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Abstract

The three LIGO interferometers are full operative and under science run since
November 2005. The acquired data are integrated with those obtained by th Virgo
experiment within an international cooperation aimed to maximize the efforts for
the detection of gravitational waves.

From 2001 LIGO I is expected to be shut down and the construction and com-
missioning of Advanced LIGO to start. The objective of the new generation in-
terferometers is a ten times greater sensibility with the purpose to extend of a
factor of a thousand the space volume covered and to increase of the same order
of magnitude the probability to detect events.

To increase the sensibility in the band below 40 Hertz, the main source of
noise that Advanced LIGO have to face is the seismic noise. In this perspective,
the SAS group (Seismic Attenuation Systems) of LIGO has developed a class of
technologies on which the HAM-SAS system is based. Designed for the seismic
isolation of the output mode cleaner optics bench and more in general for all
the HAM vacuum chambers of LIGO, HAM-SAS, with little variations, can be
extended to the BSC chambers as well.

In HAM-SAS the legs of four inverted pendulums form the stage of attenu-
ation of the horizontal degrees of freedom. Four GAS filters are included inside
a rigid intermediate structure called Spring Box which is supported by the in-
verted pendulums and provide for isolation of the vertical degrees of freedom.
The geometry is such that the horizontal degrees of freedom and the vertical ones
are separate. Each GAS filter carries an LVDT position sensor and an electro-
magnetic actuator and so also each leg of the inverted pendulums. Eight stepper
motors guarantee the DC control of the system.

A prototype of HAM-SAS has been constructed in Italy, at Galli & Morelli and
then transferred to Massachusetts Institute of Technology in the US to be tested
inside the Y-HAM vacuum chamber of the LIGO LASTI laboratory.

The test at LASTI showed that the vertical and horizontal degrees of free-
dom are actually uncoupled and can be treated as independent. It was possible to
clearly identify the modes of the system and assume these as a basis by which to
build a set of virtual position sensors and a set of virtual actuators from the real
ones, respect with which the transfer function of the system was diagonal. Inside
this modal space the control of the system was considerably simplified and more
effective. We measured accurate physical plants responses for each degree of free-
dom and, based on these, designed specific control strategies. For the horizontal
degrees of freedom we implemented simple control loops for the conservation of
the static position and the damping of the resonances. For the vertical ones, be-



yond these functions, the loops introduced an electromagnetic anti-spring effect
and lowered the resonance frequency.

The overall results was the achievement of the LIGO seismic attenuation re-
quirements within the sensibility limits of the geophone sensors used to measured
the performances.

The entire project, from the construction to the commissioning, occurred within
a very tight time schedule which left scarce possibility to complete the expected
mechanical setup. The direct access to the system became much rarer once the
HAM chamber had been closed and the vacuum pumped. Some of the subsystems
(among which the counterweights for the center of percussion of the pendulums
and the “magic wands”) could not be implemented and several operations of op-
timization (i.e. the lower tuning of the vertical GAS filters’ resonant frequencies
and the tilts’ optimization) had no chance to be completed. Moreover the LASTI
environment offered a seismically unfortunate location if compared with the sites
of the observatories for which HAM-SAS have been designed. Nonetheless the
performances measured on the HAM-SAS prototype were positive and the ob-
tained results very encouraging and leave us confident to be further improved and
extended by keeping working on the system.



Riassunto

(Italian Abstract)

La presente tesi di laurea ¢ il risultato della partecipazione del candidato allo
sviluppo del sistema HAM-SAS per I’attenuazione del rumore sismico negli in-
terferometri di Advanced LIGO.

I tre interferometri nei due osservatori di LIGO sono ormai operativi e in con-
tinua presa dati dal Novembre del 2005. I dati acquisiti sono integrati con quelli
ottenuti dal progetto Virgo nell’ambito di una cooperazione internazionale volta a
massimizzare gli sforzi per la rivelazione delle onde gravitazionali.

A partire dal 2011 sono previsti la dismessa di LIGO I e I’inizio dell’installazione
e messa in funzione di Advanced LIGO. L’obiettivo degli interferometri di nuova
generazione ¢ una sensibilita dieci volte maggiore con lo scopo di estendere di un
fattore mille il volume di spazio coperto e di incrementare dello stesso ordine di
grandezza la probabilita di rivelazione di eventi.

Per aumentare la sensibilita nella banda sotto 10 Hertz la principale fonte
di rumore che Advanced LIGO deve fronteggiare ¢ il rumore sismico. In tale
prospettiva, il gruppo SAS (Seismic Attenuation Sistems) di LIGO ha sviluppato
un insieme di tecnologie sulle quali si basa il sistema HAM-SAS, progettato per
I’isolamento sismico del banco ottico dell’output mode cleaner e piu in generale
per tutte le camere a vuoto HAM di LIGO.

In HAM-SAS le gambe di quattro pendoli invertiti costituiscono lo stadio di
attenuazione dei gradi di liberta orizzontali (yaw e le due traslazioni sul piano).
Quattro filtri GAS sono contenuti all’interno di una struttura rigida intermedia
chiamata Spring Box che poggia sui pendoli invertiti € provvedono all’isolamento
dei gradi di liberta verticali (traslazione verticale e le inclinazioni). La geometria
¢ tale che 1 gradi di liberta orizzontali e quelli verticali risultano separati. Ogni
filtro GAS ¢ accompagnato da un sensore di posizione LVDT e da un attuatore
elettromagnetico e cosi anche ogni gamba dei pendoli invertiti. Otto stepper mo-
tors permettono il controllo di posizione statica del sistema.

Un prototipo di HAM-SAS ¢ stato realizzato in Italia e quindi trasportato
presso il Massachusetts Institute of Technology negli Stati Uniti d’ America per
essere testato entro la camera a vuoto Y-HAM dell’interferometro da 15 metri del
LIGO LASTTI Laboratory.

La collaborazione del candidato al progetto ¢ cominciata nel 2005 con lo stu-
dio di uno dei sottosistemi di HAM-SAS, le cosiddette “magic wands”, oggetto
della tesi di laurea di primo livello e ora parte integrante della tecnica SAS.
Nell’ Agosto del 2006 un maggiore coinvolgimento ¢ cominciato con la parte-
cipazione alle varie fasi di costruzione del sistema presso le officine meccaniche



della Galli e Morelli di Lucca. Il contributo alla costruzione in Italia ha incluso:
il design di alcuni elementi, il processo di produzione dell’acciaio maraging per
le lame dei filtri GAS, 1’assemblaggio dell’intero sistema in tutte le sue parti mec-
caniche inclusi sensori, attuatori elettromagnetici e stepper motors e le caratteriz-
zazioni preliminari dei pendoli invertiti e dei filtri GAS. Il sistema ¢ stato inoltre
interamente sottoposto ai processi di trattamento per la compatibilita con gli am-
bienti ad ultra alto vuoto dell’interferometro e in questa fase un contributo sono
stati i test spettroscopici tramite FT-IR dei campioni ricavati dal sistema. Du-
rante I’assemblaggio definitivo in camera pulita, come spiegato nell’elaborato,
I’impegno ¢ andato dal tuning dei filtri GAS, alla distribuzione precisa dei carichi
sui pendoli invertiti e alla messa a punto del sistema per la correzione del tilt
verticale.

AlI’MIT, a cominciare da Dicembre 2006, il candidato ha rappresentato il pro-
getto HAM-SAS per tutta la sua durata. Qui si ¢ occupato, assieme al gruppo
SAS, di tutte le fasi dell’esperimento, dal setup dell’elettronica e della meccanica
al commissioning del sistema per raggiungere i requisiti di progetto, passando
per la creazione del sistema di acquisizione dati, i controlli, 1’analisi dei dati e
I’interpretazione dei risultati.

I test a LASTI hanno mostrato che, grazie alla particolare geometria del sis-
tema, i gradi di liberta orizzontali e quelli verticali sono disaccoppiati € possono
essere trattati come indipendenti. E’ stato possibile identificare chiaramente i
modi del sistema e assumerli come base con cui costruire un set di sensori di
posizione virtuali e un set di attuatori virtuali a partire da quelli reali, rispetto
ai quali la funzione di trasferimento del sistema fosse diagonale. All’interno di
questo spazio modale il controllo del sistema ¢ risultato notevolmente semplifi-
cato e piu efficace. Abbiamo misurato accurate physical plant responses per ogni
grado di liberta e, sulla base di queste, disegnato specifiche tipologie di controllo.
Per i gradi di liberta orizzontali si sono utilizzati semplici loops di controllo per
il mantenimento della posizione statica e il damping delle risonanze. Per quelli
verticali in piu a queste funzioni, i loops introducevano un effetto di antimolla
elettromagnetica e abbassavano le frequenze di risonanza.

Il risultato complessivo ¢ stato il raggiungimento dei requisiti di attenuazione
sismica di LIGO per il banco ottico entro i limiti di sensibilita dei sensori geofoni
utilizzati.

L’intero progetto, dalla produzione al commissioning, si ¢ svolto secondo un
programma dai tempi contingentati che ha lasciato scarsa possibilita di completare
fino in fondo il setup meccanico previsto. L’accesso diretto al sistema & diventato
molto piu raro una volta richiusa la camera HAM nell’interferometro e pompato
il vuoto. Alcuni dei sottosistemi (tra cui i contrappesi per il centro di percussione
dei pendoli e le “magic wands”) non hanno potuto essere installati e diverse op-
erazioni di ottimizzazione (come I’abbassamento delle frequenze dei filtri GAS
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verticali e dei pendoli invertiti e 1’ ottimizzazione dei tilt) non hanno potuto essere
completate. Inoltre I’ambiente di LASTI ha offerto una locazione sismicamente
poco favorevole se confrontata alle sedi degli osservatori per le quali HAM-SAS
era stato progettato. Nondimeno le performance ottenute dal prototipo di HAM-
SAS sono state positive e i risultati ottenuti molto incoraggianti e ci lasciano
fiduciosi della possibilita che possano essere ulteriormente migliorati e ampliati
dai lavori ancora in corso.
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Chapter 1

Gravitational Waves Interferometric
Detectors

According to general relativity theory gravity can be expressed as a spacetime
curvature[1]. One of the theory predictions is that a changing mass distribution
can create ripples in space-time which propagate away from the source at the
speed of light. These freely propagating ripples in space-time are called gravita-
tional waves. Any attempts to directly detect gravitational waves have not been
successful yet. However, their indirect influence has been measured in the binary
neutron star system PSR1913+16 [2].

This system consist of two neutron stars orbiting each other. One of the neu-
tron stars is active and can be observed as a radio pulsar from earth. Since the
observed radio pulses are Doppler shifted by the orbital velocity, the orbital pe-
riod and its change over time can be determined precisely. If the system behaves
according to general relativity theory, it will loose energy through the emission of
gravitational waves. As a consequence the two neutron stars will decrease their
separation and, thus, orbiting around each other at a higher frequency. From the
observed orbital parameters one can first compute the amount of emitted gravita-
tional waves and then the inspiral rate. The calculated and the observed inspiral
rates agree within experimental errors (better than 1%).

1.1 Gravitational Waves

General Relativity predicts gravitational waves as freely propagating ‘ripples’ in
space-time [3]. Far away from the source one can use the weak field approx-
imation to express the curvature tensor g,, as a small perturbation £, of the
Minkowski metric 7, :

v =T +hy  with  |h,| <1 (1.1)



Using this ansaz to solve the Einstein field equations in vacuum yields a normal
wave equation. Using the transverse-traceless gauge its general solutions can be
written as

hyy = he (t—z/c) + hy (t = Z/0) (1.2)

where 7 is the direction of propagation and A, and h, are the two polarizations
(pronounced ‘plus’ and ‘cross’):

0 0 0 O
0 he he O (o
ho(t=z/o)+he(t=zfo)=| o 5 " 0 e (1.3)
X +
0 0 0 0

The above solution describes a quadrupole wave and has a particular physical
interpretation. Let’s assume two free masses are placed at positions x; and x;
(v = 0) and a gravitational wave with + polarization is propagating along the z-
axis, then the free masses will stay fixed at their coordinate positions, but the space
in between|and therefore the distance between x; and x, will expand and shrink at
the frequency of the gravitational wave. Similarly, along the y-axis the separation
of two points will decrease and increase with opposite sign. The strength of a
gravitational wave is then best expressed as a dimension-less quantity, the strain A
which measures the relative length change AL = L.

Denoting the quadrupole of the mass distribution of a source by Q, a dimen-
sional argument|together with the assumption that gravitational radiation couples
to the quadrupole moment only yields:

i GQ G (EEionn—simm/CZ)
Ter c’r

(1.4)

with G the gravitational constant and E{(‘i";"Simm the non symmetrict part of the
kinetic energy. If one sets the non-symmetric kinetic energy equal to one solar
mass

Eporsimm /2 o M, (1.5)

and if one assumes the source is located at inter-galactic or cosmological distance,
respectively, one obtains a strain estimate of order
h<1074 Virgo cluster (1.6)
h<107?  Hubble distance. (1.7)
By using a detector with a baseline of 10* m the relative length changes become

of order:
AL=hL <10” mtol0™"" m (1.8)



This is a rather optimistic estimate. Most sources will radiate significantly less
energy in gravitational waves.

Similarly, one can estimate the upper bound for the frequencies of gravita-
tional waves. A gravitational wave source can not be much smaller than its
Schwarzshild radius 2GM/c?, and cannot emit strongly at periods shorter than
the light travel time 47GM/c* around its circumference. This yields a maximum
frequency of

Vo 4 M,
f< VAN 10 HZW (1.9)
From the above equation one can see that the expected frequencies of emitted
gravitational waves is the highest for massive compact objects, such as neutron
stars or solar mass black holes.

Gravitational waves are quite different from electro-magnetic waves. Most
electro-magnetic waves originate from excited atoms and molecules, whereas ob-
servable gravitational waves are emitted by accelerated massive objects. Also,
electro-magnetic waves are easily scattered and absorbed by dust clouds between
the object and the observer, whereas gravitational waves will pass through them
almost unaffected. This gives rise to the expectation that the detection of grav-
itational waves will reveal a new and different view of the universe. In particu-
lar, it might lead to new insights in strong field gravity by observing black hole
signatures, large scale nuclear matter (neutron stars) and the inner processes of
supernova explosions. Of course, stepping into a new territory also carries the
possibility to encounter the unexpected and to discover new kinds of astrophysi-
cal objects.

1.2 Interferometric Detectors

An interferometer uses the interference of light beams typically to measure dis-
place ments. An incoming beam is split so that one component may be used as a
reference while another part is used to probe the element under test The change
in interference pattern results in a change in intensity of the output beam which
is detected by a photodiode. By using the wavelength of light as a metric in-
terferometers can easily measure distances on the scales of nanometers and with
care much more sensitive measurements may be made. The light source used is
a laser, a highly collimated single frequency light making possible very sensitive
interference fringes.

In a Michelson interferometer the laser beam is split at the surface of the beam
splitter (BS) into two orthogonal directions. At the end of each arm a suspended
mirror reflects the beam back to the BS. The beams reflected from the arms re-
combine on the BS surface. A fraction of the recombined beam transmits through
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Figure 1.1: Scheme of a basic Michelson interferometer.

the BS and the rest is reflected from it. The intensity of each recombined beam
is determined by the interferometer conditions and is detected by a photo detector
(PD) that gives the differential position signal from the apparatus.

A Michelson interferometer can detect gravitational waves from the tidal ac-
tion on the two end mirrors. The change of the metric between the two mirror
because of a gravitational wave causes a phase shift detectable by the interferom-
eter.

The optimal solution would be to build Michelson interferometers with arms
as long as 1/2 of the GW wavelength, which would require hundreds or thousands
of km. Folding the light path into an optical cavity (Fabry-Perot) is the solution
applied to solve the problem.

The interferometric signal can be detected most sensitively by operating the
interferometer on a dark fringe, when the resulting intensity at the photodetector is
aminimum. Since power is conserved, and very little light power is lost in passing
through the interferometer, most of the input laser power is reflected from the
interferometer back towards the input laser. Since increasing laser power results
in better sensitivity rather than *waste’ this reflected power, a partially transmitting
mirror can be placed between the input laser and the beam splitter. This allows
the entire interferometer to form an optically resonant cavity with a potentially
large increase in power in the interferometer. This is called power recycling and
is shown schematically by the mirror labeled PR in fig.1.2.

Based on this idea several interferometric detectors have been built in the
world: a 3 Km detector in Italy (VIRGO) [40], a 600 m in Germany (GEO600)
[41], a 300 m in Japan (TAMA) [42] and two twin 4 Km and a 2 Km in USA

8



Figure 1.2: Power and signal recycling in a simple Michelson interferometer. Mirror
PR reflects any exiting laser power back into the interferometer, while mirror SR
reflects the output signal back into the system.

(LIGO) [17]. Virgo e LIGO are fully active, LIGO at nominal sensitivity and
Virgo approaching it. All four observatories Virgo, LIGO and GEO are taking
data as an unified network since May 2007.

1.2.1 The LIGO Interferometers

The LIGO Project consists of two observatories, one in Hanford, Washington, and
the other in Livingston, Louisiana, 3000 Km far away from each other (fig.1.5)
[47]. The Virgo interferometer, Located in Cascina, Italy, has 3 km long arms,
while the smaller GEO in Hanover, Germany, has 800 m arms and no FP cavities.
The four interferometers operate together and share data to maximize the effort to
detect gravitational waves.

