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Introduction

The VIRGO project is an Italian–French collaboration for the realization of an inter-

ferometric antenna for gravitational wave detection and observation. Gravitational

waves are predicted by Einstein’s theory of general relativity and, up to now, they

remain undetected. Nevertheless, the observation of PSR1913+16 binary pulsar has

provided an indirect evidence of gravitational wave existence: the orbital period de-

cay rate is in good agreement with general relativity predictions about the energy

and angular momentum loss due to gravitational radiation emission.

The detection of gravitational waves is extremely difficult because of the weakness

of their coupling with matter. Only in the last decade, the realization of detection

apparatus with unprecedent sensitivity in a wide band of frequencies, from a few tens

of Hz to some kHz, has become conceptually possible. The basic idea is to detect the

passing through of a gravitational wave by measuring the small displacements induced

on the mirrors of a suspended interferometer with a few kilometers long arms.

Among the interferometric gravitational wave detectors which will be operating in

a few years, VIRGO is the only one whose optical components are being suspended

by means of sophisticated devices capable of isolating the interferometer from the

seismic noise. The vibrations of the soil, either natural or caused by human activities,

if not attenuated, are transmitted to the interferometer mirrors throughout their

suspensions, so inducing spurious displacements capable to mask the weak effects

of a gravitational wave. Since such vibrations are larger at low frequencies, the

sensitivity of a ground based antenna is limited in that spectral region where several

gravitational signals are expected to be emitted by pulsars and coalescing binaries.

Seismic attenuation allows to extend the detection band down to a few Hz.

For about ten years, Pisa VIRGO group has been engaged in the development of

such suspension systems, called superattenuators. The below described work of thesis

v



vi Introduction

is part of this research field. At present, four superattenuators are working to suspend

the optics of the interferometer central part, where the laser beams cross each other.

The assembling of the last two suspension systems, those for the two end mirrors of

the Fabry–Perot cavities, is in progress and will be terminated within the end of 2002.

This thesis concerns the development and the realization of three items of the

complex suspension system:

1. The magnetic antispring allowing the reduction of the vertical resonant fre-

quencies of the superattenuator.

2. The absorption devices designed to attenuate the internal modes.

3. The steel blade springs for the vertical attenuation.

The thesis is divided into 9 chapters. Chapter 1 and 2 are an introduction to

the theory of gravitational waves, expected sources and interferometric detection

techniques. In chapter 3 a description of the VIRGO apparatus and its expected

sensitivity are found. In chapter 4 we describe in detail the superattenuator and its

performances. The experimental work done is developed in the remaining chapters.

Chapter 5 concerns the characterization of the magnetic antispring. The absorption

devices for the internal modes are the subject of chapter 6. The creep problem related

to the blade springs and its solution are described in chapter 7. Finally, in chapter

8 and 9 we show some important results about the performances of short and tall

superattenuators, respectively.



Chapter 1

Gravitational waves

The description of an apparatus for detecting and studying gravitational waves cannot

leave out of account from answering to a stringent question: what are gravitational

waves? An exhaustive and formally rigorous answer is deferred to general relativity

treatments[1, 2, 3]; in this thesis, since its experimental contents, we will just delineate

some of the fundamental steps that lead to the definition of currently used quantities

of gravitational wave physics.

The existence of gravitational waves is predicted by Einstein’s theory of general

relativity[4]. The basic idea is that the presence of mass curves the surrounding

space–time and that sudden variations of mass distribution induce perturbations of

the metrics which propagate at the speed of light: the gravitational waves.

Because gravitational waves weakly interact with matter, they can travel through-

out very dense regions without suffering any alteration. Therefore, their detection,

beside providing a further proof of the theory of relativity, would open a new in-

vestigation channel especially for those regions of the universe that are inaccessible

through electromagnetic emission observation.

In order to realize a detector we need to estimate the order of magnitude of the

effect that gravitational waves produce hence, it is opportune to remind some results

of Einstein’s general relativity.

