
Academic 
Lectures

Beyond the Standard Model

Sunday, 2 May 2010



Guiding principles

 Consistency

 Experiment

 Esthetics

 Naturalness

Quantum Gravity

Dark Matter
(Baryogenesis, inflation...

Choices: 
Groups & Representations

Cosmological constant,
Gauge Hierarchy,
up, down quark masses,
electron mass, neutrino masses,
θQCD, ....

Sunday, 2 May 2010



Ideas
Grand Unification

Technicolor

Composite models

(Low energy) supersymmetry

Peccei-Quinn mechanism

See-Saw mechanism

Large extra dimensions

Little Higgs models

String Theory

......

Sunday, 2 May 2010



Ideas
Grand Unification

Technicolor

Composite models

(Low energy) supersymmetry

Peccei-Quinn mechanism

See-Saw mechanism

Large extra dimensions

Little Higgs models

String Theory

......

✓

✓

Sunday, 2 May 2010



Grand Unified Theories
(GUTs)

Group theoretical structure of SM gauge 
groups and representations

Apparent convergence of SM couplings

Based on two (possibly accidental) facts:

Sunday, 2 May 2010



Unity Of All Elementary Particle Forces.
H. Georgi, S.L. Glashow (Harvard U.) . 1974. 
Published in Phys.Rev.Lett.32:438-441,1974.

TOPCITE = 2000+

Cited 2842 times

Hierarchy Of Interactions In Unified Gauge Theories.
H. Georgi, Helen R. Quinn, Steven Weinberg (Harvard U.) . Print-74-1122 
Rev. (HARVARD), PRINT-74-1122 (HARVARD), (Received Aug 1974). 12pp. 
Published in Phys.Rev.Lett.33:451-454,1974. (Also in *Mohapatra, R. N. 
(ed.), Lai, C. H. (ed.): Gauge Theories Of Fundamental Interactions*, 
428-431, and in *Froggatt, C.D., Nielsen, H.B.: Origin of symmetries* 
334-337)

TOPCITE = 1000+

Cited 1369 times

Sunday, 2 May 2010

http://www.slac.stanford.edu/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Georgi,%20H.%22
http://www.slac.stanford.edu/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Georgi,%20H.%22
http://www.slac.stanford.edu/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Glashow,S.L.%22
http://www.slac.stanford.edu/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Glashow,S.L.%22
http://www.slac.stanford.edu/spires/find/inst/www?icncp=Harvard+U.
http://www.slac.stanford.edu/spires/find/inst/www?icncp=Harvard+U.
http://www.slac.stanford.edu/spires/find/hep?c=PRLTA,32,438
http://www.slac.stanford.edu/spires/find/hep?c=PRLTA,32,438
http://www.slac.stanford.edu/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Georgi,%20H.%22
http://www.slac.stanford.edu/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Georgi,%20H.%22
http://www.slac.stanford.edu/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Quinn,%20HelenR.%22
http://www.slac.stanford.edu/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Quinn,%20HelenR.%22
http://www.slac.stanford.edu/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Weinberg,%20Steven%22
http://www.slac.stanford.edu/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Weinberg,%20Steven%22
http://www.slac.stanford.edu/spires/find/inst/www?icncp=Harvard+U.
http://www.slac.stanford.edu/spires/find/inst/www?icncp=Harvard+U.
http://www.slac.stanford.edu/spires/find/hep?c=PRLTA,33,451
http://www.slac.stanford.edu/spires/find/hep?c=PRLTA,33,451


Abstracts

We present a general formalism for calculating the 
renormalization effects which make strong interactions 
strong in simple gauge theories of strong, electromagnetic, 
and weak interactions. In an SU(5) model the superheavy 
gauge bosons arising in the spontaneous breakdown to 
observed interactions have mass perhaps as large as 1017 
GeV, almost the Planck mass. Mixing-angle predictions are 
substantially modified.

Strong, electromagnetic, and weak forces are conjectured to arise from a single 
fundamental interaction based on the gauge group SU(5)

Georgi-Glashow

Georgi-Quinn-Weinberg
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The Standard Model

Quantum Field Theory

Choice of Gauge Group

Choice of spins and representations

Absence of interactions with dimension > 4

Input:

SU(3)× SU(2)× U(1)

3 families + Higgs + right-handed neutrinos
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Dimensions
Boson: 1

Fermion: 3/2

Derivative: 1

Allowed: ψ̄γµ∂µψ FµνFµν

ψ̄γµAµψ

∂µφ∂µφ

φ2,φ3,φ4ψ̄ψ φψ̄ψ

(ψ̄ψ)2 φ5 ψ̄γµγνFµνψ      Not Allowed: 

Disallowed interactions have a coupling
constant of dimension (mass)-n

Can be consistently omitted.
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3. A first look beyond

In this chapter we discuss a variety of issues that might be relevant for attempts to

understand the standard model.

3.1. The left-handed representation

The notation employed thus far suggest that there is some sort of distinction between

left- and right-handed fields. Actually all fields are on the same footing. This has to do with

the existence of anti-particles. The anti-particle of a right-handed fermion is a left-handed

anti-fermion. The fermion action, iψ̄RγµDµψR does not treat particles and anti-particles

symmetrically. This is most obvious if one considers the covariant derivative: for a U(1)

gauge field this looks like ∂µ− ieqAµ, where q is the charge of ψ (for non-abelian symmetries

our conventions are such that Dµ = ∂µ − igT aAa
µ).

Here a definite choice is made among the particle and anti-particle charge. The SU(3)×
U(1) lagrangian is always written in such a way that the charge corresponds to what we call

“particles”, as opposed to anti-particles. Note that there is no such asymmetry in the action

of a complex scalar.

Of course we know that the same fermion action also describes the anti-particle. Hence

it should be no surprise that it can be rewritten in such a way that the rôle of particle and

anti-particle are interchanged. To do so we introduce new variables

ψ = C−1(γ0)T (ψc)∗ = C†(ψ̄c)T

ψ̄ = −(ψc)TC ,
(3.1)

where C is the charge conjugation matrix introduced in appendix D, which is a unitary

matrix satisfying

CγµC−1 = −(γµ)T .

The action of C on γ5 is: Cγ5C−1 = (γ5)T . The precise form of C depends on the explicit

representation of the Dirac γ-matrices, but the only thing that matters is that such a matrix

C exists in any representation. The relation for ψ̄ is not independent, but follows from the

Tr T aT b =
1
2
δab

Covariant derivative:

Normalization:

Lagrangian: −1
4
F a

µνFµν,a + iψ̄γµDµψ
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Lagrangian to be gauge invariant and of renormalizable type the most general form is

Lφ = (Dµφ)†(Dµφ) − µ2φ†φ − 1
4λ(φ†φ)2 ,

where Dµ = ∂µ − 1
2ig1Bµ − ig2(

1
2σa)Aa

µ is the covariant derivative. Now suppose that for

some unknown reason the scalar mass µ2 is or becomes negative. Then the true minimum

of the potential is not φ = 0, but some non-trivial value, which by SU(2) rotations we can

bring to the form

<φ>=
1√
2

(

0

v

)

, (2.3)

and which we can make real by U(1) transformations (the normalization is a convention).

The minimum of the potential is at v = 2
√

−µ2

λ . We now expand φ around its classical value

<φ>, i.e. φ =<φ> + . . ., but we will ignore the extra terms for the moment. The constant

term introduces, via the covariant derivative terms, a mass matrix for the vector bosons Aa
µ

and Bµ. Introducing a vector V i
µ = (A1

µ, A2
µ, A3

µ, Bµ), we find the following form for these

mass terms

Lmass = 1
2V i

µ(M2)ijV µ,j

The matrix is

M2 = 1
4v2













g2
2 0 0 0

0 g2
2 0 0

0 0 g2
2 −g1g2

0 0 −g1g2 g2
1













. (2.4)

(The minus sign of the off-diagonal terms is due to the fact that σ3 acts on < φ > via its

lower component.)

The mass matrix has off-diagonal terms, which means that the original vector bosons

A3
µ and Bµ mix. To find the mass eigenstates we must diagonalize the matrix M .

The correct form of the bilinear terms in the Lagrangian for a real vector field Xµ is

Lmassive real vector = − 1
2∂µXν∂µXν + 1

2∂µXν∂νXµ + 1
2M2

XXµXν

For a conjugate pair of complex vectors X±
µ this is

Lmassive complex vector = −∂µX+
ν ∂µXν,− + ∂µX+

ν ∂νXµ,− + M2
XX+

µ Xν,−

i
15∑

!=1

ψ̄!γ
µDµψ!−1

4

12∑

I=1

F I
µνFµν,I +

+

− 13 −

The scalar φ had originally four real (two complex) components. After symmetry break-

ing three of those four become the longitudinal components needed for the massive W± and

Z vector bosons. The fourth one, the real field η which represents the component of φ in

the direction of the vacuum expectation value appears in the spectrum as a scalar with mass
√

−2µ2. Its complete lagrangian can be found by expanding φ(x) as

φ(x) =
1√
2

(

0

v + η(x)

)

This is the last particle of the standard model that has not been discovered yet, the famous

Higgs boson.

The third and fourth order terms in the Lagrangian give rise to interactions. For example

one gets a coupling of the vector fields W±
µ to the photon, confirming that the charge of these

fields is indeed what is suggested by the upper index. There are many other terms giving

rise to couplings among the W , Z and η fields which we will not all present here.

All the fermi fields are still massless and hence the left and right-handed modes are in

principle completely unrelated. Before SU(2) × U(1) breaking it was impossible to write

down a mass term of the form ψ̄LψR without violating one of the gauge symmetries. The

quarks and leptons can only get their masses after the symmetry is broken, and in order to

generate a mass term from the vacuum expectation value of φ they must couple to it. Such

a coupling can indeed be written down without violating SU(3) × SU(2) × U(1), namely

LY = gαβ
U ψ̄Q,α

L [Cφ∗]ψU ,β
R + gαβ

D ψ̄Q,α
L φψD,β

R + gαβ
E ψ̄L,α

L φψE ,β
R + c.c. , (2.5)

where α and β are generation labels, and gU , gD and gE are complex coupling matrices. Here

“c.c” stands for “complex conjugate”. There is an additional term involving the neutrino

fields. It contains the combination of fields ψ̄E ,α
L [Cφ∗]ψN ,β

R , and puts lepton and quark

couplings more or less on equal footing. However, there are some additional complications

with neutrino masses, and for that reason we postpone their discussion to the next chapter.

Note that the total charge of each term must be zero. This obliges us to use φ∗ in the first

term and φ in the second one. We also have to make sure that all terms are SU(2) singlets.

This is easy for terms of the form ψ̄Lφ, which are singlets automatically if we contract their

SU(2) doublet indices in the obvious way: ψ̄i
Lφi. This is because ψ̄ transforms as the complex

+

(+ neutrino contributions)

(+ FµνF̃µν terms)
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one gets a coupling of the vector fields W±
µ to the photon, confirming that the charge of these

fields is indeed what is suggested by the upper index. There are many other terms giving

rise to couplings among the W , Z and η fields which we will not all present here.

All the fermi fields are still massless and hence the left and right-handed modes are in

principle completely unrelated. Before SU(2) × U(1) breaking it was impossible to write

down a mass term of the form ψ̄LψR without violating one of the gauge symmetries. The

quarks and leptons can only get their masses after the symmetry is broken, and in order to

generate a mass term from the vacuum expectation value of φ they must couple to it. Such

a coupling can indeed be written down without violating SU(3) × SU(2) × U(1), namely
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where α and β are generation labels, and gU , gD and gE are complex coupling matrices. Here

“c.c” stands for “complex conjugate”. There is an additional term involving the neutrino

fields. It contains the combination of fields ψ̄E ,α
L [Cφ∗]ψN ,β

R , and puts lepton and quark

couplings more or less on equal footing. However, there are some additional complications

with neutrino masses, and for that reason we postpone their discussion to the next chapter.

Note that the total charge of each term must be zero. This obliges us to use φ∗ in the first

term and φ in the second one. We also have to make sure that all terms are SU(2) singlets.

This is easy for terms of the form ψ̄Lφ, which are singlets automatically if we contract their

SU(2) doublet indices in the obvious way: ψ̄i
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+

(+ neutrino contributions)

(+ FµνF̃µν terms)

3(3) 0(0)

2(2)

54(13)

3(1)
Parameters:

62(19)
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Running Parameters

The parameters cannot be computed (within SM).
They must be measured.

But the results of such a measurement are scale 
dependent.

This scale dependence is calculable from loop corrections.

Sunday, 2 May 2010



Running Parameters
Define some reference process to measure a parameter,
for example the QCD coupling.

We cannot directly compare the experimental 
measurement to a single diagram.

There is an infinity of diagrams contributing to any
process, but luckily higher orders in the coupling constant 
are suppressed. 

Suppose the reference process is gluon-quark scattering.
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Running Parameters
Some contributions to this process are:

+ +
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Scalar field theory
To avoid inessential complications due to spins consider
a scalar field theory

L = −1
2
∂µφ∂µφ− 1

2
m2φ2 − 1

24
gφ4

Feynman rules

−i

k2 −m2k
−ig
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Reference process for measuring g

p1

p2 p4

p3

Lowest order contributions:

p1

p2 p4

p3

+

p1 p3

p2 p4

k − q

k

q = p1 + p2 = p3 + p4
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1
2
(−ig)2

∫
d4k

(2π)4

(
−i

k2 −m2

) (
−i

(k − q)2 −m2

)

Loop diagram:

Feynman’s trick:

1
AB

=
∫ 1

0
dx

1
(xA + (1− x)B)2

Change of variables: lµ = kµ − xqµ
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1
2

g2

(2π)4

∫ 1

0
dx

∫
dl0

∫
d3l

1
(l20 −"l2 + x(1− x)q2 −m2)2

Wick rotation: l0 = il4

Polar coordinates in 4D Euclidean space:

d4l = l3dldΩ3

∫
dΩ3 = 2π2

i
g2

16π2

∫ 1

0
dx

∫ ∞

0
dl

l3

(l2 + x(1− x)Q2 + m2)2

Result:

Q2 = −q2
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Momentum integral:
∫

dl
l3

(l2 + a)2
=

1
2

log(l2 + a) +
1
2

a

l2 + a

Diverges for large momenta:
Introduce a “cut-off” parameter Λ

i
g2

32π2

∫ 1

0
dx log

[(
Λ2 + x(1− x)Q2 + m2

x(1− x)Q2 + m2

)
− 1

]

Note: x-integral is well-defined

Now consider the limit m2 << Q2 << Λ2
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i
g2

32π2

∫ 1

0
dx

[
log(

Λ2

Q2
)− log[x(1− x) +

m2

Q2
]− 1

]

≈ ig2

32π2
log

(
Λ2

Q2

)

Note: if Q2 << m2 << Λ2 we get

and the Q2 drops out (“decoupling”)

ig2

32π2
log

(
Λ2

m2

)
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p1

p2 p4

p3

+

p1 p3

p2 p4

k − q

k

=

−i

[
g − g2

32π2
log

(
Λ2

Q2

)]

Note: increases with Q
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one can then try to define the QCD coupling constant in processes at higher momentum, for

example deep inelastic scattering, but then it becomes quickly clear that one gets a different

answer if the momentum scale is changed.

This has to do with the logarithmic corrections that always accompany the infinities

of quantum field theory. In the present case the relevant infinities are the ones that are

removed by counterterms that are absorbed by redefining the bare coupling constant in the

Lagrangian. For example in φ4 theory the first two contributions to the four point function

are

+! ! !

Typically the computation of such a loop correction to one of the vertices yields an

expression of the form
!

V (Q) = gbare − gn
bareb0 log(

Λ

Q
) , (3.16)

where Q is some invariant built out of the external momenta and Λ is the cut-off (cut-off

regularization is not a good procedure for gauge theories, but is most suitable for explaining

the main point); gbare is the coupling constant appearing in the Lagrangian. In the example

of φ4 n = 2 and gbare = λ; for gauge theories n = 3. In more complicated situations (Yukawa

couplings for example) the one-loop corrections involve more than one coupling constant.

By “cut-off” we mean the highest allowed loop-momentum. If we believe that physics

remains unchanged up to arbirary high momenta (i.e. arbitrarily short distances), Λ would

be infinite, but this is clearly a preposterous assumption. If there are fundamental changes

in the theory at short distances (as is the case in string theory or if for example space-

time is discrete) the momentum integral may be finite, and then Λ is simply a very large

momentum scale. If a theory is renormalizable the effects of such a large scale can be

! Here only the renormalization of the coupling constants is considered; for simplicity, wave-function and
mass renormalizations are ignored.

− 52 −

absorbed in the definition of a finite number of parameters (coupling constants, masses and

field normalizations). In the case under consideration that works as follows. One can define

gbare so that in the limit Λ → ∞ the physical coupling constant is finite, namely by defining

gbare = gphys(µ) − gn
physb0 log(

µ

Λ
) . (3.17)

This cancels all “infinities” up to order n, but it is clear that the definition of the coupling

constant is now dependent on some arbitrary scale µ. Furthermore a finite term b0 log(µ/Q)

remains. [Note that we work here in an expansion in the coupling constant, and that higher

order terms are ignored. Thus in particular gn
bare ≈ gn

phys since the corrections are of higher

order in g, even though their coefficients may involve log Λ. They should be taken care of at

the next order in g.]

