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1 Ideal relativistic fluids

1.1 Energy-momentum and fluid current

An introduction to relativistic hydrodynamics can be found in ref. [1]; a
recent review of perfect fluids and their generalizations is [2]. We summarize
the results here following the convention that the units of space and time
are chosen such that c = 1. The covariant energy-momentum tensor of an
isotropic fluid at rest is

T (0) =

 ε 0

0 p δij

 , (1)

where ε is the proper energy density, and p the hydrostatic pressure. Let Λ(v)
represent a Lorentz transformation to a system with velocity v (measured in
units of c) relative to the rest frame:

Λ(v) =

 0 0

0 δij − vivj

v2

+ γ

 1 −vj

−vi
vivj

v2

 (2)

where

γ =
1√

1− v2
. (3)

In this frame the energy-momentum tensor takes the form

T (v) = Λ(v) T (0) Λ̃(v) = p

 −1 0

0 δij

+ γ2(ε + p)

 1 −vj

−vi vivj

 . (4)

Introducing the velocity 4-vector

uµ = γ (1,v) , u2 = ηµνu
µuν = −1, (5)

the energy-momentum tensor in a frame w.r.t. which the fluid moves with
velocity v can be written covariantly as

Tµν = pηµν + (ε + p) uµuν . (6)

The conservation laws of energy and momentum take the differential form

∂µT
µν = ∂νp + ∂µ ((ε + p) uµuν) = 0. (7)
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The content of these equations becomes more explicit by splitting them in
space and time components. The equation with ν = 0 becomes

∂p

∂t
− ∂

∂t

(
ε + p

1− v2

)
−∇ ·

(
(ε + p)v

1− v2

)
= 0, (8)

whilst the space components with ν = i become

0 = ∇ip +
∂

∂t

(
(ε + p) vi

1− v2

)
+∇ ·

(
(ε + p)vvi

1− v2

)

= ∇ip + vi
∂p

∂t
+

ε + p

1− v2

(
∂vi

∂t
+ v · ∇vi

)
.

(9)

Here the second line is obtained by substitution of eq. (8) to eliminate the
time derivatives of ε and p. The last equation can be rewritten as a relativistic
form of the Euler equation:

∂v

∂t
+ v · ∇v = −1− v2

ε + p

(
∇p + v

∂p

∂t

)
. (10)

The fluid itself is described by a fluid-density current jµ; in the rest frame it
takes the form

jµ = (ρ, 0) , (11)

with ρ the fluid density at rest. The definition can extended to a moving
fluid, taking the general form

jµ =
(
j0, j

)
= ρuµ, j2 = ηµνj

µjν = −ρ2. (12)

Thus the density can be defined in an invariant way. The physical require-
ment that the total amount of fluid is conserved, is described by the vanishing
of the 4-divergence:

∂µj
µ = 0 ⇔ ∂

∂t

(
ρ√

1− v2

)
+∇ ·

(
ρv√

1− v2

)
= 0, (13)

the Bernouilli equation in relativistic form.
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1.2 Thermodynamical considerations

A complete description of the fluid requires specification of the relation be-
tween ε, p and ρ. This is provided by the equation of state. It is often
convenient to specify this in the form of expressions for the energy density
and pressure in terms of the fluid density:

ε = f(ρ), p = g(ρ). (14)

As we will see shortly, in situations where the entropy per is constant, we
can take the function g(ρ) to be the negative of the legendre transform of
the energy density:

p = g(ρ) = ρf ′(ρ)− f(ρ) ⇔ ε + p = ρf ′(ρ) (15)

The Euler equation can then be written in the form

∂(γρv)

∂t
+∇ · (γρvv) = − 1

γf ′(ρ)

(
∇p + v

∂p

∂t

)
. (16)

If the fluid obeys thermodynamics (strictly speaking, in conditions of thermal
equilibrium), we can derive a useful relation for the flow of entropy starting
from the condition of energy-momentum conservation (7), rewritten as

∂νp + ∂µ

(
(ε + p)

ρ
jµuν

)
= 0. (17)

After contraction with uν and using the conservation of the current and
equation (5) expressing the fact that the four-velocity is a time-like unit
vector, we get

0 = uµ∂µp− jµ∂µ

(
ε + p

ρ

)

= uµ

[
∂µp− ρ ∂µ

(
ε + p

ρ

)]
= −jµ

[
p ∂µ

(
1

ρ

)
+ ∂µ

(
ε

ρ

)]
.

(18)

Now the first law of thermodynamics for a system with one component states
that

dU = TdS − pdV + µdN. (19)
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We define the specific energy, entropy and volume as the corresponding quan-
tity per particle:

u =
U

N
, s =

S

N
, v =

V

N
. (20)

Then the first law takes the alternative form

TdS = NTds + TsdN = dU + pdV − µdN

= N (du + p dv) + (u + pv − µ) dN,
(21)

and therefore

Tds = du + p dv +

(
u + pv − Ts− µ

N

)
dN. (22)

Now for a 1-component fluid the Gibbs-Duhem relation implies for the Gibbs
potential:

G = U − TS + pV = µN ; (23)

as a result, the last term in parentheses in eq. (22) vanishes:

u + pv − Ts− µ = 0 ⇒ Tds = du + pdv. (24)

The energy density ε and particle density ρ are related to the specific energy
and volume by

ε = ρu, ρ =
1

v
. (25)

Finally it then follows that

Tds = p d

(
1

ρ

)
+ d

(
ε

ρ

)
, (26)

and

f ′(ρ) =
ε + p

ρ
= u + pv = Ts + µ. (27)

Thus we infer that at T = 0 the chemical potential is µT=0 = f ′(ρ). Equation
(18) is now seen to imply that the comoving time-derivative of the specific
entropy vanishes:

uµ∂µ s = 0 ⇔ ∂s

∂t
+ v · ∇s = 0. (28)
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We observe, that systems with equations of state satisfying (15) indeed have
the special property that the specific entropy is constant:

Tds = pd

(
1

ρ

)
+ d

(
ε

ρ

)
=

(
−ρf ′ + f

ρ2
+

f ′

ρ
− f

ρ2

)
dρ = 0. (29)

N.B.: observe, that the specific entropy s is not the same as the entropy
density σ:

σ =
S

V
= ρs. (30)

Clearly, if the specific entropy is constant, then

s =
σ

ρ
=

dσ

dρ
= constant. (31)

Finally, the Gibbs-Duhem relation in the form

G = U − TS + pV = µN ⇒ TdS − V dp + Ndµ = 0, (32)

implies
dp = σ dT + ρ dµ ⇔ s dT = v dp− dµ. (33)

1.3 Coupling to gravity and action principle

In this section we will show, that the basic fluid equations (7) and (13), as
well as the equation of state (15) can be derived from an action principle.
Moreover, this action can be generalized with almost no effort to include cou-
pling to the gravitational field in the contex of general relativity. Therefore
we immediately proceed with the general relativistic treatment and define
the action

S =

∫
d4x
√
−g

(
− 1

16πG
R + Lfluid

)
, (34)

where
Lfluid = −jµ (∂µθ + iz̄∂µz − iz∂µz̄)− f(ρ). (35)

Here θ and (z̄, z) are real and complex scalar potentials respectively, and ρ
is considered an composite expression of the metric and current as in (12):

ρ2 = −gµνj
µjν . (36)
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Variation of the action w.r.t. the (inverse) metric gives the Einstein equation

Gµν = Rµν −
1

2
gµνR = −8πG Tµν , (37)

with the energy momentum tensor the extension of (6):

Tµν = p gµν + (ε + p) uµuν = p gµν − (ε + p)
jµjν

ρ2
, (38)

and the energy density and pressure being defined through (14) and (15).
Hence the specific entropy (entropy per particle) is a constant in this model
by construction. Furthermore, the Einstein equations imply the covariant
conservation of the energy-momentum currents:

DµT
µν = 0. (39)

Next, varying the action w.r.t. the current leads to an equation expressing
the current in terms of the potentials:

f ′

ρ
jµ = f ′uµ = ∂µθ + iz̄∂µz − iz∂µz̄, (40)

whilst an extremum of the action w.r.t. variation of the scalar potentials
requires

Dµj
µ = 0, jµ∂µz = jµ∂µz̄ = 0. (41)

The first equation is the covariant form of the current conservation (13). Ob-
serve, that in 4 space-time dimensions a conserved current has 3 indpendent
degrees of freedom, which can be identified with the real and complex scalar
potentials in expression (40). Therefore in 4-dimensional space-time eq. (40)
represents the most general current one can write down.

A typical equation of state is of the form

ε = f(ρ) = αρ1+η, p = ρf ′ − f = η αρ1+η, (42)

which gives a linear relation between ε and p, as expected on dimensional
grounds:

p = ηε. (43)

Note, that by construction this equation of state satisfies the condition (29)

Tds = p d

(
1

ρ

)
+ d

(
ε

ρ

)
= 0.
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For example, the standard equation of state of a gas of massless particles in
4-dimensional space-time is

p =
1

3
ε, ⇔ ε = αρ4/3. (44)

Similarly, a gas of cold non-relativistic particles of mass m, with p � ρm,
can in first approximation be described by η = 0:

p = 0 ⇔ ε = αρ. (45)

In the next approximation, at finite temperature and pressure, we have

ε = f(ρ) = ρm +
3

2
p. (46)

With the relations (15) this can be solved for f(ρ) to give:

ε = f(ρ) = mρ + κρ5/3, p =
2κ

3
ρ5/3, κ =

3

2

p0

ρ
5/3
0

, (47)

where p0 is the pressure at some reference density ρ0. The result for the
pressure is well-known from classical thermodynamics.

1.4 Vorticity

In non-relativistic hydrodynamics one defines the vorticity as the rotation of
the velocity:

ω = ∇× v. (48)

By definition it is divergence-free:

∇ · ω = 0. (49)

The non-relativistic Euler equation is

∂v

∂t
+ v · ∇v = −∇ ln f ′, (50)

where we have used eqs. (15) and (27). Now we can use the identity

v × ω = v × (∇× v) = ∇
(

1

2
v2

)
− v · ∇v, (51)
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to rewrite the Euler equation in the form

∂v

∂t
− v × ω = −∇

(
ln f ′ +

1

2
v2

)
. (52)

It is then straightforward to derive the equation of motion for the vorticity
itself

∂ω

∂t
−∇× (v × ω) = 0. (53)

The vorticity is related to the circulation of the fluid along a closed path Γ
in the fluid as follows from Gauß’ theorem:

Ω =

∮
Γ

v · dl =

∫∫
Σ

ωn d2Σ, (54)

where Σ is a 2-dimensional surface in the fluid enclosed by the loop: Γ = ∂Σ,
and ωn is the normal component of ω on the surface. From the equations of
motion (52) and (53) one can then derive the Kelvin-Helmholtz theorem for
a perfect fluid, stating that the co-moving time derivative of the circulation
vanishes:

∂Ω

∂t
+ v · ∇Ω = 0. (55)

Fig. 3.1 Linked vortex loops with N links.

Connected with vorticity is a topological quantity

I =

∫
V

d3xv · ω =

∫
V

d3x εijk vi∇jvk. (56)

Note that it is like an abelian Chern-Simons form in 3 dimensions. The inte-
gral quantity I is conserved up to boundary terms, as may be checked using
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the equations of motion for v and ω. That it has a topological interpretation
can be seen from the following argument.

