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1 Relativistic particles

a. Energy and momentum

The energy and momentum of relativistic particles are related by

E2 = p2c2 +m2c4. (1)

In covariant notation we define the momentum four-vector

pµ = (p0,p) =

(
E

c
,p

)
, pµ = (p0,p) =

(
−E
c
,p

)
. (2)

The energy-momentum relation (1) can be written as

pµpµ +m2c2 = 0, (3)

where we have used the Einstein summation convention, which implies automatic summa-
tion over repeated indices like µ.

Particles can have different masses, spins and charges (electric, color, flavor, ...). The
differences are reflected in the various types of fields used to describe the quantum states
of the particles. To guarantee the correct energy-momentum relation (1), any free field Φ
must satisfy the Klein-Gordon equation

(
−~2∂µ∂µ +m2c2

)
Φ =

(
~2

c2
∂2
t − ~2∇2 +m2c2

)
Φ = 0. (4)

Indeed, a plane wave
Φ = φ(k) ei(k·x−ωt), (5)

satisfies the Klein-Gordon equation if

E = ~ω, p = ~k. (6)

From now on we will use natural units in which ~ = c = 1. In these units we can write the
plane-wave fields (5) as

Φ = φ(p) eip·x = φ(p) ei(p·x−Et). (7)

b. Spin

Spin is the intrinsic angular momentum of particles. The word ‘intrinsic’ is to be inter-
preted somewhat differently for massive and massless particles. For massive particles it is
the angular momentum in the rest-frame of the particles, whilst for massless particles –for
which no rest-frame exists– it is the angular momentum w.r.t. the direction of motion. We
illustrate this for case of spin-1/2 particles (fermions).
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Massless fermions
A massless spin-1/2 particle, can have its spin polarized parallel or antiparallel to the
momentum. In this 2-dimensional space of states the angular momentum in the direction
of motion, the helicity, and its eigenvalues (in units ~) are given by

p · σ
2|p|

=
p · σ
2E

→ ±1

2
. (8)

The Pauli matrices σ = (σ1, σ2, σ3) all have eigenvalues (+1,−1); they have the standard
representation

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (9)

An important property of the Pauli matrices is, that they satisfy the angular momentum
commutation relations

[σi, σj] = σiσj − σjσi = 2i εijkσk. (10)

In addition they also satisfy the anticommutation relations

{σi, σj} = σiσj + σjσi = 2 δij 1. (11)

As a result, for m = 0 we get

(p · σ)2 =
1

2
pipj (σiσj + σjσi) = p2 1 = E2 1. (12)

The quantum theory of a massless fermion can therefore be formulated in terms of a 2-
component field

Φ =

[
φ1

φ2

]
, (13)

satisfying a partial differential equation

i∂tΦ = ∓iσ ·∇Φ, (14)

known as the massless Dirac equation. It has plane-wave solutions

Φ =

[
φ1(p)
φ2(p)

]
eip·x, (15)

provided
p · σ Φ = ±E Φ, (16)

which can be rewritten in the form

p · σ
2E

Φ = ±1

2
Φ. (17)
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Therefore Φ represents a state of definite helicity ±1/2; moreover

p2 Φ = (p · σ)2 Φ = ±E (p · σ) Φ = E2 Φ, (18)

which is the correct energy-momentum relation for a massless particle. Both relations (17)
and (18) are implied by the massless Dirac equation (14).

Massive fermions
For a massive fermion1

(E + p · σ) (E − p · σ) = E2 − (p · σ)2 = E2 − p2 = m2 6= 0. (19)

Therefore the field Φ can not satisfy the massless Dirac equation:

i (∂t ± σ ·∇) Φ 6= 0.

As a result we can introduce a second 2-component field X defined by

i (∂t + σ ·∇) Φ = mX,

i (∂t − σ ·∇) X = mΦ.
(20)

It follows, that

− (∂t − σ ·∇) (∂t + σ ·∇) Φ = im (∂t − σ ·∇) X = m2 Φ, (21)

but also

− (∂t − σ ·∇) (∂t + σ ·∇) Φ =
(
−∂2

t + (σ ·∇)2
)

Φ =
(
−∂2

t + ∇2
)

Φ. (22)

Combining these results, we reobtain the Klein-Gordon equation(
−∂2 +m2

)
Φ = 0, ∂2 ≡ ∂µ∂µ = −∂2

t + ∇2. (23)

In terms of plane-wave fields

Φ =

[
φ1(p)
φ2(p)

]
eip·x, X =

[
χ1(p)
χ2(p)

]
eip·x, (24)

eqs. (20) take the form

(E − p · σ)Φ = mX, (E + p · σ)X = mΦ. (25)

These equations imply

(E + p · σ)(E − p · σ)Φ = m(E + p · σ)X = m2 Φ, (26)

1In the following we do not write explicitly the unit matrix 1 when multiplication by a scalar is intended.
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which reproduces the result (19) as required.

