ACADEMIC LECTURES

BEYOND THE STANDARD MODEL

SUPERSYMMETRY

SUPERSYMMETRY

A symmetry between fermions and bosons

DE-MOTIVATIONS

- * No mass degeneracies among SM-particles with different spin: Not an exact symmetry.
- *No SM-particles are each others partners: Doubling of the spectrum.
- Even that is not enough;Two Higgses are needed.
- *Nucleon stability is not automatic.
- Huge number of parameters.

MOTIVATIONS

Nice

Finiteness

String Theory

WHierarchy problem

QDark Matter

Coupling constant convergence

MOTIVATIONS

Nice

GFiniteness

String Theory

Hierarchy problem

QDark Matter

Coupling constant convergence

Confidence

∼10%

~10%

~15%

∼20%

THE HIERARCHY PROBLEM

Loop correction to scalar masses

$$m_{\rm phys}^2 = m_{\rm bare}^2 + g\Lambda^2 << \Lambda^2$$

Fine tuning

FERMIONS VS. SCALARS

+

+

Fermion

Scalar

 $\delta_m \propto g^2 m \log(\Lambda/m)$

2000

 $\delta_m = q\Lambda^2$

How does Susy solve this?

+

+

Fermion-Boson cancellation (if couplings match)

TECHNICAL NATURALNESS

Dirac Naturalness: Parameters should be of order 1 in natural units.

* 't Hooft naturalness (Technical Naturalness): A parameter is naturally small if setting it to zero enhances the symmetry of the theory.

NATURALNESS

Some examples

Natural: $\frac{m_{\rm top}}{M_Z}$

Unnatural, but technically natural:

 $i\bar{\psi}_L \gamma^\mu D_\mu \psi_L + i\bar{\psi}_R \gamma^\mu D_\mu \psi_R + m\bar{\psi}_L \psi_R + m\bar{\psi}_R \psi_L$ for m = 0 we can rotate ψ_L and ψ_R by *separate* phases (chiral symmetry)

 m_e

 m_{τ}

Unnatural (by any definition) m_Z (In SM + gravity) m_{Planck}

SUSY & THE HIERARCHY PROBLEM

- A priori, supersymmetry *only* solves the *technical* naturalness problem.
- It does not explain why M_{weak} is much smaller than M_{planck}.
 (cf. QCD and "dimensional transmutation")
- In fact, susy has a Higgs mass parameter that is unnatural (but technically natural): µ
- In supersymmetric theories additional mechanisms exist that do explain this ratio (require large M_{top}).
- Cosmological constant hierarchy problem much worse, and not solved by Susy

SUSY & THE HIERARCHY PROBLEM

- A priori, supersymmetry *only* solves the *technical* naturalness problem.
- It does not explain why M_{weak} is much smaller than M_{planck}.
 (cf. QCD and "dimensional transmutation")
- In fact, susy has a Higgs mass parameter that is unnatural (but technically natural): µ
- In supersymmetric theories additional mechanisms exist that do explain this ratio (require large M_{top}).
- Cosmological constant hierarchy problem much worse, and not solved by Susy

Does this justify (more than) doubling the particle spectrum?

THE WESS-ZUMINO MODEL

 $\mathcal{L} = \mathcal{L}_{boson} + \mathcal{L}_{fermion}$

 $\mathcal{L}_{\rm boson} = \eta^{\mu\nu} \partial_{\mu} \phi^{\dagger} \partial_{\nu} \phi$

 $\mathcal{L}_{\text{fermion}} = i\psi\bar{\sigma}^{\mu}\partial_{\mu}\psi$

 $\sigma^{\mu} = (1, \vec{\tau})$ $\bar{\sigma}^{\mu} = (1, -\vec{\tau})$

 $\gamma^5 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ $\gamma^{\mu} = \begin{pmatrix} 0 & -i\sigma^{\mu} \\ -i\bar{\sigma}^{\mu} & 0 \end{pmatrix}$

Free complex boson + left-handed (Weyl)fermion

Susy transformation on the scalar (ψ is a 2-component spinor)

$$\delta_{\varepsilon}\phi = \sqrt{2}\varepsilon\psi \equiv \sqrt{2}\varepsilon^{\alpha}\psi_{\alpha}$$

 ϵ is a constant spinor

$$\delta_{\varepsilon} \mathcal{L}_{\text{scalar}} = \sqrt{2} \left(\varepsilon \partial^{\mu} \psi \partial_{\mu} \phi^{\dagger} + \bar{\varepsilon} \partial^{\mu} \bar{\psi} \partial_{\mu} \phi \right)$$

Now we look for a transformation of the fermion Lagrangian to cancel this; let us try

$$\delta_{\varepsilon}\psi_{\alpha} = i\lambda(\sigma^{\mu}\bar{\varepsilon})_{\alpha}\partial_{\mu}\phi = i\lambda\sigma^{\mu}_{\alpha\dot{\beta}}\bar{\varepsilon}^{\dot{\beta}}\partial_{\mu}\phi$$

$$\delta_{\varepsilon} \mathcal{L}_{\text{fermion}} = \lambda (\varepsilon \sigma^{\mu} \partial_{\mu} \phi^{\dagger} \bar{\sigma}^{\nu} \partial_{\nu} \psi - \bar{\psi} \bar{\sigma}^{\mu} \sigma^{\nu} \bar{\varepsilon} \partial_{\mu} \partial_{\nu} \phi) = \lambda (-\varepsilon \sigma^{\mu} \bar{\sigma}^{\nu} \psi \partial_{\mu} \partial_{\nu} \phi^{\dagger} - \bar{\psi} \bar{\sigma}^{\mu} \sigma^{\nu} \bar{\varepsilon} \partial_{\mu} \partial_{\nu} \phi)$$

Because of the symmetric appearance of the derivatives we may replace $[\sigma^{\mu}\bar{\sigma}^{\nu}]^{\beta}_{\alpha}$ by

$$\frac{1}{2} [\sigma^{\mu} \bar{\sigma}^{\nu} + \sigma^{\nu} \bar{\sigma}^{\mu}]^{\beta}_{\alpha} = \eta^{\mu\nu} \delta^{\beta}_{\alpha}$$

