Quaero@H1 An interface to High pT HERA data

DIS April 2007 München

Sascha Caron (Freiburg)

Bruce Knuteson (MIT)

Thanks to the H1 Collaboration, Martin Wessels, Emmanuelle Perez, Eckhard Elsen, Andre Schoening, Cristi Diaconu, ...

Motivation 1

Searches for new physics publish 1d or 2d parameter limits for a model

A new model or limit requires a reanalysis of the data

Publishing HEP data via an interface that can be used to quickly test a new model against those data

Motivation 2

Quaero was introduced 2001 at D0 as a concept to make HEP data public available, why not try to add and conserve H1 data?

Adding HERA data to QUAERO gives the possibility to test models against HERA and Tevatron data at once

Publishing HEP data via an interface that can be used to quickly test a new model against those data

H1 General Search

Make use of H1 General Search data for model testing

H1 General Search provides most complete data set at HERA

H1 was the first modern HEP experiment that analyzed all final states

Data could be combined with D0 or later with CDF and LHC data

H1 General Search M_{all} and ΣP_T distributions can be used in QUAERO

Quaero can use any 4-vector variable and 2d correlations

H1 decided to include the histograms

Neutrino channels are not distinguished in quaero@h1

(e.g. histograms of jetmuon-neutrino and jetmuon are added)

Model testing with QUAERO

Quaero A General Interface to HEP Data									
Signal									
Pythia O Suspect O MadEvent									
Choose File no filelected									
Requestor									
Email: Model:									
O 1 Submit									

Submit jobs at:

http://mit.fnal.gov/~knuteson/Quaero/quaero/

How does QUAERO@H1 work?

The user provides commands to the build in event generators

Event generator makes HERA events with the right luminosity

H1 detector response, analysis efficiencies and cuts are simulated using Turbosim

Systematic error is integrated numerically and results from different experiments are combined

The observable(s) with the most difference is used to determine the likelihood ratio L = $p(D \mid H) / p(D \mid SM)$

H1 analysis simulation: Turbosim@H1

✓ Data: histograms are taken from the H1 General
Search

✓ SM: histograms are taken from the H1 General Search

✓ New Model: Simulated using signal MC and Turbosim@H1

H1 Monte Carlo events and H1 General Search analysis code are used to produce a large lookup table between generator level and analysis objects

This lookup table is used as an ultrafast detector Simulation → Turbosim

Large lookup table

		Parton cluster					Reconstructed cluster					
	zvtx	object	р _т	η	φ		0	bject	р _т	η	φ	
1	2.98	e+	67.111	0.536	61.2	;	->	e+	72.969	0.531	61.37	;
2	18.04	e+	16.555	-0.038	47.21	;	->	j	18.955	0.003	46.05	;
3	5.46	j	86.379	1.689	50.96	;	->	j	81.975	1.686	50.95	;
4	29.48	j	46.449	1.464	-7.56	;	->	j	27.835	1.896	-21.23	
								j	23.815	1.008	10.42	;
5	-5.72	j	15.606	0.225	-153.94	;	->	;				
6	-10.73	j	38.434	0.194	17.88	;	->	mu+	36.603	0.193	17.66	;
7	-3.16	e+	11.556	-0.72	-64.11							
		mu+	9.506	-0.777	-59.12	;	->	j	22.364	-0.81	-60.98	;
8	-9.13	e+	30.031	0.004	12.62							
		\mathtt{ph}	16.402	-0.055	10.59	;	->	e+	46.904	-0.028	10.96	;
9	3.13	mu+	24.717	1.161	-27.75	;	->	;				
10	-5.47	mu+	47.093	2.045	54.12	;	->	mu+	54.087	2.041	54.09	;

... and another million lines

→ Turbosim has been found in agreement with the full simulation + analysis
Sascha Caron Quaero@H1 DIS 2007

How does QUAERO@H1 work?

The user provides commands to the build in event generators

Event generator makes HERA events with the right luminosity

H1 detector response, analysis efficiencies and cuts are simulated using Turbosim

Systematic error is integrated numerically and results from different experiments are combined

The observable(s) with the most difference is used to determine the likelihood ratio L = $p(D \mid H) / p(D \mid SM)$

Example analyses

R-parity violating SUSY (H1) Leptoquarks (D0 and H1) Excited quarks (H1)

Data samples: H1 General Search Run 1 (all channels but histograms) D0 quaero samples Run 1 (3 channels but 4-vectors)

R parity violating SUSY example

If muon sneutrino is LSP diagrams like this are possible

Considered to explain H1 isolated Lepton events (jet-muon-v in HERA 1)

Signal generated with Madevent LEP limits and kinematics of the jmv events suggest up-squark mass of approx. 200 GeV and muon-sneutrino mass of 50 GeV jmv events suggest signal cross section of 0.1pb which constrains the R-parity violating coupling

Quaero selects final states and derives likelihood ratio automatically

R parity violating SUSY example

Quark coupling relevant for H1

Leptoquarks

$$\mathcal{C} = \lambda \operatorname{LQ} \bar{u}_R e_L + \operatorname{h.c.} \underset{\longleftrightarrow}{\leftarrow}$$

 $+ig_s G^*_{\mu}(\mathrm{LQ}^*\partial^{\mu}\mathrm{LQ})$

Gluon coupling

relevant for D0

Coupling λ of LQ-e-q vertex and mass M_LQ scalar LQ was varied

95% CL upper limit corresponds roughly to log10L=1

Relevant for H1

Leptoquarks

$$\mathcal{L} = \lambda \operatorname{LQ} \overline{u}_R e_L + \operatorname{h.c.} + ig_s G^*_{\mu} (\operatorname{LQ}^* \overleftrightarrow{\partial}^{\mu} \operatorname{LQ})$$

Relevant for D0

Coupling λ of LQ-e-q vertex and mass M_LQ scalar LQ was varied

Combination makes use of Tevatrons lamda independent exclusion of leptoquarks with low mass

... and HERA's lamda dependent exclusion at high mass

$$\mathcal{L} = \frac{1}{2\Lambda} \bar{q}_R^* \sigma^{\mu\nu} \left(g_s f_s \frac{\lambda^a}{2} G^a_{\mu\nu} + g f \frac{\tau}{2} \cdot \overrightarrow{W}_{\mu\nu} + g' f' \frac{Y}{2} B_{\mu\nu} \right) q_L$$

(Baur, Spira, Zerwas)

Usual HERA scenario, Lambda is compositeness scale, q* is first generation q* doublet

Generated with Madevent Input, usual choice for parameters f=f', f s=0, m u*=m d*

→ Leaves 2 parameter model: f/Λ and m_q^*

Right Plot: Quaero output for $f/\Lambda = 0.01$ and $m_q^* = 200$ GeV

- The histograms and the analysis simulation of the H1 General Search are incorporated into Quaero@H1
- → Automated test of specific hypothesis against H1 data
- A Leptoquark, q* and Susy example analysis shows the performance of the framework
- New data from H1 would be very easy to incorporate

More information in hep-ph/0612201