As the divergence of the vorticity vanishes, vortex lines can only end on
boundaries; otherwise they form closed loops. In the absence of boundaries,
consider two closed vortex loops, each with a circulation

Ω(i) =

∫
Σi

ω(i) · dΣ(i), (57)

which wind N times around each other, as in fig. 3.1. By continuity of
the fluid, we can contract the vortex lines to narrow tubes of a diameter
small compared to the smallest distance between the two loops; outside these
narrow tubes the vorticity can be taken to vanish, and therefore we can write

I =

∫
V

d3xv · ω = I1 + I2, (58)

where the two terms refer to the two separate volume integrals over the
non-overlapping volumes V1,2 of each of the tubes separately:

Ii =

∫
Vi

d3xv(i) · ω(i), i = (1, 2). (59)

In particular we can write a volume element of tube Γ1 as dV1 = dl1dA1,
where dl1 is a line element in the direction of flow, and dA1 is a perpendicular
area element representing the cross section of the tube; then

I1 =

∫
Γ1

dl1 v(1)

∫
d2A1 ω(1), (60)

with ω(1) the vorticity in the direction of v(1), and hence perpendicular to
dA2. Now the area integral is just Ω(1), which is a constant. However, the
line integral can be turned into an area integral over the surface Σ1 enclosed
by Γ1, in the interior of which the only contribution to ωn comes from the
circulation of the second vortex line, which pierces the surface N times:∫

Γ1

dl1v
(1) =

∫
Σ1

d2Σ1 ωn = N

∫
Γ2

dA2 ω(2) = NΩ(2). (61)

Thus we find
I1 = NΩ(1)Ω(2), (62)
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which is completely symmetric in the circulation of the two loops. By sym-
metry, the same expression comes from evaluation of I2; therefore the total
result is

I =

∫
V

d3xv · ω = 2NΩ(1)Ω(2). (63)

As N is an integer, and the Ω(i) are constant in time, the quantity I is also
constant, and measures the number of links (the winding number) of the two
vortices.

The definitions of vorticity and linking number have their relativistic gener-
alizations. The starting point of the construction is eq. (40), which we can
write as

aµ = ∂µθ + iz̄∂µz − iz∂µz̄ = f ′(ρ) uµ. (64)

Then a relativistic analogue of the Chern-Simons form (56) is obtained from
the divergenceless axial current

Aµ = εµνκλ aν∂κaλ = 2i εµνκλ ∂νθ ∂κ z̄∂λz, ∂ · A = 0. (65)

The axial charge A0 is conserved, and is given by

A0 =

∫
V

d3x εijk ai∇jak = 2i

∫
V

d3x∇ · (θ∇z̄ ×∇z) . (66)

Clearly A0 reduces to a 2-dimensional boundary term, and its value is inde-
pendent of the local configurations in the bulk of the fluid.

1.5 Sound waves

Consider a static fluid: ρ = ρ0 and p = p0 are constant, and v0 = 0; the
last condition only implies that the velocity of flow (the average speed of
transportation of particles) vanishes, not that the speed of the individual
particles vanishes: the particles themselves can be fully relativistic, in the
sense that kT � m. Next consider small fluctuations around the static
equilibrium values:

ρ = ρ0 + δρ, v = δv. (67)

Then of course
ε = ε0 + δε, p = p0 + δp, (68)

10



with

δε = f ′0 δρ, δp = ρ0f
′′
0 δρ =

ρ0f
′′
0

f ′0
δε. (69)

In flat Minkowski space-time the linearized equations of motion for the fluc-
tuations become

∂δρ

∂t
+∇ · (ρ0δv) = 0,

∂δv

∂t
= − 1

ε0 + p0

∇(δp). (70)

Using eq. (69) and recalling the last of eqs. (15), the equation for the velocity
fluctuations can be rewritten as

∂δv

∂t
= −f ′′0

f ′0
∇(δρ). (71)

Combining this with the first eq. (70) we get:

∂2δρ

∂t2
=

ρ0f
′′
0

f ′0
∇2(δρ) = c2

s∇2(δρ), (72)

which is an equation for density fluctuations propagating at a speed cs defined
by

c2
s =

ρ0f
′′
0

f ′0
=

∂p

∂ε

∣∣∣∣
0

. (73)

For a non-relativistic gas this using (47) this becomes

c2
s =

5p0

3mρ0

� 1, (74)

whilst for a relativistic gas the result is

c2
s =

1

3
< 1. (75)

In all cases the sound velocity never exceeds the speed of light.
By far the simplest system is that of pressureless dust. This term refers

to gas of non-interacting point particles of mass m moving on geodesics. The
action is

S =
∑

r

m

2

∫
dλ

√
gµν(ξr)

dξµ
r

dλ

ξν
r

dλ
, (76)
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where λ is some affine parameter for the geodesic ξµ
r (λ) of the rth particle.

The action can be written as a quasi field theory in the form1

S =

∫
d4x

∑
r

m

2

∫
dλ

√
gµν(ξr)

dξµ
r

dλ

ξν
r

dλ
δ4 (x− ξr(λ)) . (77)

It is the straightforward to compute the energy-momentum tensor

Tµν = − 2√
−g

δS

δgµν
=
∑

r

m

2
urµurν

1√
−g

dτr

dt
δ3 (x− ξr(τr)) . (78)

In this expression τr denotes the proper time of the rth particle:

dτ 2
r = −gµν(ξr) dξµ

r dξν
r , (79)

and uµ
r = dξµ

r /dτi is its 4-velocity. Using the four momentum pµ = muµ we
can alternatively write the energy-momentum tensor as

Tµν =
∑

r

prµprν

2pr0

1√
−g

δ3 (x− ξr(τr)) . (80)

From the expression (78) it follows immediately, that in the continuum limit
we have a fluid with equation of state

ε = mρ, p = 0, (81)

with

ρ(x) ' 1

2
√
−g

dτ

dt
δ3 (x− ξ(τ)) . (82)

Clearly, to have a non-trivial equation of state one needs particles which
interact, at least through elastic collisions.