1



2 Chapter 1. Gravitational waves

1.1 Gravitational radiation

According to the theory of general relativity, Einstein’s field equations determinate

the form of the metric tensor gµν which describes the space–time metrics. In absence

of gravitational field it is reduced to the Minkowski tensor

ηµν = Diag {−1, 1, 1, 1} . (1.1)

Einstein’s equations are non linear and have no analytical solutions. Nevertheless,

in the weak field approximation, we can treat them in a pertubative way. The metrics

in regions of space–time where the gravitational field of astrophysical objects is weak,

can be written as the Minkowski tensor plus a small perturbation describing the

deviation from a flat space–time:

gµν ' ηµν + hµν , (1.2)

with |hµν | � 1. To the first order with respect to hµν the field equations are linear.

With a suitable choice of gauge (harmonic gauge), Einstein’s equations assume the

familiarly form of wave equations(
∇2 − 1

c2
∂2

∂t2

)
hµν = 0, (1.3)

which describe the perturbation hµν as a wave propagating at speed c. The freedom

in the choice of the coordinate system can be used again to impose the tensor h to

be transverse and traceless (TT gauge). In this gauge the coordinates are marked by

the world lines of freely falling masses, that is, the coordinates of freely falling test

masses are constant.

Assuming ẑ as the propagation direction, one can write the plane wave solutions

of (1.3) in the form:

hTT
µν (z, t) = (h+e

+
µν + h×e

×
µν)e

i(ωt−kz), (1.4)

where the tensor h has been divided into two independent polarization states of

amplitude h+ and h×, respectively, and represented by the tensors

e+ =


0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0

 and e× =


0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

 .
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From these results we can conclude that, for the characterization of a gravitational

wave, five parameters are necessary: two angles for the propagation direction, the

amplitude of the two independent polarizations and their relative phase.

1.2 Generation of gravitational waves

The emission of gravitational waves is associated to mass acceleration as the emission

of electromagnetic radiation is associated to charged particle acceleration. In the

linear approximation regime, as in electromagnetism, if the size of the source is small

compared to the wavelength and to the distance from the observation point, we can

solve the non homogeneous Einstein’s equations through a multipolar expansion of

the emitted radiation.

The momentum and angular momentum conservation laws make vanishing the

contribution of the equivalent of electric dipole and magnetic quadrupole[7] hence,

the first term of the expansion which can be not vanishing is associated to the variation

of the quadrupole moment tensor of a mass distribution, defined as:

Qij =

∫
V

ρ(~x)

(
xixj −

1

3
|~x|2

)
dV, (1.5)

where ρ(~x) is the mass distribution and we have supposed that the involved velocities

are not relativistic. The amplitude at distance r of the gravitational wave emitted is

given by[7]:

hTT
ij =

2G

rc4

[
d2QTT

ij

dt2

]
(t− r

c
)

, (1.6)

where G is the gravitational constant and the acceleration of quadrupole moment is

taken at retarded time t − r/c. The factor G/c4 ∼ 10−44 in MKS units, justifies the

assumption about the weakness of gravitational waves. Moreover, it comes out from

(1.6) that gravitational waves cannot be emitted in spherically symmetric motion of

matter.

The power emitted in form of gravitational radiation (luminosity) is:

L =
1

5

G

c5
〈

...

Qij

...

Qij〉, (1.7)
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where 〈〉 indicates the time average over several periods of the wave or over the wave

burst duration. Equation (1.7) can be used to estimate the luminosity of an astro-

physical source of mass M and characteristic radius R. Let T be the characteristic

evolution time of the source and let ε be a factor measuring the asymmetry in the

mass distribution. The quadrupole moment is roughly Q ∼ εMR2 and the luminosity

is then:

L ∼ ε2
G

c5
M2R4

T 6
. (1.8)

The factor G/c5 strongly suppresses the gravitational emission. On the other hand,

by expressing the source mass in terms of the Schwarzschild radius: RS = 2GM/c2

and introducing a characteristic speed v = R/T , the (1.8) reduces to:

L ∼ ε2L0

(
RS

R

)2 (v
c

)6

, (1.9)

where we find that L0 is now c5/G = 3.2 × 1052 W! In spite of our hypothesis of

weak fields and slowly moving matter, this surprising result points out the relevance

of gravitational waves emission for compact and relativistic objects.