Moreover, eqs. (25) can be rewritten in the form

p · σ
2E

Φ =
1

2

(
Φ− m

E
X
)
,

p · σ
2E

X = −1

2

(
X− m

E
Φ
)
.

(27)

This shows, that in the relativistic limit E � m the components Φ represent positive-
helicity states, and the components X represent negative-helicity states. Hence both par-
ticle helicities are present in the massive Dirac equations (20), and the number of field
components is doubled accordingly.

Covariant form of the Dirac equations
The Dirac equations (20) can be written in a more concise form as a 4×4-matrix equation(

m −i(∂t − σ ·∇)
−i(∂t + σ ·∇) m

)(
Φ
X

)
=

(
−i(∂t − σ ·∇)X +mΦ
−i(∂t + σ ·∇)Φ +mX

)
= 0. (28)

This can be cast in a manifestly covariant form by defining a four-component field, or
spinor:

Ψ =

(
Φ
X

)
=


φ1

φ2

χ1

χ2

 ≡


ψ1

ψ2

ψ3

ψ4

 . (29)

The Pauli matrices then are generalized to a set of four 4× 4-matrices, the Dirac matrices,
defined in terms of 2× 2-blocks by

γ0 = − γ0 =

(
0 1
1 0

)
, γ =

(
0 −σ
σ 0

)
. (30)

With these definitions

γ · ∂ ≡ γµ∂µ = γ0∂0 + γ ·∇ =

(
0 ∂t − σ ·∇

∂t + σ ·∇ 0

)
. (31)

the Dirac equations (28) can be summarized in the form

(−iγ · ∂ +m) Ψ = 0. (32)

Observe, that for m = 0 the equation reduces to two separate equations for the positive
and negative helicity components. We can distinguish these components by introducing
another Dirac matrix

γ5 =

(
1 0
0 −1

)
, (33)
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such that in the limit E � m the positive and negative helicity components of Ψ are
characterized by the eigenvalue ±1 under the action of γ5:

Ψ+ ≡
1

2
(1 + γ5) Ψ =

(
Φ
0

)
, Ψ− ≡

1

2
(1− γ5) Ψ =

(
0
X

)
(34)

such that
γ5Ψ± = ±Ψ±. (35)

Charge conjugation and Majorana spinors
The Dirac matrices satisfy the anti-commutation relations

{γµ, γν} = γµγν + γνγµ = −2ηµν 1, (36)

where ηµν = diag(−1,+1,+1,+1) is the Minkowski metric. Actually, these relations can
be extended to include γ5:

γ5γ
µ + γµγ5 = 0, γ2

5 = 1. (37)

Under hermitean conjugation

γ†0 = γ0, γ† = −γ. (38)

These relations can be summarized in a single equation

γ†µ = γ0γµγ0. (39)

The hermitean conjugate of the Dirac equation (32) can therefore be rewritten in the form

Ψ†
(
iγ†·

←
∂ +m

)
= Ψ†γ0

(
iγ·

←
∂ +m

)
γ0 = 0. (40)

It is customary to define Ψ = Ψ†γ0, in terms of which the conjugate Dirac equation becomes

Ψ
(
iγ·

←
∂ +m

)
= 0. (41)

Next, we introduce the charge-conjugation matrix

C = C−1 = −CT =

(
σ2 0
0 −σ2

)
. (42)

Observing that in the 2-dimensional case of the Pauli matrices there is an identity

σ2σiσ2 = −σTi , (43)

it follows that
C−1γµC = −γTµ , C−1γ5C = γT5 . (44)
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This leads us to consider transposition of the conjugate Dirac equation (41):(
iγT · ∂ +m

)
Ψ
T

= C−1 (−iγ · ∂ +m)CΨ
T

= 0. (45)

Now define the charge conjugate spinor

Ψc ≡ CΨ
T
. (46)

Eq. (45) implies, that if Ψ is a solution of the Dirac equation, the charge conjugate spinor
is a solution of the Dirac equation as well:

(−iγ · ∂ +m) Ψc = 0. (47)

It is therefore possible to restrict the number of independent components of a spinor by
requiring that it is self-conjugate:

Ψc = Ψ. (48)

Such a spinor is called a Majorana spinor. In terms of the helicity components this becomes