1.6 Hydrostatic equilibrium

The covariant conservation of the fluid energy-momentum tensor in compo-
nents reads

∂µp + ∂ν ((p + ε)uµu
ν) = −(p + ε)

(
Γ λ

κλ uκuµ + Γκλµ uκuλ
)
. (83)

1Our delta function is a scalar density, satisfying
∫

d4x δ4(x−x0) = 1 in any coordinate
system.
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In hydrostatic equilibrium, the 4-velocity is a time-like unit vector with com-
ponents

uµ = (u0, 0, 0, 0), gµν uµuν = g00(u
0)2 = −1, (84)

which fixes the time-component of the velocity to be given by

u0 = (−g00)
−1/2 . (85)

Simultaneously the pressure, energy density and metric must be time inde-
pendent: ∂0p = ∂0ε = ∂0gµν = 0. In particular,

Γ00µ = −1

2
∂µg00. (86)

Then the only non-trivial equations (83) are those with µ = i:

∇i p = −(p + ε) Γ00i (u
0)2 = −p + ε

2g00

∇ig00. (87)

Equivalently,
∇i p

p + ε
= ∇i ln f ′(ρ) = −∇i ln

√
−g00. (88)

It follows, that

−g00 f ′ 2 = κ−2 = constant ⇔ u0 = (−g00)
−1/2 = κf ′(ρ), (89)

where κ is a constant. In particular, for the equations of state (42):

f(ρ) = αρ1+η

the result is

ρ2η =
C

−g00

⇔ p = η ε = η α′ (−g00)
− 1+η

2η , (90)

where C and α′ are constant determined by κ and α. We observe, that in
the non-relativistic limit −g00 = 1 + 2Φ. with Φ the newtonian potential. It
gives the standard result for a relativistic gas

η =
1

3
⇒ p ∼ (−g00)

−2, (91)

and for a cosmic fluid behaving as a cosmological constant:

η = −1 ⇒ p = p0 = constant, ε = ε0 = constant. (92)

Note, that a cold non-relativistic fluid with η = 0 can exist in hydrostatic
equilibrium only if u0 = (−g00)

−1/2 = constant, for example in Minkowski
space. However, a relativistic gas can not be in free hydrostatic equilibrium
in a finite region of space (there are no photon or neutrino stars).
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2 Stars in equilibrium

2.1 Non-rotating stars

A static, non-rotating star is a spherically symmetric fluid body of finite
extent with a time-independent gravitational field both inside and outside.
Spherical symmetry and time-translation invariance allow us to choose polar
co-ordinates such that the line element is of the form

ds2 = −A(r) dt2 + B(r) dr2 + r2
(
dθ2 + sin2 θ dϕ2

)
, (93)

where A(r) and B(r) are to be determined. From the metric (93) one can
derive parametrized expressions for the components of the connection and
the Riemann curvature tensor; they have been collected in appendix 3.

We analyze the inhomogeneous Einstein equations for this space-time
geometry with an energy-momentum tensor of the perfect fluid form (6),
where the fluid density and the corresponding pressure and energy densities
are supposed to vanish beyond some radius R:

ρ(r) = p(r) = ε(r) = 0, r ≥ R. (94)

We then know that the metric beyond this radius takes the Schwarzschild-
Droste form

A(r) =
1

B(r)
= 1− 2GM

r
, r ≥ R, (95)

with M the total mass of the star. In order to avoid the presence of a horizon,
which would turn the star into a black hole, we require R > 2GM . Turning
now to the Einstein equations with a prefect fluid source, the tt-component
gives

− 1

r2B
+

1

r2
+

B′

rB2
= 8πGε, (96)

where here and in the rest of this section a prime denotes a derivative w.r.t.
the radial co-ordinate r. Eq. (96) can be rearranged to give( r

B

)′
= 1− 8πGεr2. (97)

It is customary to introduce a mass function

M(r) =

∫ r

0

dr′ 4πr′ 2ε(r′), (98)
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It then follows, that

B(r) =

(
1− 2GM(r)

r

)−1

, (99)

which reduces to the Schwarzschild-Droste form (95) for r > R if one identi-
fies the total mass with

M =M(R) =

∫ R

0

dr 4πr2ε(r). (100)

Next we consider the rr-component of the Einstein equation, to find

1

r2B
− 1

r2
+

A′

rAB
= 8πGp. (101)

It can be recast in the form

A′

A
= −1

r
+

B

r
+ 8πGp rB. (102)

Substitution of the expression (99) for B turns this equation into

(ln A)′ =
2G (M+ 4πp r3)

r2
(
1− 2GM

r

) , (103)

with the solution

A(r) = exp

[
−2G

∫ ∞

r

dr′

r′ 2
(
M+ 4πp r′ 3

)(
1− 2GM

r′

)−1
]

. (104)

Observe, that we have chosen the limits of integration such that A(r) satisfies
the boundary condition A(∞) = 1. More precisely, it is straightforward to
check that for r > R, where M = M and p = 0:

−2G

∫ ∞

r

dr′

r′ 2
(
M+ 4πp r′ 3

)(
1− 2GM

r′

)−1

= ln

(
1− 2GM

r

)
, (105)

showing that A(r) assumes the Schwarzschild-Droste form for r > R as well.
The other two Einstein equations for θθ- and ϕϕ-components of the Ein-

stein tensor are degenerate, and are satisfied automatically provided

Gθθ = gθθ grr Grr =
r2

B
Grr, (106)
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which explicitly reads

A′′

A
=

(
A′

2A
+

1

r

)(
A′

A
+

B′

B

)
+

2

r2
(1−B) . (107)

This one can check, using the results

A′

A
=

2G

r2

(
M+ 4πpr3

1− 2GM
r

)
,

B′

B
=

2G

r2

(
−M+ 4πεr3

1− 2GM
r

)
,

1

r
(B − 1) =

2GM
r2

1

1− 2GM
r

,

(108)

and observing that
A′′

A
=

(
A′

A

)′
+

(
A′

A

)2

. (109)

Thus we have a complete solution for the hydrostatic equations for a spher-
ically symmetric star in terms of the pressure p(r) and energy density ε(r),
which in turn can be expressed in terms of the fluid density ρ(r) by eqs. (14)
and (15).

