{2}-\left|m \varphi+\lambda \varphi^{2}\right|^{2}
$$

Note: Zero electric charge (Majorana mass allowed)

REMARKS

$$
\mathcal{L}=-\partial_{\mu} \varphi \partial^{\mu} \varphi+i \psi \rho^{\mu} \partial_{\mu} \bar{\psi}-\frac{1}{2} m\left(\psi^{2}+\bar{\psi}^{2}\right)-\lambda \varphi \psi^{2}-\lambda^{*} \varphi^{*} \bar{\psi}^{2}-\left|m \varphi+\lambda \varphi^{2}\right|^{2}
$$

9 Scalar and fermion have equal mass
Q Trilinear terms can be read off directly from the superpotential ([scalar][fermion] ${ }^{2}$)

Q Quartic terms derived from cubic and quadratic terms in the superpotential. (no additional parameters).

THE MSSM INTERACTIONS: THE GOOD

Yukawa's

$$
\begin{array}{rll}
\mathcal{L}_{Y}=g_{\mathcal{U}}^{\alpha \beta} \bar{\psi}_{L}^{\mathcal{Q}, \alpha}\left[\mathbf{C} \phi^{*}\right] \psi_{R}^{\mathcal{U}, \beta} & +g_{\mathcal{N}}^{\alpha \beta} \bar{\psi}_{L}^{\mathcal{L}, \alpha}\left[\mathbf{C} \phi^{*}\right] \psi_{R}^{\mathcal{N}, \beta}+ \\
g_{\mathcal{D}}^{\alpha \beta} \bar{\psi}_{L}^{\mathcal{Q}, \alpha} \phi \psi_{R}^{\mathcal{D}, \beta} & +g_{\mathcal{E}}^{\alpha \beta} \bar{\psi}_{L}^{\mathcal{L}, \alpha} \phi \psi_{R}^{\mathcal{E}, \beta}+\text { c.c. }
\end{array}
$$

THE MSSM INTERACTIONS: THE GOOD

Yukawa's

$$
\begin{aligned}
\mathcal{L}_{Y}=g_{\mathcal{U}}^{\alpha \beta} \bar{\psi}_{L}^{\mathcal{Q}, \alpha}\left[\mathbf{C} \phi^{*}\right] \psi_{R}^{\mathcal{U}, \beta} & +g_{\mathcal{N}}^{\alpha \beta} \bar{\psi}_{L}^{\mathcal{L}, \alpha}\left[\mathbf{C} \phi^{*}\right] \psi_{R}^{\mathcal{N}, \beta}+ \\
g_{\mathcal{D}}^{\alpha \beta} \bar{\psi}_{L}^{\mathcal{Q}, \alpha} \phi \psi_{R}^{\mathcal{D}, \beta} & +g_{\mathcal{E}}^{\alpha \beta} \bar{\psi}_{L}^{\mathcal{L}, \alpha} \phi \psi_{R}^{\mathcal{E}, \beta}+\text { c.c. }
\end{aligned}
$$

$$
\begin{array}{rcc}
\left(3,2, \frac{1}{6}\right) & \binom{u_{L}}{d_{L}} & \bar{Q} \\
\left(3^{*}, 1,-\frac{2}{3}\right) & u_{L}^{c} & \mathcal{U} \\
\left(3^{*}, 1, \frac{1}{3}\right) & d_{L}^{c} & \overline{\mathcal{D}} \\
\left(1,2,-\frac{1}{2}\right) & \binom{\nu_{L}}{e_{L}^{-}} & \mathcal{L} \\
(1,1,1) & e_{L}^{+} & \overline{\mathcal{E}} \\
(1,1,0) & \nu_{L}^{c} & \overline{\mathcal{N}}
\end{array}
$$

MSSM INTERACTIONS: THE GOOD

Yukawa's

$$
\begin{array}{rll}
\mathcal{L}_{Y}=g_{\mathcal{U}}^{\alpha \beta} \bar{\psi}_{L}^{\mathcal{Q}, \alpha}\left[\mathbf{C} \phi^{*}\right] \psi_{R}^{\mathcal{U}, \beta} & +g_{\mathcal{N}}^{\alpha \beta} \bar{\psi}_{L}^{\mathcal{L}, \alpha}\left[\mathbf{C} \phi^{*}\right] \psi_{R}^{\mathcal{N}, \beta}+ \\
g_{\mathcal{D}}^{\alpha \beta} \bar{\psi}_{L}^{\mathcal{Q}, \alpha} \phi \psi_{R}^{\mathcal{D}, \beta} & +g_{\mathcal{E}}^{\alpha \beta} \bar{\psi}_{L}^{\mathcal{L}, \alpha} \phi \psi_{R}^{\mathcal{E}, \beta}+\text { c.c. }
\end{array}
$$