Another way of saying this is to define the coupling constant as the value of V (Q) (here

we assume for the sake of the argument that V (Q) is a directly measurable quantity which

at tree level is equal to the coupling constant). Since no experiment can directly measure the

coefficients in the Lagrangian this is the only thing we can do. It follows immediately that

V (Q) cannot be a constant. At best we can choose a reference scale µ = Q to define and

measure it, and then calculate its value at any other scale. At present the most commonly

used reference scale for the standard model couplings in MW. Note that the coupling constant

increases with increasing Q if b0 is positive.

One of the consequences of renormalizability is that the same redefinition removes the

infinities associated with the coupling constant in all diagrams. This implies that in the finite

result the same logarithmic corrections −b0 log(µ/Q) will always appear with any coupling

constant, albeit with process dependent quantities Q.

If we measure gµ in one process we can now make predictions for all others, but what

should we take for µ? The best choice would seem to be the one that minimizes the logarith-

mic corrections, i.e. µ = Q. If we take µ very different from Q the convergence of the loop

expansion becomes very bad, since at each order in g one encounters the large logarithmic

correction log(µ/Q) to the same power. By setting µ = Q we are effectively summing up

these large logarithms. Consequently each process now has its own coupling constant g(Q),

and the coupling “constant” is not a constant anymore, but a function of the scale. This is

called the running coupling constant.

gphys ≡ V (µ)

Suppose the cross-section for the reference process is*

Now define the physical coupling constant as

Inverting this relation (ignoring higher orders)

(*) n=2 for scalars, n=3 for gauge theories

(Reference scale µ)
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constant, albeit with process dependent quantities Q.

If we measure gµ in one process we can now make predictions for all others, but what

should we take for µ? The best choice would seem to be the one that minimizes the logarith-

mic corrections, i.e. µ = Q. If we take µ very different from Q the convergence of the loop

expansion becomes very bad, since at each order in g one encounters the large logarithmic

correction log(µ/Q) to the same power. By setting µ = Q we are effectively summing up

these large logarithms. Consequently each process now has its own coupling constant g(Q),

and the coupling “constant” is not a constant anymore, but a function of the scale. This is

called the running coupling constant.

This substitution should remove all dependence on      in all processesΛ

This implies the existence of powers of logs in higher orders.
These “leading logs” can be summed to all orders.

For the reference process itself we get
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Technically this is done by means of the renormalization group equation. We will show

here how this equation is derived in the present, slightly simplified context. Consider the

measurable quantity V (Q) introduced in (3.16), and substituting for gbare the physical cou-

pling constant (3.17).

V (Q) = gphys(µ) − gn
phys(µ)b0 log(

µ

Q
) + higher order (3.18)

Now it seems that the physical quantity V (Q) depends on µ, the energy scale at which we

have decided to define and measure the coupling constant. But this is just a convention, on

which no physical quantity should depend. Hence it must be true that

µ
d

dµ
V (Q) = 0 (3.19)

This leads immediately to the equation

µ
d

dµ
gphys(µ) − b0g

n
phys(µ) = 0

Here we have ignored the derivative of gn
phys(µ) because this is of higher order in the coupling

constant. If we define β(g) = b0gn (plus terms of higher order), we may write this as

µ
d

dµ
gphys(µ) = β(gphys(µ))

On the other hand, if we view V (Q) as a function of gphys, µ and Q (with an explicit

dependence on µ through the logarithm and an implicit dependence via gphys) we may write

the derivative (3.19) in terms of partial derivatives as

0 = µ
d

dµ
V (Q) =

[

µ
∂

∂µ
+ µ

dgphys(µ)

dµ

∂

∂gphys

]

V (gphys, µ, Q) ,

or in terms of the function β(g) we just introduced

[

µ
∂

∂µ
+ β(gphys)

∂

∂gphys

]

V (gphys, µ, Q) = 0 .

This derivation can in fact be done to any order in g, and for any Green’s function. The

general answer for a Greens’ function G is (omitting again for simplicity the effects of masses
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∂
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or in terms of the function β(g) we just introduced
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V (gphys, µ, Q) = 0 .

This derivation can in fact be done to any order in g, and for any Green’s function. The

general answer for a Greens’ function G is (omitting again for simplicity the effects of masses

The higher orders must be such that V(Q) is 
independent of the reference scale   . µ
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here how this equation is derived in the present, slightly simplified context. Consider the
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which no physical quantity should depend. Hence it must be true that
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This leads immediately to the equation
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n
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Here we have ignored the derivative of gn
phys(µ) because this is of higher order in the coupling

constant. If we define β(g) = b0gn (plus terms of higher order), we may write this as
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dependence on µ through the logarithm and an implicit dependence via gphys) we may write
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Hence

Or
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Technically this is done by means of the renormalization group equation. We will show

here how this equation is derived in the present, slightly simplified context. Consider the

measurable quantity V (Q) introduced in (3.16), and substituting for gbare the physical cou-

pling constant (3.17).

V (Q) = gphys(µ) − gn
phys(µ)b0 log(

µ

Q
) + higher order (3.18)

Now it seems that the physical quantity V (Q) depends on µ, the energy scale at which we

have decided to define and measure the coupling constant. But this is just a convention, on

which no physical quantity should depend. Hence it must be true that

µ
d
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V (Q) = 0 (3.19)

This leads immediately to the equation
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n
phys(µ) = 0

Here we have ignored the derivative of gn
phys(µ) because this is of higher order in the coupling

constant. If we define β(g) = b0gn (plus terms of higher order), we may write this as

µ
d
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gphys(µ) = β(gphys(µ))

On the other hand, if we view V (Q) as a function of gphys, µ and Q (with an explicit

dependence on µ through the logarithm and an implicit dependence via gphys) we may write

the derivative (3.19) in terms of partial derivatives as

0 = µ
d
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V (Q) =

[

µ
∂

∂µ
+ µ

dgphys(µ)
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]

V (gphys, µ, Q) ,

or in terms of the function β(g) we just introduced

[
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∂

∂µ
+ β(gphys)

∂

∂gphys

]

V (gphys, µ, Q) = 0 .

This derivation can in fact be done to any order in g, and for any Green’s function. The

general answer for a Greens’ function G is (omitting again for simplicity the effects of masses
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Technically this is done by means of the renormalization group equation. We will show

here how this equation is derived in the present, slightly simplified context. Consider the

measurable quantity V (Q) introduced in (3.16), and substituting for gbare the physical cou-

pling constant (3.17).

V (Q) = gphys(µ) − gn
phys(µ)b0 log(

µ

Q
) + higher order (3.18)

Now it seems that the physical quantity V (Q) depends on µ, the energy scale at which we

have decided to define and measure the coupling constant. But this is just a convention, on

which no physical quantity should depend. Hence it must be true that

µ
d

dµ
V (Q) = 0 (3.19)

This leads immediately to the equation

µ
d

dµ
gphys(µ) − b0g

n
phys(µ) = 0

Here we have ignored the derivative of gn
phys(µ) because this is of higher order in the coupling

constant. If we define β(g) = b0gn (plus terms of higher order), we may write this as

µ
d

dµ
gphys(µ) = β(gphys(µ))

On the other hand, if we view V (Q) as a function of gphys, µ and Q (with an explicit

dependence on µ through the logarithm and an implicit dependence via gphys) we may write

the derivative (3.19) in terms of partial derivatives as

0 = µ
d

dµ
V (Q) =

[

µ
∂

∂µ
+ µ

dgphys(µ)

dµ

∂

∂gphys

]

V (gphys, µ, Q) ,

or in terms of the function β(g) we just introduced

[

µ
∂

∂µ
+ β(gphys)

∂

∂gphys

]

V (gphys, µ, Q) = 0 .

This derivation can in fact be done to any order in g, and for any Green’s function. The

general answer for a Greens’ function G is (omitting again for simplicity the effects of masses

The second term is the first term in an expansion.
In general we get

With

β(g) = b0g
n + b1g

2n−1 + b2g
3n−1 . . .
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The renormalization 
group equation

0 = µ
d

dµ
G(Q) =

[
µ

∂

∂µ
+ µ

dgphys(µ)
dµ

∂

∂gphys

]
G(gphys, µ,Q)

Consider now any other physical quantity G. 
We distinguish the explicit dependence on     trough 
                    from the dependence through gphys using 
partial derivatives

µ
log (µ/Q)
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and external lines)
[

µ
∂

∂µ
+ β(g)

∂

∂g

]

G(g, µ, Q) = 0 , (3.20)

where β(g) is the β-function and g denotes the physical (renormalized) coupling constant at

the scale µ. The statement that this holds to arbitrary order in g should not be misinter-

preted. Of course both β(g) and G have an expansion in powers of g with coefficients we do

not know, except for the lowest orders. However, if we just introduce parameters for these

coefficients, then (3.20) holds to any order. It is simply a consequence of the requirement

that physics should not depend on an arbitrary choice of reference scale µ.

The renormalization group equation can formally be solved in the following way

G(g, µ, Q) = G(ḡ(log(Q/µ), Q, Q) ,

where the function ḡ is the solution to the differential equation

d

dt
ḡ(t) = β(ḡ(t)) ,

subject to the boundary condition ḡ(0) = g, so that we get the correct answer for Q = µ

(here t = log(Q/µ)). In this solution all explicit depence on µ via logarithms log(Q/µ)

is removed by setting Q = µ. The entire dependence on both Q and µ is absorbed into

the coupling “constant” (which is actually not a constant, but depends on Q; hence the

somewhat contradictory name “running coupling constant”).

At one loop the differential equation for the running coupling constant can easily be

solved, and the solution is

ḡn−1(t) =
gn−1

(1 − (n − 1)b0tgn−1)
(3.21)

If we expand this solution to order gn we get precisely the one-loop contribution discussed

above. However, even if we take for β(g) just the one-loop expression b0gn we see that

ḡ contains an infinite number of terms. These correspond to the so-called “leading log”

contributions to higher loop diagrams. Higher terms in β(g) correspond to “next-to-leading

logs”, which are down by one or more powers of log(Q/µ). This solution is valid only if

g is small, since otherwise it is certainly not correct to ignore the higher order terms in

or
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G(g, µ, Q) = 0 , (3.20)

where β(g) is the β-function and g denotes the physical (renormalized) coupling constant at

the scale µ. The statement that this holds to arbitrary order in g should not be misinter-

preted. Of course both β(g) and G have an expansion in powers of g with coefficients we do

not know, except for the lowest orders. However, if we just introduce parameters for these

coefficients, then (3.20) holds to any order. It is simply a consequence of the requirement

that physics should not depend on an arbitrary choice of reference scale µ.

The renormalization group equation can formally be solved in the following way

G(g, µ, Q) = G(ḡ(log(Q/µ), Q, Q) ,

where the function ḡ is the solution to the differential equation

d

dt
ḡ(t) = β(ḡ(t)) ,

subject to the boundary condition ḡ(0) = g, so that we get the correct answer for Q = µ

(here t = log(Q/µ)). In this solution all explicit depence on µ via logarithms log(Q/µ)

is removed by setting Q = µ. The entire dependence on both Q and µ is absorbed into

the coupling “constant” (which is actually not a constant, but depends on Q; hence the

somewhat contradictory name “running coupling constant”).

At one loop the differential equation for the running coupling constant can easily be

solved, and the solution is

ḡn−1(t) =
gn−1

(1 − (n − 1)b0tgn−1)
(3.21)

If we expand this solution to order gn we get precisely the one-loop contribution discussed

above. However, even if we take for β(g) just the one-loop expression b0gn we see that

ḡ contains an infinite number of terms. These correspond to the so-called “leading log”

contributions to higher loop diagrams. Higher terms in β(g) correspond to “next-to-leading

logs”, which are down by one or more powers of log(Q/µ). This solution is valid only if

g is small, since otherwise it is certainly not correct to ignore the higher order terms in

Solution:
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and external lines)
[
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∂g

]

G(g, µ, Q) = 0 , (3.20)

where β(g) is the β-function and g denotes the physical (renormalized) coupling constant at

the scale µ. The statement that this holds to arbitrary order in g should not be misinter-

preted. Of course both β(g) and G have an expansion in powers of g with coefficients we do

not know, except for the lowest orders. However, if we just introduce parameters for these

coefficients, then (3.20) holds to any order. It is simply a consequence of the requirement

that physics should not depend on an arbitrary choice of reference scale µ.

The renormalization group equation can formally be solved in the following way

G(g, µ, Q) = G(ḡ(log(Q/µ), Q, Q) ,

where the function ḡ is the solution to the differential equation

d

dt
ḡ(t) = β(ḡ(t)) ,

subject to the boundary condition ḡ(0) = g, so that we get the correct answer for Q = µ

(here t = log(Q/µ)). In this solution all explicit depence on µ via logarithms log(Q/µ)

is removed by setting Q = µ. The entire dependence on both Q and µ is absorbed into

the coupling “constant” (which is actually not a constant, but depends on Q; hence the

somewhat contradictory name “running coupling constant”).

At one loop the differential equation for the running coupling constant can easily be

solved, and the solution is

ḡn−1(t) =
gn−1

(1 − (n − 1)b0tgn−1)
(3.21)

If we expand this solution to order gn we get precisely the one-loop contribution discussed

above. However, even if we take for β(g) just the one-loop expression b0gn we see that

ḡ contains an infinite number of terms. These correspond to the so-called “leading log”

contributions to higher loop diagrams. Higher terms in β(g) correspond to “next-to-leading

logs”, which are down by one or more powers of log(Q/µ). This solution is valid only if

g is small, since otherwise it is certainly not correct to ignore the higher order terms in

With

With the boundary condition

ḡ(0) = g

i.e. ḡ(Q=µ) = gphys
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and external lines)
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+ β(g)
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]

G(g, µ, Q) = 0 , (3.20)

where β(g) is the β-function and g denotes the physical (renormalized) coupling constant at

the scale µ. The statement that this holds to arbitrary order in g should not be misinter-

preted. Of course both β(g) and G have an expansion in powers of g with coefficients we do

not know, except for the lowest orders. However, if we just introduce parameters for these

coefficients, then (3.20) holds to any order. It is simply a consequence of the requirement

that physics should not depend on an arbitrary choice of reference scale µ.

The renormalization group equation can formally be solved in the following way

G(g, µ, Q) = G(ḡ(log(Q/µ), Q, Q) ,

where the function ḡ is the solution to the differential equation

d

dt
ḡ(t) = β(ḡ(t)) ,

subject to the boundary condition ḡ(0) = g, so that we get the correct answer for Q = µ

(here t = log(Q/µ)). In this solution all explicit depence on µ via logarithms log(Q/µ)

is removed by setting Q = µ. The entire dependence on both Q and µ is absorbed into

the coupling “constant” (which is actually not a constant, but depends on Q; hence the

somewhat contradictory name “running coupling constant”).

At one loop the differential equation for the running coupling constant can easily be

solved, and the solution is

ḡn−1(t) =
gn−1

(1 − (n − 1)b0tgn−1)
(3.21)

If we expand this solution to order gn we get precisely the one-loop contribution discussed

above. However, even if we take for β(g) just the one-loop expression b0gn we see that

ḡ contains an infinite number of terms. These correspond to the so-called “leading log”

contributions to higher loop diagrams. Higher terms in β(g) correspond to “next-to-leading

logs”, which are down by one or more powers of log(Q/µ). This solution is valid only if

g is small, since otherwise it is certainly not correct to ignore the higher order terms in

Solution:
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and external lines)
[

µ
∂

∂µ
+ β(g)

∂

∂g

]

G(g, µ, Q) = 0 , (3.20)

where β(g) is the β-function and g denotes the physical (renormalized) coupling constant at

the scale µ. The statement that this holds to arbitrary order in g should not be misinter-

preted. Of course both β(g) and G have an expansion in powers of g with coefficients we do

not know, except for the lowest orders. However, if we just introduce parameters for these

coefficients, then (3.20) holds to any order. It is simply a consequence of the requirement

that physics should not depend on an arbitrary choice of reference scale µ.

The renormalization group equation can formally be solved in the following way

G(g, µ, Q) = G(ḡ(log(Q/µ), Q, Q) ,

where the function ḡ is the solution to the differential equation

d

dt
ḡ(t) = β(ḡ(t)) ,

subject to the boundary condition ḡ(0) = g, so that we get the correct answer for Q = µ

(here t = log(Q/µ)). In this solution all explicit depence on µ via logarithms log(Q/µ)

is removed by setting Q = µ. The entire dependence on both Q and µ is absorbed into

the coupling “constant” (which is actually not a constant, but depends on Q; hence the

somewhat contradictory name “running coupling constant”).