The two LIGO interferometers, with 4 Km long arms, operate in coincidence
to reject local noise sources. Gradual improvement of the different parts of the
detector are planned in forthcoming years; in LIGO the currently considered up-
grades concern the laser (higher power), the mirror substrate, the mirror suspen-
sion (fused silica) and the seismic isolation system (this thesis is a contribution to
the new seismic isolation system development). The spectral sensitivity curve of
LIGO I is shown in fig.1.3 along with the contribution of the different sources of
noise.

The low frequency limit of the detector is set by the cut-off of the “seismic
wall”, located for LIGO I above 40 Hz. At higher frequencies the sensitivity
of the interferometer is limited from 40 to 120 Hz by the thermal noise of the
mirror suspension. Above 120 Hz the shot noise dominates. Figure 1.4 shows the
sensitivity improvement expected from LIGO II, whose start-up is scheduled for
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Figure 1.3: Initial LIGO strain sensitivity curve.

2011. [43].

1.3 Seismic Noise

Seismic motion is an inevitable noise source for interferometers built on the Earth’s
crust. The signal of an interferometer caused by the continuous and random
ground motion is called seismic noise. The ground motion transmitted through
the mechanical connection between the ground and the test masses results in per-
turbations of the test masses separation.

Since the ground motion is of the order of 107 m at 1 Hz and the expected
GW signal is less than 107! m, we need attenuation factors of the order of 1072,

As the amplitude of the horizontal ground motion in general is larger at lower
frequencies, the seismic motion will primarily limit the sensitivity of an interfer-
ometer in the low frequency band, usually below several tens of Hertz'.

'Below 10 Hz the seismically induced variations of rock density produce fluctuations of the
Newtonian attraction to the test mass that bypass any seismic attenuation system (Newtonian
noise) and overwhelm any possible GW signal.

10



107 g aEnonmmnnr —
o — Quantum
Int. thermal
— Susp. thermal
—— Residual Gas
=== Total noise

h(f) / Hz 2

10"

Frequency (Hz)

Figure 1.4: Advanced LIGO strain sensitivity curve.

A typical model for the power spectrum of the ground motion for above 100
mHz is given by

x=alf* [m/VHz] (1.10)

where a is a constant dependent on the site and varies from 1077 to 10™°. The
model assumes the motion to be isotropic in the vertical and horizontal directions.

The surface waves that originate the seismic ground motion are a composed
of Rayleigh waves (a mix of longitudinal and transversal waves that originate the
horizontal displacement) and Lowes waves (transverse waves that originate the
vertical motion). The ground can also have an angular mode of motion, with no
translation. There is no direct measurement of the power spectrum associated to
this kind of seismic motions, so a typical way to have an estimation is to consider
the only contributions given by the vertical component of Rayleigh waves:

o= 2 ) (.11)
C

6 and S, are the angular power spectrum ([rad/ VHz]) and the vertical power spec-
trum ([m/ VHz]), ¢ is the local speed of the seismic waves. This depends mainly
on the composition of the crust and it is also a function of the frequency. Lower
speeds correspond to larger amplitude of the ground tilt, then the lowest values
can be used to set an upper limit [23].
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Figure 1.5: The LIGO interferometers are located in Louisiana (LLO) and in Wash-
ington (LHO).

1.3.1 Passive Attenuation

Large amounts of isolation can be achieved by cascading passive isolators. Passive
isolators are fundamentally any supporting structure with a resonance Mechani-
cally it is typically something heavy mounted on a soft support.

Consider the simple harmonic oscillator shown in fig.1.7 and compare the
motion of the input x, with the motion of the output, x The restoring force on
the mass m is supplied by the spring with spring constant k. Thus the equation of
motion is

mx = —k(x (@) — xo (1)) . (1.12)

This equation can be solved in the frequency domain by taking the Laplace trans-
form (with Laplace variable s = iw solving for the ratio of x to xo. Defining the
resonant frequency of the system as wy = k/m, the response of the isolated object
to input motion is

x(s) 1

x0(s)  (s/w)+1

At low frequencies w — 0 the expression approaches one and the output of the
system matches closely the input. However, important for isolation, at high fre-
quencies (w > wy), the response of the output is (wy/ w)?. Thus, at frequencies an
order of magnitude or more above the resonant frequency of the stage a great deal
of isolation can be achieved.

In any real system there is some loss in the system whether this is due to
friction viscous damping or other mechanisms. For the simple oscillator described
above some viscous damping may be introduced as a force proportional to the

(1.13)
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Figure 1.6: Recent sensitivity curve of the main operating GW interferometrs: GEO,
LIGO (LLO and LHO), Virgo.

relative velocity, F, = —y (x — Xy). This represents for example the motion of this
oscillator in air. Then the transfer function from ground input to mass output is

x(s) 2n(s/wyp) + 1
x0(s)  (s/w)* + 2n(s/wp) + 1

(1.14)

where the damping ratio 7 is given for this viscously damped case by n = y/2mwy.
Particularly for systems with very little damping the system is often parametrized
with the quality factor of the resonance, the Q rather than the damping ratio 7,

where |
0= w

The response of a system with Q ~ 10 is shown in fig.1.8. There are two im-
portant characteristics of the magnitude of the frequency response in contrast to
a system with infinite Q. First, the height of the resonant peak at w, is roughly
Q times the low frequency response. Second, the response of the system is pro-
portional to (wy/w)* above the resonant frequency up to about a frequency Qwy.
Above this point the system response falls only as 1/w. These conclusions are
drawn for viscously damped systems. For low loss systems for any form of loss,

(1.15)
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Figure 1.7: A one dimensional simple harmonic oscillator with spring constant k£ and
mass m The mass is constrained to move frictionlessly in one direction horizontal
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Figure 1.8: Response of a simple harmonic isolator with finite Q.

the system response will fall proportionally to 1/w? for frequencies a decade or
more above the resonant frequency.

Passive isolation has a number of advantages. A system is passive in that it
supplies no energy to the system and thus requires no energy source as opposed
to an active system, which senses the mechanical energy fed into the system and
counter it with external forces. Because it adds no energy to the system, it is
guaranteed to be stable. As it has fewer components than an active system, it can
be considered more mechanically and electrically reliable. Its performance is not
sensor or actuator limited.

The required seismic attenuation is obtained using a chain of mechanical os-
cillators of resonant frequency lower than the frequency region of interest. In the
horizontal direction the simple pendulum is the most straightforward and effec-
tive solution: the suspension wire has a negligible mass and the attenuation factor
behaves like 1/ £ till the first violin mode of the wire (tens or hundreds of Hertz).
Thus, with reasonable pendulum lengths (tens of cm), good attenuation factors
can be easily achieved in the frequency band of interest (above 10 Hz) for the x
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and y directions. A simple pendulum is even more effective for the yaw mode;
torsional frequencies of few tens of millihertz are easy to be obtained. A mass
suspended by a wire has also two independent degrees of freedom of tilt, the pitch
and the roll; low resonant frequencies (<0.5 Hz) and high attenuation factors for
these modes are obtained by attaching the wire as close as possible to the center
of mass of the individual filters.

The difficult part in achieving high isolation in all the 6 d.o.f.s is to gener-
ate good vertical attenuation. The vertical noise is, in principle, orthogonal to
the sensitivity of the interferometer. Actually the 0.1-1% of the vertical motion
is transferred to the horizontal direction at each attenuation stage by mechanical
imperfections, misalignments and, ultimately (at the 10~* level), by the non par-
allelism of verticality (the Earth curvature effects) on locations kilometers apart.
The vertical attenuation then becomes practically as important as the others.

In the gravitational wave detectors, every test mass is suspended by a pendu-
lum to behave as a free particle in the sensitive direction of the interferometer. The
typical resonant frequency of the pendulum is 1 Hz. In such a case, at 100 Hz, the
lowest frequency of the GW detection band, the attenuation factor provided in the
pendulum is about 10~*. From the simple model of the seismic motion (eq.1.10),
neglecting the vertical to horizontal cross-couplings, and assuming a quiet site
a = 107°, the motion of the test mass induced by the seismic motion reaches the
order of 10~"*m/ VHz, corresponding to a strain 4 ~ 107'% to 10~'% depending n
the scale of the detector. This is far above the required level (typically at least
102! in strain), and the attenuation performance needs to be improved. This im-
provement can be easily achieved by connecting the mechanical filters in series. In
the high frequency approximation, the asymptotic trend of the attenuation factor
improves as 1/w" where n is the number of the cascaded filters. Thence by adding
a few more stages above the mirror suspension, one can realize the required at-
tenuation performance by simply using the passive mechanics. An example of
this strategy are the stack system composed by layers of rubber springs and heavy
stainless steel blocks interposed between the mirror suspension system and the
ground in LIGO, TAMA300 and GEO600.

Another way to improve the isolation performance is to lower the resonant
frequency of the mechanics. By shifting lower the resonant frequencies, one can
greatly improve the attenuation performance at higher frequency. Virgo utilized
this approach and realized extremely high attenuation performance starting at low
frequency (4 to 6 Hz) with the a low frequency isolation system coupled to a
multi-stage suspension system called Supper Attenuator (SA) [31].
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Chapter 2

HAM Seismic Attenuation System

The configuration of advanced LIGO is a power-recycled and signal-recycled
Michelson interferometer with Fabry-Perot cavities in the arms - i.e., initial LIGO,
plus signal recycling. The principal benefit of signal recycling is the ability to re-
duce the optical power in the substrates of the beamsplitter and arm input mirrors,
thus reducing thermal distortions due to absorption in the material. To illustrate
this advantage, the baseline design can be compared with a non-signalrecycled
version, using the same input laser power but with mirror reflectivities re-optimized.
The signal recycled design has a (single interferometer) NBI (Neutron Binary In-
spiral) range of 200 Mpc, with a beamsplitter power of 2.1 kW; the non-SR design
has a NBI range of 180 Mpc, but with a beamsplitter power of 36 kW. Alterna-
tively, if the beamsplitter power is limited to 2.1 kW, the non-SR design would
have a NBI range of about 140 Mpc.

An important new component in the design is an output mode cleaner. The
principal motivation to include this is to limit the power at the output port to a
manageable level, given the much higher power levels in the interferometer com-
pared to initial LIGO.

With an output mode cleaner all but the TEM, component of the contrast
defect would be rejected by a factor of ~1000, leaving an order 1 mW of carrier
power. The OMC will be mounted in-vacuum on a HAM isolation platform, and
will have a finesse of order 100 to give high transmission (>99 percent) for the
TEMy mode and high rejection (>1000) of higher order modes.

Earlier attempts to implement an external OMC failed because of seismic
noise couplings. It was found necessary to implement a seismic attenuated, in-
vacuum OMC and detection diodes.
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Figure 2.1: Basic layout of an advanced LIGO interferometer.

2.1 Seismic Isolation for the OMC

Isolation of the LIGO II optics from ambient vibration is accomplished by the

seismic isolation systems which must provide the following functions:
e provide vibration isolated support for the payload(s)

e provide a mechanical and functional interface for the suspensions

e provide adequate space and flexibility for mounting of components (suspen-

sions and auxiliary optics) and adequate space for access to components

e provide coarse positioning capability for the isolated supports/platforms

e provide external actuation suitable for use by the interferometer’s global

control system to maintain long-term positioning and alignment

e provide means for the transmission of power and signals from control elec-
tronics outside the vacuum chambers to the suspension systems and any

other payloads requiring monitoring and/or control
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Figure 2.2: LIGO I HAM chamber with seismic attenuation stacks supporting the
optics table.

e carry counter-weights to balance the payloads

To meet the requiremts above, the LIGO SAS team designed HAM-SAS, a sin-
gle stage, passive attenuation unit based on the SAS technology [4]. It can satisfy
the Ad-LIGO seismic attenuation specifications for all HAM optical benches by
passive isolation and has built-in nanometric precision positioning, tide-tracking
and pointing instrumentation. Its sensors and actuators are designed to allow easy
upgrade to active attenuation. This upgrade would require the installation of a set
of accelerometers and control logic and would add to the passive performance.
Since in HAM-SAS the horizontal and vertical degrees-of-freedom (d.o.f.) are
mechanically separated and orthogonal, active control loops are simple and easy
to maintain. Additionally HAM-SAS brings to LIGO earthquake protection for
seismic excursions as large as +1cm.

HAM-SAS is designed to be implemented completely inside the present ultra
high vacuum HAM chambers , replacing the present LIGO seismic attenuation
stacks below the present optical benches (fig. 2.2). Consisting of a single atten-
uation layer, and re-using the existing optical benches, it is presented as a low
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cost and less complex alternative to the Ad-LIGO baseline with three-stage active
attenuation system [35, 6].

Also HAM-SAS is based on an technology akin to the multiple pendulum
suspensions that it supports, thus offering a coherent seismic attenuation system
to the mirror suspension.

Even though the specific design is adapted to the HAM vacuum chambers, the
SAS system was designed to satisfy the requirements of the optical benches of the
BSC chambers as well. HAM-SAS can be straightforwardly scaled up to isolate
the heavier BSC optical benches.

Unlike the baseline Ad-LIGO active system, HAM-SAS does not require in-
strumentation on the piers [9, 10].

2.2 System Overview

HAM-SAS is composed of three parts:

e a set of four inverted pendulums (IP) for horizontal attenuation supported
by a base plate;

e a set of four geometric anti spring (GAS) springs for vertical attenuation ,
housed in a rigid “spring box”;

e cight groups of nm resolution linear variable differential transformers (LVDT),
position sensors and non-contacting actuators for positioning and pointing
of the optical bench. Micropositioning springs ensure the static alignment
of the optical table to micrometric precision even in the case of power loss.

The existing optical bench is supported by a spring-box composed by two
aluminum plates and the body of four GAS springs (fig. 2.3, 2.4). The GAS
springs support the bench on a modified kinematical mount; each filter is pro-
vided with coaxial LVDT position sensors and voice coil actuators, and parasitic,
micrometrically tuned, springs to control vertical positioning and tilts. The spring
box is mounted on IP legs that provide the horizontal isolation and compliance.
The movements of the spring-box are also controlled by four groups of co-located
LVDT position sensors, voice coil actuators and parasitic springs. The IP legs bolt
on a rigid platform which rests on the existing horizontal cross beam tubes.

2.3 Vertical Stage

The vertical stage of HAM-SAS consist of the Spring Box. Inside of it, four GAS
filters are held rigidly together to support the load of the optics table and to provide
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Figure 2.3: HAM-SAS assembly. From bottom to top: base plate, IP legs, spring box
with GAS filters, optics table. The red weights on top represent the actual payload.

Figure 2.4: Spring Box assembly.
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Figure 2.5: HAM-SAS still in the clean romm at the production site before the bak-
ing process. The spring box is tight to the base plate by stainless stell columns. The
top plate is bolt to the spring box for the transfer.

the vertical seismic isolation. The interface between the optical table and the GAS
filters is an aluminum plate with four stainless steel pins sticking down from the
corners, each with a particularly shaped bottom mating surface, according to a
scheme of the distribution and positioning of the load known as quasi-kinematic
mount. Two opposite ones are simple cylinders with a flat bottom surface, the
other two have one conical hollow and a narrow V-slot respectively. Each of the
GAS filter culminates in a threaded rod having a hardened ball bearing sphere
embedded at the top. The quasi-kinematic configuration is such that the table’s
pins mate to the filters’ spheres thus precisely positioning the table while avoiding
to over-constrain it . The contact point between the spheres and the surfaces let
the table free to tilt about the horizontal axis.

2.3.1 The GAS filter

The GAS filter (fig. 2.6) consists of a set of radially-arranged cantilever springs,
clamped at the base to a common frame ring and opposing each other via a central
disk or keystone. The blades are flat when manufactured and under load bend
like a fishing rod. We used modified Monolithic GAS (MGAS) filters [12]. As
the MGAS the tips of the crown of blades are rigidly connected to the central
disk supporting the payload. Instead of being made by a large, single sheet of
bent maraging, we bolted the tips of independent blades to a central “keystone”.
Being built of different parts the spring is not, strictly speaking, “monolithic”,
but it shares all the performance improvements of the monolithic spring. For
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Figure 2.6: HAM-SAS GAS filter.

simplicity, throughout the text, we referred to them as GAS filters even if they
would more properly be referred to as MGAS. The modified configuration has
several advantages:

blades can be cut using much more efficiently the sheet of expensive marag-
ing metal.

the number and width of blades can be changed arbitrarily (as long as 180°
symmetry is maintained) to match the required payload.

the individual blades are perfectly flat and relatively small, thus their thick-
ness can be easily tuned to the desired value by simply grinding them to
thickness.

for assembly the keystone is simply held at the center of the filter body with
a temporary holder disk, then blades can be bent and assembled in pairs,
avoiding the awkwardness of bending of, and keeping bent, all blades at the
same time.

the keystone, being a separate mechanical part, can be precision machined
to directly host the LVDT and actuator coils, the threaded stud supporting
the bench and the magic wand tips.

The blades are made starting from precision ground 3.44 mm thick maraging steel
[13]. The choice of the material is made to guarantee a high Young modulus, non-
deformability and thermal stability. The clamp radial positioning can be-adjusted
to change the blades’ radial compression by means of removable radial screws.
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Figure 2.7: GAS filter transmissibility measured at Caltech in 2005 on a three blade,
3mm thick bench prototype [14]

At frequencies lower than a critical value the GAS filter’s vertical transmissi-
bility! from ground to the payload has the typical shape of a simple second order
filter’s transfer function (2.7). The amplitude plot is unitary at low frequencies,
then has a resonance peak then followed by a trend inversely proportional to the
square of the frequency. Above a critical frequency the amplitude stops decreas-
ing and plateaus. This high frequency saturation effect is due to the distributed
mass of the blades; the transmissibility of a compound pendulum has the same
features.