We also recall form the conditions for hydrostatic equilibrium (88) and
(89) that

A′

A
=
−2p′

p + ε
=

[
−2 ln

(
df

dρ

)]′
⇒ A(r) =

1

κ2(df/dρ)2
. (110)

We can interpret the constant κ as follows. Outside the star (r > R), where
p = 0, we have

df

dρ
=

p + ε

ρ
=

ε

ρ
= u, (111)

the energy per particle. Then

1

κ
=

df

dρ

√
A = u(r)

√
1− 2GM

r
. (112)
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In the limit r →∞ the energy per particle is just its restmass m. Therefore

κ =
1

m
. (113)

Eq. (110) is an implicit condition on the equation of state. This can be made
more explicit by substitution of (110) into the first equation (108):

p′ = −G

r2
(p + ε)

(
M+ 4πpr3

1− 2GM
r

)
. (114)

This equation is known as the Tolman-Oppenheimer-Volkov (TOV) equation.
Using the equation of state to express the pressure p in terms of the energy
or fluid density ε = f(ρ) and the definition (98) of M, we see that (114)
represents an integro-differential equation for f(ρ) from which the metric
components have been eliminated as independent degrees of freedom.

A special simplification occurs for equations of state of the type (43):

p = ηε.

First observe, that from the definition (98)

M′ = 4πr2ε ⇔ p = ηε =
ηM′

4πr2
(115)

Inserting these relations into the fundamental equation (114) gives

η

(
M′′ − 2

r
M′
)

= − (1 + η)
GM′

r2

(
M+ ηrM′

1− 2GM
r

)
. (116)

This complicated non-linear second-order differential equation for M(r) has
2 simple special solutions, a linear one:

M(r) = µr, (117)

for any value of η, and a cubic one:

M(r) =
µr3

6
, (118)

with either η = −1 or η = −1/3. However, it is difficult to turn these solu-
tions into consistent stellar models with finite pressure and density, as well

17



as continuous metric co-efficients across the surface, unless one introduces
additional features like extra boundary layers on the surface of the star. We
discuss these special solutions in some more detail in appendix B.

Constant density solution
There is a well-known simple solution of the TOV equation (114) for stars
with constant energy density ε = 3M/4πR3 = constant [3], provided we allow
the equation of state to be r-dependent:

p = η(r) ε. (119)

At the same time

M(r) =
4πεr3

3
= M

( r

R

)3

. (120)

Indeed, for constant ε we can rewrite eq. (114) as

p′

(p + ε)
(
p + ε

3

) =
−4πGr

1− 8πGεr2

3

. (121)

Eliminating the constant ε in terms of M and R we can write this as

η′

(η + 1) (3η + 1)
=

−GMr/R2

1− 2GMr2/R3
. (122)

By definition, R is the radial distance at which p = 0; with this boundary
condition the solution of eqs. (121), (122) is given by (119) with

η(r) =

√
1− 2GM/R−

√
1− 2GMr/R2√

1− 2GMr/R2 − 3
√

1− 2GM/R
. (123)

Equivalently, we can write

1 + η(r)

1 + 3η(r)
=

√
1− 2GM/R

1− 2GMr/R2
. (124)

Obviously, η(R) = 0, and the pressure vanishes at the surface r = R as
required. At this surface we must match it with the vacuum Schwarzschild
solution. For values 0 ≤ r < R the expression for η(r) is real provided

2GM

R
≤ 1. (125)
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Generally, the l.h.s. of eq. (124) is non-negative for values

η(r) ≤ −1 ∨ η(r) ≥ −1

3
. (126)

In this range eq. (121) implies, that η(r) decreases monotonically. However,
as for r ∈ [0, R] we have

1− 2GM/R

1− 2GMr/R2
≤ 1, (127)

we can be more precise and infer that

η(r) ≤ −1 ∨ η(r) ≥ 0. (128)

The case η = −1 corresponds to the gravastar model, a stellar model of the
type eq. (118) with η = −1, with an extra layer between the stellar interior
and the vacuum where the pressure profile can be modified. For positive
values of η(r) the central value is a maximum:

η(r) ≤ η(0) ≡ η0,
1 + η0

1 + 3η0

=

√
1− 2GM

R
. (129)

The last equation can be rewritten in the form

2GM

R
= 1−

(
1 + η0

1 + 3η0

)2

. (130)

The r.h.s. of this equation takes values between 0 for η0 = 0, and 8/9 for
η0 →∞. Hence such stars have a maximal radius and mass:

2GM∞

R∞
=

8

9
, R2

∞ =
1

3πGε
. (131)

This radius becomes smaller if ε becomes larger, as might be expected. The
metric co-efficient B(r) now becomes

B(r) =

(
1− 2GMr2

R3

)−1

=

(
1− r2

a2

)−1

, (132)

where a is the radius of curvature of the spherical hypersurface t = constant
(dt = 0):

a2 =
9

8
R2
∞. (133)
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2.2 Particle number

The fluid current is a density current for the amount of fluid (the number of
fluid particles); in applications it could be associated e.g. with the (practi-
cally) conserved baryon density current. The total number of baryons in a
star is then obtained from the expression