\mathcal{Q} : corresponding superfield

MSSM INTERACTIONS: THE GOOD

Yukawa's

$$
\begin{array}{rll}
\mathcal{L}_{Y}=g_{\mathcal{U}}^{\alpha \beta} \bar{\psi}_{L}^{\mathcal{Q}, \alpha}\left[\mathbf{C} \phi^{*}\right] \psi_{R}^{\mathcal{U}, \beta} & +g_{\mathcal{N}}^{\alpha \beta} \bar{\psi}_{L}^{\mathcal{L}, \alpha}\left[\mathbf{C} \phi^{*}\right] \psi_{R}^{\mathcal{N}, \beta}+ \\
g_{\mathcal{D}}^{\alpha \beta} \bar{\psi}_{L}^{\mathcal{Q}, \alpha} \phi \psi_{R}^{\mathcal{D}, \beta} & +g_{\mathcal{E}}^{\alpha \beta} \bar{\psi}_{L}^{\mathcal{L}, \alpha} \phi \psi_{R}^{\mathcal{E}, \beta}+\text { c.c. }
\end{array}
$$

Note: the Higgs field ϕ is needed with and without conjugate

Hence both H_{1} and H_{2} are needed to get all required Yukawa's

$$
\begin{aligned}
& g_{\mathcal{D}} \mathcal{Q} H_{1} \overline{\mathcal{D}}+g_{\mathcal{E}} \mathcal{L} H_{1} \overline{\mathcal{E}} \\
& g_{\mathcal{U}} \mathcal{Q} H_{2} \overline{\mathcal{U}}+g_{\mathcal{N}} \mathcal{L} H_{2} \overline{\mathcal{N}}
\end{aligned}
$$

MSSM INTERACTIONS: THE BAD

Some undesirable terms are also allowed:

$\mathcal{Q} \mathcal{L} \overline{\mathcal{D}} ; \mathcal{L} \mathcal{L} \overline{\mathcal{E}} ; \overline{\mathcal{U}} \overline{\mathcal{U}} \overline{\mathcal{D}} ; \mathcal{L} H_{2}$

Violate Baryon number and/or Lepton number
Not allowed in SM because of odd number of fermions

Disastrous unless very small, or sparticles very heavy

MSSM INTERACTIONS: THE BAD

How to prevent this?
Note that

$$
\mathcal{Q} \mathcal{L} \overline{\mathcal{D}} ; \mathcal{L} \mathcal{L} \overline{\mathcal{E}} ; \overline{\mathcal{U}} \overline{\mathcal{U}} \overline{\mathcal{D}} ; \mathcal{L} H_{2}
$$

Violate B-L.
Hence we may postulate B-L as an exact symmetry of nature (not possible for B and L separately!)
But this would forbid Majorana neutrino masses!
A less restrictive constraint is R-parity

$$
R_{p}=(-1)^{3(B-L)+2 S}
$$

R-PARITY

$$
R_{p}=(-1)^{3(B-L)+2 S}
$$

S: Spin

R-parity
Conservation

SM particles: R-parity + Superpartners: R-parity -

Two important consequences

* Superpartners are pair-produced
* Lightest superpartner is stable (LSP)

MSSM INTERACTIONS: THE UGLY

Another undesirable term

$$
\mu H_{1} H_{2}
$$

This gives an equal mass to Higgses and Higgsinos

$$
\mu^{2}\left(\left|h_{1}\right|^{2}+\left|h_{2}\right|^{2}\right)
$$

Q Natural size: $M_{\text {Planck }}$ or $M_{G U T}$
Problems: (but tectrically natural)
Q Positive definite: No "Mexican hat" (but sury still unbroken)
"The μ problem"

SUPERSYMMETRY BREAKING

At low energy, susy is broken. At high energy it can be:

SUPERSYMMETRY BREAKING

At low energy, susy is broken.
At high energy it can be:

Q A fundamental symmetry of nature

Q Not a fundamental symmetry of nature.