A typical GAS filter can achieve -60 dB of vertical attenuation in its simple
configuration, this performance can be improved to -80 dB with the application of
a device called “Magic Wand” (see sec.2.3.6).

An effective low frequency transmissibility for the GAS filter is?

w(z)(l + i) + Bw?
wi(l + ig) + w? ’

H(w) = 2.1)

'In Linear Time Invariant systems, the so called transfer function H(s) relates the Laplace
transform of the input i(s) and the output o(s) of a system, i.e. o(s) = H(s)i(s) or o(s)/i(s) = H(s).
The transmissibility, a dimensionless transfer function where the input and the output are the
same type of dynamics variables (position, velocity, or acceleration), is therefore the appropriate
quantity to use when measuring the attenuation performance of a mechanical filter.

2Since the GAS filter is designed to work under vacuum the viscous damping term has been
neglected.
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Figure 2.8: GAS Springs Model

where wj is the angular frequency of the vertical resonance, ¢ the loss angle ac-
counting for the blades’ structural/hysteretic damping and g is a function of the
mass distribution of the blades.

A simple way to model the GAS filter is to represent the payload of mass m
suspended by a vertical spring of elastic constant k, and rest length /;, and by two
horizontal springs opposing each other of constant k, and rest length [y, (fig.2.8).
The angle made by the horizontal springs is 6 and it is zero at the equilibrium
point when the elongations of the springs are z,, and x, for the vertical and the
horizontal respectively. The equation of motion for the system is then:

mZ = ky(zeq — 2 — lop) — kx(ly — lox) sin 6 — mg (2.2)
where [, = /x(z) + 72 is the length of the horizontal spring. Approximating sin 6
to z/xo for small angles (2.2) reduces to

lox
mz = k(zeg — 2 — loz) —kx(l - Xi)z—mg. (2.3)
0

We can see that at the first order the system behaves like a linear harmonic
oscillator with effective spring constant
kxle

keff = kz +k,— . 2.4)
X0

The last term of (2.4) is referred as the Geometric Anti-Spring contribute because
it introduces a negative spring constant into the system. As consequence of it the
effective stiffness is reduced, and so the resonant frequency, by just compressing
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the horizontal springs. The system’s response is then that of a second order low
pass filter with a very low resonance frequency of the order of 0.1 Hz. Compared
with an equivalent spring with the same frequency, it is much more compact and
with motion limited to only one direction.

2.3.2 Equilibrium point position to load dependence

According to this model, at the equilibrium point the vertical spring holds alone
the payload and we have that
mog

Zeg = k_ + l()z (25)
4

from which the equation of motion becomes

-ﬂy%ﬂ—h@—JL——mg (2.6)

2 2
Xp+2

Z

We can find how, in the small angle approximation, the position of the equilibrium
point changes in correspondence of a variation of the payload’s mass when m =
mgy + om in the equation of motion (2.6). We obtain:

ket kdoe 3

g 8 /x(Z) +22

lox — Xo

(2.7)

om =

Defining the compression as

™ (2.8)
we have that the position of the equilibrium point changes for different values
of compression as in fig.2.9. As shown in the model, above a critical value of
the compression the system has three equilibrium points in correspondence of the
same payload, two are stable and one unstable. In this condition we say that the
system is bi-stable. This implies that in case of very low frequency tuning of the
GAS filter one has to avoid that the dynamic range of the system does not include
multiple equilibrium points in order to avoid bi-stability?.

3The optimal tune of the filter is very close to this critical compression value (at the critical
point the recalling force of the spring and its mechanical noise transmission is null), but bi-stability
cannot be tolerated.
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Figure 2.9: Equilibrium Point displacement for a variation of the payload’s mass
in correspondence of several compressions. The compression ratio in the legend is
defined as (lox — x0)/(loy).

2.3.3 Resonant frequency to load variation

Linearizing (2.6) it is possible to define the effective spring constant of the system
correspondent to a change in the payload’s mass as the derivative of the total force
applied to it as evaluated at the equilibrium point:

2
kepr(z) = — (a—f) =k, + k, (1 - &) (2.9)

0z (x% + 72)3/2

where f is equal to the right side of 2.6. The plot on fig.2.10 shows the effect of
the bi-stability as negative values of the square of the resonant frequency when
the compression exceeds the critical value.

It is possible to extract the relation between resonant frequency and working
point position when m = ém + my is evaluated at the equilibrium point (fig.2.11)

obtaining:
2 1/2
k, — k| —20 s — 1
_ Jkeyr | T ( )
w = =
m

Plot 2.11 shows the frequency as a function of the equilibrium point. The curves
corresponding to different compressions of the blades tend asymptotically to the

(2.10)
my — £ (kx + ke, — )

2
XO+Z
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Figure 2.10: Dependence of the squared resonant frequency to the variation of the
payload’s mass at the equilibrium point.

straight lines forming a sharp V for values of the compression closer to the critical
and also the minimum for each compression slowly changes position.

2.3.4 Thermal Stability

Once the compression and the payload is fixed, the system can be regarded as a
soft linear spring which supports the payload. The thermal stability of the GAS
can be studied under this approximation, valid in a small range around the working
position [23]. In the GAS at the equilibrium, the entire vertical force of the system
comes from the elasticity of the blade, and the working (equilibrium) position
is determined by a balance of the stiffness and the payload weight. From the
equation (2.4), the variation of the effective spring for a given perturbation of the
temperature AT is

lox ke klo
Akoss = Ak, + (1 - xiO)Akx - b+ xzo
0

Axo (2.11)

in which we can separate the contribution of the physical expansion of the blades
and the frame ring from the change on the elasticity due to the temperature depen-
dence of the Young modulus E as in the following:

lo\ . | 6Ebiade ks
k. + (1 - i)kx] — % — I, (OLptade - 5Lfmme)} AT.  (2.12)
X0 E X0

Akeyy = {
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Figure 2.11: Resonant frequency to equilibrium position for several values of com-
pression. The minimum moves from the original position.

The geometrical contribution depends on the differential thermal expansion coeffi-
cient of the blade and the frame (filter body). Assuming the use of maraging steel
for the blade, and of aluminum for the frame, the difference of their expansion
coefficients will be of order of 107,

OF k
Ak,rr = ke--(—) = 5 (6Lusde = SLrrame )| AT 2.13
ff [ ff E blade Xo 0. ( blad f )] ( )

In the case of HAM-SAS, the relative variation of the Young modulus of maraging
steel for a Kelvin degree is about 3 x 107, the effective elastic constant of the four
filters in parallel for a mass of about 1 ton and a resonant frequency of 200 mHz
is 1.6 X 10°N/m. By assuming 9.0% of compression and substituting the parame-
ters used in the plots above and the properties of maraging steel, one obtains the
following formula to estimate the variation of the effective spring constant:

Akerr=— [(O-S)elasticity + (10_3)

From the previous we can estimate the change in mass necessary to keep at the
same height the working point of the GAS filter as:

] AT [N/m]. (2.14)

expansion

Ak,
Am:( ‘ff)MAT (2.15)
Kess
which turns out to be very useful to evaluate the environmental condition in which
the actuators have sufficient authority to compensate for the temperature varia-

tions.
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Figure 2.12: Rigid body representation of the GAS filter with a COP compensation
wand. For sake of simplicity just one blade and one wand are sketched. Because of
its distributed mass, the low frequency blade’s dynamics can be approximated with
a rigid body with effective mass and moment of inertia rotating about an horizontal
axis. A wand with a counterweight connected as shown in the figure, provides a way
of properly tune the center of percussion and remove the transmissibility saturation.

It is important to note that although the thermal sensitivity grows rapidly as
the resonant frequency is brought near zero, the correction authority requirement
is independent of the frequency tune of the filter.

The GAS effect only reduces the elastic return forces, but cannot affect the
hysteresis forces. As the critical compression level is approached, the hysteresis
takes a progressively dominating role. From the static point of view, just prior to
bistability, hysteresis makes the oscillator indifferent. From the dynamical point
of view hysteresis can turn the 1/f% GAS filter TF behavior into a less favorable

1/f [34].

2.3.5 Quality Factor to Frequency Dependence

From equation 2.4 we can deduce the dependence of the Q factor of the GAS
oscillator associating loss angles ¢ to each of the spring constants of our model
and to the overall effective constant. We can then write:

kepp = k. (1 + i) (1 - l;)—x) ko (14 i) = ket (1 + ipery) (2.16)
0

where the tildes mark the real part of the quantities. From the previous it follows

that: . _

_ kz¢z (1 - le/xO) + kx¢x

eff — = .
keff

Considering that ke = l~<Z (1 = Iy, /x0) + k, = Mw? and that 0 = 1/¢ we have:

(2.17)

2

0= Q.. (2.18)

w?—c
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From 2.18 it follows that in the low frequency limit for w — 0 itis Q « w?. This
implies that for very low frequency of tuning the Q drops naturally for histeretic
causes and no damping is necessary [53].

2.3.6 The ‘“Magic Wands”

The term S in (2.1) that limits the attenuation of GAS filters at high frequencies
originates by the mass distribution in the blades and can be eliminated by the
Center Of Percussion correction. The COP and its effect can be exemplified by
a compound pendulum constrained to move in the horizontal direction. When
the suspension point is forced to oscillate, in the high frequency limit, the pendu-
lum body pivots around a fixed point, which is the COP. In the same way, if an
impulsive force is applied along the COP the suspension point remains fixed.

A solution has been designed [15], [14] and it consists of a device that is
mounted in parallel to the GAS springs. It consists essentially of a wand hinged
to the filter frame ring and the central keystone. Attached to one end is a counter-
weight whose function is to move the wand’s COP out of the pivot.

A reasonably accurate dynamical description of the system, which accounts
for the internal vibrational modes, can be obtained simply by considering the
curved blades as an elastic structure. However the low frequency dynamics and
the transmissibility saturation of the GAS filter with the wand can be easily and
accurately described in the rigid body approximation (see figure 2.12). In this
regime, the blade is represented as a vertical spring of spring constant k; its dis-
tributed mass is an effective rigid body with mass m, sy, horizontal principal mo-
ment of inertia I, s, with center of mass at distance /sy from the wand’s pivot. The
wand is modeled as a hollow cylinder of lenght d, moment of inertia / and mass
m, with a point-like counterweight of mass u at one end. The distances along the
wand from the pivot to the counterweight and to the wand’s tip are respectively
[ and L. The payload can be simply modeled with a point-like mass M. Under
these assumptions, the Lagrangian for small oscillations of the system is

1 1 (1 L+l \
= —MZ+-ul—-z-=—2z| + 2.19

L S Mz 2“(LZ 7 ZO) (2.19)

1 Lpr, L=lgr N Lyr .,

Emeff(TZ_TZO top@ )T

1 2L—d,+d,2+1(. )

2"\ Tor T oL Tt

1

Ek(Z_ZO)Z

where 7 is the generalized coordinate orthogonal to the constraints necessary to
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describe the system’s dynamics, and zj is the coordinate of the suspension point.
The spring constant k is complex and can be rewritten as k = k,(1 + i¢) where
the term ¢ and k are both real and have been introduced ad hoc to account for the
structural damping, which is the dominant dissipation mechanism of the blades.
The gravitational potentials have not been included because they only fix the equi-
librium position of the system and do not affect the dynamical solution.
Computing the Euler-Lagrange equation and solving it in the frequency do-
main, we obtain the vertical transmissibility H,(w) of the mechanical system:

Hw) w(z) - Aw?

H.(w) = =
() Zo(w) a)(z)—Ba)2
in which:
2
A = d_2 _4a n Lers I megslesy N Merrlyry — pl? N Ml
412 2L ml?* ml? mL mL2 ml2 " mL
M d& d I [ Ml P2
m 412 L ml*> ml? mL2 mL2
2 kz (1 + l¢)
a)o = _—
m

From (2.20) it follows that, in the limit w — oo, H(w) — A/B and a plateau
appears in the transmissibility at high frequency. In principle it can be canceled
reducing A to zero by tuning the counterweight’s moment of inertia u/>. When
A # 0, because ul? is either too small or too large, a complex conjugate zero
pair appears in the transfer function and we say the system is under- or over-
compensated respectively. Ideally neglecting the internal modes and setting the
system at the transition between under-compensation and overcompensation, a
well-tuned wand should be able to restore the theoretical 1/w? trend at the high
frequencies [15].

2.3.7 Vertical Modes of the System

The HAM-SAS’ vertical degrees of freedom can be simply modeled by a table
held by four vertical springs. Each of them represents a GAS filter with an equal
effective spring constant ki, k,, k3, k4 and has null rest lengths. Let the tern (z, 6, ¢)
represent the coordinates of the system, M the total mass of the table, Iy and I,
the momentums of inertia of the table along the x axis and the y axis respectively,
and [ the table’s half length. We can deduce the equation of motion from the
Lagrangian of the system £ = T — U in which the kinetic and the potential energy
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Figure 2.13: "Magic Wand" designed for HAM-SAS. Presently not yet installed in
the system. They can provide an additional order of magnitude in vertical attenuation.

can be written as:

2T = Mz + 16" + 1,¢*
2U = k122 + k22 + kazs + ku22.

(2.20)
2.21)

z; are the elongations of the springs and can be written in terms of the coordinate

of the system as:

3 = z—lQ—l¢
2 = z+10-1¢p
3 = z+I10+1¢
4 = z-10+1¢.

Solving the equations of Eulero-Lagrange for the system we can write:

[M]% = Kx
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Figure 2.14: Dynamical model of the optics table.

where x represents the vector of the coordinates, [M] represents the inertia and K
is the stiffness matrix of the system:

kl +k2 +k3 +k4 é(_kl +k2 +k3 —k4) é(_kl +k2+k3 +k4)

K=| f-ki+hkh+k—k) Pla+k+k+k) Lki—k +ks —ks)
é(_kl + k2 + k3 + k4) %(k] - k2 + k3 - k4) lz(kl + k2 + k3 + k4)
(2.27)
From 2.27 the modes of the system correspond to the eigenvectors of K:
Ké = A¢é (2.28)
and the correspondent frequencies can be obtained from the relative eigenvalues:
A
2 i
L=, 2.29

In the simple case in which the four spring constants are equal to each other the
eigenfrequencies are:

45\ 2k2\'"? 2k2\'?
wz:(—) ; wx=( ) : wy=(—) : (2.30)

M I, I,

From (2.30) we can see that the two angular frequencies depend on the system’s
momentums of inertia and the two modes are degenerate in case of symmetry.

2.3.8 Tilt stabilizing springs

In general the table will not rest horizontally because of torques originated by the
weight distributions and differences in the spring constants. Unlike the BSC case,
in the HAM chambers the load is located above the seismic attenuation stage and
the effective tilt rotation axis. This torque is in competition with the stabilizing
component of the GAS springs. The GAS springs, though, are tuned to be very
weak, therefore the destabilizing torque eventually dominates and would result
in an unstable equilibrium. This problem was overseen in the initial design and
simulations, and discovered during initial tests. To solve this problem a system
of correcting springs has been introduced in the design of HAM-SAS in order to
add stiffness on the angular DOFs (see fig. 2.15). A vertical shaft was connected
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top plate

/\ spring box RN

Figure 2.15: Scheme of the tilt correcting springs added between the top plate and
the spring box.

to the underside of the top plate, attaching a cross of four springs connected to
the four corners of the spring box. The four springs hook to four wires and four
tuning screws to reach the spring box corners and allow fine tilt tuning.

The four tilt correcting springs work inevitably as a spring in parallel to the
GAS springs and add stiffness in the vertical degree of freedom as well. The
spring constant of this effective vertical parallel spring is

kS = 4(1 - i—(;)k (2.31)
where [ is the springs’ rest length, x, the spring elongation at the working point
and k their spring constant. k;fl)t can be made small keeping the working point
length close to the rest length. Since the springs work in tension, x, cannot be
reduced arbitrarily but has to be always greater than /, in all the dynamical range
of the system.

The additional,and unwanted vertical stiffness can be cancelled by a small, in

situ, correction compression of the GAS springs®.

2.4 Horizontal Stage

The horizontal stage of HAM-SAS is based on four inverted pendulums that sup-
port the spring box. Each of them is constituted by an aluminum hollow cylinder,
448 mm long, 50 mm diameter and walls 1 mm thick hinged to the base plate by a
maraging steel flex joint with diameter of 95 mm over the length of 50 mm?. This

4 At this time, there has not been occasion for this fine adjustment yet.

The angular elasticity of this flex joint was calculated to balance the inverted pendulum desta-
bilization stiffness (—Mgh) for a mass of 250 kg per leg (1 ton total) over the 491 mm effective IP
leg.
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Figure 2.16: Supporting system for the spring box.

flex joint works in compression. The connection to of the Spring Box is obtained
by mean of a particular mechanical system (fig.2.16). In correspondence of each
attachment point the spring box is provided with a small steel bridge that hangs
from a tensional flex joint made of a short maraging steel wire 30 mm long and
3 mm diameter. The wire hangs from the IP’s leg cap. The bridge is provided
with 4 screws, two pushing and two pulling from the spring box plate. This ar-
rangement permits to tune the height of the attachment point of the leg and thus to
compensate for spring box warping or differences on the leg’s length and equally
distribute the load between them (see section 3.3.1 for the process of tuning).