N =

∫
V

d3x
√
−gJ 0, (134)

where Jµ is the baryon current. The covariant current conservation

DµJ
µ =

1√
−g

∂µ

(√
−gJµ

)
= 0, (135)

implies that the total number of particles is conserved:

∂0N = −
∫

V

d3x∇i(
√
−gJi) = 0. (136)

In the case of a spherically symmetric body, like a non-rotating star, this
expression takes the form

N =

∫ R

0

dr 4πr2
√

AB J 0. (137)

Now it follows form eq. (85) that
√

A J 0 = −u0J
0 = −uµJ

µ = ρ. (138)

Substitution of the expression (99) for B then finally leads to the result

N =

∫ R

0

dr 4πr2 ρ(r)√
1− 2GM(r)

r

. (139)

Knowing the total number of particles, it is possible to address the question
of the internal energy of a star. The total rest energy of N non-interacting
particles of mass m is

EN = Nm. (140)

The total rest energy of the star is its mass M (100), as seen by an observer
at infinity at rest w.r.t. the start at infinity. Therefore the total internal
energy is

∆E = M −Nm. (141)
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We can also introduce the internal energy density in a similar from the local
quantities:

e(r) = ε(r)− ρ(r) m. (142)

With the help of this definition we can split the total internal energy into
thermal (kinetic) enery T and potential energy V , by defining

T =

∫ R

0

dr 4πr2 e(r)√
1− 2GM(r)

r

V =

∫ R

0

dr 4πr2 ε(r)

1− 1√
1− 2GM(r)

r

 .

(143)

Using the expressions for M and N , these quantities are easily seen to satisfy
the equation

T + V = ∆E. (144)

An expansion in Newton’s constant gives

T =

∫ R

0

dr 4πr2 e(r)

(
1 +

GM(r)

r
+ ...

)
, (145)

and similarly for the potential energy:

V =

∫ R

0

dr 4πr2ε(r)

(
GM(r)

r
+

3G2M2(r)

2r2
+ ...

)
. (146)

2.3 A variational principle

The stellar structure equation (114) expressing the pressure gradient in terms
of the pressure and energy density can be derived in an alternative way from
a variational priniciple. The starting point is provided by the expressions for
total energy M (100) and particle number N (139), interpreted as functionals
of the density ρ(r). From these expressions we can construct the functional

E(ρ; λ) = M(ρ)− λ (N(ρ)−N0) , (147)

where N0 is the fixed value of the total particle number, and λ is a global pa-
rameter used as a lagrange multiplier to impose particle number conservation
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on variations of E; indeed

∂E

∂λ
= 0 ⇔ N =

∫ R

0

dr 4πr2 ρ√
1− 2GM

r

= N0, (148)

We now show, that eq. (114) for the pressure gradient follows from requiring
E to be stationary under local variations of the density ρ for some value of
the parameter λ = λ0:

δE = 0 ⇔ δM = λ0 δN (149)

under local varations δρ(r). It then follows that

δE =
∂E

∂λ
δλ +

∫ R

0

dr
δE

δρ(r)
δρ(r) = 0 (150)

under independent variations of λ and ρ at the point N = N0 and λ = λ0.
In particular this then implies, that M itself is stationary under variations
δρ(r) such that δN = 0.

Considering some arbitrary variation δρ(r), we straightforwardly find

δE =

∫ R

0

dr 4πr2δρ(r)

 df

dρ

∣∣∣∣
r

− λ√
1− 2GM(r)

r



−λG

∫ R

0

dr

 4πrρ(r)(
1− 2GM(r)

r

)3/2

∫ r

0

dr′ 4πr′ 2 δρ(r′)
df

dρ

∣∣∣∣
r′

 .

(151)
By interchange of the integrations in the last term, we get

δE =

∫ R

0

4πr2δρ(r)

 df

dρ

∣∣∣∣
r

− λ√
1− 2GM(r)

r

−λG
df

dρ

∣∣∣∣
r

∫ R

r

dr′
4πr′ρ(r′)(

1− 2GM(r′)
r′

)3/2

 = 0.

(152)
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This fixes the value of the lagrange multiplier

1

λ
=

1

df
dρ

√
1− 2GM

r

+ G

∫ R

r

dr′
4πr′ρ(r′)(

1− 2GM
r′

)3/2
. (153)

Now if λ is to be independent of r, we need

d

dr

(
1

λ

)
= 0, (154)

which implies that

4πrGρ(
1− 2GM

r′

)3/2
=

d

dr

 1

df
dρ

√
1− 2GM

r

 . (155)

Working out the derivative on the r.h.s., and multiplying the complete eqiu-
ation by a factor (df/dρ)2

√
1− (2GM)/r gives

− d

dr

df

dρ
− df

dρ

G

r2

(M− 4πr3f(ρ))

1− 2GM
r

=
4πrGρ

(
df
dρ

)2

1− 2GM
r

. (156)

Now
df

dρ
=

1

ρ
(p + ε) ,

d

dr

df

dρ
=

1

ρ

dp

dr
. (157)

Then we indeed reobtain (114):

−r2p′ = G (p + ε)
(M+ 4πr3p)

1− 2GM
r

.

It remains to calculate the stationary value of the lagrange multiplier λ. The
integral on the r.h.s. of (153) can be evaluated using eq. (155), which states
that the integrand is a total derivative. As a result we find

λ =
df

dρ

∣∣∣∣
R

√
1− 2GM

R
= m, (158)

where we have used the results (112) and (113) to establish the last equality.
It follows, that we can rewrite the functional E(ρ; λ) for the stationary value
of λ as

E(ρ; m) = M(ρ)−mN(ρ)−∆E0, (159)
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with ∆E0 the total internal energy (141) in the equilibrium configuration
with N0 particles.