SUPERSYMMETRY BREAKING

At low energy, susy is broken. At high energy it can be:

Q A fundamental symmetry of nature
Then it must be symmetry of gravity as well:
Supergravity.
This symmetry is not a symmetry of the vacuum:
Spontaneous breaking.
Q Not a fundamental symmetry of nature.

SUPERSYMMETRY BREAKING

At low energy, susy is broken. At high energy it can be:

Q A fundamental symmetry of nature
Then it must be symmetry of gravity as well:
Supergravity.
This symmetry is not a symmetry of the vacuum:
Spontaneous breaking.
Q Not a fundamental symmetry of nature.
Accidental low-energy symmetry:
Explicit breaking

SPONTANEOUSLY BROKEN SUPERGRAVITY

Vacuum not invariant:

$$
Q_{\alpha} \mid 0>\neq 0
$$

This would lead to a massless
Goldstone particle in the spectrum;
Because susy is fermionic this particle is fermion:
The Goldstino.

Supergravity implies that supersymmetry is a local symmetry. The gauge boson is a spin- $3 / 2$ particle: The Gravitino.

Symmetry breaking now leads to a Higgs-like mechanism: The Gravitino eats the Goldstino and become massive

SOFT SUSY BREAKING

Parametrization of broken supersymmetry (independent of how it is broken).

Soft supersymmetry breaking term: term in the action that breaks susy, but not its good properties at high energies: "non-renormalization theorems".

In particular, these terms respect the absence of quadratic divergencies for scalar masses:
The hierarchy problem is solved in the technical sense.

ALLOWED SOFT BREAKING TERMS

Allowed:

$m_{i j} \varphi_{i} \varphi_{j}^{*} ; \quad \alpha_{i j} \varphi_{i} \varphi_{j}+$ c.c $; \quad \beta_{i j k} \varphi_{i} \varphi_{j} \varphi_{k}+$ c.c $; \mu(\lambda \lambda+\bar{\lambda} \bar{\lambda})$
λ can be any gaugino in the theory
φ_{i} can be any scalar in the theory
All superpartners plus the Higgs can get a mass after susybreaking, but before $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$ breaking.

Not allowed:
Fourth order scalar terms.

MSSM (2) SOFT BREAKING PARAMETERS

$$
\begin{aligned}
\mathcal{L}_{\mathrm{soft}}= & -\sum_{i} m_{i}^{2}\left|\varphi_{i}\right|^{2} \\
& -\frac{1}{2} \sum_{a} M_{a} \bar{\lambda}_{a} \lambda_{a} \\
& +\left[m_{12}^{2} h_{1} h_{2}+c . c\right] \\
& +\left[g_{\mathcal{U}} A_{\mathcal{U}} \varphi_{\mathcal{Q}} \varphi_{\overline{\mathcal{U}}} h_{2}+g_{\mathcal{N}} A_{\mathcal{N}} \varphi_{\mathcal{L}} \varphi_{\overline{\mathcal{N}}} h_{2}+c . c\right] \\
& +\left[g_{\mathcal{D}} A_{\mathcal{D}} \varphi_{\mathcal{Q}} \varphi_{\overline{\mathcal{D}}} h_{1}+g_{\mathcal{L}} A_{\mathcal{L}} \varphi_{\mathcal{L}} \varphi_{\bar{l}} h_{1}+c . c\right]
\end{aligned}
$$

MSSM (2) SOFT BREAKING PARAMETERS

$$
\begin{array}{rlc}
\mathcal{L}_{\text {soft }}= & -\sum_{i} m_{i}^{2}\left|\varphi_{i}\right|^{2} & (5 \times 9)+2 \\
-\frac{1}{2} \sum_{a} M_{a} \bar{\lambda}_{a} \lambda_{a} & 3 \\
& +\left[m_{12}^{2} h_{1} h_{2}+c . c\right] & 1 \\
& +\left[g_{\mathcal{U}} A_{\mathcal{U}} \varphi_{\mathcal{Q}} \varphi_{\overline{\mathcal{U}}} h_{2}+g_{\mathcal{N}} A_{\mathcal{N}} \varphi_{\mathcal{L}} \varphi_{\overline{\mathcal{N}}} h_{2}+c . c\right] & \\
& +\left[g_{\mathcal{D}} A_{\mathcal{D}} \varphi_{\mathcal{Q}} \varphi_{\overline{\mathcal{D}}} h_{1}+g_{\mathcal{L}} A_{\mathcal{L}} \varphi_{\mathcal{L}} \varphi_{\bar{l}} h_{1}+c . c\right] & 54
\end{array}
$$