2.4.1 Inverted Pendulums

The inverted pendulums (IP) are designed to provide the seismic isolation along
the horizontal directions. An IP is a compound pendulum hinged to the ground
by a flex joint in such a way that the center of mass is above the pivot. The
model represented in fig.2.17 illustrates how it works. M is the mass that has to
be isolated from the ground and it is connected to a rigid leg with momentum of
inertia I, mass m and length / by a flex joint producing an elastic force to which
corresponds a complex spring constant k = ko(1 + i¢p), where the imaginary term
is introduced to take into account the structural damping. With these parameters
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Figure 2.17: Inverted Pendulum Model

the equation of motion for the mass along the 6 axis is then:

10 = —k0 + Mglsin 6 (2.32)
which describes an harmonic oscillator with effective spring constant
Kepp = k — Mgl. (2.33)

From (2.33) we can see that the gravitation term Mgl acts like an anti-spring and
reduces the overall stiffness and thus the resonant frequency.
The physics of the system is well described by the potential energy:

1 1 o
U= 51«92 + Mgl(cos 0 — 1) = —k,6* + MglEO(Gé). (2.34)

In the small angle approximation and for « > 0 the quadratic term of the potential
dominates and the system is a simple oscillator. By reducing the value of « the
potential “flattens” around 8 = 0 and this corresponds to small restoring forces
and small resonant frequency. When k. sy ~ 0 the quartic term dominates at small
angles. When gravity begin dominate (k.ss < 0, 8 = 0 is no more a point of stable
equilibrium. U(6) has two minima at

9=+ [12T (2.35)
Mg

When «. ;s < 0O the potential is always negative and the system is unstable.
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Figure 2.18: The reduced potential energy U/« is plotted for different values of
the gravity elastic ratio Rg, = Mgl/k. For R < 1 the system is far from instability; or
R > 1 the system becomes bi-stable; for R > 1 there is no stable equilibrium point
and the system collapses.

Referring to the IP linear displacement x measured at its top (x = [6) and to
the linear stiffness k = «/I?, the equation of motion for the variable x and in case
of small displacements is:

Mi=— (k - #)x £ 00 = kyypx + O, (2.36)

When ks > 0, the system is an oscillator resonating at frequency:

1 k g
fo = E,/M_—_ (2.37)

In principle, by properly tuning the spring stiffness and the suspended load one
can obtain arbitrarily resonant frequency.

We can describe the dynamical behavior of the IP in the frequency domain by
the Lagrangian of the system:

1 1., 1 1
L= 5Mv2 + 5162 + Emvzm —~ 5kzzez — mhzem — Mgz (2.38)
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Figure 2.19: IP Transmissibility for different values of B/C.

from which we can obtain the transmissibility as following:

X(w) A + Bw?
- LToY 2.3
Xo(w) A — Cw? (2.39)
’ 2 AM  4gM
A = 43—1——g—4M———g—] (2.40)
| m ml
B = [1-a] (2.41)
] mi? '
M
c = 1+4—+4—]. (2.42)
I mi? m

It is clear from (2.39) that the inverted pendulum acts as a second order low pass
filter respect to the ground motion.

Similarly to the GAS filter case (see sec.2.3.6) the presence of the w? term in
the numerator of (2.39) introduces a plateau of the transmissibility at high frequen-
cies and thus a saturation in the isolation performance. The effect arises because
of the mismatch of the center of percussion with the hinging point. The way to
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Figure 2.20: IP counterweight to compensate the COP effect.

overcome the limitation consists then in adding a counterweight to bring the COP
to the ground level, that is to say canceling the term B in (2.39) [31].

The plateau level expected with the unbalanced 200 g legs is calculated to be
at -80 dB. The implementation of the counterweight is expected to increase the
attenuation power by 20 dB with just 90% compensation of the COP effect, a very
simple balancing to obtain®.

2.4.2 Response to Ground Tilt

When the ground tilts by and angle ® with respect to the vertical axis, it simply
introduces an additional external force —ky® to the system. If this contribution is
included by the equation of motion 2.39 we have:

A+ B’ o/ P

_ oo kel 2.4
A-Co T A Cca? (2.43)

X

where ky/I? is the equivalent spring constant for the translational motion x.
With an IP perfectly tuned so that k. = 0 (k = Mgl), the spring box would
respond like a mass on a perfectly friction-less flat table.

®For the HAM-SAS prototype a suitable counterweight was designed and built, but never put
in operation for lack of time.
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Figure 2.21: Dynamical model for the horizontal degrees of freedoom

2.4.3 Horizontal Normal Modes of the System

We can study the horizontal degrees of freedom with a simple model. The en-
semble spring box plus optics table is regarded as a rigid body on the horizontal
plane supported by four soft springs with constant &, . .., ks and null rest lengths
(fig.2.21). According to this model the system has three normal modes resulting
from the overimposition of two translations along the horizontal plane and one
rotation around the vertical axis.

The motion of the rigid mody is defined by a vector containing the positions
(x,y,¢) in a Cartesian system of coordinates. Considering the elementary displace-
ments, one obtains the stiffness matrix of the system:

—kl—kz—k3—k4 0 —k2+k4
K = 0 ki —ky — k3 — k4 —ki + k3 (244)
—ky + ky -k + k3 -ki — ky, — k3 —ky

where the mass, the momentum of inertia and the radius of the rigid body are
assumed as unity for simplicity. In the case in which k; = k3 and k, = k4 the
normal modes coincide with two pure translations and a rotation.

2.5 Sensors and actuators

In HAM-SAS the spring box is mechanically constrained to movements in the
horizontal plane (x-y and yaw) while the optical bench only moves in the remain-
ing three degrees of freedom (z, pitch and roll) with respect to the spring box.
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Figure 2.22: Horizontal coil actuator and LVDT.

The 6 by 6 positioning and control matrix then naturally and conveniently splits
into two independent three degree-of-freedom matrices. Sensors and actuators are
co-located to roughly diagonalize the controls within each of the three degree-of-
freedom matrices.

Instrumentation for sensing and actuation is applied in groups of four, even if
each system has only three degrees-of-freedom. This arrangement was chosen be-
cause of the rectangular symmetry of the vacuum chamber support feed-throughs
and of the optical bench. Four instruments for three degrees of freedom form a
redundant system, one of the instruments can be ignored, or three diagonalized
virtual sensors can be synthesized from the four actual ones. The redundancy of
the sensor/actuators also makes that if one of the instruments fails, the SAS can
still operate normally, by simply changing the diagonalization matrix (The subject
is extensively discussed in sec. 5.2).

An LVDT [33] (Linear Variable Differential Transformer) is constituted by
three coaxial coils, two large ones wire in series, coiled in opposite direction,
which are mounted on a reference structure and act as receiver and a smaller coil,
which is the emitting coil, positioned between the larger two and fastened to the
moving mechanical component. The central emitting coil is driven by a sinu-
soidal signal with frequency between 10 kHz and 20 kHz. The coils are made in
Kapton-coated copper wire wound around a peek support. The clearance between
the large coils was sufficient to allow 10 mm movements in all directions. The po-
sition measurement is obtained by measuring in a lock-in amplifier the amplitude
and sign of the voltage generated in the receiving coils by the emitting coil. Ob-
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Figure 2.23: Simulations of the internal modes of the spring box brought to the
introduction of later stiffenere into the structure.

viously the measured voltage depends on the magnetic coupling of the two coils
and the right choice of the geometry permits a 1 percent linearity over a region of
more than a few centimeters at low gain. At high gain the readout range is strongly
reduced to improve the sensitivity to a nm. This resolution exceeds the stability
of the floor and is deemed sufficient to satisfy the Ad-LIGO specs. Another im-
portant function of the LVDTs is to provide the position memory needed to bring
the table back into the original alignment after interventions on the optics.

The horizontal-direction dynamic actuators are specially designed, noncon-
tacting, “racetrack” voice coils (fig.2.22). The choice of wire diameter and of ma-
terials (kapton and peek) is made so that the coils can, in non condition, (included
a railed power supply) over-heat and get damaged or, worse, pollute the vacuum
system. The geometry of the “racetrack” and of the magnetic yoke are designed
to deliver constant force within better than a percent over a field of movements of
10 mm in diameter in the horizontal plane. They deliver force sufficient to deal
with tidal movements and thermal excursions of 10 K with less than a mW of
maximum power dissipation. They are capable of positioning the table within the
resolution of the LVDT position sensors.

The vertical direction dynamic actuators have similar performance, but more
traditional design, non-contacting voice coils.

Micrometrically and remotely controlled stepper motors are used to null the
static current of the dynamic actuators. This solution has multiple advantages. It
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maintains alignment within a few microns even in the event of complete power
loss, it makes in-vacuum power consumption practically negligible, and, by re-
ducing the force requirements on the actuators to mN levels, it allows the use of
very low authority drivers, thus minimizing their actuation noise.

2.6 Spring Box Stiffeners

Early simulations of the HAM SAS spring box showed that the spring box has
undesirable low frequency resonances [11]. A study was carried out to find easy
solutions to stiffen the table and mitigate the possible problem (fig.2.23).

It was noted how some modes had relatively large relative movements between
the IP support points of the spring box and the GAS support points of the optical
table. Two kinds of stiffeners, C-profile plates mounted at the periphery of the
spring box, where they can be installed easily were tried. The result was that
some frequencies actually decrease because of the added mass and some increase.
The stiffeners were included in the design because it caused the most worrisome
resonances to increase in frequency.
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Chapter 3

Mechanical Setup and Systems
Characterization

The two main subsystems of HAM-SAS are the GAS filters and the Inverted Pen-
dulums. As discussed in the previous chapter, the firsts are responsible for the
vertical degrees of freedom, the seconds control the horizontal ones. The overall
performance of the system depends equally on the performance of each of the two
parts, and on their mutual interactions. During the mechanical setup, we set each
of them in its optimal configuration and then integrated the whole system. We
assembled the GAS filters with the appropriate compression of the blades, tuned
and equalized their resonant frequencies and working points. For the inverted pen-
dulums we measured the spring constant of the flex joints and found the optimal
load for the best horizontal seismic attenuation performance. We then installed the
spring box with the GAS filters on the IPs, taking care of equally distributing the
load on each leg. The mechanical setup continued with the system installed inside
the HAM chamber at LASTI with the leveling of the optics table, the stabilization
of the tilts and the final tunings.

3.1 GAS Filter Tuning

The GAS filters performs at best if tuned to the lowest possible frequency which
still prevents them from becoming bi-stable!. As shown in 2.11, the resonant fre-

I'This bench tuning is made mechanically, exciting the oscillations and measuring their ring-
down. Because of damping approaching critical levels and hysteresis, it is impossible in this
configuration to read the filter resonance at the lowest frequencies and tune the filters to lower
levels. Also the tune may be slightly changed by the bake-out procedures, and the overall vertical
stiffness may change when the four filters are assembled into the spring box and the tilt stabi-
lization mechanism is implemented. Once fully installed, with full fledged sensing and actuation
capabilities, a much more precise mechanical tune of the filters and the overall system is possible.
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Frequency [mHz] | Height [mm] | Mass [Kg]
A 191 276.2
B 180 275.42
C 192 276.34
D 183 276.5

Table 3.1: GAS filter bench tuning.

quency of a stable filter has approximately a quadratic dependence on the height of
the blades’ tip and there is a point in which, fixed the compression, the frequency
reaches a minimum. This is the vertical working point at which the GAS filter
has to be set. The radial compression is varied seeking the minimum frequency
achievable. The process of tuning consists in finding the critical compression and
the appropriate mass to set the filter at the working point with the lowest fre-
quency. The four filters must also be equalized. Figure 3.1 and table 3.1 show the
results.

3.2 Tilt Correcting Springs

After the optics table had been installed on HAM-SAS, the mechanical setup con-
tinued with the solution of the tilt stability problem.

As explained in sec. 2.3.8, a tilt stabilization rod and auxiliary springs were
included between the optical bench and the spring box to stabilize the tilt modes
of the optics table. We have made a simplified calculation of the tilt-correction
springs stiffness k required for the HAM-SAS optics table to float and make the tilt
unconditionally stable considering the GAS springs as normal vertical springs.

In the small angle approximation we can write the destabilizing torque due to
the optics table load as

Tioad = 08 Z miz; = X 5466 Nm 3.1)

where 6 is the angle between the table plane and the horizontal plane and m; and z;
are the mass and the height of the i-th mass element with respect to the top edge of
the springs, including the optics table. Z; is calculated starting from the plane of
the spherical joints on which the tilt movement hinges, just over the GAS spring
keystones. Load moment calculations have been carried out with the Solid Work
model of the system (fig.3.3).

%In a complete simulation the GAS should be considered as nonlinear spring to take into con-
sideration the whole effect
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Exponential Curve Fitting
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Figure 3.2: The plot shows the fit with an exponential decay for the oscillation am-
plitude of the GAS filter A of HAM-SAS tuned at 245 Hz. The result is a quality
factor of about 42. It was believed to be quite an high value,after that measurement
the compression was increased to reduce the frequency.

A compensating torque is introduced by the GAS and it is approximately equal
to

Toas = 2kgasOF ~ 0 x 464 Nm (3.2)

where
1672 fO2

Mioap

I? = \/Dx2 + Dy?, kgas =

In the calculations we have assumed a resonance frequency fy = 0.2 Hz>. This
stabilization force is negligible, and will tend to zero as the GAS resonance fre-
quency is tuned towards zero. The force applied by the tilt-stabilizing springs is
F = kx with x = 6h. The tilt stabilizing torque that it provides is proportional to
h, the height of the tilt stabilization rod. The effect of the tilt-stabilizing springs
can be written as

(3.3)

T = 2kOh* ~ kO x 0.151Nm (3.4)

where i = 0.275 m is the distance between the plane of tilt-correction springs and
the assembly hinging point and k is the stiffness of the used springs*.
In order to have a stable equilibrium position we need to have

T+ TGAs = TLOAD- (3.5)
Substituting in the expression we get

k ~ 33100N /m. (3.6)

3This was the initial tune of the GAS filters, before bakeout.
“4This is not necessarily the actual distance from the center of rotation.
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Vertical Bouyant
Mass Mass z Moment Dominant Density Volume Mass

Element (Pounds) (Kg) (Inches) Z(m) (kg m) Material (kg) (m"3) (Kg)
Optical Table 841.00 378.45 0.00 0.00 0.00 Aluminium 2700.00  0.1402 0.1682

0.00 0.00 0.0000
H1 Geophone 25.00 11.25 4.00 0.10 1.14 Mixed 0.0030 0.0036
H2 Geophone 25.00 11.25 4.00 0.10 1.14 Mixed 0.0030 0.0036
H3 Geophone 25.00 11.25 4.00 0.10 1.14 Mixed 0.0030 0.0036
V1 Geophone 25.00 11.25 5.00 0.13 1.43 Mixed 0.0031 0.0037
V2 Geophone 25.00 11.25 5.00 0.13 1.43 Mixed 0.0031 0.0037
V3 Geophone 25.00 11.25 5.00 0.13 1.43 Mixed 0.0031 0.0037

0.00 0.00 0.0000
Triple_Suspended 9.00 3252 083 7.43 Aluminium  2200.00  0.0041 0.0049
Triple_Non_Suspended 36.00 1528 0.39 13.97 Aluminium 2700.00  0.0133 0.0160

0.0000

Raised_Mass (Leg Element #1) 610.00 274.50 1850 0.47 128.99 Stainless 8000.00  0.0343 0.0412
Mass_Riser 22.00 7.75 0.20 4.33 Stainless 8000.00  0.0028 0.0033
Leg Element #3 233.50 105.08 135 0.03 3.60 Stainless 8000.00  0.0131 0.0158
Clamp Risers 13.64 0.00 0.00 Stainless 8000.00  0.0017 0.0020
Counterweight 45.45 0.00 0.00 Stainless  8000.00  0.0057 0.0068
Optics Table Adaption Plate 112.00 0.00 0.00 Aluminium 2700.00  0.0415 0.0498
TOTAL 1063.62 166.04 0.2748 0.3298
Worst Case Table
Mass Element Susp. Type Susp. Mass Sus. Height Non Susp. Mass Non Susp. Mass Height Total Mass Mass Moment
MC1 MC Triple 9 0.826 36 0.388 45 21.402
MCc2 MC Triple 9 0.826 36 0.388 45 21.402
MMT3 RM Triple 38.3 0.796 40.4 0.537 78.7 52.1816
RM MC Triple 9 0.826 36 0.388 45 21.402
Totals 65.3 213.7 116.3876
HAM SAS Initial
BSC Leg Element 1 277 0.4699 277 130.1623
LOS Cage 22 0.19685 22 4.3307
Total 0.66675 299 134.493
HAM SAS Triple
BSC Leg Element 1 277 0.4699 277 130.1623
LOS Cage 22 0.19685 22 4.3307
MC Triple MC Triple 9 0.826 36 0.388 45 21.402
Total 344 155.895

Figure 3.3: Mass Properties of the HAM Table load as extracted from the Solid
Works model. One shows the effective buoyant mass of the load on the GAS springs.
The effective buoyant mass of the system is 0.32 kg. The second shows vertical
moments in the worst case scenario for Advanced LIGO (i.e. HAM 2 with a stable
signal recycling geometry).