Cancels bosonic variation if

$$\lambda = -\sqrt{2}$$

SUSY TRANSFORMATIONS

 $\delta_{\varepsilon}\phi = \sqrt{2}\varepsilon\psi \equiv \sqrt{2}\varepsilon^{\alpha}\psi_{\alpha}$ $\delta_{\varepsilon}\psi_{\alpha} = -i\sqrt{2}\sigma^{0}(\sigma^{\mu}\bar{\varepsilon})_{\alpha}\partial_{\mu}\phi$

Define an operator that generates this transformation on all fields

$$\left(\varepsilon Q + \bar{Q}\bar{\varepsilon}\right)X = \delta_{\varepsilon}X$$
$$X = \phi \text{ or } \psi$$

SUSY COMMUTATOR

 $\left[\varepsilon_1 Q + \bar{Q}\bar{\varepsilon}_1, \varepsilon_2 Q + \bar{Q}\bar{\varepsilon}_2\right] = -2i(\varepsilon_2 \sigma^{\mu}\bar{\epsilon}_1 - \varepsilon_1 \sigma^{\mu}\bar{\epsilon}_2)\partial_{\mu}$

Or, equivalently

 $\{Q_{\alpha}, \bar{Q}_{\dot{\alpha}}\} = 2i\sigma^{\mu}_{\alpha\dot{\alpha}}\partial_{\mu}$

SUSY ÅLGEBRA

 $[Q_{\alpha}, P_{\mu}] = 0$ $\{Q_{\alpha}, Q_{\beta}\} = 0$ $\{\bar{Q}_{\dot{\alpha}}, \bar{Q}_{\dot{\beta}}\} = 0$ $\{Q_{\alpha}, \bar{Q}_{\dot{\beta}}\} = 2\sigma^{\mu}_{\alpha\dot{\beta}}P_{\mu}$

Non-trivial extension of the Poincaré Algebra.

VACUUM ENERGY

 $\{Q_{\alpha}, \bar{Q}_{\dot{\beta}}\} = 2\sigma^{\mu}_{\alpha\dot{\beta}}P_{\mu}$ Implies: $H = P^{0} = \frac{1}{4}(\bar{Q}_{1}Q_{1} + Q_{1}\bar{Q}_{1} + \bar{Q}_{2}Q_{2} + Q_{2}\bar{Q}_{2})$ Therefore

 $\langle \Psi | H | \Psi \rangle = \frac{1}{4} (|Q_1 | \Psi \rangle |^2 + |\bar{Q}_1 | \Psi \rangle |^2) + |Q_2 | \Psi \rangle |^2 + |\bar{Q}_2 | \Psi \rangle |^2)$

If the vacuum is supersymmetric

 $Q_{\alpha} |0\rangle = \bar{Q}_{\dot{\alpha}} |0\rangle = 0 \qquad \longrightarrow \qquad \langle 0| H |0\rangle = 0$

Vacuum energy is \pm^{∞} in non-supersymmetric QFT

SUPERMULTIPLETS

Chiral Multiplet(*)complex scalar + left-handed fermion

Vector MultipletVector + Majorana fermion

Graviton Multiplet Graviton + Gravitino

(*)CPT-Conjugate: complex scalar + right-handed fermion [not needed]

(EXTENDED SUPERSYMMETRY)

$$Q^i_{\alpha}; \quad i=1,\ldots N$$

Generates larger multiplets.

- ☑ N=1: previous slide.
- N=2: smallest multiplet has two complex scalars, plus a left and a right-handed spinor. Non-chiral!
- N=4: smallest multiplet contains a vector, six complex scalars plus four left- and right-handed spinors. Finite!
- N=8: smallest multiplet contains graviton.
- ☑ N>8: smallest multiplet contains spin 5/2

SUPERMULTIPLETS (N=1)

Chiral Multiplet(*)complex scalar + left-handed fermion

Vector MultipletVector + Majorana fermion

Graviton Multiplet
 Graviton + Gravitino

(*)CPT-Conjugate: complex scalar + right-handed fermion [not needed]

PHYSICAL STATE COUNTING

Туре	Example	# d.o.f
Real Scalar	π^0	1
Complex Scalar	π^+,π^-	2
Dirac fermion	$e_L^-, e_R^-, e_L^+, e_R^+$	4
Weyl fermion	$e_L^-, e_R^+ \text{ (mass = 0)}$	2
Majorana fermion	$\nu_R, \nu_L^c (\text{charge} = 0)$	2
Vector boson	photon	2
Gravitino		2
Graviton		2

THE SSM

SM particle	SSM partner	Multiplet
$e_L^ (l_L^-)$	selectron ₁ (slepton ₁)	Chiral
e_L^+ (l_L^+)	selectron ₂ (slepton ₂)	Chiral
q_L	squark1	Chiral
q_R	squark ₂	Chiral
photon	photino (Majorana fermion)	Vector
gluon	gluino (Eight Majorana fermions)	Vector
W^+, W^-, Z	Wino [±] , Zino (Three Majorana fermions)	Vector
Higgs	???	Chiral

 $\phi: (1,2,\frac{1}{2}) \rightarrow \text{Weyl fermion}(1,2,\frac{1}{2})_L$ $\downarrow \text{CPT}$ $\phi^*: (1,2,-\frac{1}{2}) \rightarrow \text{Weyl fermion}(1,2,-\frac{1}{2})_L$

 $\phi: (1, 2, \frac{1}{2}) \rightarrow \text{Weyl fermion}(1, 2, \frac{1}{2})_L$ $\downarrow \text{CPT}$ $\phi^*: (1, 2, -\frac{1}{2}) \rightarrow \text{Weyl fermion}(1, 2, -\frac{1}{2})_L$

 $\phi: (1, 2, \frac{1}{2}) \rightarrow \text{Weyl fermion}(1, 2, \frac{1}{2})_L$ CPT

 $\phi^*: (1,2,-\frac{1}{2}) \to \text{Weyl fermion}(1,2,-\frac{1}{2})_L$

Two distinct options for supermultiplet of SM Higgs

$$\phi: (1,2,\frac{1}{2}) \rightarrow \text{Weyl fermion}(1,2,\frac{1}{2})_L$$

CPT

 $\phi^*: (1,2,-\frac{1}{2}) \to \text{Weyl fermion}(1,2,-\frac{1}{2})_L$

or

 H_2

 H_1

Two distinct options for supermultiplet of SM Higgs

Both are needed to cancel anomalies

THE MSSM (1)