1.3 Astrophysical sources

From the previous sections, in particular from equation (1.8), one can deduce how it

is impracticable to construct a laboratory source of detectable gravitational waves.

Astrophysical processes involving high acceleration of a great amount of matter are

the sources of gravitational waves best accessible to detection. The predictions about

the shape of such emissions and the number of events depend on the theoretical models

adopted for describing each of these processes and are affected by large uncertainties.

According to their time behaviour, gravitational waves are usually classified into

three categories: burst, periodic waves and stochastic waves. Similarly, it happens for

the respective astrophysical sources[8].

1.3.1 Burst sources

Bursts are waves which last for only a few cycles or at most for times short compared

to a typical observation run. This kind of gravitational signals are expected to be
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emitted in supernova explosions. Some years ago supernovæ were believed to be

the gravitational wave sources most likely to be detected. Today it is clear that the

theoretical models of emission in a stellar collapse are affected by serious uncertainties

due to the approximation used into the numerical codes and to the wide range of

possible initial conditions.

The intensity of the emitted radiation depends mostly on the amount of the stel-

lar mass converted into gravitational waves and the non–spherical symmetry of the

collapse dynamics. Indicating with ∆E the total energy radiated and with f the

characteristic frequency (the inverse of the collapse time), the amplitude of the grav-

itational wave is[8]:

h ≈ 2.7× 10−20

(
∆E

M�c2

) 1
2
(

1 kHz

f

) 1
2
(

10 Mpc

r

)
, (1.10)

where r is the distance from the Earth and M� is the mass of the Sun. The rate

of occurrence of supernovæ in our Galaxy is roughly three per century; out to the

distance of the center of Virgo cluster of galaxies (10 Mpc) several per year. This

cluster of hundreds of galaxies in the Virgo constellation is a good candidate to gravi-

tational wave emission since an enormous amount of stars is localized, astronomically

speaking, in a relatively small range of distances.

Another important process expected to involve emission of bursts is the coales-

cence of compact binaries. In binary systems formed by compact objects like neutron

stars or black holes, the energy loss due to gravitational radiation reaction could be

sufficient to drive the two bodies into coalescence in time less than the age of the

universe. As the two bodies spiral together, they emit periodic gravitational waves

(coalescence chirp) with a frequency that sweeps towards a maximum of some kHz

immediately before coalescing. Probably, the process ends with the formation of an

excited and asymmetric black hole also emitting gravitational waves.

By the way, it is important to notice that the only, though indirect, experimental

evidence of gravitational radiation comes from a compact binary system. The orbital

parameters of PSR1913+16, a pulsar moving in the strong gravitational field of a

dark companion, have been accurately determined by measuring the Doppler shift

of the radio pulses coming from the system: the orbital period rate of decay is in

good agreement with general relativity predictions about the energy and angular

momentum loss due to gravitational radiation emission[5, 6]. Unfortunately, detecting
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the gravitational waves emitted by this system is a hopeless attempt for a realistic

ground based antenna since the orbital period is of about 8 hours: as it will be shown

in the following, the sensibility of such detectors is limited by the seismic noise below

few Hz. The system is expected to coalesce in 3.5× 108 years.

In the Newtonian part of the frequency sweep, f � fmax, the amplitude of the

wave is easily computed from the quadrupole formalism[8]; if M and µ indicate the

total mass and the reduced mass of the system, respectively, and r is the distance

from the source, one can find:

h ≈ 10−23

(
M

M�

) 2
3
(

µ

M�

) (
f

100 Hz

) 2
3
(

100 Mpc

r

)
, (1.11)

where M� is the solar mass and f is the frequency of the signal, that is twice the

orbital frequency. Moreover, the time τ the signal spends in the vicinity of the

frequency f , defined as the ratio f/(df/dt), is given by:

τ ≈ 7.8

(
M�

M

) 2
3
(
M�

µ

) (
100 Hz

f

) 8
3

s. (1.12)

As it will be shown in the next chapter, the sensibility of a detector at a certain

frequency is proportional to the square root of the observation time. Equation (1.12)

shows that the time we can observe the signal at a frequency f increases as f decreases,

thus the gravitational signals coming from coalescing binaries can be detected also in

the low frequency region in spite of their lower amplitude.