X = σ2Φ∗ ⇔ Φ = −σ2X∗. (49)

Physically it implies, that the particle described by a Majorana spinor is its own anti-
particle: the negative-helicity state is the conjugate of the right-handed helicity state of
the same spinor, and not independent.
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2 Actions and symmetries

a. Actions for fields

Spin-0 particles are described by scalar fields, which satisfy the Klein-Gordon equation (4)
without any additional constraints on polarization states:

(−∂2 +m2)Φ = 0. (50)

Assuming the field Φ is real, this equation can be obtained from an action principle by
defining

S =

∫
d4x

(
−1

2
∂µΦ ∂µΦ− m2

2
Φ2

)
, (51)

and requiring that it is stationary under variations Φ→ Φ + δΦ:

δS '
∫
d4x δΦ

(
∂2 −m2

)
Φ = 0, (52)

where the ' symbol signifies equality up to partial integration. Clearly for this condition
to be satisfied for arbitrary variation δΦ, the Klein-Gordon equation (50) must hold.

Similarly we can define an action for spin-1/2 fields which is stationary if the Dirac equation
is satisfied. For a Majorana spinor this action is

S =

∫
d4x

(
− i

2
Ψγ · ∂Ψ +

m

2
ΨΨ

)
. (53)

In this action it is necessary to take the components of the spinor Ψ to be anti-commuting
quantities:

ψaψb = −ψbψa, (54)

otherwise the action reduces zero after partial integration. As for Majorana particles the

spinor field Ψ and its conjugate are directly related by Ψ = Ψc = CΨ
T

, the effect of a
variation Ψ→ Ψ + δΨ then is

δS '
∫
d4x δΨ (−iγ · ∂ +m) Ψ = 0, (55)

requiring the Dirac equation to hold.

Remark
The mass term in the action (53) for a Majorana spinor can be written up to a factor 2 as

mΨΨ = mΨCΨ
T

= mψ̄aCabψ̄b.

Now C is antisymmetric: Cab = −Cba; therefore the above mass term vanishes unless the
components of Ψ are anti-commuting:

ψ̄aψ̄b = −ψ̄bψ̄a.
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A similar argument can be made for the kinetic term

Ψγ · ∂Ψ = ΨγµC∂µΨ
T
,

which reduces up to a factor 2 to a total divergence ∂µ(ΨγµCΨ
T

) unless the components
of Ψ are anti-commuting.

b. Symmetries and conservation laws

Consider a system of two scalar fields representing free particles of mass m1 and m2; the
action for these particles is

S =

∫
d4x

(
−1

2
∂µΦ1∂µΦ1 −

1

2
∂µΦ2∂µΦ2 −

m2
1

2
Φ2

1 −
m2

2

2
Φ2

2

)
. (56)

Variation of this action w.r.t. the fields Φ1, resp. Φ2 gives the two Klein-Gordon equations

δS

δΦ1

=
(
∂2 −m2

1

)
Φ1 = 0,

δS

δΦ2

=
(
∂2 −m2

2

)
Φ2 = 0. (57)

A rotation between the fields can be defined by the transformation

Φ′1 = cos θΦ1 − sin θΦ2, Φ′2 = sin θΦ1 + cos θΦ2. (58)

For small θ this reduces to infinitesimal transformations δΦa = Φ′a − Φa of the form

δΦ1 = −θΦ2, δΦ2 = θΦ1. (59)

Under such transformations the action changes by

δS = θ
∫
d4x (∂Φ2 · ∂Φ1 − ∂Φ1 · ∂Φ2 +m2

1Φ2Φ1 −m2
2Φ1Φ2)

= θ (m2
1 −m2

2)
∫
d4xΦ1Φ2.

(60)

Thus we see, that the action is invariant: δS = 0, if and only if the masses of the two types
of particles are equal: m2

1 = m2
2. Clearly, when this condition is satisfied the two fields

Φ1,2 satisfy the same Klein-Gordon equation (57) and therefore any linear combination of
these two fields also satisfies the same equation. This observation can be used to simplify
the model (56) by combining the two real fields in a single complex field

A =
1√
2

(Φ1 + iΦ2) , A∗ =
1√
2

(Φ1 − iΦ2) . (61)

If the masses are equal, the action (56) is equivalent with

S =

∫
d4x

(
−∂A∗· ∂A−m2A∗A

)
, (62)
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and the rotation (58) takes the form of a phase transformation

A′ = eiθA. (63)

It is clear that the action (61) is invariant under these transformations.