At one loop the differential equation for the running coupling constant can easily be

solved, and the solution is

ḡn−1(t) =
gn−1

(1 − (n − 1)b0tgn−1)
(3.21)

If we expand this solution to order gn we get precisely the one-loop contribution discussed

above. However, even if we take for β(g) just the one-loop expression b0gn we see that

ḡ contains an infinite number of terms. These correspond to the so-called “leading log”

contributions to higher loop diagrams. Higher terms in β(g) correspond to “next-to-leading

logs”, which are down by one or more powers of log(Q/µ). This solution is valid only if

g is small, since otherwise it is certainly not correct to ignore the higher order terms in

With

With the boundary condition

ḡ(0) = g

i.e. ḡ(Q=µ) = gphys

Kills all logs!
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and external lines)
[

µ
∂

∂µ
+ β(g)

∂

∂g

]

G(g, µ, Q) = 0 , (3.20)

where β(g) is the β-function and g denotes the physical (renormalized) coupling constant at

the scale µ. The statement that this holds to arbitrary order in g should not be misinter-

preted. Of course both β(g) and G have an expansion in powers of g with coefficients we do

not know, except for the lowest orders. However, if we just introduce parameters for these

coefficients, then (3.20) holds to any order. It is simply a consequence of the requirement

that physics should not depend on an arbitrary choice of reference scale µ.

The renormalization group equation can formally be solved in the following way

G(g, µ, Q) = G(ḡ(log(Q/µ), Q, Q) ,

where the function ḡ is the solution to the differential equation

d

dt
ḡ(t) = β(ḡ(t)) ,

subject to the boundary condition ḡ(0) = g, so that we get the correct answer for Q = µ

(here t = log(Q/µ)). In this solution all explicit depence on µ via logarithms log(Q/µ)

is removed by setting Q = µ. The entire dependence on both Q and µ is absorbed into

the coupling “constant” (which is actually not a constant, but depends on Q; hence the

somewhat contradictory name “running coupling constant”).

At one loop the differential equation for the running coupling constant can easily be

solved, and the solution is

ḡn−1(t) =
gn−1

(1 − (n − 1)b0tgn−1)
(3.21)

If we expand this solution to order gn we get precisely the one-loop contribution discussed

above. However, even if we take for β(g) just the one-loop expression b0gn we see that

ḡ contains an infinite number of terms. These correspond to the so-called “leading log”

contributions to higher loop diagrams. Higher terms in β(g) correspond to “next-to-leading

logs”, which are down by one or more powers of log(Q/µ). This solution is valid only if

g is small, since otherwise it is certainly not correct to ignore the higher order terms in

Solution:

= b0g
n

t = log (Q/µ)
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and external lines)
[

µ
∂

∂µ
+ β(g)

∂

∂g

]

G(g, µ, Q) = 0 , (3.20)

where β(g) is the β-function and g denotes the physical (renormalized) coupling constant at

the scale µ. The statement that this holds to arbitrary order in g should not be misinter-

preted. Of course both β(g) and G have an expansion in powers of g with coefficients we do

not know, except for the lowest orders. However, if we just introduce parameters for these

coefficients, then (3.20) holds to any order. It is simply a consequence of the requirement

that physics should not depend on an arbitrary choice of reference scale µ.

The renormalization group equation can formally be solved in the following way

G(g, µ, Q) = G(ḡ(log(Q/µ), Q, Q) ,

where the function ḡ is the solution to the differential equation

d

dt
ḡ(t) = β(ḡ(t)) ,

subject to the boundary condition ḡ(0) = g, so that we get the correct answer for Q = µ

(here t = log(Q/µ)). In this solution all explicit depence on µ via logarithms log(Q/µ)

is removed by setting Q = µ. The entire dependence on both Q and µ is absorbed into

the coupling “constant” (which is actually not a constant, but depends on Q; hence the

somewhat contradictory name “running coupling constant”).

At one loop the differential equation for the running coupling constant can easily be

solved, and the solution is

ḡn−1(t) =
gn−1

(1 − (n − 1)b0tgn−1)
(3.21)

If we expand this solution to order gn we get precisely the one-loop contribution discussed

above. However, even if we take for β(g) just the one-loop expression b0gn we see that

ḡ contains an infinite number of terms. These correspond to the so-called “leading log”

contributions to higher loop diagrams. Higher terms in β(g) correspond to “next-to-leading

logs”, which are down by one or more powers of log(Q/µ). This solution is valid only if

g is small, since otherwise it is certainly not correct to ignore the higher order terms in
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b0 > 0 Running coupling increases until it
reaches a singularity (Landau Pole).

b0 < 0 Running coupling decreases;
Asymptotic freedom. 

− 54 −

and external lines)
[

µ
∂

∂µ
+ β(g)

∂

∂g

]

G(g, µ, Q) = 0 , (3.20)

where β(g) is the β-function and g denotes the physical (renormalized) coupling constant at

the scale µ. The statement that this holds to arbitrary order in g should not be misinter-

preted. Of course both β(g) and G have an expansion in powers of g with coefficients we do

not know, except for the lowest orders. However, if we just introduce parameters for these

coefficients, then (3.20) holds to any order. It is simply a consequence of the requirement

that physics should not depend on an arbitrary choice of reference scale µ.

The renormalization group equation can formally be solved in the following way

G(g, µ, Q) = G(ḡ(log(Q/µ), Q, Q) ,

where the function ḡ is the solution to the differential equation

d

dt
ḡ(t) = β(ḡ(t)) ,

subject to the boundary condition ḡ(0) = g, so that we get the correct answer for Q = µ

(here t = log(Q/µ)). In this solution all explicit depence on µ via logarithms log(Q/µ)

is removed by setting Q = µ. The entire dependence on both Q and µ is absorbed into

the coupling “constant” (which is actually not a constant, but depends on Q; hence the

somewhat contradictory name “running coupling constant”).

At one loop the differential equation for the running coupling constant can easily be

solved, and the solution is

ḡn−1(t) =
gn−1

(1 − (n − 1)b0tgn−1)
(3.21)

If we expand this solution to order gn we get precisely the one-loop contribution discussed

above. However, even if we take for β(g) just the one-loop expression b0gn we see that

ḡ contains an infinite number of terms. These correspond to the so-called “leading log”

contributions to higher loop diagrams. Higher terms in β(g) correspond to “next-to-leading

logs”, which are down by one or more powers of log(Q/µ). This solution is valid only if
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the β function. If we extrapolate to higher energies (t = log(Q/µ) → ∞) we observe that

gn−1 becomes smaller and smaller if b0 < 0. However, if b0 > 0 the coupling constant

increases until it becomes formally infinite for t = 1/((n−1)b0gn−1) (we assume that g > 0).

Here clearly perturbation theory breaks down, and hence one cannot conclude exactly what

happens to the theory. Theories with b0 < 0, which are well-behaved at higher energies, are

called asymptotically free. This is a very desirable property since it makes it plausible that

no new dynamics will appear at higher energy; in order words, if we understand the theory

at low energies, we can be quite confident that it harbors no surprises when extrapolated

to arbitrarily large energies. In practice, however, we still have to worry about interactions

with other theories, most notably gravity, disturbing our extrapolations.

Asymptotic freedom

To see which theories are asymptotically free we list here the values of b0 for some popular

theories. For non-abelian gauge theories coupled to Weyl fermions:

b0 = − 1

96π2 (11I2(A) − 2I2(Rf ) − 1
2I2(Rs)) , (3.22)

where I2(R) is defined as

TrRT aT b = 1
2I2(R)δab ,

for any representation R. The representations occurring in (3.22) are the adjoint A, the

representation of the Weyl fermions Rf (left- and right handed fermions give the same

contribution) and of the scalars Rs. The scalars are assumed to be real; if a scalar is

complex, as it must be if it transforms in a complex representation, one gets an extra factor

of 2. The term depending on A is due to the gauge bosons and the Fadeev-Popov ghost

required by gauge fixing. Note that Rf and Rs may be reducible representations; the index

I2 is then simply the sum of the indices of each component. This formula is only correct

for one choice of normalization of the generators, namely so that I2(A) = C2(A), where C2

denotes the quadratic Casimir eigenvalue. This is the normalization adopted throughout

these lectures (see appendix B).

For the group SU(N) one has I2(R) = 1 in the fundamental representation, and C2(A) =

2N . It follows that SU(3) is asymptotically free if the number of Weyl fermions in the

fundamental representation or its conjugate is less than 33. In the standard model there are

n = 3;
1
g2

is a linear function of t

b0 =
1

96π2

(
2I2(Rf ) +

1
2
I2(Rs)− 11I2(A)

)

1
g2

{
Decreases with t for QED, Y
Increases with t for QCD and Weak interactions
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Nobel
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Remarks

The top line represents U(1)Y, not QED
(Q=T3+Y)

Contributing matter: 3 families + Higgs

Some choice of normalization*

One-loop running only

(*)

iψ̄γµ(∂µ − gT aAa
µ)ψ; [T a, T b] = ifabcT c

iψ̄γµ(∂µ − eY Aµ)ψ; [Y, Y ] = 0
No canonical normalization
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Some group theory
U: Group element (Unitary)
T:  Lie algebra generator (Hermitean)

Conjugate representation

[
T a, T b

]
= ifabcT c

Generators T a appear in gauge couplings.
They satisfy the relation

U → U∗

T a → −(T a)∗

U ≈ 1− iθaT a
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Lie Groups

Group
Number of 
Generators

SU(N) N2-1

SO(N) ½N(N-1)

Sp(N) ½N(N+1)

E6 78

E7 133

E8 248

G2 14

F4 52
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3. A first look beyond

In this chapter we discuss a variety of issues that might be relevant for attempts to

understand the standard model.

3.1. The left-handed representation

The notation employed thus far suggest that there is some sort of distinction between

left- and right-handed fields. Actually all fields are on the same footing. This has to do with

the existence of anti-particles. The anti-particle of a right-handed fermion is a left-handed

anti-fermion. The fermion action, iψ̄RγµDµψR does not treat particles and anti-particles

symmetrically. This is most obvious if one considers the covariant derivative: for a U(1)

gauge field this looks like ∂µ− ieqAµ, where q is the charge of ψ (for non-abelian symmetries

our conventions are such that Dµ = ∂µ − igT aAa
µ).

Here a definite choice is made among the particle and anti-particle charge. The SU(3)×
U(1) lagrangian is always written in such a way that the charge corresponds to what we call

“particles”, as opposed to anti-particles. Note that there is no such asymmetry in the action

of a complex scalar.

Of course we know that the same fermion action also describes the anti-particle. Hence

it should be no surprise that it can be rewritten in such a way that the rôle of particle and

anti-particle are interchanged. To do so we introduce new variables

ψ = C−1(γ0)T (ψc)∗ = C†(ψ̄c)T

ψ̄ = −(ψc)TC ,
(3.1)

where C is the charge conjugation matrix introduced in appendix D, which is a unitary

matrix satisfying

CγµC−1 = −(γµ)T .

The action of C on γ5 is: Cγ5C−1 = (γ5)T . The precise form of C depends on the explicit

representation of the Dirac γ-matrices, but the only thing that matters is that such a matrix

C exists in any representation. The relation for ψ̄ is not independent, but follows from the

The Standard Model is written in terms of left- righthanded
quarks and leptons. 

But instead of the electron field one could use the positron field.

This is just a change of variables: 

− 195 −

Scalars that transform in a complex or pseudoreal representation of any global or lo-

cal symmetry must be complex, since the transformations cannot maintain their reality.

Scalars in real representations may be real or complex, but in the latter case one may always

decompose them into two real scalars.

D.2. (b). Fermions

The Lagrangian for a massive fermion is

L = iψ̄γµ∂µψ − mψ̄ψ (D.2)

The γ matrices are 4 × 4-matrices defined by

{γµ, γν} = 2ηµν

We can (and will) choose them in such a way that γ0 is Hermitean and the other three are

anti-Hermitean. The conjugate spinor ψ̄ is defined as ψ̄ = ψ†γ0. The matrix γ5 is defined

by

γ5 ≡ γ5 = iγ0γ1γ2γ3 , (D.3)

and is Hermitean. In any representation of the γ-matrices there is a unitary matrix C so

that

γT
µ = −CγµC−1

Left- or right-handed Weyl spinor are defined by means of the projection operators

PL = 1
2(1 + γ5); PR = 1

2(1 − γ5) .

They satisfy PRPR = PR; PLPL = PL and PLPR = 0. The left and right-handed components

of a field are defined as ψL = PLψ; ψR = PRψ. Due to the projections ψL and ψR are

effectively two-component spinors, called Weyl spinors. A Dirac spinor has four complex

degrees of freedom, a Weyl-spinor only two.

 is a unitary matrix that satisfies
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degrees of freedom, a Weyl-spinor only two.
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Some representations

Vector: SU(N), SO(N), Sp(N) : dimension N

Adjoint: (T a)bc = −ifabc

dimension = number of generators

Spinor: SO(2n) : dimension 2n−1

SO(2n + 1) : dimension 2n
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A Dirac spinor can be projected onto its two components using the matrix γ5 defined as

γ5 = iγ0γ1γ2γ3. It is hermitean, its square is 1, and it commutes with all γµ, µ = 0, . . . 4. In

the explicit representation given above one has

γ4 =

(

0 1

1 0

)

, γ5 =

(

1 0

0 −1

)

The left and right chiral projection operators are

PL = 1
2(1 + γ5); PR = 1

2(1 − γ5) .

They satisfy PRPR = PR; PLPL = PL and PLPR = 0. The left and right-handed components

of a field are defined as ψL = PLψ; ψR = PRψ. Due to the projections ψL and ψR are

effectively two-component spinors, called Weyl spinors. These are precisely the spinors χ

and ψ̄ introduced above.

Note that ψ̄L = ψ̄PR. The flip in chirality occurs because have to commute PL through

γ4. Hence the non-vanishing bilinears are iψ̄LγµψL, ψ̄RψL, and terms with all L’s and R’s

interchanged. Thus the vector current (to which gauge bosons couple) preserves chiral-

ity, but the mass term does not. Another combination that does not preserve chirality is

ψ̄L[γµ, γν]ψR, to which the magnetic moment is proportional.

For an arbitrary Dirac spinor one defines

Ψ̄ = −(Ψc)TC ,

where Ψc is the charge conjugate spinor. A Majorana spinor is thus defined by Ψ = Ψc. In

the absence of a mass term there is not really any difference between Majorana and Weyl

spinors. We may write

i
2Ψ̄γµ∂µΨ = i

2Ψ̄Lγµ∂µΨL + i
2Ψ̄Rγµ∂µΨR ,

and then substitute Ψ̄R = −((Ψc)L)T in the second term. Using the Majorana property plus

a little algebra (which is done explicitly in chapter 3) one finds that the second term is now

− 18 −

one for ψ. Note that this changes right-handed fields to left-handed ones:

ψR = PRψ = PRC−1(γ0)T (ψc)∗ = C−1(PR)T (γ0)T (ψc)∗

= C−1(γ0)T (PL)T (ψc)∗ = C−1(γ0)T (PL)∗(ψc)∗ = C−1(γ0)T (ψc
L)∗ .

Substituting this into the action iψ̄RγµDµψR yields a new action

iψ̄RγµDµψR = −i(ψc
L)T CγµDµC†(ψ̄c

L)T

= −i(ψc
L)T CγµDµC−1(ψ̄c

L)T

= i(ψc
L)T (γµ)TDµ(ψ̄c

L)T

Now we take the transpose of the entire expression. Since the fermions anti-commute this

requires some care. The identity we are using is

χT Mη =
∑

i,j

χiMijη
j = −

∑

i,j

ηjMijχ
i = −

∑

i,j

ηjMT
jiχ

i = −ηT MT χ ,

where χ and η are mutually anti-commuting spinors. In our case they correspond to ψc and

ψ̄c, and the indices i, j represent the complete set of indices ψ has, e.g. spin (Dirac indices),

gauge and flavor indices. For the ordinary derivative term in covariant derivative this yields

i(ψc
L)T (γµ)T∂µ(ψ̄c

L)T

= −i∂µψ̄c
Lγµψc

L

We now move ∂µ to ψc
L by “partial integration”, i.e. we pretend that the Lagrangian density

is integrated over space-time. This gives a final minus sign. For the gauge boson coupling

part of the covariant derivative we get

i(ψc
L)T (γµ)T [−igAa

µT a](ψ̄c
L)T

= −iψ̄c
L[−igAa

µ(T a)T ]γµψc
L

= iψ̄c
L[+igAa

µ(T a)∗]γµψc
L ,

where we made use of the fact that T a is hermitean. The final result is thus

i(ψ̄c)Lγµ(∂µ + ig(T a)∗Aa
µ)ψc

L

This is the desired result since −(T a)∗ is the generator of the complex conjugate represen-

tation.

     The matrix 

     transforms as follows 

The chiral projection operators are

     therefore: 
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one for ψ. Note that this changes right-handed fields to left-handed ones:

ψR = PRψ = PRC−1(γ0)T (ψc)∗ = C−1(PR)T (γ0)T (ψc)∗

= C−1(γ0)T (PL)T (ψc)∗ = C−1(γ0)T (PL)∗(ψc)∗ = C−1(γ0)T (ψc
L)∗ .