Lots of additional parameters(*)
(ii) Ignoring neutrino masses

MSSM (2) SOFT BREAKING PARAMETERS

$$
\begin{array}{rlc}
\mathcal{L}_{\text {soft }}= & -\sum_{i} m_{i}^{2}\left|\varphi_{i}\right|^{2} & (5 \times 9)+2 \\
-\frac{1}{2} \sum_{a} M_{a} \bar{\lambda}_{a} \lambda_{a} & 3 \\
+\left[m_{12}^{2} h_{1} h_{2}+c . c\right] & 1 \\
& +\left[g_{\mathcal{U}} A_{\mathcal{U}} \varphi_{\mathcal{Q}} \varphi_{\overline{\mathcal{U}}} h_{2}+g_{\mathcal{N}} A_{\mathcal{N}} \varphi_{\mathcal{L}} \varphi_{\overline{\mathcal{N}}} h_{2}+c . c\right] & \\
& +\left[g_{\mathcal{D}} A_{\mathcal{D}} \varphi_{\mathcal{Q}} \varphi_{\overline{\mathcal{D}}} h_{1}+g_{\mathcal{L}} A_{\mathcal{L}} \varphi_{\mathcal{L}} \varphi_{\bar{l}} h_{1}+c . c\right] & 54
\end{array}
$$

Lots of additional parameters(*)
But: just a parametrization of an unknown breaking mechanism
(ii) Ignoring neutrino masses

CONSTRAINTS

Just an example: the $\mathrm{K}_{\mathrm{L}}-\mathrm{K}_{\mathrm{S}}$ mass difference

$$
\frac{1}{M^{2}}\left(\frac{\Delta \tilde{m}_{\mathcal{U}}^{2}}{\tilde{m}_{\mathcal{U}}^{2}}\right)<10^{-7} \mathrm{GeV}^{-2}
$$

ADDITIONAL ASSUMPTIONS

To reduce the parameter space often some modelinspired assumptions are made for the parameter values at some high (GUT?) scale.

$$
\begin{gathered}
\left(m_{i}\right)^{2}=\left(m_{0}\right)^{2} \mathbf{1} \quad[\text { Universal scalar mass] } \\
M_{a}=m_{\frac{1}{2}} \quad[\text { Universal gaugino mass] } \\
A_{x}=A m_{0} \mathbf{1} \text { [Universal three-point coupling] }
\end{gathered}
$$

Then there are just 5 additional parameters:

$$
\mu, m_{1 / 2}, m_{0}^{2}, m_{12}^{2} \text { and } A
$$

THE HIGGS SYSTEM

The complete Higgs potential is

$$
\begin{array}{r}
V\left(h_{1}, h_{2}\right)=\mu_{1}^{2}\left|h_{1}\right|^{2}+\mu_{2}^{2}\left|h_{2}\right|^{2}-\left(m_{12}^{2} h_{1} h_{2}+\text { c.c }\right) \\
+\frac{1}{8}\left(g_{1}^{2}+g_{2}^{2}\right)\left(\left|h_{1}\right|^{2}-\left|h_{2}\right|^{2}\right)^{2}+\frac{1}{2} g_{2}^{2}\left|h_{1}^{\dagger} h_{2}\right|^{2}
\end{array}
$$

h_{i} : Scalar in Higgs superfield H_{i}
$\mu_{i}^{2}=|\mu|^{2}+m_{h_{i}}^{2}$
g_{i} : Gauge coupling
$m_{h_{i}}^{2}$ can be negative