Returning to the theory defined by the action (56) we next define a four-vector, the Noether
current, as

Jµ = Φ2∂µΦ1 − Φ1∂µΦ2. (64)

Using the Klein-Gordon equations (57), the current satisfies the field equation

∂µJµ = ∂Φ2 · ∂Φ1 + Φ2∂
2Φ1 − ∂Φ1 · ∂Φ2 − Φ1∂

2Φ2 = m2
1Φ2Φ1 −m2

2Φ1Φ2

= (m2
1 −m2

2) Φ1Φ2.
(65)

Therefore if the masses are equal: m2
1 −m2

2 = 0, we have a divergence-free current:

∂µJµ = 0 ⇔ ∂ρ

∂t
+ ∇ · j = 0, (66)

where the space and time components of the current are denoted by Jµ = (ρ, j). We
recognize this as an equation of continuity, like the Euler equation in fluid mechanics. It
leads directly to a conservation law for the total charge in a volume V :

Q =

∫
V

d3x J0 =

∫
V

d3x ρ. (67)

The derivation of the conservation law is straightforward:

dQ

dt
=

∫
V

d3x
∂ρ

∂t
= −

∫
V

d3x∇ · j = −
∮

Σ=∂V

d2 σjn, (68)

with jn the normal component of the current across the surface Σ which forms the boundary
of the volume V . If there is no net current across this surface, or if we extend the volume
over all of space, with fields and currents vanishing at infinity, then we immediately derive

dQ

dt
= 0. (69)

This conservation law is a direct consequence of the invariance of the action under the
transformations (59), which forces the equality of the masses m1 = m2. In contrast, if
m1 6= m2 the rotation symmetry (58), (59) is said to be broken and the total charge Q is
not conserved.

The relation between symmetries and conservation laws is a very general one; after its
discoverer it is known as Noether’s theorem.
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3 Supersymmetry

Supersymmetry is a symmetry implying particles of different spin to have the same mass,
charge and other properties. The simplest example is an extension of the previous model
of two scalar fields with a single Majorana spinor field with the same mass:

S =

∫
d4x

(
−1

2
∂µΦ1∂µΦ1 −

1

2
∂µΦ2∂µΦ2 −

m2

2

(
Φ2

1 + Φ2
2

)
− 1

2
Ψ (iγ · ∂ −m) Ψ

)
,

(70)
where Ψc = Ψ as in (53). We have already seen, that this action is invariant if we transform
the scalar fields among themselves by a rotation (58) or (59). However, the action is also
invariant under a set of transformations which mix the scalar fields with the spinor field.
The infinitesimal form of these transformations is

δΦ1 = ε̄Ψ, δΦ2 = iε̄γ5Ψ,

δΨ = ε̄ (−iγ · ∂ +m) Φ1 + iε̄γ5 (−iγ · ∂ +m) Φ2.
(71)

Here ε is a parameter which itself is a Majorana spinor2. Observe, that the transformation
δΨ is directly obtained from δΨ by charge conjugation:

δΨ = δΨc = C δΨ
T
. (72)

A somewhat lengthy but straightforward calculation now shows that the action is invariant:

δS '
∫
d4x

[
δΦ1(∂2 −m2)Φ1 + δΦ2(∂2 −m2)Φ2 − δΨ (iγ · ∂ −m) Ψ

]
= 0. (73)

This result holds only because all masses are equal. It is also important to observe, that the
model describes two spin-0 particles and one spin-1/2 fermion with two spin polarization
states; the total number of bosonic particle states is therefore equal to the total number of
fermionic particle states. This is a general condition for a supersymmetry to be possible.
The simple model described here is known as the Wess-Zumino model.

The supercurrent
As for the rotation symmetry between the scalar fields, also for supersymmetry there is an
associated conserved current, appropriately called the supercurrent. For the Wess-Zumino
model (70) it takes the form

Sµ = [iγ · ∂ (Φ1 − iγ5Φ2)−m (Φ1 + iγ5Φ2)] γµΨ. (74)

Clearly each component Sµ is itself a spinor. The field equations (52) and (55) imply that
this current is divergence free:

∂µS
µ = 0. (75)

2Hence ε has four components, and ε = εc = Cε̄T .
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Step by step repeating the proof of (68), it follows that there exists a conserved spinorial
supercharge

Q =

∫
V

d3xS0. (76)

Again, the vanishing of the 4-divergence (75) and the resulting conservation law for the
supercharge:

dQ

dt
= 0, (77)

require equality of the boson and fermion masses. As the parameter of the supersymmetry
transformations is a Majorana spinor, also the supercurrent and supercharge are Majorana
spinors:

Q = Qc = CQ
T
. (78)

Massless particles
In the case of massless scalar and spin-1/2 particles, the action (70) can be simplified in
two respects. First, as before we can combine the two real scalar fields in a single complex
scalar field

A =
1√
2

(Φ1 + iΦ2) , A∗ =
1√
2

(Φ1 − iΦ2) . (79)

Second, we can write the 4-component Majorana spinor Ψ in terms of the complex 2-
component left-handed spinor X by using eq. (49):

Ψ =

[
−σ2X

∗

X

]
, Ψ =

[
−X†, XTσ2

]
. (80)

In terms of these fields, the action (70) with m = 0 becomes

S =

∫
d4x

(
−∂µA∗∂µA− iX† (∂0 − σ ·∇)X

)
. (81)

This complex scalar A and complex spinor X now are partners under supersymmetry
transformations

δA = η†X, δX = i[(∂0 + σ ·∇)A]η,

δA∗ = X†η, δX† = −iη† (∂0 + σ ·∇)A∗,
(82)

where η is a complex 2-component spinor parameter, representing the left-handed com-
ponents of ε in eq. (71). The action (81) is seen to be invariant under separate phase
transformations of A and X:

A′ = eiαA, X ′ = eiβX. (83)
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Supersymmetric gauge theories
The existence of supersymmetry in a field theory of particles is not restricted to fermions
and spinless scalar particles. It is equally well possible to construct theories of spin-1 vector
fields and fermions with supersymmetry. The simplest case is that of a supersymmetric
extension of pure Maxwell theory.

Maxwell’s theory of the electro-magnetic field can be formulated in terms of the four-
dimensional vector potential Aµ = (φ,A), where φ is the electric potential and A the
magnetic vector potential. The corresponding electric and magnetic field strengths (E,B)
together make up the components a an anti-symmetric four-tensor

Fµν = ∂µAν − ∂νAµ =


0 −Ex −Ey −Ez
Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0

 , (84)

with the Maxwell equations in empty space being reproduced in the form

∂µFµν = ∂2Aν − ∂ν ∂ · A = 0. (85)

An important property of the field-strength tensor Fµν is, that it is invariant under gauge
transformations, changing the vector field Aµ by the gradient of a scalar Λ:

A′µ = Aµ + ∂µΛ ⇒ F ′µν = Fµν . (86)

Because of this arbitrariness we can impose an additional constraint on Aµ, which can be
convenienty chosen in the form

∂ · A = 0. (87)

With this choice the free Maxwell equations (85) reduce to

∂2Aν = 0. (88)

Then all components of the vector field satisfy the massless Klein-Gordon equation, showing
that we can associate this field with a massless spin-1 particle, the photon.

To make the theory supersymmetric, it suffices to introduce a massless Majorana
fermion λ, which satisfies the Dirac equation

−iγ · ∂λ = 0. (89)

This hypothetical fermionic partner of the photon is commonly called the photino. Ob-
serve that the massless photon can exist in two physical polarization states: right-handed,
with its spin parallel to its momentum, and left-handed with its spin anti-parallel to its
momentum. The same is true for a masless Majorana fermion. Hence the numbers of
bosonic and fermionic particle states are equal, whilst both particles have zero mass. Thus
all conditions for the existence of supersymmetry in this theory are fulfilled.
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Formally, this can be seen by constructing the action for this theory

S =

∫
d4x

(
−1

4
F µνFµν −

i

2
λ̄ γ · ∂λ

)
. (90)

The variation of this action under arbitrary changes in the fields δAµ and δλ is

δS '
∫
d4x

(
δAν∂µFµν − iδλ̄ γ · ∂λ

)
, (91)

and this vanishes identically if the field equations (85) and (89) hold. However, even if the
field equations do not hold, the result is still δS = 0, provided the field variations are of
the form

δAµ = ε̄γµλ, δλ̄ =
i

2
ε̄γµγνFµν . (92)

To prove this, it is necessary to use the following identity for Dirac matrices:

(γµγν − γνγµ) γλ = 2
(
γµηνλ − γνηµλ

)
+ 2 εµνλκγ5γκ. (93)

In addition, there is an identity for the field strength tensor

εµνλκ ∂λFµν = εµνλκ∂λ (∂µAν − ∂νAµ) = 0, (94)

because of the complete anti-symmetry of the permutation symbol εµνλκ and the symmetry
under the interchange of partial derivatives ∂λ∂µ = ∂µ∂λ. This result is known as the
Bianchi identity, or also as the homogeneous Maxwell equations. It follows, that only the
first term on the r.h.s. of the identity (93) is relevant, and the variation of the action
becomes