Substituting this into the action iψ̄RγµDµψR yields a new action

iψ̄RγµDµψR = −i(ψc
L)T CγµDµC†(ψ̄c

L)T

= −i(ψc
L)T CγµDµC−1(ψ̄c

L)T

= i(ψc
L)T (γµ)TDµ(ψ̄c

L)T

Now we take the transpose of the entire expression. Since the fermions anti-commute this

requires some care. The identity we are using is

χT Mη =
∑

i,j

χiMijη
j = −

∑

i,j

ηjMijχ
i = −

∑

i,j

ηjMT
jiχ

i = −ηT MT χ ,

where χ and η are mutually anti-commuting spinors. In our case they correspond to ψc and

ψ̄c, and the indices i, j represent the complete set of indices ψ has, e.g. spin (Dirac indices),

gauge and flavor indices. For the ordinary derivative term in covariant derivative this yields
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L)T (γµ)T∂µ(ψ̄c

L)T

= −i∂µψ̄c
Lγµψc
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3. A first look beyond

In this chapter we discuss a variety of issues that might be relevant for attempts to

understand the standard model.

3.1. The left-handed representation

The notation employed thus far suggest that there is some sort of distinction between

left- and right-handed fields. Actually all fields are on the same footing. This has to do with

the existence of anti-particles. The anti-particle of a right-handed fermion is a left-handed

anti-fermion. The fermion action, iψ̄RγµDµψR does not treat particles and anti-particles

symmetrically. This is most obvious if one considers the covariant derivative: for a U(1)

gauge field this looks like ∂µ− ieqAµ, where q is the charge of ψ (for non-abelian symmetries

our conventions are such that Dµ = ∂µ − igT aAa
µ).

Here a definite choice is made among the particle and anti-particle charge. The SU(3)×
U(1) lagrangian is always written in such a way that the charge corresponds to what we call

“particles”, as opposed to anti-particles. Note that there is no such asymmetry in the action

of a complex scalar.

Of course we know that the same fermion action also describes the anti-particle. Hence

it should be no surprise that it can be rewritten in such a way that the rôle of particle and

anti-particle are interchanged. To do so we introduce new variables

ψ = C−1(γ0)T (ψc)∗ = C†(ψ̄c)T

ψ̄ = −(ψc)TC ,
(3.1)

where C is the charge conjugation matrix introduced in appendix D, which is a unitary

matrix satisfying

CγµC−1 = −(γµ)T .

The action of C on γ5 is: Cγ5C−1 = (γ5)T . The precise form of C depends on the explicit

representation of the Dirac γ-matrices, but the only thing that matters is that such a matrix

C exists in any representation. The relation for ψ̄ is not independent, but follows from the

with

Is transformed to:

A right-handed quark/lepton gauge coupling

Conjugate representations
(opposite charge)

U = 1− iθaT a

U∗ = 1 + iθa(T a)∗
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SU(3) × U(1)em representations

(3, 2, 1
6)L → (3, 2

3)L + (3,−1
3)L

(3, 1, 2
3)R → (3, 2

3)R

(3, 1,−1
3)R → (3,−1

3)R

(1, 2,−1
2)L → (1,−1)L + (1, 0)L

(1, 1,−1)R → (1,−1)R

(1, 1, 0)R → (1, 0)R

,

and of course we get three copies of each fields. We denote these fields as ψU
L , ψD

L , ψE
L and ψN

L

and similarly for the righthanded components. Just as before for the SU(3)×SU(2)×U(1)

representations, U stands for the three quarks u, c, t with charge 2
3 , D for the quarks d, s, b

with charge −1
3 , E for the leptons e, µ, τ with charge −1 and N for the three neutrinos.

Until a few years ago most data were consistent with massless, purely lefthanded

neutrinos.
!

In the zero mass limit the right-handed neutrino decouples completely from

all other fields in the standard model, and couples only to gravity. For this reason the exis-

tence of the right-handed neutrino components has been a matter of speculation. Nowadays

we know that there must be mass differences between different neutrino species, and hence

they cannot all be massless.

An often used parameter is tan θw = g1/g2. The electromagnetic coupling constant e is

the related to g1 and g2 as e = g2sin θw = g1 cos θw. Experimental data are usually quoted

in terms of sin2 θw The measured value is .23117 ± .00016. The measured Z and W masses

are 80.419± .056 and 91.1882± .0022. Using this experimental information we can compute

the value of v, the Higgs v.e.v:

v = MW

√

sin θw

πα(MW)
≈ 246 GeV

Here α is the QED fine structure constant, but one should not use the low energy value 1
137 ,

but the value at the mass of the W (or Z) boson, which is about 1
128 (more about running

coupling constants follows later).

! The precise definition of left-handed is that the spin is oriented opposite to the direction of motion.
This definition is convention-independent; however in the literature the corresponding projections are
either 1

2
(1 + γ5) (our convention) or 1

2
(1− γ5), and the definitions of γ5 and the εµνρσ tensor may also

differ by signs. If the neutrino is exactly massless this relative orientation is Lorentz-invariant.

− 19 −

Having done this we can now describe all physics in terms of ψc
L instead of ψR. This

removes an arbitrary distinction between left- and right-handed fields. This distinction

made sense below the scale of weak symmetry breaking, since the left and right-handed

components are paired by the mass-terms, but not in the unbroken theory. Furthermore we

can now consider transformations that take any field to any other fermion field. This would

be quite hard to describe if part of the fields had opposite handedness. A standard model

family now looks like this

(3, 2, 1
6)

(

uL

dL

)

(3∗, 1,−2
3) uc

L

(3∗, 1, 1
3) dc

L

(1, 2,−1
2)

(

νL

e−L

)

(1, 1, 1) e+
L

(1, 1, 0) νc
L

(3.2)

The Yukawa couplings and mass terms now look somewhat different. For example a typical

(off-diagonal) mass term like

ψ̄RMχL + χ̄LM†ψR

transforms to

−(ψc
L)T MCχL − χ̄LM†C†(ψ̄c

L)T . (3.3)

All indices have been suppressed here, but note that M and C are respectively matrices in

generation and in spinor space. Mass terms clearly looked nicer in L-R notation, but that is

a price we will have to pay. Yukawa couplings are very similar to mass terms in this respect.

The diagonalization of the mass matrices goes exactly as before, but our previous nota-

tion is now a bit unattractive. Therefore we define

Ux ≡ UL,x

Vx ≡ U∗
R,x ,

(3.4)

where x denotes U ,D, E or N . In this notation the matrices U act on particles and V on

Advantage: allows additional internal symmetries

left and right-handed fields Left-handed only

Q = T3 + Y

SU(3)× SU(2)× U(1)Y → SU(3)× U(1)em SU(3)× SU(2)× U(1)Y
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SU(5)
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convergence anymore, at least not for “minimal SU(5)”, without extra matter in the desert.

Nevertheless, the concept of SU(5) unification is still important enough to have a closer look.

4.3. SU(5) unification.

The idea of SU(5) unification is extremely simple. One builds a theory with a simple

gauge group, and then one breaks this symmetry group spontaneously to its SU(3)×SU(2)×
U(1) subgroup. In this way the three standard model gauge groups are unified. The smallest

simple group in which one can embed the standard model group is SU(5). The gauge action

is just the canonical one, with a coupling constant g5. The fermions are minimally coupled

in a way that depends only on their SU(5) representations. This representation must be

anomaly free, and we will need three copies to get three families. It must also be complex,

since otherwise we would expect it to be massive, and furthermore the theory would be

invariant under C and P , while the standard model is not. It must have at least 15 Weyl

fermions per family, and preferably not more.

The fermions

A quick inspection of some of the smallest SU(5) representations immediately suggests

an obvious solution. The smallest non-trivial representation of SU(5) is the 5, the vector

representation. Its anomaly is normalized to 1. The symmetric tensor has dimension 15,

and its anomaly is 9. The anti-symmetric tensor has dimension 10 and anomaly 1. All

these representations are complex, and their conjugates have the opposite anomaly. Another

interesting representation is 24, the adjoint, which has anomaly zero because it is real. The

next smallest representation has dimension 35, and that is a bit too large to be of interest.

Clearly the only reasonable solution to the conditions listed above is to take 5+10, of course

all in the left-handed representation.

Let us examine more closely how SU(3) × SU(2) × U(1) is embedded in SU(5). The

group SU(5) is defined as the set of 5 × 5 unitary matrices with determinant one. Now

consider the subset of matrices of the form

U =

(

U3 0

0 U2

)

, (4.2)

where U3 and U2 are unitary 3×3 and 2×2 matrices satisfying the relation det U3 det U2 =

1. This is precisely the group S(U(3) × U(2)) identified in chapter 3 as the global group

Unitary 5 x 5 matrices with determinant 1.

Standard model embedding: − 72 −

of the standard model. If we write U3 = eiφÛ3 and U2 = eiχÛ2 where Û3 and Û2 have

determinant 1, then we have identified the SU(3) and SU(2) subgroups. The phases must

satisfy 3φ + 2χ = 0 mod 2π. This leaves one independent phase, corresponding to the U(1).

It follows that the representation 5 decomposes as follows into representations of the

SU(3) × SU(2) × U(1) subgroup

5 → (3, 1,−1
3q) + (1, 2, 1

2q) (4.3)

Here we have allowed for an arbitrary real factor q since the normalization of U(1) charges is

not fixed by the algebra. The SU(3) and SU(2) generators can simply be taken as a subset of

the SU(5) generators, as suggested by (4.2). Hence they have their canonical normalization,

and the corresponding embedding indices are equal to 1.

From the point of view of SU(5) there is a natural normalization for the U(1) generator.

We choose the canonical normalization for the vector representation of SU(N), so that

Tr T aT b = 1
2δab. It is important that this trace is proportional to δab, since this was

implicitly assumed in writing the gauge kinetic terms. Note that this normalization is indeed

the one we used previously in SU(2) to derive the relation between T3, Y and the electric

charge, and in the computation of the β function.

If we make sure that the SU(3)×SU(2)×U(1) generators all have the same normalization,

we can choose a basis for the 24 SU(5) generators consisting of 12 SU(3) × SU(2) × U(1)

generators (numbered 1 . . . 12) and 12 remaining ones. Then

24
∑

a=1

Aa
µT a =

12
∑

a=1

Aa
µT a + rest .

(The terms denoted “rest” will be discussed later.) The properly normalized generators

appear in the Lagrangian in combination with the unified coupling constant g5. If we want

to view our U(1) generator directly as a properly normalized generator, we should choose

TY =
√

3/5 diag (−1
3 ,−1

3 ,−1
3 , 1

2 , 1
2), which satisfies Tr T 2

Y = 1
2 , in other words, the factor

q introduced above equals
√

3/5.

If we now compare the SU(5) minimal couplings with those of the standard model, we

get immediately the relations g2 = g3 = g5, g1 =
√

3/5. These are precisely the relations

required for coupling constant unification (according to the pre-LEP data at least). From
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QCD

Weak

One phase left free:  U(1)Y

diag(e−
1
3 iφ, e−

1
3 iφ, e−

1
3 iφ, e

1
2 iφ, e

1
2 iφ)
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Gauge coupling

−1
4
F a

µνFµν,a + iψ̄LγµDµψL

− 17 −

3. A first look beyond

In this chapter we discuss a variety of issues that might be relevant for attempts to

understand the standard model.

3.1. The left-handed representation

The notation employed thus far suggest that there is some sort of distinction between

left- and right-handed fields. Actually all fields are on the same footing. This has to do with

the existence of anti-particles. The anti-particle of a right-handed fermion is a left-handed

anti-fermion. The fermion action, iψ̄RγµDµψR does not treat particles and anti-particles

symmetrically. This is most obvious if one considers the covariant derivative: for a U(1)

gauge field this looks like ∂µ− ieqAµ, where q is the charge of ψ (for non-abelian symmetries

our conventions are such that Dµ = ∂µ − igT aAa
µ).

Here a definite choice is made among the particle and anti-particle charge. The SU(3)×
U(1) lagrangian is always written in such a way that the charge corresponds to what we call

“particles”, as opposed to anti-particles. Note that there is no such asymmetry in the action

of a complex scalar.

Of course we know that the same fermion action also describes the anti-particle. Hence

it should be no surprise that it can be rewritten in such a way that the rôle of particle and

anti-particle are interchanged. To do so we introduce new variables

ψ = C−1(γ0)T (ψc)∗ = C†(ψ̄c)T

ψ̄ = −(ψc)TC ,
(3.1)

where C is the charge conjugation matrix introduced in appendix D, which is a unitary

matrix satisfying

CγµC−1 = −(γµ)T .

The action of C on γ5 is: Cγ5C−1 = (γ5)T . The precise form of C depends on the explicit

representation of the Dirac γ-matrices, but the only thing that matters is that such a matrix

C exists in any representation. The relation for ψ̄ is not independent, but follows from the

Tr T aT b =
1
2
δab

Covariant derivative:

Normalization:

Lagrangian:

(Vector Representation)

   8 gluons 
+ W+ + W-+ Z 
+ photon
+ 12 additional ones  (X, Y)

{
24 gauge bosons

(a = 1, . . . , 24)
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Content of the (5)

Normalization:

Tr T aT b =
1
2
δab
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and the corresponding embedding indices are equal to 1.
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We choose the canonical normalization for the vector representation of SU(N), so that
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2δab. It is important that this trace is proportional to δab, since this was

implicitly assumed in writing the gauge kinetic terms. Note that this normalization is indeed

the one we used previously in SU(2) to derive the relation between T3, Y and the electric

charge, and in the computation of the β function.

If we make sure that the SU(3)×SU(2)×U(1) generators all have the same normalization,

we can choose a basis for the 24 SU(5) generators consisting of 12 SU(3) × SU(2) × U(1)

generators (numbered 1 . . . 12) and 12 remaining ones. Then

24
∑

a=1

Aa
µT a =

12
∑

a=1

Aa
µT a + rest .

(The terms denoted “rest” will be discussed later.) The properly normalized generators

appear in the Lagrangian in combination with the unified coupling constant g5. If we want

to view our U(1) generator directly as a properly normalized generator, we should choose

TY =
√

3/5 diag (−1
3 ,−1

3 ,−1
3 , 1

2 , 1
2), which satisfies Tr T 2

Y = 1
2 , in other words, the factor

q introduced above equals
√

3/5.

If we now compare the SU(5) minimal couplings with those of the standard model, we

get immediately the relations g2 = g3 = g5, g1 =
√

3/5. These are precisely the relations

required for coupling constant unification (according to the pre-LEP data at least). From

Implies standard normalization for QCD, Weak,
but also:

5→ (3, 1,−1
3
x) + (1, 2,

1
2
x) x =???
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Coupling relation

iψ̄L(∂µ − ig5TY AY
µ )ψL

=

iψ̄L(∂µ − i
√

3/5 g5Y AY
µ )ψL

iψ̄L(∂µ − ig1Y AY
µ )ψL

=

g1 =
√

3/5g5

Therefore

g2 = g3 = g5

sin2θW =
g2
1

g2
1 + g2

2

=
3
8
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Content of the (5)
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now on we will absorb the factor
√

3/5 in the definition of the coupling constant, so that

content of the representation 5 is (3, 1,−1
3) + (1, 2, 1

2). The last entry is now precisely the

Y -charge as defined previously.

The representations contained in the 5 do not match any standard model particle, but

the complex conjugates do. Hence we choose the anomaly-free representation 5̄ + 10 (we

could just as easily have conjugated the embedding of SU(3) × SU(2) × U(1) in the 5,
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Having done this we can now describe all physics in terms of ψc
L instead of ψR. This

removes an arbitrary distinction between left- and right-handed fields. This distinction

made sense below the scale of weak symmetry breaking, since the left and right-handed

components are paired by the mass-terms, but not in the unbroken theory. Furthermore we

can now consider transformations that take any field to any other fermion field. This would

be quite hard to describe if part of the fields had opposite handedness. A standard model

family now looks like this

(3, 2, 1
6)

(

uL

dL

)

(3∗, 1,−2
3) uc

L

(3∗, 1, 1
3) dc

L

(1, 2,−1
2)

(

νL

e−L

)

(1, 1, 1) e+
L

(1, 1, 0) νc
L

(3.2)

The Yukawa couplings and mass terms now look somewhat different. For example a typical

(off-diagonal) mass term like

ψ̄RMχL + χ̄LM†ψR

transforms to

−(ψc
L)T MCχL − χ̄LM†C†(ψ̄c

L)T . (3.3)

All indices have been suppressed here, but note that M and C are respectively matrices in

generation and in spinor space. Mass terms clearly looked nicer in L-R notation, but that is

a price we will have to pay. Yukawa couplings are very similar to mass terms in this respect.

The diagonalization of the mass matrices goes exactly as before, but our previous nota-

tion is now a bit unattractive. Therefore we define

Ux ≡ UL,x

Vx ≡ U∗
R,x ,

(3.4)

where x denotes U ,D, E or N . In this notation the matrices U act on particles and V on
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SU(2) the ordering of the doublet is important, because SU(2) is eventually broken, and two

members of the same doublet will become particles with different charges. We will choose

the 4th component to coincide with the upper component of the SU(2) doublet. Now we are

able to write down the decomposition of the 5: (d1, d2, d3, e+, ν), including the color index

for the d’s. Here d, e+ and ν are nothing but short-hand notations for certain SU(3)×U(1)

representations. Then the 5∗ decomposes to

Ψ = (dc
1, d

c
2, d

c
3, e

−, ν) .