THE HIGGS SYSTEM

The complete Higgs potential is

$$
\begin{array}{r}
V\left(h_{1}, h_{2}\right)=\mu_{1}^{2}\left|h_{1}\right|^{2}+\mu_{2}^{2}\left|h_{2}\right|^{2}-\left(m_{12}^{2} h_{1} h_{2}+\text { c.c }\right) \\
+\frac{1}{8}\left(g_{1}^{2}+g_{2}^{2}\right)\left(\left|h_{1}\right|^{2}-\left|h_{2}\right|^{2}\right)^{2}+\frac{1}{2} g_{2}^{2}\left|h_{1}^{\dagger} h_{2}\right|^{2}
\end{array}
$$

h_{i} : Scalar in Higgs superfield H_{i}
$\mu_{i}^{2}=|\mu|^{2}+m_{h_{i}}^{2}$
F-terms
g_{i} : Gauge coupling
$m_{h_{i}}^{2}$ can be negative

THE HIGGS SYSTEM

The complete Higgs potential is

$$
\begin{array}{r}
V\left(h_{1}, h_{2}\right)=\mu_{1}^{2}\left|h_{1}\right|^{2}+\mu_{2}^{2}\left|h_{2}\right|^{2}-\left(m_{12}^{2} h_{1} h_{2}+\text { c.c }\right) \\
\begin{array}{|}
+\frac{1}{8}\left(g_{1}^{2}+g_{2}^{2}\right)\left(\left|h_{1}\right|^{2}-\left|h_{2}\right|^{2}\right)^{2}+\frac{1}{2} g_{2}^{2}\left|h_{1}^{\dagger} h_{2}\right|^{2} \\
\text { D-terms }
\end{array}
\end{array}
$$

h_{i} : Scalar in Higgs superfield H_{i}
$\mu_{i}^{2}=|\mu|^{2}+m_{h_{i}}^{2}$
g_{i} : Gauge coupling
$m_{h_{i}}^{2}$ can be negative

THE HIGGS SYSTEM

The complete Higgs potential is

$$
\begin{array}{r}
V\left(h_{1}, h_{2}\right)=\mu_{1}^{2}\left|h_{1}\right|^{2}+\mu_{2}^{2}\left|h_{2}\right|^{2}-\left(m_{12}^{2} h_{1} h_{2}+\text { c.c }\right) \\
+\frac{1}{8}\left(g_{1}^{2}+g_{2}^{2}\right)\left(\left|h_{1}\right|^{2}-\left|h_{2}\right|^{2}\right)^{2}+\frac{1}{2} g_{2}^{2}\left|h_{1}^{\dagger} h_{2}\right|^{2}
\end{array}
$$

h_{i} : Scalar in Higgs superfield H_{i}
$\mu_{i}^{2}=|\mu|^{2}+m_{h_{i}}^{2}$
g_{i} : Gauge coupling
$m_{h_{i}}^{2}$ can be negative

Higgs Alignment

$$
\begin{aligned}
H_{1}:\left(1,2,-\frac{1}{2}\right) & \left\langle h_{1}\right\rangle=\frac{1}{\sqrt{2}}\binom{v_{1}}{0} \\
H_{2}:\left(1,2, \frac{1}{2}\right) & \left\langle h_{2}\right\rangle=\frac{1}{\sqrt{2}}\binom{0}{v_{2}}
\end{aligned}
$$

$$
T_{3}+Y=0
$$

h_{1} direction is irrelevant
h_{2} direction with respect to h_{1} is relevant:
If not exactly aligned, the photon is massive!

Higgs Alignment

$$
\begin{aligned}
H_{1}:\left(1,2,-\frac{1}{2}\right) & \left\langle h_{1}\right\rangle=\frac{1}{\sqrt{2}}\binom{v_{1}}{0} \\
H_{2}:\left(1,2, \frac{1}{2}\right) & \left\langle h_{2}\right\rangle=\frac{1}{\sqrt{2}}\binom{0}{v_{2}}
\end{aligned}
$$

$$
T_{3}+Y=0
$$

h_{1} direction is irrelevant
h_{2} direction with respect to h_{1} is relevant:
If not exactly aligned, the photon is massive!

Higgs Alignment

$$
\begin{aligned}
H_{1}:\left(1,2,-\frac{1}{2}\right) & \left\langle h_{1}\right\rangle=\frac{1}{\sqrt{2}}\binom{v_{1}}{0} \\
H_{2}:\left(1,2, \frac{1}{2}\right) & \left\langle h_{2}\right\rangle=\frac{1}{\sqrt{2}}\binom{0}{v_{2}}
\end{aligned}
$$

$$
T_{3}+Y=0
$$

h_{1} direction is irrelevant
h_{2} direction with respect to h_{1} is relevant:
If not exactly aligned, the photon is massive!