The observation that solutions of the structure equation (114) define the
stationary points of the functional M(ρ) at fixed number of particles N = N0

is important for an analysis of the stability of the solution. Indeed, it follows
directly, that a solution is stable only if the stationary point is a minimum.

2.4 Newtonian stars

Newtonian star models describe stars in terms of a non-relativistic fluid under
the influence of newtonian gravity. Non-relativistic fluids are described by
the equation of continuity and the Euler equation

∂ρ

∂t
+∇ · (ρv) = 0, ρ

∂v

∂t
+ v · ∇(ρv) = − f

m
, (160)

with f the local force density (force per unit of volume) acting on a fluid
element with mass density mρ and velocity v. The equations (160) represent
the non-relativistic limit of equations (13) and (10), taking into account that
in that limit the energy density is dominated by the mass density, and that
the pressure is negligeable in comparison with the energy density:

p + ε ≈ ε = mρ. (161)

Now the situation of hydrostatic equilibrium is characterized simply by the
conditions

∂ρ

∂t
= 0, v = 0, f = 0. (162)

In the case of a fluid dubject only to internal forces and newtonian gravity,
the force balance states simply that the gravitational force must be balanced
by the pressure gradient:

fgrav = ∇p. (163)

Consider a spherical body of fluid with density distribution ρ(r). Consider a
fluid element of mass

dM = mρ dV, (164)

at a distance r from the center of the body. The gravitational force on this
fluid element is simple to calculate: the force from all fluid elements inside
the sphere of radius r adds up to an effective force per unit of volume

fgrav = −GM(r)mρ

r2
, (165)
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where M(r) is the total mass inside radius r:

M(r) = m

∫ r

0

dr′ 4πr′ 2ρ(r′). (166)

In contrast, the total gravitational force of spherically distributed matter
outside radius r has no net effect on the fluid element: the 1/r2 behaviour
guarantees that all such forces cancel. Therefore the equilibrium condition
(163) becomes

r2p′(r) = r2 dp

dr

∣∣∣∣
r

= −GM(r) mρ(r). (167)

This is indeed the non-relativistic limit of eq. (114).
To get rid of the integral defining M we can differentiate the equation

once more, to find
d

dr

(
r2

ρ

dp

dr

)
= −4πGm2r2ρ. (168)

This equation has to be supplemented by an equation of state p(ρ) and
appropriate boundary conditions:

p′(0) = 0, ρ′(0) = 0. (169)

These conditions, implying that ρ(0) is finite, guarantee that there is no
singularity in the center of the star.

2.5 Polytropes

A newtonian polytrope is a newtonian star described by an equation of state
of the form

p = σργ, (170)

with σ a (dimensionful) constant. Recalling the definition of the local internal
energy (142):

e(r) = ε(r)−mρ(r), |e(r)| � mρ,

the equation of state (170) can be seen to be equivalent to the proportionality
of p(r) and e(r):

p = (γ − 1) e. (171)
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To establish the connection, observe that the condition of constant entropy
per particle allows us to write this as a differential equation

ρ
df

dρ
− f = (γ − 1) (f −mρ). (172)

Now with ε = f(ρ) = e(ρ) + mρ, this gives

ρ
de

dρ
= γe ⇒ e(ρ) =

σ

(γ − 1)
ργ, (173)

with σ a constant of integration; eq. (170) then follows immediately.
If the polytrope equation of state is used in the structure equation (168),

this equation becomes an ordinary second order differential equation

γσ

γ − 1

d

dr

(
r2 d

dr
ργ−1

)
= −4πGm2r2ρ. (174)

To get rid of the various dimensionful constants, we redefine the dependent
and independent variables as follows:

θ(r) =

[
ρ(r)

ρ(0)

]γ−1

, ξ2 =

(
γ − 1

γσ

)
4πGm2

[ρ(0)]γ−2 r2. (175)

Eq. (174) then takes the simple form

1

ξ2

d

dξ

(
ξ2 dθ

dξ

)
+ θ

1
γ−1 = 0, (176)

with the boundary conditions

θ(0) = 1, θ′(0) = 0. (177)

The solution is known as the Lane-Emden function of index 1/(γ − 1). A
series expansion of this function takes the form

θ(ξ) = 1− 1

6
ξ2 +

1

120(γ − 1)
ξ4 − 1

15120

(5γ − 7)

(γ − 1)2
ξ6 + ... (178)

For values ξ > 6/5 the function has a zero at finite ξ = ξ1:

θ(ξ1) = 0. (179)
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This value of ξ then corresponds to the radius of the star:

R = ξ1

√(
γσ

γ − 1

)
[ρ(0)]γ−2

4πGm2
. (180)

One can now also compute the mass of the star:

M = m

∫ R

0

4πr2ρ(r)

=

[(
γσ

γ − 1

)
[ρ(0)](3γ−4)/3

(4πm4)1/3 G

]3/2 ∫ ξ1

0

dξ ξ2 [θ(ξ)]
1

γ−1

=

[(
γσ

γ − 1

)
[ρ(0)](3γ−4)/3

(4πm4)1/3 G

]3/2 ∫ ξ1

0

dξ
d

dξ

(
−ξ2dθ

dξ

)

=

[(
γσ

γ − 1

)
[ρ(0)](3γ−4)/3

(4πm4)1/3 G

]3/2 ∣∣ξ2
1 θ′(ξ1)

∣∣ .

(181)

The absolute value in the last expression comes about, because the slope of
θ(ξ) at ξ1 is negative: the pressure and density decrease to zero at the surface
of the star. Note, that for γ = 4/3 the mass M becomes independent of the
central density ρ(0).