Assuming an ideal zero GAS resonance frequency (745 = 0) we get a slightly
higher required stiffness

k =~ 36150N/m. 3.7

Note that four springs are mounted in a cross configuration. By symmetry
two springs can always be considered orthogonal to any considered tilt, while the
other two can be considered along the tilt. Therefore the effective stiffness in the
tilt stabilization is twice the stiffness of a single spring, as long as the springs are
under some tension.

The effect of the angular stiffness of the GAS springs was not considered
in this initial calculation because the GAS springs support the optical table via
spheres in groves that nominally do not transmit torque. This effect was then
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Figure 3.4: 2.5 mm wire spring stiffness measurement

calculated and added and resulted being non negligible °.
To calculate the stiffness of a generic helical spring we can use the relation

_Gd

k= ——
nD3

(3.8)
where d is the wire diameter, D is the average spring diameter, n is the winding
number and G is a constant proportional to the material shear modulus. G was
determined experimentally from a measurement of a spring.

Figures 3.4 and 3.5 show respectively the stiffness measurements for a spring,
with d = 2.5 mm, n = 20.75 windings and for a spring withd =3 mm and n = 18

windings. The average winding diameter was D = 16.8 mm for both springs.
From the two measurements we get

G ~1.26-10" N/m? (3.9)

>The real problem came because when ordering the correction springs, we accidentally dropped
a factor of ten from the calculation above and ordered softer springs. When we started the tuning
we had available several sets of springs between 6,600 N/m (each) and 23,000 N/m. This mistake,
composed with an unfortunate loose screw in the assembly of the tilt stabilization rod caused a lot
of confusion.
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Figure 3.5: 3 mm wire spring stiffness measurement

In order to stabilize the table we initially used springs with d = 3.5 mm, n = 12
windings and D = 16.8 mm (k = 6600 N/m) which are clearly insufficient accord-
ing to the calculation above and the bench was unstable. We then installed springs
with d = 3.5 mm, n=8 windings, D = 16.8 mm (k = 10000 N/m), which was still
insufficient to unconditionally stabilize the table. We had, in order

e springs withd = 4 mm and n = 12 windings, D = 16.8 mm (k = 11300 N/m)
e springs with d = 4 mm and n = 8 windings, D = 16.8 mm (k = 17000 N/m)
e springs withd = 4 mm and n = 6 windings, D = 16.8 mm (k = 23000 N/m).

Each of these is insufficient to guarantee unconditionate stability, but some inter-
mittent stability was observed with the high spring value. The stability was due
to the angular stiffness of the GAS filters neglected in the calculations, while the
intermittent character of the stability was due to the loose tilt stabilization bar to
which the stabilization springs are connected. This trivial problem motivated us
to consider several possible causes of angular stability (or instability), discussed
below. Only after wasting several days of time we found the source of the problem
and fixed it by tightening the retaining screw. The system then became angularly
stable, as expected. The reasoning has some importance and is reported below.
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By this time we had remade the stiffness calculations and we knew that even
the stiffest springs available were not sufficient. We conjectured correctly that the
missing angular stiffness was contributed by the GAS springs angular stiffness,
but the reason why we encountered only some angular stability at all might be in
the friction in the spherical joints that couples in part of the GAS angular stiffness.
We also considered the fact that the GAS springs are not linear and become stiffer
as they stray away from the equilibrium point. This contribution turned out to be
non relevant.

Simulations made with linear springs showed that if the spherical joints are
eliminated, the table is perfectly stable with softer tilt correction springs, while if
frictionless spherical joints are introduced, the table becomes angularly unstable®.

Sufficient friction of the spherical joints but only as long as the sphere of the
joint sticks to it siege. Evidently the that stick and slip in the joint this gave us the
observed stability.

In order to answer the question, we went back to the lab and measured the
torsional rigidity of GAS springs. We mounted a rigid lightweight carbon fiber
shaft to a two blade GAS spring keystone. The blade is a close relative to the
HAM-SAS’(a two blade version, in which we could measure independently the
stiffness along and across the blades, with equal length blades, but 10% narrower
and a few percents thinner than in HAM-SAS). The torque is applied at 600 mm
from the keystone with a string, a pulley, and approximately 156 g masses. The
torsional angle was measured on photos comparing the angle between the shaft
and a ruler marks on the wall in the background. The measurement was made first
along the blades, and then repeated transversally.

We found a longitudinal angular elastic constant for a pair of GAS blades
equal to

ki = (53 + 5) N/rad (3.10)
Ky = (72 + 5) N/rad. (3.11)

A GAS filter has four pairs of blades spaced at 45 degrees, therefore the angular
elastic constant of a filter is

kg = 2(53 +72) = (394 + 10) N/rad (3.12)

that is for the whole spring box it would be ky = (1572 + 40)Nm/rad. These num-
bers have to include a factor of /.25 accounting for the different blade thickness
(2.22 mm thick in the bench prototype, 2.39 mm in HAM-SAS) and /.16 for the

%In the simulation the system is described with two bodies, the optics table and a massive base,
and four springs with a diagonal stiffness matrix (108, 108, kgas) that connects the two bodies.
The motion of the base respect to a generic inertial frame (ground) is not constrained.
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blades width (80 instead of 69 mm). We also had to account for the number of
blades in the filters. Then we have for the LASTI case:

kg = (2280 + 40) N/rad. (3.13)

This torque represents roughly 40% of the torque necessary to stabilize the optics
table tilt. The second possible source of stability may be that in GAS springs the
resonant frequency is function of the distance x from the spring optimal working
point (see fig.3.1):

f=a+bx (3.14)

We can write the elastic constant of an oscillator as k = cf?, equating we get:
k= c? +2¢i000% + c§x4. (3.15)

Then the potential energy of a GAS spring would lead also to higher than quadratic
terms
Ugas = kgasx® = c%x2 + 2c100x" + c%x(’ (3.16)

which may contribute to the stability. This contribution will not eliminate the need
for the stabilization bar.

3.3 1P setup

The IPs are made of four allow aluminum tubes 0.491 mm long and 1 mm thick.
They are supported by 8 mm thick, 50 mm long maraging steel cylindrical flex
joints through an apposite holding cup. This flex joint (working under compres-
sion) provides the mechanical angular stiffness of the IP mechanism. A thin, neg-
ligible stiffness flex joint, working under tension, connects the head of each IP leg
to the spring box. The IP setup required: the equalization of the load between the
four legs;; the measurement of the resonant frequencies of the horizontal transla-
tional modes of the spring box and the correspondent load curve; the choice of the
center of percussion correcting counterweight.

3.3.1 Load equalization on legs

Even though the parts involved in the IPs are machined to a high precision the
UHYV baking processing inevitably introduces some warping. We found the spring
box to be more warped than the height tolerancies of the four legs. A new ad-
justable support system was then introduced to solve that problem.

The way we measured the individual leg load was measuring the frequency
of the lowest rigid body mode of the legs. This corresponds to the “banana”
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Figure 3.6: IP Leg First Banana Mode

mode of the main flex joint and leg’s body together with the upper and lower flex
joint deforming in an "S" shape. Because it works in tension, the small flex joint
acquires a transversal stiffness Mg/l (where m is the applied load and 1 is the 30
mm joint’s length; see fig. 3.6). The varying transversal stiffness affects the leg’s
resonance frequency, therefore we can make sure that the load is equalized on the
four legs by making sure that the four legs have the same banana mode resonant
frequency.

The frequency measurement was performed as shown in fig.3.7. A magnet
was attached at some point on the leg (i.e. the support upper cup, see fig. 3.7) and
a coil cut from by a small commercial voice speaker was held in front of it from
the spring box frame. The measurement was made analyzing the spectrum of the
induced current on the coils after hitting the leg. The current passed through a
cushy amplifier and low pass filter as well. Under the load of the spring box, the
legs were equalized to the frequencies showed in tab.3.2.

leg | 1% frequency
0 221
1 218
2 220
3 218

Table 3.2: Legs first banana mode frequency.
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Figure 3.7: Scheme of the IP cup support for the the Spring Box and of the sensor
used for the measurement of the frequency.

3.3.2 IP Load Curve

The IP load curve represents an important characterization of the IP. It shows
the dependence of the resonant frequency on the mass of the load and permits to
estimate the optimal load in order to have the lowest resonant frequency before
the IP becomes unstable. It is very important to lower the IP resonant frequency
because the attenuation low frequency performance depends on it and because the
resonance quality factor also decreases with the square of the resonant frequency.
The measurement gives also an estimation of the spring constant of the flex joints.

We measured the curve at the constructor’s site, before the overall baking pro-
cess of the system, obtaining the data shown in fig. 3.9. An induced current sensor
referred to the base plate was attached to the spring box bottom plate (similar to
that in fig. 3.7). The spring box was excited by pushing it toward one of the
directions between two legs. As explained in sec. 2.4.3 - the system tends to
have two translational degenerate modes in condition of symmetry of the momen-
tums of inertia along the plane and one rotational mode around the vertical axis.
Also the two translational modes are degenerate as long as the four flex joints are
cylindrical and mounted perfectly parallel to each other.
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Figure 3.8: PSDs of the four IP legs after the optimization of the load distribuition.
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Figure 3.9: IP load curve fit.

Fitting the data with the expression of the frequency

1 \/'2—5—(%+M)’§
27 M

where M is the load mass, m = 1.5 Kg is the leg mass of the four legs including
its heads and / = 0.491 is the IP length, we found ky = 5373 + 25. The critical
mass of about 1100 Kg was found calculating the intersection of the fit at zero
frequency

fo = (3.17)

3.3.3 IP Counterweight

The IP conuterweight, designed to bring the theoretical attenuation preformance
from 80 dB to 100 dB, were not mounted on the HAM SAS for lack of time.

A mechanical (non numeric) simulation was used for a rough estimation of
the counterweight mass and gave a counterweight of ~150 g.

A specialized sliding table, built to precisely measure the necessary counter-
weight was built and could never used.

3.4 Optics Table Leveling

Once that the optics table was floating upon the GAS springs it is important to
ensure its horizontality.
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The first step of the leveling was done with a simple bubble level and adjusting
the weights distribution on top of the table. A finer adjustment was made using
an optical level and a combination of small mass positioning and the vertical ac-
tuators. Four vertical rulers, previously inter-calibrated, were installed on the four
corners of the table and the optical level referred to the plumb line. From the
MEDM control interface of the ADC (see sec. 4.1) the coil actuators were indi-
vidually with DC currents until the same height was read on the rulers from the
optical level. With the table leveled, the LVDT voltages were acquired as refer-
ence point and the values taken into account as offsets to be subtracted out of the
four vertical position signals. After this subtraction, zero vertical voltage or four
equal voltages in the four LVDTs was then assumed to signal horizontality of the
table.

\
\ \

i
A\

e

Figure 3.10: HAM-SAS inside the HAM chamber with the optics table and the triple
on it.
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Chapter 4

Experimental Setup

The particular prototype of HAM-SAS, object of this thesis, was specifically de-
signed to support the optics tables of the output mode cleaner of Enhanced LIGO
even though the design of the system is almost the same for all the HAM cham-
bers of the Advanced LIGO interferometers. The tests performed at LASTI were
aimed to reproduce those conditions. A triple pendulum, one of the main elements
of the Advanced LIGO optics suspensions, was installed on the table (fig.4.2) and
several weights were arranged to simulate the same mass distribution and height
of the center of mass. Six Mark Products L4-C geophone sensors were placed to
monitor the six degrees of freedom of the table and, from outside the chamber, an
optical lever to monitor the triple. Guralp CMG-T40 seismometers measured the
seismic motion of the ground.

4.1 LIGO Control and Data System (CDS)

The HAM-SAS control and data systems (CDS) are designed according to the
LIGO CDS standard and based on the EPICS system'. In the front end computer
EPICS provides a platform for the execution of the control and monitor programs.
The code is written in C by a Matlab Simulink interface in which sensors, ac-
tuators and channels have a graphical representation and the controls are imple-
mented in the topology of the connections among the elements (figure.4.13 shows

'EPICS is a set of Open Source software tools and applications, written by the Los Alamos
and Argonne National laboratories, which provide a software infrastructure for use in building
distributed control systems to operate devices such as Particle Accelerators, Large Experiments
and major Telescopes. Such distributed control systems typically comprise tens or even hundreds
of computers, networked together to allow communication between them and to provide control
and feedback of the various parts of the device from a central control room, or even remotely over
the internet.
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Figure 4.1: Optics table and weight distribution installed on HAM-SAS inside the
LASTI HAM vacuum chamber.

the scheme of the Simulink code we wrote for HAM-SAS). The MEDM software
provides a graphical command interface (fig.4.3).

4.2 Sensors setup

Several kind of sensors are involved in the HAM-SAS tests : LVDTs, L4C geo-
phones, Guralp seismometers, QPDs. The LVDTs are position sensors while geo-
phones and Guralps are velocity sensors. The LVDT are relative sensors, which
means that they measure the position (or velocity) from the relative displacement
of a test mass from their reference frame. The sensor frame and the test mass form
an harmonic oscillator. The frame follows the system whose position x is the one
that has to be measured. In a way that changes depending on the particular kind
considered, the sensor measures the relative position (x — x) of the mass to the
frame. From the equation of motion of the test mass

mi = —k(x — xo), 4.1
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Figure 4.2: Triple pendulum and sketch of a representing model. The triple pendu-
lum is the last stage of the seismic isolation. Its role is to filter the high (>10Hz)
frequencies noise using three stages of passive isolation in the horizontal directions
and two stages of isolation in the vertical one [44].

neglecting for simplicity any dissipation mechanism, we can obtain the frequency
response between the relative displacement and the reference frame:

S

= . 4.2)

The function in (4.2) depends on the resonant frequency of the system and gives
the calibration of the sensor. Multiplying it by the output signal (x — x;) we obtain
the position of the reference?.

4.2.1 LVDTs

As already mentioned, eight LVDTs are used for position control in HAM-SAS.
The LVDTs (Linear Variable Differential Transformers, [33]) are displacement
sensors constituted by a primary and two secondary windings. The primary wind-
ing is fed with an audio frequency (usually in the range 10-20 kHz) sinusoidal

2In the same way all HAM-SAS, together with its LVDTs, could be considered as a big dis-
placement sensors for the ground, that is a seismometer.
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Figure 4.3: HAM-SAS MEDM interface. The platform is represented by the gray
rectangle. At the corners, with simbols Vx, are the LVDT sensors, actuators and
stepper motors of each GAS filter. The black circles represent the IP legs and have
similar sensors and actuators panels.

signal. The secondary winding is composed by two identical coaxial and rigidly
interconnected coils, wound in opposite directions. The primary coil general sits
in the center between the two secondaries, coaxially oriented. When the primary
winding is longitudinally displaced by of an amount Ax, a current with the same
frequency of the primary signal and modulated in amplitude proportionally to Ax
is induced in the secondary winding. A mixer is then required to demodulate the
secondary signal and produce a DC output proportional to Ax. Translations in the
other directions, in first approximation, induce no signal.

A VME LVDT driver board is used in HAM-SAS control. The LVDT board
specifications are:

¢ 8 independent channels, first channel set as master in master-slave trigger
configurations;

¢ individually tunable coil excitation levels;

e individually tunable sensor coil read-back amplifier gains;
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RIS

245

Figure 4.4: Horizontal LVDT scheme. The bracket (269, 270) and (243) supports
the primary coil (244) hanging from the springs box. The twin secondary coils are
wound on the same cylinder (245) supported by the bracket (246) to the base. The
calibration was made measuring the distance between (245) and (246 ,271) with a
caliber for several given static position of the spring box.

e One single-ended output per channel for signal monitoring?;

e One single-ended input, for external oscillator operation;

e One single-ended output, for inter-board synchronization;

e Master-slave/asynchronous operation selectable through onboard jumpers;

o External/internal oscillator operation selectable through onboard jumpers;

e + 22Vpp primary output voltage;

e +15V - +18 V Supply operating voltage;

e 3 24-pin connectors for LVDT primary winding excitations, LVDT sec-
ondary winding readbacks, ADC.

3The internal oscillator of the first readout circuit can be used as a master for the channel of
the boards and to slave all other boards used in the system.
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The circuit, shown in fig.4.12, is based on the Analog Devices Universal
LVDT Signal Conditioner AD698 chip. The component features are:

e Tunable Internal oscillator from 20 Hz to 20 kHz

e Double channel demodulator: two synchronous demodulator channels are
used are used to detect primary and secondary amplitude. The component
divides the output of the secondary by the amplitude of the primary and
multiplies by a scale factor in order to improve temperature performance
and stability. In this way a typical offset drift of 5 ppm/°C and a typical gain
drift of 20 ppm/°C are reached;

e Tunable low pass filter for each demodulator;
e Amplifying stage of the output signal.

A phase compensation network is used to add a phase lead or lag to one of the
modulator channels in order to compensate for the LVDT primary to secondary
phase shift (generated by their inductance). A low noise instrumentation amplifier,
INA217, is used for LVDT secondary readbacks differential input. Specifically
designed for audio signal amplification, this component has a voltage noise of 1.4
nV/VHz at 1 kHz and a THD* of 0.004% at 1kHz for a 100 gain factor. The gain
can be adjusted through an external potentiometer. A wide-band fully differential
amplifier, THS4131, is used for primary winding excitation output.