HIGGS ALIGNMENT

Parametrize the h_{2} direction

$$
\left\langle h_{2}\right\rangle=\frac{1}{\sqrt{2}}\binom{v_{2} e^{i \alpha} \sin \gamma}{v_{2} e^{i \eta} \cos \gamma}
$$

Then:

$$
\begin{aligned}
V\left(v_{1}, v_{2}, \alpha, \eta, \gamma\right)= & \mu_{1}^{2} v_{1}^{2}+\mu_{2}^{2} v_{2}^{2}-2 m_{12}^{2} v_{1} v_{2} \cos \eta \cos \gamma \\
& +\frac{1}{8}\left(g_{1}^{2}+g_{2}^{2}\right)\left(v_{1}^{2}-v_{2}^{2}\right)^{2}+\frac{1}{2} g_{2}^{2} g_{2}^{2} v_{1}^{2} v_{2}^{2} \sin ^{2} \gamma
\end{aligned}
$$

Minimum: $\sin \gamma=0$
(not true for general two-Higgs potential)

RADIATIVE BREAKING

$$
\begin{array}{r}
V\left(h_{1}, h_{2}\right)=\mu_{1}^{2}\left|h_{1}\right|^{2}+\mu_{2}^{2}\left|h_{2}\right|^{2}-\left(m_{12}^{2} h_{1} h_{2}+\text { c.c }\right) \\
+\frac{1}{8}\left(g_{1}^{2}+g_{2}^{2}\right)\left(\left|h_{1}\right|^{2}-\left|h_{2}\right|^{2}\right)^{2}+\frac{1}{2} g_{2}^{2}\left|h_{1}^{\dagger} h_{2}\right|^{2}
\end{array}
$$

Flat direction in quartic potential: $\quad h_{2}=e^{i \alpha} C h_{1}^{\dagger}$

$$
\left(h C h \equiv h_{i} \epsilon_{i j} h_{j}=0\right)
$$

Quadratic terms:

$$
\begin{aligned}
& \left(\mu_{1}^{2}+\mu_{2}^{2}-2 m_{12}^{2} \cos \alpha\right)\left|h_{1}\right|^{2} \\
& \mu_{1}^{2}+\mu_{2}^{2} \geq 2\left|m_{12}^{2}\right| \\
& \left|m_{12}^{2}\right|^{2}>\mu_{1}^{2} \mu_{2}^{2}
\end{aligned}
$$

Negative determinant:
Incompatible if $\mu_{1}=\mu_{2} \quad$ (universal scalar masses)

RADIATIVE BREAKING

At some large scale:

$$
m_{h_{1}}=m_{h_{2}}=m_{0} \quad \rightarrow \quad \mu_{1}=\mu_{2}
$$

Then both masses start running separately

h_{2} couples to t h_{1} couples to b

PHYSICAL HIGGSES

h_{1}, h_{2} : Eight real d.o.f.
Three are "eaten" by W, Z
Hence five massive scalars left (vs. just one in SM).
Electric charges per Higgs: $2 \times 0,+1,-1$

Charged Higges: two are eaten, two survive: $\mathrm{H}^{+}, \mathrm{H}^{-}$
Neutral Higges: Common phase is eaten; Scales and relative phase survive: h_{0}, H_{0}, A_{0}

PHYSICAL HIGGSES

$$
\begin{array}{r}
V\left(h_{1}, h_{2}\right)=\mu_{1}^{2}\left|h_{1}\right|^{2}+\mu_{2}^{2}\left|h_{2}\right|^{2}-\left(m_{12}^{2} h_{1} h_{2}+\text { c.c }\right) \\
+\frac{1}{8}\left(g_{1}^{2}+g_{2}^{2}\right)\left(\left|h_{1}\right|^{2}-\left|h_{2}\right|^{2}\right)^{2}+\frac{1}{2} g_{2}^{2}\left|h_{1}^{\dagger} h_{2}\right|^{2}
\end{array}
$$

Invariant under $h_{i} \rightarrow h_{i}^{\dagger}$
Provided m_{12}^{2} is real (can be chosen real w.l.o.g.)
This symmetry can be extended to an approximate CP symmetry of the full Lagrangian.