MSSM spectrum:

Quarks + sQuarks
 Leptons+sLeptons
 Gauge bosons + gauginos
 H₁,H₂ + Higgsinos
 • NOTHING

INTERACTIONS

SSM action:

 $\int d^4x (d^2\theta \mathcal{L}_F + c.c) + \int d^4x d^4\theta \mathcal{L}_D$

"F-terms"

"D-terms"

Origin of:

Most interactions; Gauge kinetic terms Scalar and fermion kinetic terms and their gauge couplings

Hard

$$-\frac{1}{4} \sum_{I=1}^{12} F^{I}_{\mu\nu} F^{\mu\nu,I}$$

$$i\sum_{\ell=1}^{15} \bar{\psi}_{\ell} \gamma^{\mu} D_{\mu} \psi_{\ell}$$

$$- (D_{\mu}\phi)^{\dagger}(D^{\mu}\phi) - \mu^{2}\phi^{\dagger}\phi - \frac{1}{4}\lambda(\phi^{\dagger}\phi)^{2}$$

 $g_{\mathcal{U}}^{\alpha\beta}\bar{\psi}_{L}^{\mathcal{Q},\alpha} \ [\mathbf{C}\phi^{*}]\psi_{R}^{\mathcal{U},\beta} + g_{\mathcal{D}}^{\alpha\beta}\bar{\psi}_{L}^{\mathcal{Q},\alpha}\phi\psi_{R}^{\mathcal{D},\beta} + g_{\mathcal{E}}^{\alpha\beta}\bar{\psi}_{L}^{\mathcal{L},\alpha}\phi\psi_{R}^{\mathcal{E},\beta} + \text{c.c.}$

(+ neutrino contributions)

 $(+F_{\mu\nu}\tilde{F}^{\mu\nu} \text{ terms})$

$$-\frac{1}{4} \sum_{I=1}^{12} F^{I}_{\mu\nu} F^{\mu\nu,I} + i \sum_{\ell=1}^{15} \bar{\psi}_{\ell} \gamma^{\mu} D_{\mu} \psi_{\ell}$$

+ $(D_{\mu}\phi)^{\dagger} (D^{\mu}\phi) - \frac{\mu^{2} \phi^{\dagger} \phi}{4} - \frac{1}{4} \lambda (\phi^{\dagger}\phi)^{2} +$

$$g_{\mathcal{U}}^{\alpha\beta}\bar{\psi}_{L}^{\mathcal{Q},\alpha} \ [\mathbf{C}\phi^{*}]\psi_{R}^{\mathcal{U},\beta} + g_{\mathcal{D}}^{\alpha\beta}\bar{\psi}_{L}^{\mathcal{Q},\alpha}\phi\psi_{R}^{\mathcal{D},\beta} + g_{\mathcal{E}}^{\alpha\beta}\bar{\psi}_{L}^{\mathcal{L},\alpha}\phi\psi_{R}^{\mathcal{E},\beta} + \text{c.c.}$$

(+ neutrino contributions)

$$(+F_{\mu\nu}\tilde{F}^{\mu\nu} \text{ terms})$$

$$-\frac{1}{4} \sum_{I=1}^{12} F^{I}_{\mu\nu} F^{\mu\nu,I} + i \sum_{\ell=1}^{15} \bar{\psi}_{\ell} \gamma^{\mu} D_{\mu} \psi_{\ell}$$

+ $(D_{\mu}\phi)^{\dagger} (D^{\mu}\phi) - \mu^{2} \phi^{\dagger} \phi - \frac{1}{4} \lambda (\phi^{\dagger}\phi)^{2} +$

$$g_{\mathcal{U}}^{\alpha\beta}\bar{\psi}_{L}^{\mathcal{Q},\alpha} \left[\mathbf{C}\phi^{*}\right]\psi_{R}^{\mathcal{U},\beta} + g_{\mathcal{D}}^{\alpha\beta}\bar{\psi}_{L}^{\mathcal{Q},\alpha}\phi\psi_{R}^{\mathcal{D},\beta} + g_{\mathcal{E}}^{\alpha\beta}\bar{\psi}_{L}^{\mathcal{L},\alpha}\phi\psi_{R}^{\mathcal{E},\beta} + \text{c.c.}$$

(+ neutrino contributions)

$$(+F_{\mu\nu}\tilde{F}^{\mu\nu} \text{ terms})$$

$$-\frac{1}{4} \sum_{I=1}^{12} F_{\mu\nu}^{I} F^{\mu\nu,I} + i \sum_{\ell=1}^{15} \bar{\psi}_{\ell} \gamma^{\mu} D_{\mu} \psi_{\ell}$$

+ $(D_{\mu} \phi)^{\dagger} (D^{\mu} \phi) - \mu^{2} \phi^{\dagger} \phi - \frac{1}{4} \lambda (\phi^{\dagger} \phi)^{2} +$

$$g_{\mathcal{U}}^{\alpha\beta}\bar{\psi}_{L}^{\mathcal{Q},\alpha} \ [\mathbf{C}\phi^{*}]\psi_{R}^{\mathcal{U},\beta} + g_{\mathcal{D}}^{\alpha\beta}\bar{\psi}_{L}^{\mathcal{Q},\alpha}\phi\psi_{R}^{\mathcal{D},\beta} + g_{\mathcal{E}}^{\alpha\beta}\bar{\psi}_{L}^{\mathcal{L},\alpha}\phi\psi_{R}^{\mathcal{E},\beta} + \text{c.c.}$$