Several measurements have been done in order to characterize the perfor-
mance of the board. An experimental setup, composed by a 50 ym resolution
Line Tool micropositioner fixed on an optical table and rigidly connected to the
LVDT primary winding, has been used. Several custom made Horizontal LVDT
prototypes have been realized in order to determine the optimal ratio between the
radii of primary and secondary windings. LVDT spectral density noise measure-
ments (figure 18) has been done after centering the LVDT primary coil to get
zero signal output. Several independent measurements have been performed to
cover different frequency ranges. Calibration measurements have shown a low
level of nonlinearity (less than 1% of the range). Residual displacement noise of 2
nm/ VHz at 10 Hz has been measured for both LVDTs. Crosstalks of 1% between
the horizontal and longitudinal and between horizontal and vertical degrees of
freedom have been obtained. The results obtained in an optimized configuration
are summarized in the following table:

4The total harmonic distortion, or THD, of a signal is a measurement of the harmonic distortion
present and is defined as the ratio of the sum of the powers of all harmonic components to the
power of the fundamental.
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\ Horizonta LVDT \ Vertical LVDT ‘

Nonlinearity 0.88% 0.26%
Sensitivity 6.49 V/mm 7.85 V/mm
Range 20 mm 20 mm
Displacement Noise | 2 nm/ VHz 10Hz | 2 nm/ VHz 10 Hz

HAM-SAS contains two sets of four LVDTs for the controls and an additional
set for monitoring (witness). Each of the control LVDT is co-located with a co-
axial voice-coil actuator. Four vertical LVDTs, coaxially located inside the GAS
filters, measure the vertical positions of four points of the optics table with respect
to the spring box. Four horizontal LVDTs, located in correspondence of the in-
verted pendulum leg, measure the horizontal displacement of the spring box. The
last four are witness LVDTs mounted underneath the top plate supporting the op-
tics table and measure directly the displacement of the table respect to the base,
three horizontal and one vertical.

To set up the sensors, we first adjusted the inner offset and gain in the external
driver boards in order to adapt the linearity region to the dynamical range of the
physical system. (fig. 4.3 shows the map of the LVDTs in the system). Then a first
calibration of the horizontal LVDTs had been tried when the system was still out
of the HAM chamber. Keeping the optics table mechanically locked in the vertical
directions with the apposite stops, we moved the base of the LVDT supporting the
primary coil. The procedure turned out to be not practical and the measurements
were not clear. Then we repeated the measurement when HAM-SAS was mounted
inside the HAM chamber with all the controls active.

The absolute calibration of LVDTs depends on the construction features and
tuning of the readout electronics but for equal sensors and electronics the relative
calibration is expected to be about the same. To make the actual calibration, we
made that initial assumption and applied the geometrical control strategy’ in or-
der to control the static position of the table along the beam direction, monitored
by LVDTs H2 and H4, the only ones accessible by hand. Controls in the other
two degrees of freedom also insured that the table remained close to its nominal
positions while moving it along the beam. We used the controls to set the table to
several positions along x with the controls, measured with a caliber the displace-
ment and read at the same time the correspondent outputs from the ADC. The
results of the calibration are shown in fig. 4.5, 4.6 and summarized in tab. 4.2.1.
Since it was impossible to get the LVDT H1 and H3 on the sides, we assumed for
them the average calibration of H2 and H4.

>In the geometrical control strategy the table position is controlled along the main geometrical
axis x, y and z aligned with the optics table using the sensing and driving matrices of tab. 5.1
Thanks to the fact that LVDT and actuator are co-axial the driving matrix is simply the transpose
of the sensing matrix. (Thzt was the reason underlying the choice in this design of the system.)
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Figure 4.5: H2 LVDT calibration results. The fit gives a coefficient of 0.18 pum/count
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Figure 4.6: H2 LVDT calibration results. The fit gives a coefficient of 0.14 pum/count
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LVDT Slope Uncertainty | Calibration | Uncertainty
[#] [Counts/um] | [Counts/um] | [um/Counts] | [um/Counts]
Vi -4.7281 0.0498 -0.2115 0.0022
V2 49162 0.0559 0.2034 0.0023
V3 -4.6772 0.032 -0.2138 0.0015
V4 -5.4043 0.0552 -0.185 0.0019
H1 -6.1255 - -0.16325 -

H2 6.8898 0.0785 -0.14514 0.0017
H3 -6.1255 - 0.16325 -
H4 -5.5135 0.0628 0.18137 0.0021

Each vertical LVDTs have been calibrated with the system inside the chamber.
The vertical LVDT is mounted with two sets of three screws in push-pull mode, to
set the electrical zero of the LVDTs at the mechanical working point of the GAS
filters. With the optics table and the spring box mechanically locked in all the
directions, the support of the LVDT secondary coil was released and moved by a
definite number of turns of its holding screws. From the pitch step we measured
the displacements and, at the same time, the readouts from the ADC.

Unfortunately, due to their remote positioning, there was no direct way to
calibrate the witness LVDTs. They could only be cross calibrated from the control
LVDT readout for various position settings.

4.2.2 Geophones

Six geophones are placed on the optics table. As shown in fig. 4.1, three of them,
the horizontal, are aligned parallel to the table’s plane, in a pinwheel configura-
tion and the other three, the vertical, are orthogonal to the plane, arranged in a
triangular configuration. The configuration is such that they can be sensitive to all
the six degrees of freedom.

The geophones are relative velocity sensors. The test mass inside is a mag-
net connected to the sensor’s frame by a spring and its velocity is monitored the
induced current on a coaxial coil mounted on the frame. In order to pass from
velocity to position a calibration filter has to be applied to the signal. The filter
is designed on the frequency domain and then implemented on MEDM which
provides for the transformation into the time domain. In the frequency domain,
the position can be obtained from the velocity simply by dividing by w, corre-
sponding to the introduction of a pole at zero frequency. The actual calibration we
implemented is described in table 4.2.2:

With the geophones calibrated to measure the positions, we can decouple the
signals to obtain the coordinates of the system along the six degrees of freedom.
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Poles Zeroes Gain
0.50 (3) | 0.2847+1*1.0625 | 0.0129

Table 4.1: Calibration transfer function of the geophones in the zpk format. The three
poles at 50 mHz have to be considered like they were poles at zero. The reason for
the shift is to avoid the saturation that would happen because of the DC component
of the signal from the geophones. Basically the calibration divides by the frequency
to obtain from a velocity a signal proportional to the changing position. Then the
double pole at zero frequency and the complex zero at about 1 Hz transform the
relative displacement of the test mass into absolute position of the reference.
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Figure 4.7: Mapping of the geophones on the table

Be g = (hy, hy, h3,vi,v2,v3) and r = (x,Y, 2, , 6,, 6;) the vectors with the single sig-
nals from the geophones and the coordinates of the system respectively. Referring
to the mapping of the sensors in fig.4.7 we have that:

hy o 1.0 0 o0 HY X
hy 100 0 o0 -HY|y
hs 0 -1 0 0 o0 -H]| z

- , 4.
vy 00 1 VY —v® o 0. 3
) 00 1 v -vi® o Oy
V3 00 1 V¥ —-v&¥ o0 0:

Inverting the matrix in (4.3) and substituting the coordinates of the sensors we
find the decoupling matrix.
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Figure 4.8: Model to explain the tilt to horizontal coupling in the horizontal geo-
phones on the optics table.

4.2.3 Tilt coupling

The horizontal geophones response depends also on the tilt motion of the optics
table. As a matter of fact, they measure as horizontal displacement part of what is
actually tilt of the optics table. This can be clearly understood if in the model we
consider also a rotation of the plane with the geophone as shown in fig.4.8. The
overall frequency response include an additional term due to the coupling between
of the tilt into the horizontal sensors:

2 2
Xo Wy —w g b
= +|—= . 4.4
X—X ( w? , w?x—xp), , ¢4
0 horizontal 0/tilt coupling

The term becomes more important at low frequency where it easily dominates over
the real horizontal motion. If it were possible to have an independent measure of
the tilt, this effect could be taken into account and subtracted out®.

4.2.4 Optical Lever

An optical lever provides for an independent measurement of yaw and one of the
tilt modes of the optics table. A diode laser, positioned on top of a pier just outside
the HAM chamber, emits a beam that enters the chamber through a glass porthole
and hits the mirror in the middle of the bottom mass of the triple pendulum.” The
reflected beam reaches the center of a QPD (Quadruple Photo-Detector) sensor
placed right next of the laser source. A QPD is made of a four quadrant photodiode
in which each quadrant gives a voltage proportional to the inpinging power. The
signal share between the four channels depends on the position hit by the beam
spot (fig.4.9). The linearity range and sensitivity of this detector depend on the
laser spot size.

6 As is, in certain conditions can dominate the measurement and give an overestimated seismic
induced motion.
"The triple pendulum is frozen with respect to the optical bench for this measurement.
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Figure 4.9: QPD sensor. The signal from each quadrant is proportional to the area
covered by the beam spot (red). The coordinates of the beam spot’s center are given
by the differences between the output signals.

The optical lever is set up with the table mechanically locked in all the degrees
of freedom. In that condition the beam spot’s center is made to coincide with the
center of the QPD, equalizing the signal from the quadrants by changing the of
the QPD. From the vector with the four signals, the pitch and yaw angles can be
obtained by the following decoupling matrix:

O

6\ _2(1 1 -1 -1)\| 0

(9?)‘7(1 101 -1) 0 | 4-5)
Q4

in which / ~ 1.2 m is the arm lever starting from the middle of the table to the QPD
sensor. The output voltage to position calibration is obtained by micrometrically
moving the quadrant photodiode.

4.2.5 Seismometer

Three Guralps seismometers are placed around the HAM chamber as shown in
fig. 4.10. They are velocity sensors that means that in order to obtain a signal
proportional to the position of the ground, they have to have a calibration function
similar to that implemented on the geophones. Table 4.2.5 contains the details of
the calibration function.

Each of them provides for three output signals correspondent to three or-
thogonal directions, two horizontal and one vertical called respectively North-
South(NS), East-West (EW), Vertical (V). Six of the nine signals are used to mea-
sure the motion of the ground around the HAM chamber along the six degrees of
freedom.
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Figure 4.10: Guralp seismometers placements around the HAM chamber.

Poles Zeros Gain
0(3) | —23.56-107° +i23.56 | -0.314
159 -50

Table 4.2: Calibration transfer function of the Guralps in the zpk format. As for
the geophones, the calibration divides by the frequency to obtain, from a velocity, a
signal proportional to the position. Then the double pole at zero frequency and the
complex zero at about 23 mHz transform the relative displacement of the test mass
into absolute position of the reference. The poles at 159 HZ and the zero at 50 are
specified by the constructor.

We used the following decoupling matrix for signal of the Guralps®.

X 0 0
y 0 1/2
z || 13 0
0, | 0 0
6, I/Ix O
0, 0 1/Ix

/3 0 0 13 0
0 0 0 O
3 0 0 13
Ny 0 0 -y
1Ix 0 0 0
0 0 0 O

0
1/2
0
0
0
-1/Ix

8The fifth column is null because the channel NS of G2 was broken
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Figure 4.13: Simulink representation of the HAM-SAS front end code
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Chapter 5

HAM-SAS control

5.1 Optics Table Control

The optics table is a 6 degree of freedom mechanical system: 6 independent sen-
sors are required to fully determine its position and 6 independent actuators to
move it. Each physical sensor is, in principle, sensitive to movements in all the 6
normal modes (which in the following will be often referred to as x, y, 6,, z, 6., 6,,
although they do not correspond necessarily to pure translations and rotations). In
the same way, each actuator will generate movements of the optics table involv-
ing a mix of the 6 modes. The basic idea of the HAM-SAS controls is to treat
as separate the horizontal from the vertical DOFs and to diagonalize the sensing
and control actions: the aim is to pass from the sensors/actuators space, to a space
where each normal mode is independently sensed and acted upon. Mathemati-
cally, this means to realize a coordinate transformation for each group of degrees
of freedom such that the equations of motions get the form:

X; + (,()Z»ZX,' = (i (51)

where x; (for i = 1; 2; 3) is a normal mode coordinate, w;/2n is the resonant
frequency of the i — th mode and g; is the generalized force corresponding to the
coordinate x; [45, 31]. Experimentally this means to find 3 linear combinations of
the sensor outputs, defined virtual sensors, each sensitive to a single normal mode
and, correspondingly, 3 linear combinations of the excitation coil currents (virtual
actuators) which excite each mode separately. In control theory terminology, this
means to break down a multiple in-multiple out (MIMO) system into many single
in-single out (SISO) systems. The control of a SISO system is much easier: every
mode is controlled by an independent feedback loop, simplyfing greately the loop
design and the seismic requirements.
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5.2 Diagonalization

The GAS filters support the optics table in such a way that the relative movement
of the suspension points respect to the spring box is mostly limited to the vertical
direction. This significantly reduces the coupling between the horizontal DOFs of
the table (x, y and roll) and the verticals (z, pitch, yaw) and allows to treat them
separately into two stages. Let us consider only one stage, i.e. the horizontal.

Be u(s) the vector containing the Laplace transform of the positions of the
four LVDT sensors, and v(s) the vector with the transforms of the forces exerted
by the actuators. We have that

u=Hyv (5.2)

where H is a 4x4 matrix in which the generic element 4;; represents the transfer
function between the actuator j and the sensor i. Neglecting the vertical to the
horizontal couplings, each of these transfer functions can be written as a linear
combination of three oscillators, one for each of the normal modes of the system:

3 2

i (s) = ui(s) _ Za(kij) Wog (5.3)

2 L 2
v;(s) = 52 + wg, + iwg, Pr

where a,(fj) is the coupling coefficient for the k-th mode, wy; the mode’s resonant
frequency. For h;;(iw) we can expect the shape resulting from three overimposed
harmonic oscillator functions to look like the graph in fig.5.1.

We have that u € U, sensors space, and v € V, actuators space. It is possible
to pass to basis for U and for V such that the transfer function matrix H becomes
diagonal. With this choice of basis each sensor is a modal sensor which is sensitive
to only one of the normal modes of the system. In the same way each actuator
becomes a modal actuator wich is able to act only on one mode. In the new

coordinates

x = Hq (5.4)
hij(s) = % = by hij(s) 6iji (5.5)

where 0, is the Kronecker tensor. Be S and D the basis change matrices for U
and V representing the sensing matrix and driving matrix respectively. We have
that:

x = Su (5.6)
v=Dq (5.7)
Su=HD v (5.8)
which makes _
H=S'HD™! (5.9)

76



Bode Diagram
20

10

Magnitude (dB)
AN
o o

|
N
o

_30 L

_40 | |

Frequency (Hz)

Figure 5.1: Typical real sensor to actuator transfer function.

5.2.1 Measuring the sensing matrix

Being u = S7!x we know that the column vectors of S™! represent the relative
sensitivy of the real sensors to each single mode. The only matrix we can measure
directly is H but we can reduce it to a matrix physically equivalent to S™!. We
choose one of the real actuators, say vy, and use it to excite the system. We
then measure all the quantities A;;(wy) in correspondence of the three resonant
frequencies of the three modes of interest. Taking the imaginary part of these
numbers we can build the matrix

I[hn(w)] -+ Jlhi(ws)]
M = . : (5.10)

()] -+ Jhsi(ws)]

and it can be shown that S™! and M are equivalent and differ only for a scale factor
that multiplies each column.

In fact, let us define S™ = {o;} and D! = {A;;}. From 5.9 and 5.5 we can
write

3
hif(s) = Y Tl (5.11)
k=1
At the resonance wy,
hiwy) ~ Ihg(iw)] = —br Ok (5.12)
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Figure 5.2: Diagonalization scheme

hij(iwy) = —o by OQrAy; (5.13)
and this means that
—onbi Q1A -+ —o13b3 03 As
M= : : = [041 oV @ 0?, o 0-(3)].
—031b1 Q1A -+ —033b3 03 A5
(5.14)

S~! and M are equivalent because the a factors only change the length of the
eigenvectors but not their relative angles. Physically those factors only set the
global sensitivity of the sensors to each mode but do not change the relative sen-
sitivity among the sensors to one mode.

The same consideration holds if instead of v; we had chosen an other actu-
ator to evaluate the matrix. As long as the system is linear, no matter how we
excite a mode, we can get different a values but the ratios between the conversion
coefficients in each column of M rest the same.

5.2.2 Measuring the driving matrix

Now, since we have defined the modal sensors, we can measure the driving matrix
from their relation with the real actuators

x=HD'v=Ny (5.15)
by simply measuring the ratios
x;(iw)
= o 5.16
vi(iw) iy ( )

at a fixed frequency. Even though N(s) is frequency dependent all the dependence
is in H. Since H is a diagonal matrix, N and D! are equivalent. The only specifi-
cation is that the test frequency at which the measurement is made must be lower
than all the resonant frequencies in order to neglect the imaginary part of n;; and
have only real numbers to build the matrix.
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1/4 1/4 1/4 1/4 1/4 1/2 0 O
/2 0 -1/2 0 1/4 0 1/2 0
o 12 0 -1/2 1/4 -1/72 0 O
0 0 0 0 /4 0 -1/2 0
Vertical Sensing Vertical Driving
0 1/2 0 1/2 0 1/2 1/4 0O
1/2 0 1/2 0 12 0 -1/4 0
1/4 -1/4 -1/4 1/4 0 1/2 -1/4 0
0 0 0 0 1/2 0 1/4 0
Horizontal Sensing Horizontal Driving

Table 5.1: Geometrical diagonalization matrices

5.2.3 Experimental diagonalization

Experimentally the diagonalization of sensors and actuators is an iterative process.
The two procedure can be reiterated many times until the virtual sensors are well
decoupled and sensitive to the normal modes of the system. On each iteration the
virtual sensors are assumed to be real and the new sensing and driving matrices
obtained have to be multiplied to the left of the old ones.