[There is one subtlety here. In an normal SU(2) doublet the upper component has an electric

charge that is higher (by one unit) than that of the lower, because Qem = T3 + Y . This is

true for the doublet (e+, ν) in the 5 but not for the doublet (e−, ν) in the 5∗. The reason

is simple: the doublet in the 5∗ transforms in the complex conjugate representation 2∗, and

not in the 2. These representations are equivalent, but the equivalence relation involves the

invariant tensor εij , which turns the doublet upside down.]

Now we construct the 10 by taking the anti-symmetric product of two 5’s. This field is

most easily represented by a 5 × 5 matrix, whose elements i, j have the quantum numbers

of the tensor product of the ith components times the jth component of the 5. Here e+di

yields the SU(3) × U(1) representation of ui and εijkdidj that of uc
k. The result is

∆ =
1√
2



















0 uc
3 −uc

2 −u1 −d1

−uc
3 0 uc

1 −u2 −d2

uc
2 −uc

1 0 −u3 −d3

u1 u2 u3 0 −e+

d1 d2 d3 e+ 0



















The factor 1√
2

is added to ensure that the kinetic terms have the proper normalization (note

that every field appears twice in the 10).

This describes one family, but one word of caution is needed. In the standard model it

is customary to say that u and d belong to the first generation, c and s to the second and

t and b to the third, but that is not really true. The group SU(2) does not relate the mass

eigenstates u and d, but u and a linear combination of d, s and b (which is dominated by

d). With the leptons the situation is even less clear. If, by definition, u belongs to the first
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now on we will absorb the factor
√

3/5 in the definition of the coupling constant, so that

content of the representation 5 is (3, 1,−1
3) + (1, 2, 1

2). The last entry is now precisely the

Y -charge as defined previously.

The representations contained in the 5 do not match any standard model particle, but

the complex conjugates do. Hence we choose the anomaly-free representation 5̄ + 10 (we

could just as easily have conjugated the embedding of SU(3) × SU(2) × U(1) in the 5,

but that is not the standard convention). Now the 5̄ precisely contains particles with the

quantum numbers of dc, e− and ν, i.e. the representation (3∗, 1, 1
3) + (1, 2,−1

2). Here and in

the following all fermions are left-handed unless explicit subscripts R are shown.

To get the contents of the 10 we can take the anti-symmetric tensor product of two

5’s, decomposed to SU(3) × SU(2) × U(1) representations. If φi, i = 1, . . . 5 is a vector

transforming according to the 5 of SU(5), this means that we decompose the tensor product

as φiφj = 1
2(φiφj − φjφi) + 1

2(φiφj + φjφi). It can be shown (for any representation of

any algebra) that the algebra transforms the symmetric terms into themselves, and the

same with the anti-symmetric ones. Hence they form representations of the algebra. In

the case under consideration here (in general for vector representations of SU(N)) they

form in fact irreducible representations of dimension 10 and 15. Now we have to do this

for the decomposed 5, which is a direct sum of two representations. The general rule for

anti-symmetric products of a direct sum R + S of two representations is

[(R + S)2]a = R2
a + S2

a + RS ,

where a denotes the anti-symmetric product. The same relation holds with s instead of a

for symmetric products. Now all we need to know is that in SU(3) (3)2a = 3̄, and that in

SU(2) (2)2a = 1. The result is

10 = (3∗, 1,−2
3) + (1, 1, 1) + (3, 2, 1

6) ,

and we recognize the representations of the particles uc, e+ and the doublet u, d. Thus the

SU(5) representation 5̄ + 10 contains precisely one family of the standard model.

The precise decomposition of this representation into SU(3)× U(1) particle representa-

tions is as follows. By convention, the 5 contains (3, 1,−1
3)+(1, 2, 1

2). In the five dimensional

space, the first three components are reserved for SU(3), and the last two for SU(2). Within

φi → UijφjVector

Anti-symmetric Symmetric
1
2
N(N − 1) components 1

2
N(N + 1) components

{ {

^ ^ ^ ^ ^

Tensor φiφ̂j → UikUjlφ
lφ̂k
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Having done this we can now describe all physics in terms of ψc
L instead of ψR. This

removes an arbitrary distinction between left- and right-handed fields. This distinction

made sense below the scale of weak symmetry breaking, since the left and right-handed

components are paired by the mass-terms, but not in the unbroken theory. Furthermore we

can now consider transformations that take any field to any other fermion field. This would

be quite hard to describe if part of the fields had opposite handedness. A standard model

family now looks like this

(3, 2, 1
6)

(

uL

dL

)

(3∗, 1,−2
3) uc

L

(3∗, 1, 1
3) dc

L

(1, 2,−1
2)

(

νL

e−L

)

(1, 1, 1) e+
L

(1, 1, 0) νc
L

(3.2)

The Yukawa couplings and mass terms now look somewhat different. For example a typical

(off-diagonal) mass term like

ψ̄RMχL + χ̄LM†ψR

transforms to

−(ψc
L)T MCχL − χ̄LM†C†(ψ̄c

L)T . (3.3)

All indices have been suppressed here, but note that M and C are respectively matrices in

generation and in spinor space. Mass terms clearly looked nicer in L-R notation, but that is

a price we will have to pay. Yukawa couplings are very similar to mass terms in this respect.

The diagonalization of the mass matrices goes exactly as before, but our previous nota-

tion is now a bit unattractive. Therefore we define

Ux ≡ UL,x

Vx ≡ U∗
R,x ,

(3.4)

where x denotes U ,D, E or N . In this notation the matrices U act on particles and V on
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SU(2) the ordering of the doublet is important, because SU(2) is eventually broken, and two

members of the same doublet will become particles with different charges. We will choose

the 4th component to coincide with the upper component of the SU(2) doublet. Now we are

able to write down the decomposition of the 5: (d1, d2, d3, e+, ν), including the color index

for the d’s. Here d, e+ and ν are nothing but short-hand notations for certain SU(3)×U(1)

representations. Then the 5∗ decomposes to

Ψ = (dc
1, d

c
2, d

c
3, e

−, ν) .

[There is one subtlety here. In an normal SU(2) doublet the upper component has an electric

charge that is higher (by one unit) than that of the lower, because Qem = T3 + Y . This is

true for the doublet (e+, ν) in the 5 but not for the doublet (e−, ν) in the 5∗. The reason

is simple: the doublet in the 5∗ transforms in the complex conjugate representation 2∗, and

not in the 2. These representations are equivalent, but the equivalence relation involves the

invariant tensor εij , which turns the doublet upside down.]

Now we construct the 10 by taking the anti-symmetric product of two 5’s. This field is

most easily represented by a 5 × 5 matrix, whose elements i, j have the quantum numbers

of the tensor product of the ith components times the jth component of the 5. Here e+di

yields the SU(3) × U(1) representation of ui and εijkdidj that of uc
k. The result is

∆ =
1√
2



















0 uc
3 −uc

2 −u1 −d1

−uc
3 0 uc

1 −u2 −d2

uc
2 −uc

1 0 −u3 −d3

u1 u2 u3 0 −e+

d1 d2 d3 e+ 0



















The factor 1√
2

is added to ensure that the kinetic terms have the proper normalization (note

that every field appears twice in the 10).

This describes one family, but one word of caution is needed. In the standard model it

is customary to say that u and d belong to the first generation, c and s to the second and

t and b to the third, but that is not really true. The group SU(2) does not relate the mass

eigenstates u and d, but u and a linear combination of d, s and b (which is dominated by

d). With the leptons the situation is even less clear. If, by definition, u belongs to the first
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any algebra) that the algebra transforms the symmetric terms into themselves, and the

same with the anti-symmetric ones. Hence they form representations of the algebra. In

the case under consideration here (in general for vector representations of SU(N)) they

form in fact irreducible representations of dimension 10 and 15. Now we have to do this

for the decomposed 5, which is a direct sum of two representations. The general rule for

anti-symmetric products of a direct sum R + S of two representations is

[(R + S)2]a = R2
a + S2

a + RS ,

where a denotes the anti-symmetric product. The same relation holds with s instead of a

for symmetric products. Now all we need to know is that in SU(3) (3)2a = 3̄, and that in

SU(2) (2)2a = 1. The result is

10 = (3∗, 1,−2
3) + (1, 1, 1) + (3, 2, 1

6) ,

and we recognize the representations of the particles uc, e+ and the doublet u, d. Thus the

SU(5) representation 5̄ + 10 contains precisely one family of the standard model.

The precise decomposition of this representation into SU(3)× U(1) particle representa-

tions is as follows. By convention, the 5 contains (3, 1,−1
3)+(1, 2, 1

2). In the five dimensional

space, the first three components are reserved for SU(3), and the last two for SU(2). Within
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Having done this we can now describe all physics in terms of ψc
L instead of ψR. This

removes an arbitrary distinction between left- and right-handed fields. This distinction

made sense below the scale of weak symmetry breaking, since the left and right-handed

components are paired by the mass-terms, but not in the unbroken theory. Furthermore we

can now consider transformations that take any field to any other fermion field. This would

be quite hard to describe if part of the fields had opposite handedness. A standard model

family now looks like this

(3, 2, 1
6)

(

uL

dL

)

(3∗, 1,−2
3) uc

L

(3∗, 1, 1
3) dc

L

(1, 2,−1
2)

(

νL

e−L

)

(1, 1, 1) e+
L

(1, 1, 0) νc
L

(3.2)

The Yukawa couplings and mass terms now look somewhat different. For example a typical

(off-diagonal) mass term like

ψ̄RMχL + χ̄LM†ψR

transforms to

−(ψc
L)T MCχL − χ̄LM†C†(ψ̄c

L)T . (3.3)

All indices have been suppressed here, but note that M and C are respectively matrices in

generation and in spinor space. Mass terms clearly looked nicer in L-R notation, but that is

a price we will have to pay. Yukawa couplings are very similar to mass terms in this respect.

The diagonalization of the mass matrices goes exactly as before, but our previous nota-

tion is now a bit unattractive. Therefore we define

Ux ≡ UL,x

Vx ≡ U∗
R,x ,

(3.4)

where x denotes U ,D, E or N . In this notation the matrices U act on particles and V on
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SU(2) the ordering of the doublet is important, because SU(2) is eventually broken, and two

members of the same doublet will become particles with different charges. We will choose

the 4th component to coincide with the upper component of the SU(2) doublet. Now we are

able to write down the decomposition of the 5: (d1, d2, d3, e+, ν), including the color index

for the d’s. Here d, e+ and ν are nothing but short-hand notations for certain SU(3)×U(1)

representations. Then the 5∗ decomposes to

Ψ = (dc
1, d

c
2, d

c
3, e

−, ν) .

[There is one subtlety here. In an normal SU(2) doublet the upper component has an electric

charge that is higher (by one unit) than that of the lower, because Qem = T3 + Y . This is

true for the doublet (e+, ν) in the 5 but not for the doublet (e−, ν) in the 5∗. The reason

is simple: the doublet in the 5∗ transforms in the complex conjugate representation 2∗, and

not in the 2. These representations are equivalent, but the equivalence relation involves the

invariant tensor εij , which turns the doublet upside down.]

Now we construct the 10 by taking the anti-symmetric product of two 5’s. This field is

most easily represented by a 5 × 5 matrix, whose elements i, j have the quantum numbers

of the tensor product of the ith components times the jth component of the 5. Here e+di

yields the SU(3) × U(1) representation of ui and εijkdidj that of uc
k. The result is

∆ =
1√
2



















0 uc
3 −uc

2 −u1 −d1

−uc
3 0 uc

1 −u2 −d2

uc
2 −uc

1 0 −u3 −d3

u1 u2 u3 0 −e+

d1 d2 d3 e+ 0



















The factor 1√
2

is added to ensure that the kinetic terms have the proper normalization (note

that every field appears twice in the 10).

This describes one family, but one word of caution is needed. In the standard model it

is customary to say that u and d belong to the first generation, c and s to the second and

t and b to the third, but that is not really true. The group SU(2) does not relate the mass

eigenstates u and d, but u and a linear combination of d, s and b (which is dominated by

d). With the leptons the situation is even less clear. If, by definition, u belongs to the first
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now on we will absorb the factor
√

3/5 in the definition of the coupling constant, so that

content of the representation 5 is (3, 1,−1
3) + (1, 2, 1

2). The last entry is now precisely the

Y -charge as defined previously.

The representations contained in the 5 do not match any standard model particle, but

the complex conjugates do. Hence we choose the anomaly-free representation 5̄ + 10 (we

could just as easily have conjugated the embedding of SU(3) × SU(2) × U(1) in the 5,

but that is not the standard convention). Now the 5̄ precisely contains particles with the

quantum numbers of dc, e− and ν, i.e. the representation (3∗, 1, 1
3) + (1, 2,−1

2). Here and in

the following all fermions are left-handed unless explicit subscripts R are shown.
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Having done this we can now describe all physics in terms of ψc
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can now consider transformations that take any field to any other fermion field. This would

be quite hard to describe if part of the fields had opposite handedness. A standard model
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(off-diagonal) mass term like

ψ̄RMχL + χ̄LM†ψR

transforms to

−(ψc
L)T MCχL − χ̄LM†C†(ψ̄c
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All indices have been suppressed here, but note that M and C are respectively matrices in

generation and in spinor space. Mass terms clearly looked nicer in L-R notation, but that is

a price we will have to pay. Yukawa couplings are very similar to mass terms in this respect.

The diagonalization of the mass matrices goes exactly as before, but our previous nota-

tion is now a bit unattractive. Therefore we define

Ux ≡ UL,x

Vx ≡ U∗
R,x ,

(3.4)

where x denotes U ,D, E or N . In this notation the matrices U act on particles and V on
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SU(5) Matter

(5∗) + (10)3 × [                          ]

+ N right-handed neutrinos

+ 2 Higgses,      and HΨ
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SU(5) Matter

(5∗) + (10)3 × [                          ]

+ N right-handed neutrinos

+ 2 Higgses,      and HΨ

SU(5) “explains” structure of a standard model family?
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We have previously identified four mechanisms for breaking the U(6)×U(6) chiral sym-

metries. They are broken to U(1)6 (the separate flavor numbers) by QCD and QED. The

weak interactions, and in particular the fact the the CKM matrix is non-trivial, break this

global symmetry to just a single U(1), thus adding a fifth origin of U(6) × U(6) breaking.

In the lepton sector there is only one Yukawa coupling (assuming there is no right-

handed neutrino), and it can be diagonalized with the matrices UE and VE introduced above.

Therefore there is a separate conserved lepton number Li for each generation. The negatively

charged leptons have lepton number 1. The differences Li−Lj can be expected to be broken

if the neutrinos have masses, since one would then expect a non-trivial leptonic CKM matrix.

An example of a process that is forbidden by Li−Lj but allowed by anything else is µ → eγ.

There are very good limits on this decay, (the branching ratio is < 5×10−11), but it remains

an interesting one to look for.

Finally we may transform the Higgs field by a phase. This is automatically a symmetry

of the Higgs potential, but it is a symmetry of the Yukawa couplings only if the quarks and

leptons transform with compensating phases. If one solves the conditions for invariance of

the Yukawa couplings, one finds only one solution, namely the gauged U(1)Y symmetry of

the standard model gauge group.

3.5. Anomalies

All symmetries we discussed so far were good symmetries classically, but quantum correc-

tions break some of them. The diagrams responsible for this breaking are fermion triangles

with external (axial) vector currents (in D space-time dimension anomalies originate from

fermion polygons with 1
2D + 1 sides; chiral anomalies exist only if D is even). The problem

occurs only if the fermion trace contains the matrix γ5. The following diagrams contribute

to the amplitude εaµ(k)εnν (p)εcρ(q)V
µνρ(k, p, q).

kµ, a

p!,  b

q!,  c kµ, a

p!,  b

q!,  c

Break gauge invariance and unitarity if the loops contain a  γ5

Must cancel!
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the Yukawa couplings, one finds only one solution, namely the gauged U(1)Y symmetry of

the standard model gauge group.
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All symmetries we discussed so far were good symmetries classically, but quantum correc-

tions break some of them. The diagrams responsible for this breaking are fermion triangles

with external (axial) vector currents (in D space-time dimension anomalies originate from

fermion polygons with 1
2D + 1 sides; chiral anomalies exist only if D is even). The problem

occurs only if the fermion trace contains the matrix γ5. The following diagrams contribute

to the amplitude εaµ(k)εnν (p)εcρ(q)V
µνρ(k, p, q).

kµ, a

p!,  b

q!,  c kµ, a

p!,  b

q!,  c

Break gauge invariance and unitarity if the loops contain a  γ5

Must cancel!