δS '
∫
d4x

(
ε̄γνλ ∂µFµν −

1

2
ε̄(γνλ ∂µ − γµλ ∂ν)Fµν

)
= 0, (95)

which proves the invariance modulo partial integrations of the action under the supersym-
metry transformations (92). As in the Wess-Zumino model, there is a supercurrent which
is divergence-free upon use of the field equations:

Sµ = γλγνγµλFλν ⇒ ∂µS
µ = 0. (96)
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4 Symmetry breaking

In sect. 2, eq. (60), we found that the rotation symmetry of the two scalar fields was an
exact symmetry only if the masses were equal. Equivalently, as follows from eq. (65), the
conservation of the Noether charge was seen to hold only up to terms proportional to the
mass difference. Actually, this shows that the gradient terms (the kinetic terms) of the
fields in the action are always invariant, only the terms involving the masses actually break
the symmetry if m2

1 6= m2
2.

The same is true for supersymmetry: the action (70) of the Wess-Zumino model is
invariant under the supersymmetry transformations (71) provided the boson and fermion
masses are all equal. Also the conservation of the supercharge, as follows from the vanishing
divergence of the supercurrent (74), requires the equality of these masses.

If the masses are not equal, we say that the symmetry involved is broken explicitly by
the mass terms. A more subtle situation arises if the symmetry of the action is exact,
but the minimal solution of the field equations itself is not invariant under the symmetry.
In this case the symmetry is said to be broken spontaneously. This situation arises if the
effective masses of the fields are not those suggested by the action, but actually determined
by the interactions of the fields.

a. Scalar fields

A simple example of this situation arises when the two scalar fields of section 2.b obey a
slightly more generalized set of field equations:

∂2Φ1 −
∂V

∂Φ1

= 0, ∂2Φ2 −
∂V

∂Φ2

= 0, (97)

following from variation of the action

S =

∫
d4x

(
−1

2
(∂µΦ1∂µΦ1 + ∂µΦ2∂µΦ2)− V [Φ1,Φ2]

)
. (98)

Now take a potential V of the form

V [Φ1,Φ2] =
1

2g2

(
µ2 − g2

2

(
Φ2

1 + Φ2
2

))2

; (99)

then the field equations become(
∂2 + µ2 − g2

(
Φ2

1 + Φ2
2

))
Φ1 = 0,

(
∂2 + µ2 − g2

(
Φ2

1 + Φ2
2

))
Φ1 = 0. (100)

These equations have a set of simple constant solutions

Φ1 =
µ

g
cosα, Φ2 =

µ

g
sinα ⇒ Φ2

1 + Φ2
2 =

µ2

g2
, (101)

for arbitrary constant α; in particular we may choose α = 0, such that Φ1 = µ/g, and
Φ2 = 0. This solution can always be achieved by a rotation of the fields (Φ1,Φ2) such that
the constant non-zero solution is pointing in the direction of Φ1.
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Next we look for solutions which are not constant, but consist of a constant term plus a
non-constant propagating3 piece:

Φ1(x) =
µ

g
+ φ1(x), Φ2(x) = φ2(x). (102)

Then substitution into the field equations (100) leads to the results(
∂2 − 2µ2

)
φ1 = O[φ2

i ], ∂2φ2 = O[φ2
i ]. (103)

In the limit of very small φ1 and φ2, we can disregard terms of order φ2
i ∼ (φ2

1, φ1φ2, φ
2
2),

as they are very small compared to (φ1, φ2) themselves. Hence to first approximation the
right-hand side of the equations (103) may be taken to vanish, and the fields (φ1, φ2) are
solutions of the Klein-Gordon equation with masses m2

1 = 2µ2 and m2
2 = 0. Clearly for

any µ2 6= 0 these masses are different and the rotation symmetry of the starting point,
defined by the action (98), is not realized in the solutions for φ1 and φ2. This is due to
the constant background field 〈Φ1〉 = µ/g. The massless particle represented by the field
φ2 is generically called a Goldstone boson, whilst the massive particle represented by φ1 is
called a Higgs boson.

b. Spinor fields

Consider again the action (53) for a (Majorana) spinor field Ψ, but with the mass terms
replaced by an interaction with a real scalar field Φ:

S =
1

2

∫
d4x

(
−iΨγ · ∂Ψ + gΦ ΨΨ

)
. (104)

The interaction term between the scalar field and the spinor fields is represented graphically
by the Feynman diagram of fig. 4.1; depending on the direction of time it can be read either
as the emission or absorption of a scalar boson by a fermion, or as pair creation of fermions
by a scalar boson, or as fermion annihilation producing a single boson.