It is also possible to eliminate the central density between equations (180)
and (181) so as to obtain the mass-radius relation

M =

[(
γσ

γ − 1

)
1

4πGmγ

] −1
γ−2

4π

(
R

ξ1

) 3γ−4
γ−2 ∣∣ξ2

1 θ′(ξ1)
∣∣ . (182)

Clearly, for γ = 4/3 the mass becomes also independent of the radius. This
is of course a sign of instability. Indeed, it turns out that for γ < 4/3
polytropes are unstable; in this region dM/dR > 0. In contrast, for γ > 4/3
polytropes are are stable; therefore physical polytropes get smaller when they
get heavier: dM/dR < 0. One can show, that both the lightest and heaviest
white dwarfs are in this class. The limits are described by the equations of
state (44) for extremely relativistic matter:

p =
1

3
ε = σρ4/3,
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such that γ = 4/3; and the equation of state (47) for non-relativistic matter:

ε = mρ +
3

2
p = mρ +

3

2
σρ5/3 ⇒ p = σρ5/3,

such that γ = 5/3. Thus the range of values 4/3 ≤ γ ≤ 5/3 is the physical
range, and the region γ > 2, where dM/dR > 0 again, is never reached.
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3 Appendix A

Static spherically symmetric space-time

Static spherically symmetric space-time can be described by a line element
of the parametrized form (93):

ds2 = −A(r) dt2 + B(r) dr2 + r2
(
dθ2 + sin2 θ dϕ2

)
,

with A and B functions of r only. From this metric one can compute the
Riemann-Christoffel connection; its non-zero components are:

Γ r
tt =

A′

2B
, Γ t

rt =
A′

2A
,

Γ r
rr =

B′

2B
,

Γ r
θθ = − r

B
, Γ θ

rθ =
1

r
,

Γ r
ϕϕ = −r sin2 θ

B
, Γ ϕ

rϕ =
1

r
,

Γ θ
ϕϕ = − sin θ cos θ, Γ ϕ

θϕ =
cos θ

sin θ
,

(183)

where a prime denotes a derivative w.r.t. the radial co-ordinate r. The next
step is to compute the components of the Riemann tensor. Again, we only
write down the non-zero components, up to the usual symmetry degeneracies
of the components:

Rtrtr = −1

2
A′′ +

1

4
A′
(

A′

A
+

B′

B

)
,

Rtθtθ = −rA′

2B
, Rtϕtϕ = −r sin2 θ A′

2B
,

Rrθrθ = −rB′

2B
, Rrϕrϕ = −r sin2 θ B′

2B
,

Rθϕθϕ = r2 sin2 θ

(
1

B
− 1

)
.

(184)
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Contracting the components, we obtain the non-zero diagonal elements of
the Ricci tensor:

Rtt = −A′′

2B
− A′

rB
+

A′

4B

(
A′

A
+

B′

B

)
,

Rrr =
A′′

2A
− B′

rB
− A′

4A

(
A′

A
+

B′

B

)
,

Rθθ =
1

B
− 1 +

r

2B

(
A′

A
− B′

B

)
, Rϕϕ = sin2 θ Rθθ,

(185)

whilst the Riemann curvature scalar becomes

R = − 2

r2
+

2

r2B
+

A′′

AB
− A′

2AB

(
A′

A
+

B′

B

)
+

2

rB

(
A′

A
− B′

B

)
. (186)

Finally, we give the corresponding expressions for the Einstein tensor

Gtt = −A

B

(
− 1

r2
+

B

r2
+

B′

rB

)
,

Grr = − 1

r2
+

B

r2
− A′

rA

Gθθ = − r2

2B

[
A′′

A
− A′

2A

(
A′

A
+

B′

B

)
+

1

r

(
A′

A
− B′

B

)]
, Gϕϕ = sin2 θ Gθθ.

(187)
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4 Appendix B

Special solutions of the TOV equation

In this appendix we discuss in some more detail the two special solutions
of the TOV equation mentioned in sect. 2.1. We first consider the solution
(117):

M(r) = µr ⇒ M′ = µ, M′′ = 0. (188)

It follows that the energy and pressure grow without bound in the center of
the star:

p = ηε =
ηµ

4πr2
(189)

However, the singularity is integrable, and the total mass of the star is finite:

M =

∫ R

0

dr 4πr2ε = µR ⇒ dM

dR
= µ. (190)

For these stars the mass increases with the radius, as for black holes. Sub-
stitution of the expression for M(r) in the TOV equation gives

4η

(1 + η)2
=

2Gµ

1− 2Gµ
, (191)

which implies that the parameters η and µ are not independent. Observe,
that the l.h.s. of eq. (191) is invariant under the substitution η → 1/η; hence
any value of µ corresponds to two values of η, unless η = 1, which is a fixed
point of the transformation. At the fixed point

η = 1 ⇔ 2Gµ =
2GM

R
=

1

2
. (192)

Hence the radius of these stars with η = 1 is twice the Schwarzschild radius.
For η = 0 the transformation is singular, but as it corresponds to µ = 0 it is
uninteresting. For other values of µ

η =
1

Gµ

(
1− 3Gµ±

√
(1− 2Gµ)(1− 4Gµ)

)
, (193)

provided either 2Gµ ≥ 1 or 4Gµ ≤ 1. This shows that there is another fixed
point:

η = −1 ⇔ 2Gµ =
2GM

R
= 1. (194)
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In this case the radius of the star is equal to the Schwarzschild radius. The
interior metric (inside the star) has co-efficients

A(r) =
( r

R

)4η/(1+η)
(

1− 2GM

R

)
, B(r) =

1

1− 2Gµ
=

1

1− 2GM
R

, (195)

where the normalization of both co-efficients is determined by the continuity
of the metric at the stellar surface; note that the interior B(r) is constant.
The speed of sound inside the star is

c2
s =

∂p

∂ε
= η, (196)

which is physically sensible only if 0 ≤ η ≤ 1. For negative η no sound waves
are possible (imaginary cs), whilst for η > 1 the speed of sound exceeds the
speed of light.
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