T a

T b

T c T a

T b

T c

Tr T a{T b, T c} = 0
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Standard model Anomalies

SU(3)3

SU(2)3    (trivial)

U(1)3

SU(3)2 × U(1)

SU(2)2 × U(1)

(Gravity)2 × U(1)

 SU(5)3 

Standard Model SU(5)
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Standard Model Anomalies

(3, 2, q1) + (3∗, 1, q2) + (3∗, 1, q3) + (1, 2, q4) + (1, 1, q5)

Charges are constrained by

6q3
1 + 3q3

2 + 3q3
3 + 2q3

4 + q3
5 = 0

6q1 + 3q2 + 3q3 + 2q4 + q5 = 0

3q1 + q4 = 0

2q1 + q2 + q3 = 0

Fix all q’s up to normalization 
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SU(5) anomalies

Representation Anomaly SU(N)

(5*)
(conjugate vector)

-1 -1

(10)
(anti-symmetric tensor)

1 N-4
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Charge Quantization
In the SM, the relation Qelectron=-Qproton is exact
(because of anomaly cancellation) 

But it is possible to add non-chiral particles with any (even irrational) 
charges.

In SU(5) theories Qem is a non-abelian generator with fixed normalization.

All SM representations satisfy the rule

− 49 −

charge) will – by assumption – get a v.e.v. The T 3 eigenvalue of that component is denoted

t3i . For doublet representations ti = |t3i | = 1
2 , and it is then obvious that ρ = 1 for any

number of doublets. But adding any other representation will in general lead to the wrong

value for ρ. The current experimental value is .996 ± .004.

3.8. Charge quantization

We only observe particles with charges that are a multiple of the electron charge. In

terms of SU(3) × U(1) this is a direct consequence of the fact that QCD confines color,

and that the SU(3) × U(1) representations (R, q) that occur in nature satisfy a constraint,

namely t
3 + q = 0 mod 1. Here t is the “triality” of the SU(3) representation R. In terms

of Young tableaux, t is equal to the number of boxes modulo 3; in terms of Dynkin labels

(a1, a2) the triality is defined as (a1 + 2a2), if (1, 0) is the triplet and (0, 1) the anti-triplet

representation. Confinement allows only particles with total triality equal to zero in the

spectrum, and then the observed charge quantization follows.

A similar relation holds for the known SU(3) × SU(2) × U(1) representations, namely

t/3 + s/2 + Y = 0 mod 1 , (3.15)

where s is SU(2) “duality” (equal to 1 for spinor representations and to 0 for vectors).

Because the electromagnetic charge is Qem = T3 +Y this leads automatically to the SU(3)×
U(1) relation of the previous paragraph.

Mathematically this means that the standard model gauge group we have observed so

far is not SU(3) × SU(2) × U(1), but S(U(3) × U(2)). The fundamental representation of

this group consists of matrices of the form

U =

(

U3 0

0 U2

)

,

where Ui is an element of U(i), with the condition det U = 1. The latter is precisely the

charge quantization condition. The Lie-algebra of this group is exactly the same as that

of SU(3) × SU(2) × U(1), but the groups are globally different. A comparable situation

occurs between the groups SO(3) and SU(2): they have the same Lie algebra, but the latter

has spinor representations, and the former does not. It is precisely the absence of certain

This implies that all unconfined charges are integer

Furthermore the theory contains magnetic monopoles

(‘t Hooft; Polyakov)
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Symmetry Breaking

SU(5)→ SU(3)× SU(2)× U(1)

Requires a Higgs boson

This is a scalar in some SU(5) representation.
After symmetry breaking there must be a ground
state that is invariant under SU(3) × SU(2) × U(1).

Hence the SM decomposition of the Higgs must
contain a singlet.

 

Ψ
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family, then how do we know that it’s family member is e, µ or τ? We don’t, and it makes

no difference because there are no transitions between leptons and quarks in the standard

model, or, equivalently, they never occur within one irreducible representation. However

within SU(5) they do, and it becomes meaningful to ask who belongs to the first family, e,

µ or τ , or some linear combination. This question can only be answered once we know the

mass matrices, and we will return to it later.

Symmetry breaking

Up to now we have only embedded SU(3) × SU(2) × U(1) in SU(5). Clearly the full

SU(5) is not an exact symmetry of nature, and thus we have to find a mechanism to break

SU(5) to SU(3)×SU(2)×U(1). In this process the 12 standard model gauge bosons should

remain massless, and the other 12 should become massive. We will try to do this by the only

method we know, the Higgs mechanism.

Which scalar representation should we use? This is almost a science in itself. Many

papers have been written about the question which representation of a group G and which

potential breaks G to a certain subgroup H . These papers usually assume the Higgs potential

to be quartic, so that the theory is renormalizable. Since we do not trust the renormalizability

of the Higgs system that much anyway, this requirement should perhaps not be taken too

seriously. Indeed, it is quite reasonable to expect couplings of the form Λ−2Φ6, where Λ is

the scale where the coupling constant blows up. This would not be allowed in renormalizable

theories because it means that we cannot make sense of the theory for momenta larger than

Λ, but this we cannot do for the scalar theory anyway. If Λ is close to the Higgs mass

the theory is strongly coupled, and such higher order terms in Φ may be relevant for the

determination of the minimum.

There is however one criterion that is important: the vacuum expectation value of Φ is

invariant under the broken gauge group, by definition of the latter. Hence the decomposition

of the representation of Φ with respect to the subgroup H must contain a singlet.

Searching again through the representations of SU(5) we find that the smallest repre-

sentation containing a singlet is the adjoint, 24. Its full decomposition is

24 → (8, 1, 0) + (1, 3, 0) + (1, 1, 0) + (3, 2,−5
6) + (3∗, 2, 5

6) . (4.4)

This is also the decomposition for the gauge bosons, and we recognize the first three repre-

sentations as those of the SU(3), SU(2) and U(1) gauge bosons.“Eaten”Massive

This gives a mass to the 12 non-SM gauge-bosons

Simplest choice: The adjoint (same representation as the 
gauge bosons):   

φi(φj)∗ − 1
N

δij
∑

k

φk(φk)∗

{ {
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Coupling Unification
Below the SU(5) Higgs scale:

SM gauge bosons massless
X, Y massive: they “decouple”.

From here on the three SM couplings 
go their own way.
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Fig. 1. Running of the standard model coupling constants

Any such statement is based on assumptions about the physics beyond the weak scale.

Since any particle in SU(3) × SU(2) × U(1) representations alters the β-functions, one is

assuming that there are no (or very few) unobserved particles between 100 and 1015 GeV,

except for SU(3)× SU(2)×U(1) singlets. Any unknown massive particle changes the slope

of one or more of the lines. Since it only has effects for scales larger than its own mass,

the result would be a kink in the straight lines in the figure. Note that any additional

matter affects all three lines by bending them in the same direction (namely downward, with

increasing energy), since matter contributions to b0 always have the same sign. We will see

in a moment that it is not quite true that no matter is allowed in the “desert” between 100

and 1015 GeV, since there is a natural mechanism for bending all lines in exactly the right

way so that they continue to merge, as shown by the dashed line in figure 1.

The fact that two coupling constants are equal at a certain scale need not have physical

implications. They may just cross each other and continue. But one is tempted to conclude

that it has a deeper meaning, namely that the three groups of the standard model somehow

are combined into one “unified” theory.

4.2. Coupling constant unification: generalities

One of the mechanisms to give a physical explanation for the apparent convergence of

coupling constant unification is to assume that at the convergence scale the standard model

gauge group enlarges to a group G containing it. The group G is assumed to break at that

SU(5)
Inverse
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Coupling Unification

Two parameters: SU(5)-couping and scale

Three observables: SM couplings

U(1) normalization 3/5 is essential

Additional unbroken SU(5) matter does not 
affect unification.

Seemed to work in 1980, but not anymore.
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Figure 8: Here the running of the couplings in the SM (left) and MSSM (right) is shown. In the MSSM unification
is possible due to threshold corrections of supersymmetric particles.

5 Gauge unification and the strong coupling constant

In this section we reconsider the determination of the coupling constants from the electroweak fit and
compare it with the coupling constants needed for unification. The gauge couplings in the MS scheme
determining unification can be written as:

α1 = (5/3)αMS/ cos2 θMS
W ,

α2 = αMS/ sin θMS
W ,

α3 = αMS
s ,

In the MSSM gauge unification can be reached in contrast to the SM (see Fig. 8). Instead of a common
SUSY mass scale we use a more sophisticated mass spectrum [6]-[8]. The high energy mSUGRA parameters
determine the low energy masses and couplings via RGEs. The running of the masses is shown in Fig. 9
for low and high values of tan β. The supersymmetric particles contribute to the running of the gauge
couplings at energies above their masses as shown in Fig. 10. The mass scale of SUSY particles and the
unification scale MGUT, which yields perfect unification is dependent on the low energy values of the gauge
couplings (see Fig. 11).

How good the gauge couplings can be unified at high energies depends on the experimental low energy
values of them. We use the fine structure constant α(MZ) = 1/127.953(49) [30]. The other ingredients at
MZ , the electroweak mixing angle sin2 θW and the strong coupling constant αs, are best determined from
the electroweak precision data of the MZ line shape at LEP and SLC. Unfortunately the sin2 θW data
disagree by about 3 σ. Clearly, the SLC value yields a Higgs mass, which is below the present Higgs limit
of 114.6 GeV, but the average value is consistent with it (see Fig. 2).

In addition, the strong coupling constant depends on the observables used in the fit: if only MZ , Γtot

and σ0
had are used, a value of αs = 0.115(4) is found as shown in Tab. 4, while the ratio Rl of the hadronic

and leptonic partial widths of the Z0 boson yields a higher value αs = 0.123(4). Another quantity, which
has been calculated up to O(α3

s) is the ratio of hadronic and leptonic widths of the τ lepton, Rτ , which
yields a value close to the value from Rl: αs = 0.121(3).

11

Note:
One extra parameter!
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Figure 12: Zoom of the region, where the gauge couplings unify in the MSSM. For the plots different αs(MZ) and
sin2 θW are used. In the left column we use αs(MZ) from σ0

had, the middle one the world average and in the right
one from Rl. In the first row we use sin2 θW from Ab

FB, in the middle one the world average and in the lowest one
from Al. In these fits the mSUGRA parameters m0 = 350 GeV, m1/2 = 500 GeV and tanβ = 50 are used.
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Proton Decay

− 76 −

The rest is straightforward. We couple this Higgs scalar to the gauge bosons in the

usual way. We cannot couple them to the fermions, because one cannot build a singlet

out of 5̄, 10 and 24. The scalar gets a vacuum expectation value that breaks SU(5) to

SU(3) × SU(2) × U(1) and that gives a mass to the 12 unwanted gauge bosons. They eat

12 of the Higgs, and the other 12 become massive. These massive Higgs bosons are of little

interest since they do not couple to the fermions.

Baryon number violation

The 12 massive vector bosons are more important. They couple to the fermions via the

SU(5) generators that transform quarks into leptons. We see from (4.4) that they belong to

the representation (3, 2,−5
6)+(3∗, 2, 5

6). They belong thus to an SU(2) doublet, which we can

decompose into two SU(3)×U(1) components. These components are massive vector bosons

usually called X and Y . They are color triplets and have charges −4
3 and −1

3 respectively.

Their coupling to fermions follows straightforwardly from the minimal couplings in the SU(5)

lagrangian. They appear in these couplings as

X1
µ,iT

1(i, 4) + X2
µ,iT

2(i, 4) + Y 1
µ,iT

1(i, 5) + Y 2
µ,iT

2(i, 5) ,

where i is the color index and

T 1(i, j)kl = 1
2(δikδjl + δilδjk)

T 2(i, j)kl = 1
2 i(δikδjl − δilδjk)

These matrices are thus like 1
2σ1 and 1

2σ2. Just like one does for the W -bosons, we now go to

the charge eigenstates X± = 1√
2
(X1 ∓ iX2) and analogous for Y (the upper index ± refers

only to the sign of the charge).

The full set of SU(5) gauge bosons can in fact be represented as a matrix G = AaT a,

where T a is a matrix in the representation 5 and only the group structure is indicated; all

space-time indices are suppressed. The group structure of the minimal coupling to the field

Ψ is then (Ψ)T (−GT )Ψ, because −GT = −G∗ is the matrix representing G in the 5∗. The

representation 10 is the anti-symmetric tensor product of two 5’s. If we label the field ∆αβ ,

then the group structure of the couplings to ∆ is

∆̄αβ
[

Gαγδβδ + Gβδδαγ
]

∆γδ ,

which can be written as −2Tr∆̄G∆.

The heavy X and Y bosons mix quarks and leptons.
They couple as follows

− 76 −

The rest is straightforward. We couple this Higgs scalar to the gauge bosons in the

usual way. We cannot couple them to the fermions, because one cannot build a singlet

out of 5̄, 10 and 24. The scalar gets a vacuum expectation value that breaks SU(5) to

SU(3) × SU(2) × U(1) and that gives a mass to the 12 unwanted gauge bosons. They eat

12 of the Higgs, and the other 12 become massive. These massive Higgs bosons are of little

interest since they do not couple to the fermions.

Baryon number violation

The 12 massive vector bosons are more important. They couple to the fermions via the

SU(5) generators that transform quarks into leptons. We see from (4.4) that they belong to

the representation (3, 2,−5
6)+(3∗, 2, 5

6). They belong thus to an SU(2) doublet, which we can

decompose into two SU(3)×U(1) components. These components are massive vector bosons

usually called X and Y . They are color triplets and have charges −4
3 and −1

3 respectively.

Their coupling to fermions follows straightforwardly from the minimal couplings in the SU(5)

lagrangian. They appear in these couplings as

X1
µ,iT

1(i, 4) + X2
µ,iT

2(i, 4) + Y 1
µ,iT

1(i, 5) + Y 2
µ,iT

2(i, 5) ,

where i is the color index and

T 1(i, j)kl = 1
2(δikδjl + δilδjk)

T 2(i, j)kl = 1
2 i(δikδjl − δilδjk)

These matrices are thus like 1
2σ1 and 1

2σ2. Just like one does for the W -bosons, we now go to

the charge eigenstates X± = 1√
2
(X1 ∓ iX2) and analogous for Y (the upper index ± refers

only to the sign of the charge).

The full set of SU(5) gauge bosons can in fact be represented as a matrix G = AaT a,

where T a is a matrix in the representation 5 and only the group structure is indicated; all

space-time indices are suppressed. The group structure of the minimal coupling to the field

Ψ is then (Ψ)T (−GT )Ψ, because −GT = −G∗ is the matrix representing G in the 5∗. The

representation 10 is the anti-symmetric tensor product of two 5’s. If we label the field ∆αβ ,

then the group structure of the couplings to ∆ is

∆̄αβ
[

Gαγδβδ + Gβδδαγ
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∆γδ ,

which can be written as −2Tr∆̄G∆.

With:

T aAa
µ =

Coupling to the quarks and leptons:

Σ̄γµ[−(T a)∗]Aa
µΣ(5*)

(10) ∆̄αβγµ[T a
αγδβδ + T a

βδδγα]Aa
µ∆γδ
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For one generation the result is

LX =
g5√
2
X−

µ [ē−γµdc + d̄γµe+ − ūcγµu] + c.c

LY =
g5√
2
Y −

µ [ νγµdc − ūγµe+ − ūcγµd] + c.c
(4.5)

For simplicity we have suppressed color indices. They are contracted as follows for the X-

boson couplings: Xidc
i , X id̄i, εijkXiūc

juk and analogously for the Y boson couplings. As

expected these couplings violate both baryon number and lepton number. Diagrams for

processes leading to proton decay are easy to construct, for example

These diagrams contribute to the process p → e+m, where m is a meson, which could

be for example a π or a ρ. Note that we are not really sure whether in the first diagram d

really is transformed to e+ or to another charged lepton. This we can only determine after

diagonalizing the mass matrices, and we will do that in a moment. If in fact the lepton is

a τ then the process is forbidden by energy conservation. But there are other processes in

which the lepton is a neutrino, which are allowed irrespective of the neutrino species.

The correct way to compute the couplings between the X and Y bosons is to take into

account the matrices U and V that were introduced in (2.6) and (3.4) to diagonalize the

mass matrices. Then the couplings in (4.5) are replaced by matrices in flavor space, and

instead of (4.5) we get

LX =
g5√
2
X−

µ [Ē−
α [U†

EVD]αβγµDc
β + D̄α[U†

DVE ]αβγµE+
β + Ūc

α[V †
UUU ]αβγµUβ

LY =
g5√
2
Y −

µ [−N̄α[U†
NVD]αβγµE+

β + Ūα[U†
UVE ]αβγµE+

β + Ūc
α[V †

UUD]αβγµDβ
(4.6)

This makes many degrees of freedom of the previously unobservable rotation matrices U

and V observable. Note that the matrix U rotates left-handed quarks or leptons, whereas V

rotates anti-quarks and ant-leptons. The couplings of the Z and W -bosons involved rotation

Interaction vertices (one family):
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Some example of proton decay processes p→ e+π

B, L broken, B-L preserved
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Family mixing
We have no idea if the up and down quarks are
related to the electron, muon or tau.

They can be expected to mix.
So we get something like:
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But we cannot rotate proton decay away  (                ):
there are too many other channels.

p→ τ+π
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Proton Decay Width

− 83 −

six independent global symmetries. One linear combination is broken by anomalies with

respect to SU(5). Four linear combinations can be taken as differences between generations.