(+ neutrino contributions)

$$(+F_{\mu\nu}\tilde{F}^{\mu\nu} \text{ terms})$$

SUPERSPACE

Extend space-time by four anti-commuting variables

 $\theta_{\alpha}, \alpha = 1, 2$ $\theta_{\alpha}, \alpha = 1, 2$ (Spinor index) $\{\theta_{\alpha}, \theta_{\beta}\} = 0$ $\{\theta_{\alpha}, \theta_{\beta}\} = 0$ $\{\bar{\theta}_{\alpha},\bar{\theta}_{\beta}\}=0$ $\theta^2 \equiv \theta_1 \theta_2$ $\theta_1^2 = \theta_2^2 = \bar{\theta}_1^2 = \bar{\theta}_2^2 = 0$ $\bar{\theta}^2 \equiv \bar{\theta}_1 \bar{\theta}_2$ Superspace integrals $\begin{cases} \int d^4x d^2\theta \\ \int d^4x d^2\theta d^2\bar{\theta} \equiv \int d^4x d^4\theta \end{cases}$
CHIRAL SUPERFIELDS

For each supermultiplet (ϕ, ψ_L) define a *Chiral Superfield*

$$\phi_L(x,\theta) = \varphi(x) + \sqrt{2\theta}\psi_L(x) + \theta^2 F(x)$$

$$F(x): \text{ auxiliary field}$$

Conjugate: $\phi_L^{\dagger}(x,\bar{\theta}) = \varphi^*(x) + \sqrt{2}\bar{\psi}_L(x)\bar{\theta} + \bar{\theta}^2 F^*(x)$

CHIRAL SUPERFIELDS

For each supermultiplet (ϕ, ψ_L) define a *Chiral Superfield*

$$\phi_L(x,\theta) = \varphi(x) + \sqrt{2\theta}\psi_L(x) + \theta^2 F(x) + \text{Nothing}$$

$$F(x): \text{ auxiliary field}$$

Conjugate: $\phi_L^{\dagger}(x,\bar{\theta}) = \varphi^*(x) + \sqrt{2}\bar{\psi}_L(x)\bar{\theta} + \bar{\theta}^2 F^*(x) + \text{Nothing}$

VECTOR SUPERFIELDS

To describe vector bosons we need an additional kind of superfield

Vector Superfield

 $V(x,\theta,\bar{\theta}) = -\theta \rho_{\mu} \bar{\theta} V^{\mu} + i\theta^2 \bar{\theta} \bar{\lambda} - i\bar{\theta}^2 \theta \lambda + \frac{1}{2} \theta^2 \bar{\theta}^2 D$ $V^{\mu} \text{ is a vector boson}$ $\lambda \text{ is a Majorana fermion}$ D is the auxiliary field

Satisfies $V = V^{\dagger}$

INTERACTIONS

SSM action:

 $\int d^4x (d^2\theta \mathcal{L}_F + c.c) + \int d^4x d^4\theta \mathcal{L}_D$

Supersymmetric if and only if \mathcal{L}_F is only a function of θ (and NOT of $\overline{\theta}$) $\rightarrow \mathcal{L}_F$ is a chiral superfield $\mathcal{L}_D = (\mathcal{L}_D)^{\dagger}$ $\rightarrow \mathcal{L}_D$ is a vector superfield Built with Fundamental Superfields

THE SUPERPOTENTIAL

F-terms
$$\int d^4x (d^2\theta \mathcal{L}_F + c.c)$$

 $d^2\theta \equiv$ "Expand in θ and keep only the quadratic terms" $\mathcal{L}_F =$ gauge kinetic terms + $W(\phi)$ (Superpotential)

Superpotential: $W(\phi) = \text{Any polynomial in the superfields}$ (but NOT their conjugates) Contains most of the information about couplings

Superpotential contains all allowed terms Renormalizability: at most order 3 in superfield

D-TERMS

 $\int d^4x d^4\theta \mathcal{L}_D$

 $\mathcal{L}_D = (\mathcal{L}_D)^{\dagger}$

 $d^4\theta \equiv$ "expand to order $\theta^2 \bar{\theta}^2$ and take its coefficient" Example

Yields

$$\mathcal{L}_D = \phi^{\dagger} e^{2gV} \phi$$

$$-|D_{\mu}\varphi|^{2} - i\psi\sigma^{\mu}D_{\mu}\bar{\psi} + 2ig[\varphi^{*}\lambda\psi - \varphi\bar{\lambda}\bar{\psi}] + FF^{*} + g\varphi^{*}D\varphi$$

A single chiral superfield ϕ , with superpotential

$$W(\phi) = \frac{1}{2}m\phi^2 + \frac{1}{3}\lambda\phi^3$$
$$\phi(x,\theta) = \varphi(x) + \sqrt{2}\theta\psi(x) + \theta^2 F(x)$$

Coefficient of θ^2 :

$$m(\varphi F - \frac{1}{2}\psi^2) + \lambda(F\varphi^2 - \varphi\psi^2)$$

Kinetic terms (from D-terms)

$$-\partial_{\mu}\varphi\partial^{\mu}\varphi + i\psi\sigma^{\mu}\partial_{\mu}\bar{\psi} + FF^{*}$$

ELIMINATION OF AUXILIARY FIELDS

Complete action:

 $-\partial_{\mu}\varphi\partial^{\mu}\varphi + i\psi\rho^{\mu}\partial_{\mu}\bar{\psi} + FF^* + \left[m(\varphi F - \frac{1}{2}\psi^2) + \lambda(F\varphi^2 - \varphi\psi^2) + c.c\right]$

Equation of motion for F:

$$F = -m\varphi^* - \lambda^*(\varphi^*)^2$$

Substitute back into action:

 $\mathcal{L} = -\partial_{\mu}\varphi\partial^{\mu}\varphi + i\psi\rho^{\mu}\partial_{\mu}\bar{\psi} - \frac{1}{2}m(\psi^{2} + \bar{\psi}^{2}) - \lambda\varphi\psi^{2} - \lambda^{*}\varphi^{*}\bar{\psi}^{2} - |m\varphi + \lambda\varphi^{2}|^{2}$

ELIMINATION OF AUXILIARY FIELDS

Complete action:

 $-\partial_{\mu}\varphi\partial^{\mu}\varphi + i\psi\rho^{\mu}\partial_{\mu}\bar{\psi} + FF^* + \left[m(\varphi F - \frac{1}{2}\psi^2) + \lambda(F\varphi^2 - \varphi\psi^2) + c.c\right]$

Equation of motion for F:

$$F = -m\varphi^* - \lambda^*(\varphi^*)^2$$

Substitute back into action:

 $\mathcal{L} = -\partial_{\mu}\varphi\partial^{\mu}\varphi + i\psi\rho^{\mu}\partial_{\mu}\bar{\psi} - \frac{1}{2}m(\psi^{2} + \bar{\psi}^{2}) - \lambda\varphi\psi^{2} - \lambda^{*}\varphi^{*}\bar{\psi}^{2} - |m\varphi + \lambda\varphi^{2}|^{2}$

Note: Zero electric charge (Majorana mass allowed)

REMARKS

 $\mathcal{L} = -\partial_{\mu}\varphi\partial^{\mu}\varphi + i\psi\rho^{\mu}\partial_{\mu}\bar{\psi} - \frac{1}{2}m(\psi^{2} + \bar{\psi}^{2}) - \lambda\varphi\psi^{2} - \lambda^{*}\varphi^{*}\bar{\psi}^{2} - |m\varphi + \lambda\varphi^{2}|^{2}$

Scalar and fermion have equal mass

Quartic terms derived from cubic and quadratic terms in the superpotential.
 (no additional parameters).

THE MSSM INTERACTIONS: THE GOOD

Yukawa's

$\mathcal{L}_{Y} = g_{\mathcal{U}}^{\alpha\beta} \bar{\psi}_{L}^{\mathcal{Q},\alpha} [\mathbf{C}\phi^{*}] \psi_{R}^{\mathcal{U},\beta} + g_{\mathcal{N}}^{\alpha\beta} \bar{\psi}_{L}^{\mathcal{L},\alpha} [\mathbf{C}\phi^{*}] \psi_{R}^{\mathcal{N},\beta} + g_{\mathcal{D}}^{\alpha\beta} \bar{\psi}_{L}^{\mathcal{Q},\alpha} \phi \psi_{R}^{\mathcal{D},\beta} + g_{\mathcal{E}}^{\alpha\beta} \bar{\psi}_{L}^{\mathcal{L},\alpha} \phi \psi_{R}^{\mathcal{E},\beta} + \text{c.c.}$

THE MSSM INTERACTIONS: THE GOOD

Yukawa's

 $\mathcal{L}_{Y} = g_{\mathcal{U}}^{\alpha\beta} \bar{\psi}_{L}^{\mathcal{Q},\alpha} [\mathbf{C}\phi^{*}] \psi_{R}^{\mathcal{U},\beta} + g_{\mathcal{N}}^{\alpha\beta} \bar{\psi}_{L}^{\mathcal{L},\alpha} [\mathbf{C}\phi^{*}] \psi_{R}^{\mathcal{N},\beta} + g_{\mathcal{D}}^{\alpha\beta} \bar{\psi}_{L}^{\mathcal{Q},\alpha} \phi \psi_{R}^{\mathcal{D},\beta} + g_{\mathcal{E}}^{\alpha\beta} \bar{\psi}_{L}^{\mathcal{L},\alpha} \phi \psi_{R}^{\mathcal{E},\beta} + \text{c.c.}$

$$\begin{array}{cccc} (3,2,\frac{1}{6}) & \begin{pmatrix} u_L \\ d_L \end{pmatrix} & \mathcal{Q} \\ d_L \end{pmatrix} & \mathcal{U} \\ 3^*,1,-\frac{2}{3}) & u_L^c & \mathcal{U} \\ (3^*,1,\frac{1}{3}) & d_L^c & \mathcal{D} \\ (1,2,-\frac{1}{2}) & \begin{pmatrix} \nu_L \\ e_L^- \end{pmatrix} & \mathcal{L} \\ (1,1,1) & e_L^+ & \mathcal{E} \\ (1,1,0) & \nu_L^c & \mathcal{N} \end{array}$$

MSSM INTERACTIONS: THE GOOD

Yukawa's

$\mathcal{L}_{Y} = g_{\mathcal{U}}^{\alpha\beta} \bar{\psi}_{L}^{\mathcal{Q},\alpha} [\mathbf{C}\phi^{*}] \psi_{R}^{\mathcal{U},\beta} + g_{\mathcal{N}}^{\alpha\beta} \bar{\psi}_{L}^{\mathcal{L},\alpha} [\mathbf{C}\phi^{*}] \psi_{R}^{\mathcal{N},\beta} + g_{\mathcal{D}}^{\alpha\beta} \bar{\psi}_{L}^{\mathcal{Q},\alpha} \phi \psi_{R}^{\mathcal{D},\beta} + g_{\mathcal{E}}^{\alpha\beta} \bar{\psi}_{L}^{\mathcal{L},\alpha} \phi \psi_{R}^{\mathcal{E},\beta} + \text{c.c.}$

 $\begin{array}{ll} \alpha,\beta: & \text{family labels} \\ \psi^{\mathcal{Q}}: & \text{fermion field} \\ \mathcal{Q}: & \text{corresponding superfield} \end{array}$

MSSM INTERACTIONS: THE GOOD

Yukawa's

$$\mathcal{L}_{Y} = g_{\mathcal{U}}^{\alpha\beta} \bar{\psi}_{L}^{\mathcal{Q},\alpha} [\mathbf{C}\phi^{*}] \psi_{R}^{\mathcal{U},\beta} + g_{\mathcal{N}}^{\alpha\beta} \bar{\psi}_{L}^{\mathcal{L},\alpha} [\mathbf{C}\phi^{*}] \psi_{R}^{\mathcal{N},\beta} + g_{\mathcal{D}}^{\alpha\beta} \bar{\psi}_{L}^{\mathcal{Q},\alpha} \phi \psi_{R}^{\mathcal{D},\beta} + g_{\mathcal{E}}^{\alpha\beta} \bar{\psi}_{L}^{\mathcal{L},\alpha} \phi \psi_{R}^{\mathcal{E},\beta} + \text{c.c.}$$

Note: the Higgs field ϕ is needed with and without conjugate

Hence both H1 and H2 are needed to get all required Yukawa's

 $g_{\mathcal{D}}\mathcal{Q}H_1\bar{\mathcal{D}} + g_{\mathcal{E}}\mathcal{L}H_1\bar{\mathcal{E}}$

 $g_{\mathcal{U}}\mathcal{Q}H_{2}\bar{\mathcal{U}}+g_{\mathcal{N}}\mathcal{L}H_{2}\bar{\mathcal{N}}$

Sunday, 2 May 2010

MSSM INTERACTIONS: THE BAD

Some undesirable terms are also allowed:

 $QL\bar{D}; LL\bar{E}; \bar{U}\bar{U}\bar{D}; LH_2$

Violate Baryon number and/or Lepton number Not allowed in SM because of odd number of fermions

Disastrous unless very small, or sparticles very heavy

MSSM INTERACTIONS: THE BAD

How to prevent this? Note that

$QL\bar{D}; LL\bar{E}; \bar{U}\bar{U}\bar{D}; LH_2$

Violate B-L.