For each of the stages we started the diagonalization from the geometrical
sensing and driving matrices. That immediately reduced the redundancy of the
sensors and actuators. As discussed in sec. 2.4.3, from the symmetry of the
system, we expected the modes to be two pure translations and a pure rotation and
thus the transfer function to be not too far from being already diagonal with that
choice of base. For the vertical DOFs we chose two main axis along the diagonals
of the table and the third one along the vertical direction as eigenaxis. For the
horizontals, we considered two translational modes along x and y and a rotational
mode around the vertical axis. The corresponding matrices are shown in tab 5.1.

For each stage, either horizontal or vertical, we measured the transfer functions
between one virtual actuator and all the virtual sensors of the same stage of DOFs.
We extracted the imaginary parts in correspondence of the peaks for each sensor
and with these we wrote S7'. Then we inverted it to obtain S and transformed to a
4x4 matrix filling the last column and row with zeros. Finally we multiplied this
to the left of the geometric sensing matrix obtaining a new one. The procedure
was repeated for each actuator and the obtained matrices were averaged using the
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-0.12 0.32 1 0.33 0.04 1 -0.20 0O
1 0.44 -0.42 0.15 046 074 094 O
-0.27 1 030 -1 1 -0.04 015 O
0 0 0 0 0.57 0.21 -1 0
Vertical Sensing Vertical Driving
-1 0.81 -0.15 0.07 -1 083 -041 O
0.76 1 0.32 0.52 0.50 092 0.14 0
-0.37 -030 -1 1 -0.63 076 -1 O
0 0 0 0 0.13 1 073 0
Horizontal Sensing Horizontal Driving

Table 5.2: Measured sensing and driving matrices.

norm of the columns as weight. Figures 5.2.3 and 5.2.3 show the transfer functions
for the excitation of the Y an Z geometrical virtual actuators respectively.

The inverse of the driving matrix was obtained exciting each geometric vir-
tual actuator one at a time at a fixed low frequency and measuring the transfer
coefficients! between the virtual sensors as obtained from the new sensing matrix.
Then it was inverted, converted to a 4x4 matrix filling the last column and row
with zeros and multiplied by the driving matrix.

The amplitude chosen for the excitations determined the signal to noise ratio
and the quality of the measurements. The measured matrices are shown in fig.5.2.

The most troublesome to measure was the vertical driving matrix. The trans-
fer coefficients have been always characterized by not negligible imaginary parts
even if they were measured at frequencies much lower than the resonances. The
reason is probably in a certain amount of coupling with the horizontal DOFs in-
troduced by exciting the table in the range of frequencies where the horizontal
resonances occur. This supposed coupling did not produced the same problem in
the measurement of the horizontal driving matrix probably because the vertical
resonances are all well above the horizontal ones. When the imaginary parts were
about the same as the real, the simple transpose of the sensing matrix turned out
to be more effective than the measured driving matrix to control the modes. The
reason for this is that the vertical actuators are perfectly aligned with the vertical

!'The transfer coefficient is the value of a transfer function at a given point.
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Figure 5.3: Magnitude and imaginary part of the transfer function between the geo-
metrical horizontal DOFs and the geometrical virtual actuator Y. In the peaks of the
imaginary parts we get the frequencies of the horizontal modes: 38 mHz; 60 mHz;

75 mHz.
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0.81 1 0.50 0.65 1 0.07

-1 0.60 -0.60 1 -098 0.20
-0.98 0.04 1 0.30 -0.10 -1
Vertical Modes Horizontal Modes

Table 5.3: Inverse of the measured sensing matrices. The columns define the eigen-
modes of the system. For the vertical the frequencies are: 146 mHz, 198 mHz,
250 mHz respectively. For the horizontal they are: 38 mHz, 60 mHz, 75 mHz.

LVDTs and, for construction reasons, they must share almost the same calibration
current-force among each other.

Figure 5.8,5.9 shows the comparison between the LVDT spectra as obtained
by the real sensors, the geometric virtual sensors and the diagonalized sensors.

5.2.4 Identifying the normal modes

From section 5.2.1 it follows that the columns of the inverse of the measured
sensing matrix S7! represent the eigenmodes of the system in the basis of the
space in which the matrix is measured. In the case of the geometrical basis, the
columns represent the projection of the modes on the x, y and 6, conventional axis
chosen for HAM-SAS.

Table 5.3 contains the vertical and horizontal inverse of the sensing matrices
with the eigenmodes as column vectors in the geometric basis representation. The
calibration of the LVDT sensors and the inclusion of the arm lengths in the ge-
ometrical matrices are essential for the modes to be interpreted in that basis. In
particular, in the horizontal matrix the first row has to be intended as meters along
x, the second as meters along y and the third as radiants around z. In the vertical
matrix, the first row represent meters of transaltion along z. The second is the one
we called 6, (even though it corresponds to a rotation around the diagonal with
LVDT sensors V1 and V3) and the third is 6, (corresponding to the opposite diag-
onal, between V2 and V4). A more realistic comparison between the geometrical
projections of the modes could be done looking at the energies stored in each of
them, which can be estimated from the products of the square of the amplitudes
for the mass of the system in the case of the translation components, and for the
moments of inertia for the rotations: Mx*, My* L.6Z, Mz*, 1.6, I,6;.

In the vertical matrix, the ratio between the third and the second rows’ com-
ponents represents the direction of the eigenaxis in the horizontal plane measured
from the first diagonal. From the measured matrices we have that the first mode
roughly corresponds to a rotation around the actual y axis plus a translation along
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z. The second is mostly a vertical translation plus a rotation around the first di-
agonal. The third is a vertical translation plus a rotation around an axis which is
closer to the first diagonal than to the second?.

The horizontal matrix was closer to expectations than the vertical. The third
column contains a mode which is almost a pure rotation around z. The second
is mostly a translation at about 45 degrees between the x and y axis. The first
is a mix of a translation along an axis somewhere in between x and y axis and a
rotation around the vertical axis.

5.2.5 Actuators calibration

The actuators redundancy allows driving modes which applies null resultant force
and null resultant torque to the optics table. In case of equal calibrations between
the actuators, these modes are represented by the vector w, = (1,—1,-1,1) for
the horizontal actuators and by the vector wy, = (1,—1, 1, —1) for the vertical ac-
tuators (in the vertical case these modes are called saddle or pringle modes®. The
geometric diagonalization of the driving matrix excludes actuators’ combinations
that could drive as pringle modes, as long as the actuators have the same force
calibration. Geometrically the image of the vertical matrix Dy is a 3-dim space
orthogonal to the actuation vector wy and the image of Dy, is orthogonal to wy,. If
the orthogonality is not guaranteed each of the actuators applies a different force
for the same current. Thus the scalar product between the pringle vector and the
columns of the driving matrix tells us about the actuators’ calibration.
From 5.2 we have from the vertical driving matrix:

D,V - w, = 0.67
D,? - w, = 0.00 (5.17)
D,® - w, = 0.00

and from the horizontal:

D, - w, = 0.00
D, ? - wy, = 0.00 (5.18)
D,® - wy, = 0.00

These asymmetries can be explained with a transversal stress applied mostly on the GAS filter
number 1 (which is forced to work crookedly) by an error in assembly. Testing this hypothesis
would require disassembly and reassembly of the system, which could not be performed for lack
of time.

3The reason is that they would tend to bend the table in a way similar to the shape of a horse
saddle or of a pringle potate chip.
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in which the vectors have been first normalized. These numbers confirm the prob-
lems encountered with the vertical driving matrix already discussed in section
(5.2.3)*. In the case of the horizontal actuators, the products are null implying
that the calibrations of the actuators are the same.

5.2.6 System Transfer Function

Once we diagonalized the DOFs, we measured the transfer function between every
virtual sensor and its correspondent virtual actuator. The results are shown in
fig.5.13,5.14. These represent a very important characterization of the system,
essential to design the control loops and to evaluate the attenuation performance
of the system.

5.3 Control Strategy

HAM-SAS was designed basically as a passive system. The role of the controls
is as minimal as possible. They are mostly intended to assist the platform to be
in the optimal conditions to give for the best performance. However, since the
mechanics is not optimized, controls are also used to compensate and overcome
the tuning limitations. The controls mainly provide to: position the optics table
in order to be at the optical working point of the filters; to damp the resonances
associates with the normal modes of the system; to reduce the effective stiffness
of the eigenmodes and thus the resonant frequencies.

5.3.1 Control topology

Once we diagonalized the system’s transfer function, the control strategy reduces
to that of a SISO system and, starting from the physical plant responses, individual
control loops can be designed for every DOF.

In HAM-SAS the LVDT position sensors are used. The scheme in fig.5.5
illustrates the controls topology for one degree of freedom: x; is the position of the
ground (input) and x that of the optics table (output), x.q an offset that determines
the desired working point of the optical table in the x direction.; G represents the
system and C the compensator. Assuming x,g constant, the closed loop transfer
function in the s-space is then

x(s)  G(s)(1+C(s))
x(s) 14+ G()C(s)

(5.19)

4The problem may originate from the fact that at least one of the vertical LVDT-actuator units
is warped, and therefore the geometrical diagonalization is not a completely orthogonal one.

85



Xo

Xoff /L
+ -
Xo + /JKT) G X * @ X-Xo
C

Figure 5.5: Control loop scheme for relative position sensor.

in which G(s) is the physical plant response of the system and C(s) the compen-
sator’s transfer function.

5.3.2 Static Position Control (DC)

The purpose of a static position control is to keep the system at an assigned posi-
tion x, s within a defined time scale. the offset x, ;s can be possibly be null, in that
case x = xo. A compensator which adds a signal proportional to the time average
of the relative position over a defined amount of time can control the position if it

is made of an integrator [46]:
a

C(x) = < (5.20)

in which « sets the gain and has the dimension of a frequency. Considering the
general case in which x,7¢ # 0, from 5.19 we have

x(s) _GEA+CB) - Xor(s)

= . (5.21)
Xo(8) 1+ G(s)C(s) 1 +G(s)C(s
An offset x,s can be modeled as a step function:
0 ift<0
Roff = { Koy if120 (5.22)

and since this control loop works at ultra low frequency, in that band we can
consider G(s) ~ 1 and from (5.21) we have:

X(s) — xo(s) = Sx+f; . (5.23)

The time evolution of the position is then obtained from the Laplace inverse:

x(t) — xo(f) = L7} = Foq €. (5.24)

s+ a
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We have that a defines the time constant of the process (v = 1/a) and the loop
bandwidth. The unity gain is obtained solving

a

Geel=|5|=1 (5.25)

which places the unitary gain at:

@
Y.

Jug (5.26)

Since the open loop transfer function G(s)C(s) has a phase smaller than -180
degrees above the resonant frequency of G(s), the Nyquist criterion then requires
Jug to be lower than the resonance of the system G(s) in order for the system to
be stable.

5.3.3 Velocity Control (Viscous Damping)

A velocity control is used to apply viscous damping to the system. A force pro-
portional to the relative velocity (X — Xp) is realized by means of a derivative com-
pensator of the form

C(s) =vys (5.27)

In particular the quality factor of the system can be reduced by y since we have
that: o
0= (5.28)
Y

5.3.4 Stiffness Control (EMAS)

The Electro-Magnetic Anti-Spring strategy (EMAS) was already developed as
part of the SAS technology but it has been applied for the first time extensively
and by mean of a digital feedback control system in HAM SAS. At the basis of the
strategy is the introduction into the system actuation of a positive feedback signal
frequency independent, which is equivalent to a spring with repulsive stiffness and
competes with the mechanical spring constant to lower the overall stiffness of the
mode. The control loop topology is shown in fig.5.6. The transfer function at

closed loop is:
x(s) _ G(s)(1 -k

= . 5.29
xo(8) 1 —kG(s) ( )
Assuming a simple pendulum physical plant response like
w2
G(s) = 2—02 (5.30)
wy — W
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Figure 5.6: Electromagnetic Anti-Spring (EMAS) control loop. A pure gain, fre-
quency indipendent, is fedback into the system to reduce the stiffness.

Xo

e?c
'{L out
%2} GO

k

Xo

NG 15

T

Figure 5.7: Scheme of the control configuration for the measurement of the physical
plant as modified by the introduction of the EMAS. The precise measurement would
be given exciting after the integrator and measuring the ratio out/A. Since the test
points are only in some fixed locations according to the the front end code, the best
possible measurement is made exciting right before the physical plant G from the
ratio A/exc. This ratio well approximates G’ except for the DC value.

the closed loop transfer function becomes

W2 (1 k)

Wi (1 —k) — w?

Gei(s) = (5.31)

which is equivalent to a system with a reduced resonant frequency
wy = wy V1 —k (5.32)

that is to a system with a reduced stifness.

In order to measure the new physical plant response including the effect of
the EMAS we followed the scheme in fig. 5.7. The table has always to be at
the working point height, thus a position control must be included in parallel to
the anti-spring. Ideally, the precise way to measure the new plant G would be
exciting right after the integrator and then it would be G' = out/A. Since EPICS
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allows only a limited number of test points, one has to find the best location into
the system’s map to measure the transfer function. According to the front end
code and to the available test points the closest thing to G~ that we could measure
was A/exc. This ratio well approximates G for low gain of the integrator but it
still differs for the DC value. The result of one of this kind of measurement for
the z emas is shown in fig.5.12.
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Figure 5.8: Modal vertical LVDT power spectra. The upper plot shows the signals
from the virtual sensors after the diagon%ﬁzation. Each sensors senses much more
only one of the three resonances. Still, mostly on the first two resonances a little of
coupling persists. The lower plot shows the spectra from the virtual sensors before
the diagonalization, when they were aligned to the geometrical directions. The plots
refer to an early configuration of the system when the resonances were at slightly
different frequencies and the LVDT still not calibrated.
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Figure 5.9: Modal horizontal LVDT power spectra. In this case the diagonalization

of the sensors is very good and the three virtual sensors sense almost only one mode
each.
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Figure 5.10: The plots show the horizontal LVDTS before (red curves) and after
(blu curves) closing local damping control loops on each horizontal actuator (each
actuator is controlled indipendently by the others). The sensors were not calibrated
yet and the optics table was mechanically locked.
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Figure 5.11: The plot shows the position control while it brings the table position as
read by one of the vertical LVDT to a given position.
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Figure 5.13: Diagonal transfer functions for the horizontal degrees of freedom fitted
by a pendulum function.
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Chapter 6

System Performances

In this chapter we present the latest experimental results from the HAM-SAS
experiment. First we introduce the quantities by which we measured the per-
formances of the system. We discuss the attenuation performance achieved, the
strategy adopted for the controls and the issue about the very low frequency dis-
placement noise observed.

6.1 Measuring the HAM-SAS Performances

Before discussing the performances of the system, we want to clarify the defini-
tions and the properties of the quantities that we are going to consider. Since we
are here interested in seismic attenuation performances, the observable that we
have in mind is always a coordinate position.

6.1.1 Power Spectrum Densities

Be x(7) the coordinate describing the system in the time domain [16]. Its power
spectrum density is defined as the Fourier transform

1/ \/ﬂ +00
xxx(0) J_o
in which x * x (1) is the autocorrelation function of x(t) which is defined as:

P.(f) = x#* x (1) (1) e dr (6.1)

x*x(r)zfoox(t)x(t+r)dt (6.2)

From Parseval’s theorem the root mean square value of x is connected to the power
spectrum by:

Xrms. = f P, (f) df (63)
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We rather work with an object derived from the power spectrum: the amplitude
spectral density'. It is simply defined as the square root of the power spectrum:

S (f) = VP (f). (6.4)

and its dimensions are [x]/ VHz. The advantage of this object is that the unit
matches better what we measure with the sensors (i.e. meters).

The spectrum measurements on HAM-SAS data have been made with an FFT
Matlab based software tool, averaging over many measurements. The averaged
spectra are accompanied by the root mean square of the measurement, intended
as the standard deviation on the points j of the set at frequency i:

N
Sems ()= | (5 ()= 5 (7)) 6.5)
=1

The spectrum r.m.s. represents a useful parameter for the evaluation of the mea-
surement noise.

6.1.2 Transmissibility and Signal Coherence

The particular transfer functions in which both the input and the output quantities
are dynamic variables as position, velocity or acceleration are called transmis-
sibilities. We evaluated the seismic performance of HAM-SAS measuring the
transmissibilities of the system for each degree of freedom. They were obtained
simply dividing the Fourier transform of the output signal from the geophones on
the optics table by the input signal from the Guralp seismometers on the ground,
both of them corresponding to the same degree of freedom.

Experimentally the input and output of a transmissibility measurement can be
disturbed by noise and the ratio between the two relative spectra does not neces-
sarily represent the transfer function of the system. In LTI system theory (Linear
Time Invariant), it can be demonstrated [48] that two signal x () and y (¢) are cor-
related if and only if it is possible to define a function H (¢) such that:

yO)=H@®*x(®) =Y (w) =Hw) X Ww). (6.6)

To evaluate the quality of the measured ratio between the two spectra as actually
representing the transfer function, for the measurements on HAM-SAS, we have
considered the coherence function to evaluate the correlation between the signal.
The coherence Cy, (w) between x and y is defined as

Ry (@)

Co (@)= 3 T, @

(6.7)

! Although we often improperly refer to it as power spectrum or just spectrum.
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Figure 6.1: Advanced LIGO HAM requirements for the displacement noise of the
Power Recycling and Output Mode Cleaner and model of Livingston seismic power
spectrum.

where R,, (w) is the Fourier transform of the cross-correlation function between x
and y, defined as
Ry(@=x*y(1). (6.8)

The coherence is a real function between zero and one. It is one if x and y are
correlated. On the other hand, when x and y are uncorrelated (i.e., y is a noise
process not derived from x), the coherence converges to zero at all frequencies.