When the quarks get masses and mix, the only symmetry that remains of these is the

relative lepton numbers. The last anomaly free symmetry is taken to be the same for all

generations, with charge Q = −3 for the 5∗, and Q = 1 for the 10. This is anomaly-free

since I2(5) = I2(5∗) = 1 and I2(10) = 3. This is not B − L, however, since it assigns the

same charge to all the members of the 5, dc as well as e− and ν. To get B − L one has to

combine it with Y , the weak hypercharge, which is an SU(5) generator.Then one finds that

B − L = 4
5Y + 1

5Q.

This shows that B − L is a symmetry of the fermion minimal couplings. How about

the Yukawa couplings? Under Q the combination 10 × 10 has charge 2, and 5∗ × 10 has

charge −2. Hence Q and B − L are preserved if we assign charge Q = 2 to the Higgs. In

SU(3)×SU(2)×U(1) components this implies that the Higgs representation (1, 2,−1
2), the

standard model Higgs, has B−L = 0, as it should. Note that the SU(5) scalar that contains

the standard model Higgs also contains an SU(3) triplet. This triplet has B−L = 2
3 . For the

gauge bosons Q = 0, but since B −L = 4
5Y + 1

5Q the X and Y bosons have a non-vanishing

B − L charge, equal to −2
3 for both.

The decay channels of the proton are restricted by B −L because decays to for example

3 leptons are forbidden. The final state must thus necessarily contain a positron, a µ+ or an

anti-neutrino, and in addition there can be any number of lepton anti-lepton pairs.The main

decay modes, if one disregards generation mixing, are e+π, e+ρ, e+η, e+ω, νcπ+, νcρ+, µ+K0,

etc.

The proton lifetime

The main technical complication in the computation of the proton decay width is that

the initial and final states are not quarks, but hadrons and mesons. Therefore the result

depends for example on the model used to describe the proton. Naively the estimate for the

proton decay width would be

Γ =

(

g5

MX

)4

C|ψ(0)|2(Eqq)
2 ,

where Eqq is the energy of the quark-quark pair involved in the interaction, ψ('r) is the wave

function of the quark-quark pair (in an approximation where the third quark is ignored),
          : quark-quark wavefunction
  Eqq: quark-quark energy
  C: numerical constant

ψ(r)

MSSM estimate    1036 years
(GQW:  6 x 1031 years)

Current limit 1032±1 years
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Fermion Masses
At least two Higgses are required namely for

 Breaking SU(5) to SM  (     )
 Breaking SM to QCD x QED   (H)

Ψ

Obviously      cannot give mass to the SM fermions.Ψ
H is the SM Higgs, but must now be an SU(5) multiplet.
Note that the SM Higgs transforms as a lepton doublet:
(1,2,-1/2). Hence there is an obvious choice:

H=(5)
(and there are less obvious choices...)
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and q are both non-trivial. The 5, the 45 and the 15 meet that requirement, but in the

latter case the candidate Higgs scalar is a triplet of SU(2), and not a doublet. In addition

the 15 can only couple 5∗ to itself. The fields in the 5∗ are, in the usual standard model

notation, dR and (ν, e−)L, and mass terms between any pair of these fields are undesirable

except for a possible Majorana mass for the neutrino. If that’s the only mass we can get, it

means that the 15 is not a useful representation (not by itself, at least).

We will only discuss scalars H in the 5 in some detail. The couplings to the combination

5∗ + 10 are

gαβ
1 ψα

i (5∗)Cψβ
kl(10)H∗

mδikδlm + c.c

Note that the 10 is an anti-symmetric tensor product of two 5’s, so we can represent it as a

field with two vector indices, satisfying ψij = −ψji. Since the indices i, k (and l, m) belong to

conjugate representations, they can be contracted by a kronecker δ. For the other coupling

we need the invariant tensor εijklm of SU(5):

gαβ
2 ψα

ij(10)Cψβ
kl(10)Hmεijklm + c.c .

The fermion bilinear is symmetric under the exchange of the two 10’s (the sign change

coming from interchanging the two fermions is cancelled since C = −CT ), and hence gαβ
2

must be symmetric in α and β. To righthanded neutrinos we have to add three singlet

representations of SU(5). These can get a Majorana mass, and in combination with the

fermions in the representation 5 and the Higgs they can get a Dirac mass. The coupling to

the Higgs boson is

gαβ
neutrinoψ

α
i (5∗)Cψβ(1)Hmδim + c.c

Let us assume that the field H acquires a vacuum expectation value just like it does in

the standard model. This issue will require further discussion, since in principle the field

H could choose an arbitrary direction within SU(5). A completely random direction would

break color, but there are Higgs potentials for which that does not happen. If color is not

broken, the Higgs v.e.v will choose a direction within SU(2) × U(1). This direction is in

principle arbitrary, but we have already fixed it by assigning particles to the elements of the

5∗ and the 10. This is standard practice, but conceptually not very elegant (in the discussion
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down quark, charged lepton masses:

up quark masses:

neutrino masses:
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Fermion Masses
Only three couplings, vs. four in SM

Hence one relation 

This implies
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of the standard model we did not follow this practice). Hence we choose 〈H∗
i 〉 = 1√

2
vδ5

i .

Then the two Yukawa interactions yield the following fermion bilinears

1√
2
gαβ
1 ψα

i (5∗)Cψβ
i5(10)v + c.c

and

1√
2
gαβ
2

4
∑

i,j,k,l=1

ψα
ij(10)Cψβ

kl(10)εijklv + c.c .

The former leads to the following mass terms,

(Dc)T CMD + (E−)T CME+c.c (4.7)

After switching back to L − R notation we get.

−D̄RMDDL − ĒRMEEL + c.c , (4.8)

where

M = MD = M†
E =

v√
2
g1 . (4.9)

The hermitean conjugate on ME is due to the fact that the second term in (4.7) is not of

the form ψcMψ, where ψ is a particle and ψc the antiparticle spinor. Hence the lepton mass

terms in (4.8) are obtained from the terms labelled “c.c” in (4.7) (cf. (3.3)). This finds its

origin in the fact that the 5∗ contains the anti down quark and the electron.

The second Yukawa coupling is just slightly more difficult to analyze. Note that because

of the ε tensor only the first four components of the 10, the u-quarks, contribute. There are

4! = 24 terms, divided over three colors, so that for each color the multiplicity is 8. Together

with the normalization factor of the 10 and an overall − sign we get then

−ψ̄UMUψU ,

where

MU = −2
√

2g2 v ,

which is a symmetric matrix.
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We find thus a relation among the mass matrices for the leptons and the down quarks,

whereas the up quarks have their own independent mass matrix. The mass relation implies

in particular that the eigenvalues are the same, and that the diagonalization matrices are

the same, so that the aforementioned problem of deciding which lepton belongs to which

generation does not occur: we have to order them according to increasing mass. Then

SU(5) with the set of Higgs bosons chosen here implies the following mass relations

md = me

ms = mµ

mb = mτ

At first sight that does not look like a great success, but we have to remember that these

relations hold at MGUT. Just like the coupling constants we have to extrapolate them to

lower energies. Comparison with experimental data is not straightforward, since we do not

measure the quark masses directly, and since in addition the required extrapolation for the d

and s quarks is to mass scales that are much too low. With the τ -mass as input, the predicted

value for mb is somewhere between 5 and 7 GeV (depending on various assumptions), to

be compared with the mass of the lowest b̄b bound state, the Y , 9.46 GeV. For the other

relations it safer to compare the ratios md/ms and me/mµ, under the assumption that at

least some of the unknown QCD effects cancel. The agreement is nevertheless not good, the

discrepancy being almost a factor 10. It is noteworthy that in GUTs originating from string

theory (in particular from heterotic strings) the relations between the gauge couplings are

preserved, but that the bad predictions for the fermion masses do not hold.

Now let us consider briefly the effects of the other candidate Higgs boson, the 45. Now

the mass relations are M†
E = −3MD, leading in particular to mτ = 3mb, which is certainly

not an improvement. For the u quarks the result is much worse. The coupling to the 45

yields an anti-symmetric mass matrix. This is a bad feature, because the eigenvalues of

such a matrix come in pairs with opposite sign. The signs do not matter for fermion mass

terms mψ̄RψL, because we may flip the sign of ψR without altering the kinetic terms. But

then we get two masses that are equal, and a third none that is necessarily zero. Clearly

mu = 0, mc = mt does not fit the quark masses very well.

If we choose a combination of a one 5 and one 45 (or more of each), the mass matrix

MU becomes an arbitrary complex matrix, and the mass matrices for the leptons and the

{
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Fermion Masses

These relations are subject to “running”.

Therefore not as bad as they look.

But still wrong when comparing ratios.

Not valid in string GUTs.

mµ

me
!= ms

md

(mb ≈ 6 GeV)
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Higgs Problems
In the SM, the Higgs breaks uniquely to QCD x QED.
But the SU(5) Higgs     can break SU(5) to
 SU(3) x SU(2) x U(1) or SU(4) x U(1).
[Vacuum selection problem].

The (5) of SU(5) contains not only the SM Higgs, but also a color 
triplet, which mediates proton decay (and must therefore be heavy).
[Doublet-triplet splitting problem].

If the color component of H gets a vev, QCD is broken instead of 
SU(2)W 

[Alignment problem].

The two Higges have totally different mass-scales
[Hierarchy problem].

Ψ
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legs. These can enhance the decay by factors of about 5 for gluon exchange and 2 for W, Z

and photon exchange.

Another technical difficulty is the correct treatment of the proton structure. Various

models for hadrons have been used, such as the bag model.

Not surprisingly, the final answer is subject to a large amount of uncertainty, and is

about 1031±2 years. This range of values is however by now ruled out by experiment.

All of this is based on the “minimal” SU(5) model. The simplest way of making the

predictions for proton decay in agreement again with the experimental lower bound is to

increase MX. Within the SU(5) model that can be done by adding extra matter to the

desert. We have seen the beginning of the chapter that simply adding a full SU(5) multiplet

is not going to change MX. It will only increase g5 at MX, thus making the decay width

larger instead of smaller. The only way to increase MX without giving up SU(5) altogether

is to add broken SU(5) multiplets. The arguments in section 4.2 assume that all particles in

a multiplet contribute to the coupling constant evolution. If some are heavier than others,

they will decouple, and then it is possible to change MX. The chiral fermions forming

a generation form an unbroken SU(5) multiplet, and hence to first approximation their

presence does not influence MX (if one looks more carefully the mass splittings introduced

by the weak interactions do have some effect on the evolution below MW). The standard

model Higgs does have an effect, since one must assume that its triplet component is heavy

(see below). Hence convergence and the value of MX are sensitive to the number of Higgs

scalars. Another set of fields that have an important influence turn out to be the gaugino’s

in supersymmetric theories.

4.6. The Higgs system

In every broken gauge theory, the Higgs system is usually the most problematic part.

GUTs are no exception. The Higgs scalar Φ in the 24 that breaks SU(5) to SU(3) ×
SU(2) × U(1) does not cause any problems by itself. For reasonable Higgs potentials the

vacuum expectation value of Φ can either be

〈Φ〉 = diag (v, v, v, v,−4v)

or

〈Φ〉 = diag (v, v, v,−3
2v,−3

2v) , (4.11)
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vacuum expectation value of Φ can either be

〈Φ〉 = diag (v, v, v, v,−4v)

or

〈Φ〉 = diag (v, v, v,−3
2v,−3

2v) , (4.11)SU(3) x SU(2) x U(1)

SU(4) x U(1)

Higgs vev of      can be diagonalized, and can be eitherΨ
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where v depends on the parameters in the potential. The first v.e.v. breaks SU(5) to

SU(4) × U(1), the second to SU(3) × SU(2) × U(1).

The obvious problem with the combined 24 and 5∗ Higgs is the hierarchy problem: Why

does one of them get a vacuum expectation value so much smaller than the other?

But there is a second problem. The Higgs is a 5 of SU(5), and in addition to the standard

model Higgs boson this representation contains a color triplet scalar. This particle couples

to quarks and leptons via the Yukawa couplings, and it is not hard to see that it can mediate

proton decay. Therefore its mass must be of the order of MX. On the other hand its partner,

the SU(2) doublet, must get a mass of the order of the weak scale.

This is all possible, but in a very unsatisfactory way. To examine it more closely we

consider the complete Higgs potential for H and Φ. If we go to quartic order and impose

(for simplicity) the discrete symmetry Φ → −Φ, the most general Higgs potential is

V (Φ, H) = − (µ5)
2H†H +

λ

4
(H†H)2 − 1

2µ2 Tr Φ2 + 1
4a( Tr Φ2)2 + 1

2b Tr Φ4

+ αH†H Tr Φ2 + βH†Φ2H .

For suitable parameter choices, a minimum of this potential is

〈Φ〉 = diag (v, v, v, (−3
2 − 1

2ε)v, (−3
2 + 1

2ε)v); 〈H〉 =
1√
2
(0, 0, 0, 0, v0)

T .

The ε terms are induced by SU(2)w breaking, and are slightly worrisome. The 24 decomposes

as in (4.4). To break SU(5) to SU(3)×SU(2)×U(1) only the singlet component should get

a v.e.v, as is the case in (4.11). The ε terms indicate that also the SU(2) triplet component

gets a v.e.v (all other components have non-trivial color, and the vacuum we consider here

does not break color). This is undesirable, since they would contribute to the ρ-parameter.

However, this problem at least takes care of itself, since it turns out that ε ∝ v2
0

v2 . Since we

clearly want v0 ( v we see that εv ( v0, and hence the 24 gives a negligible contribution

to SU(2)w breaking in comparison to the 5.

For any sensible choice of the parameters in the potential, the mixed Φ − H terms will

induce a mass-term for H , or rather for the SU(3) × SU(2) × U(1)-components of H . The

mass of the doublet component of H is, ignoring ε, equal to −µ2
5 + 15

2 αv2 + 9
2βv2. Here v

is of order MX and α and β can be expected to be of order 1, while the sum must be of

Most general Higgs potential (dimension <= 4)

(Ignoring H)
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For suitable parameter values, a possible minimum is
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+ αH†H Tr Φ2 + βH†Φ2H .

For suitable parameter choices, a minimum of this potential is

〈Φ〉 = diag (v, v, v, (−3
2 − 1

2ε)v, (−3
2 + 1

2ε)v); 〈H〉 =
1√
2
(0, 0, 0, 0, v0)
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The ε terms are induced by SU(2)w breaking, and are slightly worrisome. The 24 decomposes

as in (4.4). To break SU(5) to SU(3)×SU(2)×U(1) only the singlet component should get

a v.e.v, as is the case in (4.11). The ε terms indicate that also the SU(2) triplet component

gets a v.e.v (all other components have non-trivial color, and the vacuum we consider here

does not break color). This is undesirable, since they would contribute to the ρ-parameter.

However, this problem at least takes care of itself, since it turns out that ε ∝ v2
0

v2 . Since we

clearly want v0 ( v we see that εv ( v0, and hence the 24 gives a negligible contribution
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induce a mass-term for H , or rather for the SU(3) × SU(2) × U(1)-components of H . The

mass of the doublet component of H is, ignoring ε, equal to −µ2
5 + 15

2 αv2 + 9
2βv2. Here v

is of order MX and α and β can be expected to be of order 1, while the sum must be of

Induced H mass

Should be    << v2

v0 << v

Fine-tuning!
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predictive power of minimal SU(5). It is precisely that predictive power that has already

eliminated minimal SU(5) as a candidate GUT.

SO(10)

The most attractive possibility is SU(5) ⊂ SO(10). The main advantage of this embed-

ding is that one standard model generation can be fit within a single irreducible represen-

tation, the spinor, which has dimension 16. This decomposes into SU(5) in the following

way

16 → 5∗ + 10 + 1

We see that in addition to a standard model family we get a singlet. This has the quantum

numbers of a right-handed neutrino, so that in these models it would be natural for the

neutrino’s to have a Dirac mass.

Another advantage is that SO(10) does not have a rank three invariant tensor, so that

all its representations are automatically anomaly-free. In SU(5) there is still a cancellation

between the 5∗ and the 10 which is not understood in a fundamental way. Furthermore

the 16 is a complex representation, so that no mass terms are allowed before the SO(10)

symmetry is broken.

In addition to SU(5), SO(10) contains a U(1) which turns out to be B − L. This was

already an exact symmetry in the standard model and its SU(5) extension, and it can thus

be gauged, even without SO(10) unification. The gauge boson of B−L must acquire a mass

well above the weak scale, since no light vector boson has been observed. Note that the

coupling of this extra gauge boson is related by unification to the standard model couplings,

so it can not be extremely small.

In SO(10) there are additional heavy gauge bosons, connecting the 5∗, 10 and 1 to each

other. The proton decay width and the branching ratios will thus be different.

The breaking of SO(10) to the standard model can proceed in many ways. Simply

checking the maximal sub-algebras of SO(10) leads to the following two main breaking

chains

SO(10) → SU(5) × U(1)

→ SU(5)

→ SU(3) × SU(2) × U(1)

(4.15)

SO(10) ⊃ SU(5)× U(1) ⊃ SU(3)× SU(2)× U(1)

SU(5) can be enlarged further 

One family fits nicely in a spinor representation of SO(10)

And we get three right-handed neutrinos for free!