Neutral mass eigenstates are approximate CP eigenstates

Physical Higgses

$$
\begin{array}{r}
V\left(h_{1}, h_{2}\right)=\mu_{1}^{2}\left|h_{1}\right|^{2}+\mu_{2}^{2}\left|h_{2}\right|^{2}-\left(m_{12}^{2} h_{1} h_{2}+\text { c.c }\right) \\
+\frac{1}{8}\left(g_{1}^{2}+g_{2}^{2}\right)\left(\left|h_{1}\right|^{2}-\left|h_{2}\right|^{2}\right)^{2}+\frac{1}{2} g_{2}^{2}\left|h_{1}^{\dagger} h_{2}\right|^{2}
\end{array}
$$

Relative phase: Odd under CP, massless if $m_{12}^{2}=0$

$$
\begin{gathered}
m_{A^{0}}^{2}=\frac{m_{12}^{2}}{\cos \beta \sin \beta} \\
\tan \beta \equiv \frac{v_{2}}{v_{1}}
\end{gathered}
$$

Charged Higgs masses

$$
M_{\mathrm{w}}^{2}+m_{A^{0}}^{2}
$$

Physical Higgses

$$
\begin{array}{r}
V\left(h_{1}, h_{2}\right)=\mu_{1}^{2}\left|h_{1}\right|^{2}+\mu_{2}^{2}\left|h_{2}\right|^{2}-\left(m_{12}^{2} h_{1} h_{2}+\text { c.c }\right) \\
+\frac{1}{8}\left(g_{1}^{2}+g_{2}^{2}\right)\left(\left|h_{1}\right|^{2}-\left|h_{2}\right|^{2}\right)^{2}+\frac{1}{2} g_{2}^{2}\left|h_{1}^{\dagger} h_{2}\right|^{2}
\end{array}
$$

Relative phase: Odd under CP, massless if $m_{12}^{2}=0$

$$
\begin{gathered}
m_{A^{0}}^{2}=\frac{m_{12}^{2}}{\cos \beta \sin \beta} \\
\tan \beta \equiv \frac{v_{2}}{v_{1}}
\end{gathered}
$$

Charged Higgs masses

$$
M_{\mathrm{w}}^{2}+m_{A^{0}}^{2}
$$

Physical Higgses

Neutral, CP even
$m_{H^{0}, h^{0}}^{2}=\frac{1}{2}\left(m_{A^{0}}^{2}+M_{\mathrm{Z}}^{2} \pm \sqrt{\left(m_{A^{0}}^{2}+M_{\mathrm{Z}}^{2}\right)^{2}-4 m_{A^{0}}^{2} M_{\mathrm{Z}}^{2} \cos ^{2} 2 \beta}\right)$

Lightest one has mass below M_{Z}
Loop corrections (due to top quark loops)

$$
\begin{gathered}
\Delta M^{2}=\frac{3}{8 \pi^{2}} \frac{g_{2}^{2} m_{t}^{4}}{M_{\mathrm{w}}^{2} \sin ^{2} \beta} \log \left(1+\frac{m_{0}^{2}}{m_{t}^{2}}\right) \\
M_{h_{0}}<135 \mathrm{GeV}
\end{gathered}
$$

Coupling Constant Unification

Coupling Constant Unification

SPLIT SUPERSYMMETRY

SPLIT SUPERSYMMETRY

Q Hierarchy Problem
9 Dark Matter
9 Coupling Constant Convergence

SPLIT SUPERSYMMETRY

Q Hierarchy Problem
9 Dark Matter
9 Coupling Constant Convergence

Gauginos, sFermions
GGauginos
GGaginos

SPLIT SUPERSYMMETRY

9 Hierarar
9 Dark Matter
9 Coupling Constant Convergence

GGauginos
GGauginos

SUSY AT HADRON COLLIDERS

Boselab

Experimental Consequences of Supersymmetry

```
10:00 C. Zachos - Introduction to Supersymmetry P.I
11:00 T. Taylur - Proton Decay. P. }1
    1:30' S. Dawson - Limits on Superparticles
                                    P. }2
    2:30 R. Huerta - Electron-Positron Collisions
                            P. }5
4:00 A. Schellekens - Hadron-Hadron' Colliders
P.63
```


CONCLUSION