Fig. 4.1: Yukawa coupling of a scalar boson with fermions.

3A piece which behaves, to first approximation, like a plane wave with well-defined energy E = ~ω and
momentum p = ~k.
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Now clearly, if the scalar field has a constant background value, a vacuum expectation
value 〈Φ〉 = m/g, then effectively it provides a mass to the fermion, and the field equation
for Ψ becomes

Φ(x) =
m

g
+ φ(x) ⇒ (−iγ · ∂ +m+ gφ) Ψ = 0. (105)

In the limit of small φ the Yukawa interaction with the propagating scalar boson represented
by φ can be neglected, and the equation reduces to the free Dirac equation with standard
plane-wave solutions obeying the free-particle energy-momentum relation

E2 = p2 +m2.

c. Vector fields

An important difference between massless and massive vector bosons is the different number
of polarization states they possess: a massless vector boson has two helicity states, with
+1 or −1 unit of spin in the direction of motion, whilst a massive vector boson has three
spin states in any direction, quantized in units (+1, 0,−1).

Therefore the dynamical generation of mass for vector bosons is possible only if there
is an additional degree of freedom that can serve as the third polarization state. Such
a degree of freedom can be provided by a scalar field. As an example we consider the
theory of a charged spin-0 particle interacting with the electromagnetic field. The charged
bosons are represented by a complex scalar field Φ, coupled to the vector field Aµ through
covariant derivatives

DµΦ = (∂µ − ieAµ) Φ. (106)

Such a derivative transforms in a simple way under combined phase transformations and
gauge transformations (86):

Φ → Φ′ = eiαΦ, Aµ → A′µ = Aµ +
1

e
∂µα, (107)

which lead to the transformation rule

DµΦ → (DµΦ)′ = eiαDµΦ. (108)

Now consider the modified Klein-Gordon equation(
−D2 +M

)
Φ = 0, (109)

where
M [|Φ|2] = M0 +M1|Φ|2 + ... (110)

is an arbitrary (possibly field dependent) real quantity. This modified KG-equation is
unchanged by the transformations (107) up to an irrelevant multiplicative factor eiα.

Next, the Maxwell equations are modified to include a current term

∂µFµν = jν , jν = ie (Φ∗DνΦ− ΦDνΦ
∗) . (111)
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It follows, that
∂µjµ = 0, (112)

as required by the conservation of electric charge; indeed, from (109) and its conjugate

∂µjµ = ie
(
Φ∗D2Φ− ΦD2Φ∗

)
= ieM (Φ∗Φ− ΦΦ∗) = 0. (113)

Observe, that the vanishing four-divergence of the current (112) is also required for con-
sistency by the anti-symmetry of Fµν :

∂µ∂νFµν = ∂νjν = 0. (114)

Now consider what happens if we assume that the scalar field Φ has a constant background
value:

〈Φ〉 =
m√
2e
. (115)

Then, as ∂µΦ = 0:
jν = 2eΦ∗ΦAν = m2Aν , (116)

and the inhomogeneous Maxwell equation (111) takes the form

∂µFµν = ∂2Aν − ∂ν∂ · A = m2Aν (117)

Now from this result and eq. (114) we immediately infer that

m2 ∂ · A = 0, (118)

and therefore the equation (117) finally reduces to the Klein-Gordon form(
−∂2 +m2

)
Aν = 0. (119)

Obviously this equation is no longer manifestly gauge invariant; indeed the non-zero vac-
uum expectation value of Φ assumed in (115) explicitly breaks the gauge invariance of the
theory. In addition to the massive gauge field Aµ, we also still have a massive Higgs boson
in the theory. Indeed, the vacuum expectation value (115), is a solution of the modified
KG-equation (109) only if

〈M〉 = M0 +M1
m2

2e
+ ... = 0 ⇒ M0 = −m

2

2e
M1 + ... (120)

Now parametrize the full scalar field as

Φ = eiα
(

m√
2e

+ h

)
, (121)

and take

Aµ =
1

e
∂µα ⇒ Fµν = 0. (122)
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Then the modified Klein-Gordon equation (109) becomes(
−∂2 +m2

H

)
h = O[h2], m2

H =
m2

e
M1. (123)

In the limit of small amplitude h the right-hand side of the first equation vanishes effectively,
and we get a free-field equation for a massive scalar boson h, the Higgs boson.

d. Supersymmetry

Next we consider an extension of the massless Wess-Zumino model with a dimensionless
coupling of the scalar and spinor fields of strength g:

S =

∫
d4x

[
−∂µA∗∂µA− iX† (∂0 − σ ·∇)X − g2

4
(A∗A)2

− g
2

(
AXTσ2X + A∗X†σ2X

∗)] . (124)

This action is invariant under the extended supersymmetry transformations

δA = η†X, δX = i [(∂0 + σ ·∇)A] η + F ∗ σ2η
∗,

δA∗ = X†η, δX† = −iη†(∂0 + σ ·∇)A∗ + F ηTσ2,
(125)

with
F (A) =

g

2
A2, (126)

as discussed in the appendix. The field equations are(
−∂2 +

g2

2
|A|2

)
A = −g

2
X†σ2X

∗, −i (∂0 − σ ·∇)X = gA∗σ2X
∗. (127)

The only consistent solution in terms of constant fields is A = X = 0. Therefore in
this model there is no spontaneous mass generation, at least at the level of classical field
equations.

Consider however, what would happen if we had constant backgrounds 〈gA〉 = m
√

2,
X = 0. Then the non-constant part of the fields would to first order satisfy the equations(

−∂2 +m2
)
A = 0, i (∂0 − σ ·∇)X =

√
2mΦ, (128)

with Φ = −σ2X
∗ as in eq. (49). Clearly, in this situation the bosons and fermions have

different masses, and supersymmetry is broken. At the same time we find a constant
vacuum expectation value for the quantity F in eq. (126):

〈F (A)〉 =
m2

g
, (129)

and there is a constant background enenergy

〈H〉 = 〈|F (A)|2〉 =
m4

g2
> 0. (130)

This is the hallmark of spontaneously broken supersymmetry.
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A The superpotential

The simple massless version of the Wess-Zumino model defined by eq. (81) is formulated
in terms of a single complex scalar field A and a complex 2-component spinor field X. The
most general interaction terms that can be included in the model is defined by a single
analytic function of the complex scalar field A, the superpotential W (A), or its derivatives
F (A) = W ′(A) and F ′(A) = W ′′(A). In terms of this function the action then reads

S =

∫
d4x

[
−∂µA∗∂µA− iX† (∂0 − σ ·∇)X − F ∗(A∗)F (A)

− 1

2

(
F ′(A)XTσ2X + F ∗′(A∗)X†σ2X

∗)] . (131)

Here the superscript T denotes transposition (replacing a column vector by a row vector),
whilst ∗ denotes ordinary complex conjugation, which for spinors equals hermitean conjuga-
tion minus transposition. The action (131) is invariant under the extended supersymmetry
transformations

δA = η†X, δX = i [(∂0 + σ ·∇)A] η + F ∗(A∗)σ2η
∗,

δA∗ = X†η, δX† = −iη†(∂0 + σ ·∇)A∗ + F (A)ηTσ2.
(132)

For renormalizable theories the superpotential is at most a cubic polynomial. For example,
for a cubic monomial

W (A) =
g

3!
A3 ⇒ F (A) =

g

2
A2, F ′(A) = gA, (133)

and therefore in this specific case the action becomes

S =

∫
d4x

[
−∂µA∗∂µA− iX† (∂0 − σ ·∇)X − g2

4
(A∗A)2

− g
2

(
AXTσ2X + A∗X†σ2X

∗)] . (134)

Denoting the right-handed spinor components by Φ = −σ2X
∗, as in eq. (49), this can be

written equivalently as

S =

∫
d4x

[
−∂µA∗∂µA−

i

2
X† (∂0 − σ ·∇)X − i

2
Φ† (∂0 + σ ·∇) Φ

− g
2

4
(A∗A)2 +

g

2

(
AΦ†X + A∗X†Φ

)]
.

(135)

In this model all particles are massless, and there is only one dimensionless coupling con-
stant g.
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A slightly more general model starts from the superpotential

W =
m

2
A2 +

g

3!
A3, (136)

which is equivalent to starting from

W = −m
2

2g
A+

g

3!
A3, (137)

and making the shift

A → m

g
+ A. (138)

The upshot is the massive interacting Wess-Zumino model

S =

∫
d4x

[
−∂µA∗∂µA−

i

2
X† (∂0 − σ ·∇)X − i

2
Φ† (∂0 + σ ·∇) Φ

−
∣∣∣m+

g

2
A
∣∣∣2A∗A+

1

2
(m+ gA) Φ†X +

1

2
(m+ gA∗)X†Φ

]
.

(139)

In this model all particles (bosons and fermions) have mass m, and supersymmetry in
manifest.
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