Automatically anomaly free; no “manual” cancellations
required.
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eliminated minimal SU(5) as a candidate GUT.

SO(10)

The most attractive possibility is SU(5) ⊂ SO(10). The main advantage of this embed-

ding is that one standard model generation can be fit within a single irreducible represen-

tation, the spinor, which has dimension 16. This decomposes into SU(5) in the following

way

16 → 5∗ + 10 + 1

We see that in addition to a standard model family we get a singlet. This has the quantum

numbers of a right-handed neutrino, so that in these models it would be natural for the

neutrino’s to have a Dirac mass.

Another advantage is that SO(10) does not have a rank three invariant tensor, so that

all its representations are automatically anomaly-free. In SU(5) there is still a cancellation

between the 5∗ and the 10 which is not understood in a fundamental way. Furthermore

the 16 is a complex representation, so that no mass terms are allowed before the SO(10)

symmetry is broken.

In addition to SU(5), SO(10) contains a U(1) which turns out to be B − L. This was

already an exact symmetry in the standard model and its SU(5) extension, and it can thus

be gauged, even without SO(10) unification. The gauge boson of B−L must acquire a mass

well above the weak scale, since no light vector boson has been observed. Note that the

coupling of this extra gauge boson is related by unification to the standard model couplings,

so it can not be extremely small.

In SO(10) there are additional heavy gauge bosons, connecting the 5∗, 10 and 1 to each

other. The proton decay width and the branching ratios will thus be different.

The breaking of SO(10) to the standard model can proceed in many ways. Simply

checking the maximal sub-algebras of SO(10) leads to the following two main breaking

chains

SO(10) → SU(5) × U(1)

→ SU(5)

→ SU(3) × SU(2) × U(1)

(4.15)

− 95 −

SO(10) → SU(4) × SU(2) × SU(2)

→ SU(3) × SU(2) × SU(2) × U(1)1

→ SU(3) × SU(2) × U(1)2 × U(1)1

→ SU(3) × SU(2) × U(1) .

(4.16)

The first step in these two chains is a breaking to a maximal subgroup. The groups SU(5)×
U(1) and SU(4)×SU(2)×SU(2) are the only two acceptable maximal subgroups of SO(10).

All others either do not contain the standard model, or break the 16 to a real representation,

or both. In principle every step requires its own Higgs mechanism, although it is sometimes

possible to perform two steps at once with a single Higgs. This leads in general to a rather

complicated Higgs lagrangian, and one or more additional intermediate scales, which one

can consider as independent input variables in addition to MX and MW in SU(5). Needless

to say, the discussion of the possible minima of the potential becomes extremely complicated

in these models. We will not discuss that issue here.

The second breaking of SO(10) leads to a unification model considered first by Pati and

Salam, before the SU(5) model was found. They already predicted the possibility of proton

decay in these models. In the various breaking steps, a standard model family emerges in

the following way

16 → (4, 2, 1) + (4∗, 1, 2)

→ (3, 2, 1, 1
6) + (1, 2, 1,−1

2) + (3∗, 1, 2,−1
6) + (1, 1, 2, 1

2)

→ (3, 2, 0, 1
6) + (1, 2, 0,−1

2) + (3∗, 1, 1
2 ,−1

6) + (3∗, 1,−1
2 ,−1

6)

+ (1, 1, 1
2 , 1

2) + (1, 1,−1
2 , 1

2)

→ (3, 2, 1
6) + (1, 2,−1

2) + (3∗, 1, 1
3) + (3∗, 1,−2

3) + (1, 1, 1) + (1, 1, 0)

(4.17)

Here QY = Q1 + Q2 (see (4.16) for the definition of these two charges). The first SU(4) ×
SU(2) × SU(2) representation yields thus the left-handed quarks and leptons (left-handed

particles), while the second one yields the right-handed ones (left-handed anti-particles). In

the first two stages the model has a left-right symmetry. It is not invariant under parity

or charge conjugation: both would map (4, 2, 1)L to (4∗, 2, 1)L (after transforming back to

left-handed fields), which is a representation that does not occur. However one can define a

new exact symmetry by combining P or C with an interchange of the gauge bosons of the

two SU(2) groups (provided they have the same coupling constant).

Several Higgses required
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predictive power of minimal SU(5). It is precisely that predictive power that has already

eliminated minimal SU(5) as a candidate GUT.

SO(10)

The most attractive possibility is SU(5) ⊂ SO(10). The main advantage of this embed-

ding is that one standard model generation can be fit within a single irreducible represen-

tation, the spinor, which has dimension 16. This decomposes into SU(5) in the following

way

16 → 5∗ + 10 + 1

We see that in addition to a standard model family we get a singlet. This has the quantum

numbers of a right-handed neutrino, so that in these models it would be natural for the

neutrino’s to have a Dirac mass.

Another advantage is that SO(10) does not have a rank three invariant tensor, so that

all its representations are automatically anomaly-free. In SU(5) there is still a cancellation

between the 5∗ and the 10 which is not understood in a fundamental way. Furthermore

the 16 is a complex representation, so that no mass terms are allowed before the SO(10)

symmetry is broken.

In addition to SU(5), SO(10) contains a U(1) which turns out to be B − L. This was

already an exact symmetry in the standard model and its SU(5) extension, and it can thus

be gauged, even without SO(10) unification. The gauge boson of B−L must acquire a mass

well above the weak scale, since no light vector boson has been observed. Note that the

coupling of this extra gauge boson is related by unification to the standard model couplings,

so it can not be extremely small.

In SO(10) there are additional heavy gauge bosons, connecting the 5∗, 10 and 1 to each

other. The proton decay width and the branching ratios will thus be different.

The breaking of SO(10) to the standard model can proceed in many ways. Simply

checking the maximal sub-algebras of SO(10) leads to the following two main breaking

chains

SO(10) → SU(5) × U(1)

→ SU(5)

→ SU(3) × SU(2) × U(1)

(4.15)
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SO(10) → SU(4) × SU(2) × SU(2)

→ SU(3) × SU(2) × SU(2) × U(1)1

→ SU(3) × SU(2) × U(1)2 × U(1)1

→ SU(3) × SU(2) × U(1) .

(4.16)

The first step in these two chains is a breaking to a maximal subgroup. The groups SU(5)×
U(1) and SU(4)×SU(2)×SU(2) are the only two acceptable maximal subgroups of SO(10).

All others either do not contain the standard model, or break the 16 to a real representation,

or both. In principle every step requires its own Higgs mechanism, although it is sometimes

possible to perform two steps at once with a single Higgs. This leads in general to a rather

complicated Higgs lagrangian, and one or more additional intermediate scales, which one

can consider as independent input variables in addition to MX and MW in SU(5). Needless

to say, the discussion of the possible minima of the potential becomes extremely complicated

in these models. We will not discuss that issue here.

The second breaking of SO(10) leads to a unification model considered first by Pati and

Salam, before the SU(5) model was found. They already predicted the possibility of proton

decay in these models. In the various breaking steps, a standard model family emerges in

the following way

16 → (4, 2, 1) + (4∗, 1, 2)

→ (3, 2, 1, 1
6) + (1, 2, 1,−1

2) + (3∗, 1, 2,−1
6) + (1, 1, 2, 1

2)

→ (3, 2, 0, 1
6) + (1, 2, 0,−1

2) + (3∗, 1, 1
2 ,−1

6) + (3∗, 1,−1
2 ,−1

6)

+ (1, 1, 1
2 , 1

2) + (1, 1,−1
2 , 1

2)

→ (3, 2, 1
6) + (1, 2,−1

2) + (3∗, 1, 1
3) + (3∗, 1,−2

3) + (1, 1, 1) + (1, 1, 0)

(4.17)

Here QY = Q1 + Q2 (see (4.16) for the definition of these two charges). The first SU(4) ×
SU(2) × SU(2) representation yields thus the left-handed quarks and leptons (left-handed

particles), while the second one yields the right-handed ones (left-handed anti-particles). In

the first two stages the model has a left-right symmetry. It is not invariant under parity

or charge conjugation: both would map (4, 2, 1)L to (4∗, 2, 1)L (after transforming back to

left-handed fields), which is a representation that does not occur. However one can define a

new exact symmetry by combining P or C with an interchange of the gauge bosons of the

two SU(2) groups (provided they have the same coupling constant).

B-L

Several Higgses required
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predictive power of minimal SU(5). It is precisely that predictive power that has already

eliminated minimal SU(5) as a candidate GUT.

SO(10)

The most attractive possibility is SU(5) ⊂ SO(10). The main advantage of this embed-

ding is that one standard model generation can be fit within a single irreducible represen-

tation, the spinor, which has dimension 16. This decomposes into SU(5) in the following

way

16 → 5∗ + 10 + 1

We see that in addition to a standard model family we get a singlet. This has the quantum

numbers of a right-handed neutrino, so that in these models it would be natural for the

neutrino’s to have a Dirac mass.

Another advantage is that SO(10) does not have a rank three invariant tensor, so that

all its representations are automatically anomaly-free. In SU(5) there is still a cancellation

between the 5∗ and the 10 which is not understood in a fundamental way. Furthermore

the 16 is a complex representation, so that no mass terms are allowed before the SO(10)

symmetry is broken.

In addition to SU(5), SO(10) contains a U(1) which turns out to be B − L. This was

already an exact symmetry in the standard model and its SU(5) extension, and it can thus

be gauged, even without SO(10) unification. The gauge boson of B−L must acquire a mass

well above the weak scale, since no light vector boson has been observed. Note that the

coupling of this extra gauge boson is related by unification to the standard model couplings,

so it can not be extremely small.

In SO(10) there are additional heavy gauge bosons, connecting the 5∗, 10 and 1 to each

other. The proton decay width and the branching ratios will thus be different.

The breaking of SO(10) to the standard model can proceed in many ways. Simply

checking the maximal sub-algebras of SO(10) leads to the following two main breaking

chains

SO(10) → SU(5) × U(1)

→ SU(5)

→ SU(3) × SU(2) × U(1)

(4.15)

− 95 −

SO(10) → SU(4) × SU(2) × SU(2)

→ SU(3) × SU(2) × SU(2) × U(1)1

→ SU(3) × SU(2) × U(1)2 × U(1)1

→ SU(3) × SU(2) × U(1) .

(4.16)

The first step in these two chains is a breaking to a maximal subgroup. The groups SU(5)×
U(1) and SU(4)×SU(2)×SU(2) are the only two acceptable maximal subgroups of SO(10).

All others either do not contain the standard model, or break the 16 to a real representation,

or both. In principle every step requires its own Higgs mechanism, although it is sometimes

possible to perform two steps at once with a single Higgs. This leads in general to a rather

complicated Higgs lagrangian, and one or more additional intermediate scales, which one

can consider as independent input variables in addition to MX and MW in SU(5). Needless

to say, the discussion of the possible minima of the potential becomes extremely complicated

in these models. We will not discuss that issue here.

The second breaking of SO(10) leads to a unification model considered first by Pati and

Salam, before the SU(5) model was found. They already predicted the possibility of proton

decay in these models. In the various breaking steps, a standard model family emerges in

the following way

16 → (4, 2, 1) + (4∗, 1, 2)

→ (3, 2, 1, 1
6) + (1, 2, 1,−1

2) + (3∗, 1, 2,−1
6) + (1, 1, 2, 1

2)

→ (3, 2, 0, 1
6) + (1, 2, 0,−1

2) + (3∗, 1, 1
2 ,−1

6) + (3∗, 1,−1
2 ,−1

6)

+ (1, 1, 1
2 , 1

2) + (1, 1,−1
2 , 1

2)

→ (3, 2, 1
6) + (1, 2,−1

2) + (3∗, 1, 1
3) + (3∗, 1,−2

3) + (1, 1, 1) + (1, 1, 0)

(4.17)

Here QY = Q1 + Q2 (see (4.16) for the definition of these two charges). The first SU(4) ×
SU(2) × SU(2) representation yields thus the left-handed quarks and leptons (left-handed

particles), while the second one yields the right-handed ones (left-handed anti-particles). In

the first two stages the model has a left-right symmetry. It is not invariant under parity

or charge conjugation: both would map (4, 2, 1)L to (4∗, 2, 1)L (after transforming back to

left-handed fields), which is a representation that does not occur. However one can define a

new exact symmetry by combining P or C with an interchange of the gauge bosons of the

two SU(2) groups (provided they have the same coupling constant).

Pati-Salam model

B-L

Several Higgses required

Sunday, 2 May 2010



Several paths to SM

− 94 −

predictive power of minimal SU(5). It is precisely that predictive power that has already

eliminated minimal SU(5) as a candidate GUT.

SO(10)

The most attractive possibility is SU(5) ⊂ SO(10). The main advantage of this embed-

ding is that one standard model generation can be fit within a single irreducible represen-

tation, the spinor, which has dimension 16. This decomposes into SU(5) in the following

way

16 → 5∗ + 10 + 1

We see that in addition to a standard model family we get a singlet. This has the quantum

numbers of a right-handed neutrino, so that in these models it would be natural for the

neutrino’s to have a Dirac mass.

Another advantage is that SO(10) does not have a rank three invariant tensor, so that

all its representations are automatically anomaly-free. In SU(5) there is still a cancellation

between the 5∗ and the 10 which is not understood in a fundamental way. Furthermore

the 16 is a complex representation, so that no mass terms are allowed before the SO(10)

symmetry is broken.

In addition to SU(5), SO(10) contains a U(1) which turns out to be B − L. This was

already an exact symmetry in the standard model and its SU(5) extension, and it can thus

be gauged, even without SO(10) unification. The gauge boson of B−L must acquire a mass

well above the weak scale, since no light vector boson has been observed. Note that the

coupling of this extra gauge boson is related by unification to the standard model couplings,

so it can not be extremely small.

In SO(10) there are additional heavy gauge bosons, connecting the 5∗, 10 and 1 to each

other. The proton decay width and the branching ratios will thus be different.

The breaking of SO(10) to the standard model can proceed in many ways. Simply

checking the maximal sub-algebras of SO(10) leads to the following two main breaking

chains

SO(10) → SU(5) × U(1)

→ SU(5)

→ SU(3) × SU(2) × U(1)

(4.15)
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SO(10) → SU(4) × SU(2) × SU(2)

→ SU(3) × SU(2) × SU(2) × U(1)1

→ SU(3) × SU(2) × U(1)2 × U(1)1

→ SU(3) × SU(2) × U(1) .

(4.16)

The first step in these two chains is a breaking to a maximal subgroup. The groups SU(5)×
U(1) and SU(4)×SU(2)×SU(2) are the only two acceptable maximal subgroups of SO(10).

All others either do not contain the standard model, or break the 16 to a real representation,

or both. In principle every step requires its own Higgs mechanism, although it is sometimes

possible to perform two steps at once with a single Higgs. This leads in general to a rather

complicated Higgs lagrangian, and one or more additional intermediate scales, which one

can consider as independent input variables in addition to MX and MW in SU(5). Needless

to say, the discussion of the possible minima of the potential becomes extremely complicated

in these models. We will not discuss that issue here.

The second breaking of SO(10) leads to a unification model considered first by Pati and

Salam, before the SU(5) model was found. They already predicted the possibility of proton

decay in these models. In the various breaking steps, a standard model family emerges in

the following way

16 → (4, 2, 1) + (4∗, 1, 2)

→ (3, 2, 1, 1
6) + (1, 2, 1,−1

2) + (3∗, 1, 2,−1
6) + (1, 1, 2, 1

2)

→ (3, 2, 0, 1
6) + (1, 2, 0,−1

2) + (3∗, 1, 1
2 ,−1

6) + (3∗, 1,−1
2 ,−1

6)

+ (1, 1, 1
2 , 1

2) + (1, 1,−1
2 , 1

2)

→ (3, 2, 1
6) + (1, 2,−1

2) + (3∗, 1, 1
3) + (3∗, 1,−2

3) + (1, 1, 1) + (1, 1, 0)

(4.17)

Here QY = Q1 + Q2 (see (4.16) for the definition of these two charges). The first SU(4) ×
SU(2) × SU(2) representation yields thus the left-handed quarks and leptons (left-handed

particles), while the second one yields the right-handed ones (left-handed anti-particles). In

the first two stages the model has a left-right symmetry. It is not invariant under parity

or charge conjugation: both would map (4, 2, 1)L to (4∗, 2, 1)L (after transforming back to

left-handed fields), which is a representation that does not occur. However one can define a

new exact symmetry by combining P or C with an interchange of the gauge bosons of the

two SU(2) groups (provided they have the same coupling constant).

Pati-Salam model

B-L

Several Higgses required

LR-Symmetric model
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Further extensions

E6 ⊃ SO(10)× U(1)

27→ 16 + 10 + 1

Noteworthy because E6 appears naturally as the 
gauge group of E8 × E8 Heterotic Strings 
compactified on Calabi-Yau manifolds.

(But GUT scale too large...)
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Conclusions
The GUT idea is still alive, although not in its
minimal form.

Apparent coupling constant convergence does 
seem to hint at something.

The family structure comes out very nicely
(especially in SO(10))

Hard to believe that this is all accidental.

But clearly we have not been able to get the 
details right yet.
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