Hence we may postulate B-L as an exact symmetry of nature (not possible for B and L separately!)

But this would forbid Majorana neutrino masses!

A less restrictive constraint is R-parity

 $R_p = (-1)^{3(B-L)+2S}$

R-PARITY

$$R_p = (-1)^{3(B-L)+2S}$$

S: Spin

SM particles: R-parity + Superpartners: R-parity -

Two important consequences

Sunday, 2 May 2010

MSSM INTERACTIONS: THE UGLY

Another undesirable term

$$\mu H_1 H_2$$

This gives an equal mass to Higgses and Higgsinos $\mu^2(|h_1|^2+|h_2|^2)$

Problems:

 Natural size: M_{Planck} or M_{GUT} (but technically natural)
 Positive definite: No "Mexican hat" (but susy still unbroken)

"The µ problem"

At low energy, susy is broken. At high energy it can be:

At low energy, susy is broken. At high energy it can be:

A fundamental symmetry of nature

Not a fundamental symmetry of nature.

At low energy, susy is broken. At high energy it can be:

A fundamental symmetry of nature
 Then it must be symmetry of gravity as well:
 Supergravity.
 This symmetry is not a symmetry of the vacuum:
 Spontaneous breaking.

Not a fundamental symmetry of nature.

At low energy, susy is broken. At high energy it can be:

A fundamental symmetry of nature
 Then it must be symmetry of gravity as well:
 Supergravity.
 This symmetry is not a symmetry of the vacuum:
 Spontaneous breaking.

Not a fundamental symmetry of nature.

Accidental low-energy symmetry: Explicit breaking

SONTANEOUSLY BROKEN SUPERGRAVITY

Vacuum not invariant:

$$Q_{\alpha}|0> \neq 0$$

This would lead to a massless Goldstone particle in the spectrum; Because susy is fermionic this particle is fermion: The Goldstino.

Supergravity implies that supersymmetry is a local symmetry. The gauge boson is a spin-3/2 particle: The Gravitino.

Symmetry breaking now leads to a Higgs-like mechanism: The Gravitino eats the Goldstino and become massive

SOFT SUSY BREAKING

Parametrization of broken supersymmetry (independent of how it is broken).

Soft supersymmetry breaking term: term in the action that breaks susy, but not its good properties at high energies: "non-renormalization theorems".

In particular, these terms respect the absence of quadratic divergencies for scalar masses: The hierarchy problem is solved in the technical sense.

ALLOWED SOFT BREAKING TERMS

Allowed:

 $m_{ij}\varphi_i\varphi_j^*$; $\alpha_{ij}\varphi_i\varphi_j + c.c$; $\beta_{ijk}\varphi_i\varphi_j\varphi_k + c.c$; $\mu(\lambda\lambda + \bar{\lambda}\bar{\lambda})$

 λ can be any gaugino in the theory φ_i can be any scalar in the theory

All superpartners plus the Higgs can get a mass after susybreaking, but before $SU(3) \times SU(2) \times U(1)$ breaking.

Not allowed: Fourth order scalar terms.

MSSM (2) SOFT BREAKING PARAMETERS

 $\mathcal{L}_{soft} =$

$$\begin{split} &-\sum_{i} m_{i}^{2} |\varphi_{i}|^{2} \\ &-\frac{1}{2} \sum_{a} M_{a} \bar{\lambda}_{a} \lambda_{a} \\ &+ [m_{12}^{2} h_{1} h_{2} + c.c] \\ &+ [g_{\mathcal{U}} A_{\mathcal{U}} \varphi_{\mathcal{Q}} \varphi_{\bar{\mathcal{U}}} h_{2} + g_{\mathcal{N}} A_{\mathcal{N}} \varphi_{\mathcal{L}} \varphi_{\bar{\mathcal{N}}} h_{2} + c.c] \\ &+ [g_{\mathcal{D}} A_{\mathcal{D}} \varphi_{\mathcal{Q}} \varphi_{\bar{\mathcal{D}}} h_{1} + g_{\mathcal{L}} A_{\mathcal{L}} \varphi_{\mathcal{L}} \varphi_{\bar{\ell}} h_{1} + c.c] \end{split}$$

MSSM (2) SOFT BREAKING PARAMETERS

 $\mathcal{L}_{\mathrm{soft}} =$

 $-\sum_{i} m_{i}^{2} |\varphi_{i}|^{2} \qquad (5 \times 9) + 2$ $-\frac{1}{2} \sum_{a} M_{a} \bar{\lambda}_{a} \lambda_{a} \qquad 3$ $+[m_{12}^{2}h_{1}h_{2} + c.c] \qquad 1$ $+[g_{\mathcal{U}}A_{\mathcal{U}}\varphi_{\mathcal{Q}}\varphi_{\bar{\mathcal{U}}}h_{2} + g_{\mathcal{N}}A_{\mathcal{N}}\varphi_{\mathcal{L}}\varphi_{\bar{\mathcal{N}}}h_{2} + c.c]$ $+[g_{\mathcal{D}}A_{\mathcal{D}}\varphi_{\mathcal{Q}}\varphi_{\bar{\mathcal{D}}}h_{1} + g_{\mathcal{L}}A_{\mathcal{L}}\varphi_{\mathcal{L}}\varphi_{\bar{\mathcal{I}}}h_{1} + c.c] \qquad 54$

Lots of additional parameters(*)

105 (+19 SM)