6.2 Evaluating the Seismic Performances

The Advanced LIGO HAM requirements [49] set a reference to evaluate the
HAM-SAS seismic performances and they represented the ultimate goal of the
system commissioning. In particular the constraints for the Power Recycling and
Mode Cleaner optics set a displacement noise limit of 2 x 1077 m/ VHz in the
0.1-0.2 Hz band, 4 x 107! m/ v/Hz at 600 mHz and 3 X 10~'! m/ VHz above 20
Hz (fig.6.1). The conditions have been defined according to a model of the ground
seismic spectra at both of the sites, Hanford (LHO) and Livingston (LLO) [50].
The horizontal and vertical ground noise are considered equal and expressed, in
the frequency range 100mHz < f < 40Hz, as a polynomial expansion in log
space:

log x, (f) = p1 (log £)" + p> (log £)' ™" + ... + p,10g f + P (6.9)

where x, is the displacement spectral density. Because the average ground noise at
the two observatories and at MIT differ significantly, three separate ground noise
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Figure 6.2: Ground noise models for the Hanford (LHO), Livingston (LLO) and
LASTT sites. Each curve was obtained by a polynomial fit of the seismometer data.

The plot shows LASTI as a noisier location than the sites in the horizontal and vertical
DOF.

models are estimated for LHO, LLLO and LASTTI; these are shown in fig.6.2. In the
models the ground noise input is assumed to be the same for all three translational
degrees of freedom.

6.3 Experimental Results

We want here to show and discuss some of the latest power spectra and trans-
missibilities which illustrate the status of the system performances in the present
configuration.

As we explained in chapter 5, the roles of the control system are two: to
keep the platform at the working point in order to have the best passive isolating
performance and to actively assist the mechanics in attenuating the seismic noise.
We will see here the effect of these different strategies.
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6.3.1 Passive Attenuation

As explained in chapter 3, both the IPs and the GAS filter were set to perform at
best at their correspondent working point>. Because of absolute and differential
thermal drifts of the apparatus, ground movements and tilts (tidal movements,
water table variations, movements of heavy loads on the floor and in the building
vicinities, diurnal and seasonal differential heating and cooling of the facilities
etc.)’, only position control can guarantee and maintain a perfect alignment of
the optical table. The very low tuning of the resonant frequencies exacerbates
these drifts both in the vertical and horizontal directions.*. Misalignments can
even bring to instabilities because of recoil effects between the spring box and the
pendulums.

From the measured physical plant responses (see sec. 5.2.6), we designed
static positioning control loops (DC) with a very low unitary gain frequency (u.g.f.)
of about 1 mHz by which we obtained the power spectrum of fig. 6.3, basically
leaving the system free to move at all frequencies .

The structure between 10 and 20 Hz is typical of all the measurements. It
corresponds to a internal mechanical resonance of the system which we had no
time to identify and damp. We believe it is likely due to either the tilt correcting
springs or the wire by which they pull the central column. When the HAM cham-
ber was still open, it was in part, but not totally, attenuated by magnetic dampers
(see fig.6.4). It is expected to be fixed with properly designed dampers and/or
redesigned springs.

Below about 400 mHz the transmitted seismic motion of the uncontrolled sys-
tem amplitude becomes higher than the requirements, especially for x, and under
100 mHz, where the horizontal displacement becomes greater than 1 um/ VHz.
In particular we notice three peaks between 100 and 300 Hz correspondent to the
resonances of the vertical DOFs. These resonances enter in every degree of free-
dom because of couplings between different degrees of freedom. They actually
cause a larger appparent displacement in the horizontal than in the vertical. The
actual coupling originates likely in recoil effects between the spring box and the
optics table. It must be considered that the table with all its payload has a mass
which is three times that of the spring box and the center of mass is located 50
cm over the pivot point of the GAS filters. The mechanical solution foreseen for

2As part of the lower frequency tuning process, optimization of the GAS system would have
required a complete frequency versus load scan of the vertical degree of freedom, to set the payload
at the GAS minimum frequency point. Even this step was not performed for lack of time.

3The effects of creep [47] in the SAS structure have been neutralized by prolonged baking
under load after assembly.

4This, as well as time constraints, is the reason why, in absence of working controls of the
static positioning, in the first implementation we chose a conservative tune of both GAS filters and
the IP table, at twice or more of achievable frequencies.
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Figure 6.3: Optics table displacement power spectrum of the x, z and yaw (6,) de-
grees of freedom. Only weak DC control loops are closed. The straight line is the
HAM requirement refernce. The spectrum can be considered as a measurement of
the passive performance of HAM-SAS.

this problem is to implement a lower tuning of the vertical frequencies, by an ad-
ditional compression of the GAS filters’ blades (or by EMAS control), until the
natural larger damping at lower frequency neutralizes these resonances.

As already pointed out in sec. 4.2.3, the geophones are inertial sensors and
thus affected by tilt-to-horizontal coupling. For this reason in x and y spectra,
especially at low frequency, where we suspect the effect to be more important,
we cannot distinguish between the actual horizontal motion and what is angular
motion of the vertical DOFs sensed as horizontal motion. Under 100 mHz the
measurements from the geophones have then to be considered with that caveat. As
explained in sec. 4.2.3, the tilt contribution could be subtracted out of x if we had
an independent and reliable measure of it. The tilt signal is useful for subtraction
from the horizontal signal if it is coherenthas coherence with the horizontal signal.
But neither the tilt measured by the vertical geophones (i.e. R, in fig.6.3), nor
the optical lever were found to be coherent with the horizontal signal. For the
geophones the reason is that their sensitivity decreases significantly below 100 Hz
whereas a very high accuracy would be needed to measure a tilt angle from the
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Figure 6.4: Damper magnets installed to attenuate the wire and tilt correction
spring’s resonance.

difference of two vertical signals®.

6.3.2 Getting to the Design Performances

The HAM SAS mechanics is equivalent to that of an extremely large seismometer.
Its mass is basically completely inertial at high frequency, while in the low fre-
quency band it moves around under the influence of tilt for the horizontal direction
and in a way which is also affected by the hysteresis of the materials used to build
its flexures. Like the mass of any horizontal accelerometer, the dominant frac-
tion of its horizontal residual motion is excited by ground tilt. Ideally, this sort
of random motion, in absence of any damping mechanism, would be enhanced
indefinitely as the resonance frequencies are tuned toward zero frequency®. If a
suitable evaluation of the ground tilt were available, the part induced by the tilt of
the residual motion could be eliminated by feed-forward controls’.

Without any closed loops on the system, the LVDT signals from HAM SAS
are equivalent to those of an array of seismometers (fig.6.5). Then the control
strategy consists in having no control at high frequency, where its attenuation
performance corresponds to the sensitivity limit of seismometers and geophones,
and to reduce the residual motion by tying the system to ground at the lowest
frequencies by means of LVDT signal feedbacks. The LVDTs, being relative
position sensors, are not directly influenced by tilts. Important is the choice of
of filters and of the optimal u.g.f. to avoid feeding LVDT and actuation noise to
the high frequency side, where the performance is already equivalent to that of an

>This is basically the same reason why it is not easy to have reliable tilt-seismometer sensors.

The limit case, for zero frequency tune, is that of a mass on a completely frictionless table,
which would move to infinity for even the slightest table tilt

"The feed-forward filtering is an alternative for feedback for the seismic noise attenuation when
a signal correlated to the noise is available. The idea is to produce a secondary noise source such
that it cancels the effect of the primary noise at the location of the error sensors.
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SAS and the optics table can bee considered as afree mass in that range and thus the
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the Y-axis is um/ VH?).

ideal seismometer. The process is analogous to, and shares the same noise sources
of an active attenuation system, where the signal of position sensors is used to
stabilize the r.m.s. displacement at the lowest frequencies, and which is blended
into the signal of the best available seismometer above a critical frequency. In both
active and passive systems the amount of low frequency r.m.s. residual motion is
determined by the u.g.f., and in both systems the horizontal residual motion can
ideally be reduced by means of tilt meter signals.

The low frequency seismic residual motion can be amplified by the quality
factor of the mechanical resonances of the system. The effects of these resonances
in SAS can be eliminated in two ways. The resonances can be damped - like
in most seismometers - by electromagnetic damping, or by driving the motion
resonances sufficiently low in frequency that the quality factor drops. If the quality
factor becomes smaller than 1, the system is completely dominated by tilt and by
the internal forces in its flexure materials.

SAS has two ways to control its resonant frequencies. First the frequencies
are minimized mechanically, by increasing the load of the IP tables and the ra-
dial compression of the GAS filters as close as possible to the critical point. This
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process is practically limited only by the onset of hysteresis. After getting to the
limits of the mechanical tuning, the resonance frequencies can be further reduced
by means of the electromagnetic spring control system (EMAS)®. Since strong
EMAS can reintroduce control noise, it is first important to mechanically min-
imize the frequency resonances’. An other benefit of minimizing the resonant
frequencies is that the actuator authority requirements are reduced, and thus also
the noise re-injection due to the electronics.

6.3.3 Lowering the Vertical Frequencies

It is know that for oscillators at very low frequency hysteresis becomes an impor-
tant effect and that the quality factor scales with the square of the frequency (see
sec. 2.3.5, [53]). Thus we implemented the Electro-Magnetic Anti-Spring (see
sec.5.3.4) controls system to the vertical degrees of freedom with the purpose to
damp the vertical resonance and to increase the attenuation factor. Figure (6.6)
shows the results of this strategy. The vertical frequencies are all shifted below
100 mHz and the vertical power spectrum easily meets the requirements. All the
resonant frequencies of the six modes are then concentrated in the low frequency
region. As a consequence the effect of the coupling between the horizontal and the
vertical DOFs and tilt became more and more important the measured horizontal
displacement exceeds the requirements.

We tried to damp the resonances at low frequencies with damping control
loops in every DOF but the price for an appreciable reduction of the horizontal dis-
placement was a large control bandwidth and then a significant noise re-injected
above 1 Hz.

Also, the EMAS made the system less stable and a small environmental change
like a person walking close by the HAM chamber could trigger an instability in
the loops.

6.3.4 Active Performance

We found that the best performance can be achieved with only position controls
and damping controls in parallel, tuned in order to have u.g.f. between about 0.5
and 1 Hz. Optimizing the gains and the bandwidth for each loop, we ensured the
stability and reduced the noise re-injection at high frequency as much as possible
(fig. 6.8). The results for x and z are shown in fig.6.11.

8The EMAS springs are a more complex system, but have the advantage that they can be easily
coupled with very low u.g.f. static positioning feedback, to counter the otherwise dominating
hysteresis effects.

°In the present tests the mechanical tuning was halted roughly twice above previously achieved
levels
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Figure 6.6: Electromagnetic Anti-Springs are applied to move the vertical reso-
nances to lower frequencies in order to reduce their quality factors and lower in fre-
quency the onset of the attenuation rolloff. The strategy succeeded for the vertical
DOFs although all the 6 modes were then located in the range of few tens of mHz
where they inter-couple. As a result the detected horizontal displacement increased.

The power spectra for the vertical direction meets the requirements in all range
of frequencies, except for a small residual peak still present in correspondence
of the vertical modes. The horizontal displacements is in agreement with the
requirements as well, except for the very low range where, as we already pointed
out, the geophones are not reliable in the horizontal directions because of the tilt-
to-horizontal coupling. It must be said that we found no coherence with the tilt
measurements as obtained from the optical lever (fig.6.9).

With this minimal control strategy applied (figg.6.7,6.7), we measured the
transmissibilities between the ground seismometers and the geophones on the
optics table (fig.6.12,6.13,6.14). Within the limits given by the coherences, the
transmissibilities show attenuation factors of -70 dB in the horizontal degrees of
freedom and of -60 in the vertical. These values correspond to the design and
simulations performances.

The experience with SAS systems ([15], [23]) makes us confident that, with
more reliable sensors and seismometers and the applications of the other sub-
systems like the COP correction counterweights on the IPs and of the “magic
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Figure 6.7: The plot shows the transfer function amplitude and phase of the position
and damping combined control for the horizontal mode X that we applied to obtain
the performances which met the seismic attenuation requirements. The same filter
shape, but with different gains and locations of poles and zeros adapted to the specific
physical plant responses are applied to the other modes.

wands” on the GAS filters, these performance could be extended to -100 dB in the
horizontal DOF and -80 dB in the vertical while minimizing the low frequency
r.m.s.residual motion at the same time.

6.4 Ground Tilt

Even if the displacement noise at very low frequency can be significantly attenu-
ated by the damping controls, the source of much of the measured horizontal geo-
phone noise still remains not definitely identified. The seismic noise measured by
the seismometers does not explain it unless it comes from angular seismic noise,
which the seismometers would not sense.
According to the model of section 2.4.2 the response of the IPs to the ground

tilt is

A + Bw? kg/lz
= Xo +

A—-Cw? A-Cu?

X (6.10)
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Figure 6.8: The plot shows the Bode plot of the open loop transfer function GC for
the x degree of freedom. The same strategy is applied to all the DOFs. The u.g.f.
is chosen as a trade off between the necessity to damp the low frequency resonances
and the re-injection of high frequency noise. In this case u.g.f.=100 mHz.

where O represent the angular spectrum of the ground. Since direct and accu-
rate measurements of the ground tilt do not exist, the classical model, very often
adopted to have an estimation, relies on the Rayleigh waves propagation model.
In it, as discussed in the first chapter, the ground tilt noise spectrum is proportional
to the vertical component of Rayleigh waves divided by the propagation speed. As
discussed in chapter 1, the coupling factor between the nominal ground tilt ® and
its translational motion X, varies from 1073 to 10~ rad/m and thus, ideally, the
contribute should be negligible. However the model does not take into account
local environmental factors like the wind and anthropogenic activities which can
tilt the local structures (buildings) and are more likely to make the contribution
dominant at very low frequencies. The experience from the HAM-SAS prototype
and the seismic team at Virgo ([52]) reinforce that hypothesis, although the ulti-
mate proof will come when reliable tilt-seismomters will be available. Both LIGO
and Virgo are now strongly involved in the development of such sensors.
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Chapter 7

Conclusions

HAM-SAS represents the convergence of more than ten years of R&D carried
out at LIGO by the SAS group to develop passive and ’soft’ solutions for the
seismic isolation systems of Advanced LIGO. The several technologies produced
and the know-how acquired in the past years merged into one complex system
designed for a specific task in the intermediate and advanced interferometers. The
HAM-SAS first item produced served as a test bench for the SAS systems for
Advanced LIGO, to prove to measure up the leap from the lab to the site, from
single separate systems to a multi stage reliable attenuator for an actual high-
requirement optical bench. The results discussed in this thesis show that HAM-
SAS was able to accomplish that task. We proved that the system is able to support
and control the HAM optics table in in a facility similar to those of the sites that
the LASTI vacuum chambers reproduces. We showed that along each degree of
freedom the system, in its passive configuration, responds like a second order
filter with attenuation that manifestly falls as 1/w? up to 10 Hz, reaching -60 dB
in the vertical and -70 dB in the horizontal. Above that frequency the attenuation
is limited by the familiar plateaus produced by the center of percussion effect
of inverted pendulums and GAS filters. This made us confident that, having the
possibility to implement the SAS solutions for this limitations, an additional order
of magnitude in attenuation could be likely achieved in all directions.

The geometry of the system allowed us to apply straightforward control strate-
gies. Vertical and horizontal degrees of freedom are in first approximation inde-
pendent in most of the frequency range. For both the horizontal and the vertical
stages we treated each mode individually and designed control loops to damp the
resonances and control the static position. With such limited bandwidth controls
we could bring the displacement noise power spectrum of the platform to meet the
Advanced LIGO requirements for the HAM chambers practically at all frequen-
cies. Since the controls inevitably re-inject some noise at high frequency, a further
improvement of the performance would come from setting the vertical modes at
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lower frequencies by re-tuning the GAS filters, improving the tilt correction sys-
tem and adding some mass to the IP table. Since the Q factors reduce with w? we
expect that the reduction of the resonant frequencies will also reduce or eliminate
the need for viscous resonance damping.

The residual motion at very low frequency, especially in the horizontal de-
grees of freedom, was larger than expected. In that frequency region we found
the sensitivity limit of the geophone sensors and of the seismometers which made
hard to clearly distinguish between the contribution from the environment and
the part played by the system. We suspect the role of the ground angular noise
to be determinant in overwhelming the sensor signals. Unfortunately no reliable
measurement of the angular spectrum could be obtainable from the available seis-
mometers on ground. The issue of the seismic angular noise touches HAM-SAS
but it is getting growing attention from both LIGO and Virgo in view of advanced
suspensions.

HAM-SAS showed very interesting performances as a seismic attenuation sys-
tem. It was a complex project and it happened within a very tight time schedule
that did not leave sufficient room for the complete optimization of the system. As
we could expect from a prototype, we encountered many problems and difficul-
ties, but we solved many and we learned from each of them becoming confident
in the HAM SAS potentialities as a platform for seismic isolation in Advanced
LIGO.
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