(*) Ignoring neutrino masses

Sunday, 2 May 2010

MSSM (2) SOFT BREAKING PARAMETERS

 $\mathcal{L}_{\mathrm{soft}} =$

 $-\sum_{i} m_{i}^{2} |\varphi_{i}|^{2} \qquad (5 \times 9) + 2$ $-\frac{1}{2} \sum_{a} M_{a} \bar{\lambda}_{a} \lambda_{a} \qquad 3$ $+[m_{12}^{2}h_{1}h_{2} + c.c] \qquad 1$ $+[g_{\mathcal{U}}A_{\mathcal{U}}\varphi_{\mathcal{Q}}\varphi_{\bar{\mathcal{U}}}h_{2} + g_{\mathcal{N}}A_{\mathcal{N}}\varphi_{\mathcal{L}}\varphi_{\bar{\mathcal{N}}}h_{2} + c.c]$ $+[g_{\mathcal{D}}A_{\mathcal{D}}\varphi_{\mathcal{Q}}\varphi_{\bar{\mathcal{D}}}h_{1} + g_{\mathcal{L}}A_{\mathcal{L}}\varphi_{\mathcal{L}}\varphi_{\bar{\mathcal{L}}}h_{1} + c.c] \qquad 54$

Lots of additional parameters(*)

But: just a parametrization of an unknown breaking mechanism

(*) Ignoring neutrino masses

105 (+19 SM)

CONSTRAINTS

$$\frac{1}{M^2} \left(\frac{\Delta \tilde{m}_{\mathcal{U}}^2}{\tilde{m}_{\mathcal{U}}^2} \right) < 10^{-7} \text{ GeV}^{-2}$$

ADDITIONAL ASSUMPTIONS

To reduce the parameter space often some modelinspired assumptions are made for the parameter values at some high (GUT?) scale.

> $(m_i)^2 = (m_0)^2 \mathbf{1}$ [Universal scalar mass] $M_a = m_{\frac{1}{2}}$ [Universal gaugino mass] $A_x = Am_0 \mathbf{1}$ [Universal three-point coupling]

Then there are just 5 additional parameters:

$$u, m_{1/2}, m_0^2, m_{12}^2$$
 and A

The complete Higgs potential is

$$V(h_1, h_2) = \mu_1^2 |h_1|^2 + \mu_2^2 |h_2|^2 - (m_{12}^2 h_1 h_2 + \text{c.c})$$

+ $\frac{1}{8} (g_1^2 + g_2^2) (|h_1|^2 - |h_2|^2)^2 + \frac{1}{2} g_2^2 |h_1^{\dagger} h_2|^2$

 h_i : Scalar in Higgs superfield H_i $\mu_i^2 = |\mu|^2 + m_{h_i}^2$

 g_i : Gauge coupling $m_{h_i}^2$ can be negative

The complete Higgs potential is

$$V(h_1, h_2) = \mu_1^2 |h_1|^2 + \mu_2^2 |h_2|^2 - (m_{12}^2 h_1 h_2 + \text{c.c})$$

+ $\frac{1}{8} (g_1^2 + g_2^2) (|h_1|^2 - |h_2|^2)^2 + \frac{1}{2} g_2^2 |h_1^{\dagger} h_2|^2$

 h_i : Scalar in Higgs superfield H_i $\mu_i^2 = (\mu)^2 + m_{h_i}^2$

F-terms g_i : Gauge coupling $m_{h_i}^2$ can be negative

The complete Higgs potential is

$$V(h_1, h_2) = \mu_1^2 |h_1|^2 + \mu_2^2 |h_2|^2 - (m_{12}^2 h_1 h_2 + \text{c.c})$$
$$+ \frac{1}{8} (g_1^2 + g_2^2) (|h_1|^2 - |h_2|^2)^2 + \frac{1}{2} g_2^2 |h_1^{\dagger} h_2|^2$$
$$D\text{-terms}$$

 $h_i:$ Scalar in Higgs superfield H_i
 $\mu_i^2 = |\mu|^2 + m_{h_i}^2$

 g_i : Gauge coupling $m_{h_i}^2$ can be negative

The complete Higgs potential is

$$V(h_1, h_2) = \mu_1^2 |h_1|^2 + \mu_2^2 |h_2|^2 - (m_{12}^2 h_1 h_2 + \text{c.c})$$

+ $\frac{1}{8} (g_1^2 + g_2^2) (|h_1|^2 - |h_2|^2)^2 + \frac{1}{2} g_2^2 |h_1^{\dagger} h_2|^2$

 h_i : Scalar in Higgs superfield H_i $\mu_i^2 = |\mu|^2 + m_{h_i}^2$

Soft breaking

 g_i : Gauge coupling $m_{h_i}^2$ can be negative

HIGGS ALIGNMENT

$$H_{1}:(1,2,-\frac{1}{2}) \qquad \langle h_{1}\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} v_{1} \\ 0 \end{pmatrix}$$
$$H_{2}:(1,2,\frac{1}{2}) \qquad \langle h_{2}\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_{2} \end{pmatrix}$$

$$T_3 + Y = 0$$

h1 direction is irrelevant

h₂ direction with respect
to h₁ *is* relevant:
If not exactly aligned,
the photon is massive!

HIGGS ALIGNMENT

$$H_{1}:(1,2,-\frac{1}{2}) \qquad \langle h_{1}\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} v_{1} \\ 0 \end{pmatrix}$$
$$H_{2}:(1,2,\frac{1}{2}) \qquad \langle h_{2}\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_{2} \end{pmatrix}$$

$$T_3 + Y = 0$$

h1 direction is irrelevant

h₂ direction with respect
to h₁ *is* relevant:
If not exactly aligned,
the photon is massive!

HIGGS ALIGNMENT

$$H_{1}:(1,2,-\frac{1}{2}) \qquad \langle h_{1}\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} v_{1} \\ 0 \end{pmatrix}$$
$$H_{2}:(1,2,\frac{1}{2}) \qquad \langle h_{2}\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_{2} \end{pmatrix}$$

$$T_3 + Y = 0$$

h1 direction is irrelevant

h₂ direction with respect
to h₁ *is* relevant:
If not exactly aligned,
the photon is massive!

HIGGS ALIGNMENT

Parametrize the h2 direction

$$\langle h_2 \rangle = \frac{1}{\sqrt{2}} \left(\begin{array}{c} v_2 \ e^{i\alpha} \sin \gamma \\ v_2 \ e^{i\eta} \cos \gamma \end{array} \right)$$

Then:

$$V(v_1, v_2, \alpha, \eta, \gamma) = \mu_1^2 v_1^2 + \mu_2^2 v_2^2 - 2m_{12}^2 v_1 v_2 \cos \eta \cos \gamma + \frac{1}{8} (g_1^2 + g_2^2) (v_1^2 - v_2^2)^2 + \frac{1}{2} g_2^2 g_2^2 v_1^2 v_2^2 \sin^2 \gamma$$

Minimum: $\sin \gamma = 0$

(not true for general two-Higgs potential)

Sunday, 2 May 2010

RADIATIVE BREAKING $V(h_1, h_2) = \mu_1^2 |h_1|^2 + \mu_2^2 |h_2|^2 - (m_{12}^2 h_1 h_2 + \text{c.c})$ $+ \frac{1}{8} (g_1^2 + g_2^2) (|h_1|^2 - |h_2|^2)^2 + \frac{1}{2} g_2^2 |h_1^{\dagger} h_2|^2$

Flat direction in quartic potential: $h_2 = e^{i\alpha} C h_1^{\dagger}$ $(hCh \equiv h_i \epsilon_{ij} h_j = 0)$

Quadratic terms: $(\mu_1^2 + \mu_2^2 - 2m_{12}^2 \cos \alpha)|h_1|^2$ Positivity condition: $\mu_1^2 + \mu_2^2 \ge 2|m_{12}^2|$ Negative determinant: $|m_{12}^2|^2 > \mu_1^2\mu_2^2$ Incompatible if $\mu_1 = \mu_2$ (universal scalar masses)

RADIATIVE BREAKING

 h_2

At some large scale:

 $m_{h_1} = m_{h_2} = m_0 \rightarrow \mu_1 = \mu_2$ Then both masses start running separately

 \overline{t}

 h_2

h₁,h₂: Eight real d.o.f. Three are "eaten" by W, Z Hence five massive scalars left (vs. just one in SM).

Electric charges per Higgs: 2×0 , +1, -1

Charged Higges: two are eaten, two survive: H⁺, H⁻

Neutral Higges: Common phase is eaten; Scales and relative phase survive: h₀, H₀, A₀

 $V(h_1, h_2) = \mu_1^2 |h_1|^2 + \mu_2^2 |h_2|^2 - (m_{12}^2 h_1 h_2 + \text{c.c})$ + $\frac{1}{8} (g_1^2 + g_2^2) (|h_1|^2 - |h_2|^2)^2 + \frac{1}{2} g_2^2 |h_1^{\dagger} h_2|^2$

Invariant under $h_i \rightarrow h_i^{\dagger}$ Provided m_{12}^2 is real (can be chosen real w.l.o.g.) This symmetry can be extended to an approximate CP symmetry of the full Lagrangian.

Neutral mass eigenstates are approximate CP eigenstates

$$V(h_1, h_2) = \mu_1^2 |h_1|^2 + \mu_2^2 |h_2|^2 - (m_{12}^2 h_1 h_2 + \text{c.c})$$

+ $\frac{1}{8} (g_1^2 + g_2^2) (|h_1|^2 - |h_2|^2)^2 + \frac{1}{2} g_2^2 |h_1^{\dagger} h_2|^2$

Relative phase: Odd under CP, massless if $m_{12}^2 = 0$

$$m_{A^0}^2 = \frac{m_{12}^2}{\cos\beta\sin\beta}$$
$$\tan\beta \equiv \frac{v_2}{v_1}$$

Charged Higgs masses

$$M_{\rm w}^2 + m_{A^0}^2$$

$$V(h_1, h_2) = \mu_1^2 |h_1|^2 + \mu_2^2 |h_2|^2 - (m_{12}^2 h_1 h_2 + \text{c.c})$$

+ $\frac{1}{8} (g_1^2 + g_2^2) (|h_1|^2 - |h_2|^2)^2 + \frac{1}{2} g_2^2 |h_1^{\dagger} h_2|^2$

Relative phase: Odd under CP, massless if $m_{12}^2 = 0$

$$m_{A^0}^2 = \frac{m_{12}^2}{\cos\beta\sin\beta}$$
$$\tan\beta \equiv \frac{v_2}{v_1}$$

Charged Higgs masses

$$M_{\rm w}^2 + m_{A^0}^2$$

Neutral, CP even

$$m_{H^0,h^0}^2 = \frac{1}{2} \left(m_{A^0}^2 + M_z^2 \pm \sqrt{(m_{A^0}^2 + M_z^2)^2 - 4m_{A^0}^2 M_z^2 \cos^2 2\beta} \right)$$

Lightest one has mass below M_Z

Loop corrections (due to top quark loops)

$$\Delta M^2 = \frac{3}{8\pi^2} \frac{g_2^2 m_t^4}{M_{\rm w}^2 \sin^2 \beta} \log(1 + \frac{m_0^2}{m_t^2})$$

 $M_{h_0} < 135 \text{ GeV}$

COUPLING CONSTANT UNIFICATION

COUPLING CONSTANT UNIFICATION

Q Hierarchy Problem

Q Dark Matter

Q Coupling Constant Convergence

Sunday, 2 May 2010

Q Hierarchy Problem

Q Dark Matter

Q Coupling Constant Convergence

Gauginos, sFermions

Gauginos

Gauginos

Sunday, 2 May 2010

Q Dark Matter

Coupling Constant Convergence

Gauginos

Gauginos

Gauginos, sr-

JUIIS

(Arkani-Hamed, Dimopoulos, Giudice, Romanino 2004)

SUSY AT HADRON COLLIDERS

March 25, 1983

Experimental Consequences of Supersymmetry

10:00 C. Zachos - Introduction to Supersymmetry P.1

11:00 T. Taylor - Proton Decay. P.12

1:30 S. Dawson - Limits on Superparticles P.24

2:30 R. Huerta - Electron-Positron Collisions P. 53

3:15 Coffee Break

4:00 A. Schellekens - Hadron-Hadron' Colliders P.63

CONCLUSION