The estimated event rate for coalescing neutron stars and black holes of a few

solar masses at 100 Mpc, is some unit per year. Bursts can be generated in other

processes like the collapse of a star or a cluster of stars to form a black hole or the fall

of stars or small black holes into supermassive black holes. It is important to stress

that all this processes could be, in principle, strictly connected with other observable

phenomena like light emissions and neutrinos or gamma ray bursts.

1.3.2 Periodic sources

Periodic sources emit gravitational signals whose frequency remains constant over

a long period with respect to the observation time. Pulsars could be such kind of

sources. A pulsar is interpreted as a rotating neutron star with magnetic moment
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Figure 1.1: The integrated distribution of 703 galactic pulsars with to respect to the
gravitational wave emission frequency[10].

not parallel to the rotation axis. According to (1.6), deviations from axisymmetry

in distribution of mass can be responsible of the emission of gravitational waves. An

estimation of the amplitude of this waves is given by[8]:

h ≈ 7.7× 10−20ε

(
Izz

1045g cm2

) (
f

10Hz

)2 (
10kpc

r

)
, (1.13)

where Izz is the moment of inertia of the star about its rotation axis and ε is its

“gravitational ellipticity” in the equatorial plane. An upper limit for this ellipticity

is suggested to be ∼ 10−4 ([9] and references therein).

The gravitational waves emitted by these sources are weak but the Signal–to–

Noise Ratio can be increased by integrating the signal for a long time. Moreover, it is

possible to go up to the polarization state and to the origin direction of the observed

signal by exploiting the variations of the antenna orientation due to the Earth motion.

It is a good feel that in our Galaxy there are 106 pulsars and, among these, thousands

are candidate to emit gravitational waves with frequencies varying from fraction of

Hz to more than 100 Hz (see fig. 1.1).

Periodic gravitational signals are also emitted by binary stars and, if these are

visible, all the parameters that determine the emission of gravitational waves can

be evaluated by means of electromagnetic measurements. The amplitude of these

periodic waves is given by an equation very similar to that for coalescing binaries in
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newtonian phase:

h ≈ 8.7× 10−21

(
M

M�

) 2
3
(

µ

M�

) (
100 pc

r

) (
f

10−3 Hz

) 2
3

, (1.14)

where M and µ are the total and the reduced mass of the system, respectively, M�

is the solar mass, f the frequency of the signal (twice the orbital one) and r is the

distance from the source.

Unfortunately, ordinary binaries have orbital periods not shorter than one hour

and correspondent frequencies of emitted gravitational waves lower than 10−3 Hz. As

mentioned above (and shown in next chapter), the detection of signals with so much

low frequency is not achievable by ground based antennæ because of the seismic noise.

1.3.3 Stochastic background

The stochastic gravitational radiation consists of randomly superimposed individual

components which form an isotropic background. The possible sources are several:

neutron stars, binary stars, pregalactic population of massive stars and unknown

sources plus a probable relic background of cosmological origin[8].

Probably, a stochastic signals that could be detected by a ground based interfero-

metric antenna is emitted by the about 106 neutron stars grouped in the center of the

Galaxy; their incoherent noise would be modulated with a period of 12 hours since

the effect of the Earth rotation on the antenna orientation and thus would become

observable.

1.4 Detection of gravitational waves

The experimental search for cosmic gravitational waves started with Joseph Weber[11]

in the sixties. He used, as detectors in coincidence, two resonant bars laying in two

different sites of USA. A resonant bar detector is essentially a suspended cylinder,

about one ton weight, whose main internal mode of oscillation is excited by the

impinging gravitational wave. A transducer transforms the small vibrations of the

test mass in electric signals. Once reduced all the sources of noise, this kind of detector

is efficient only in a narrow band of frequency around its main resonant frequency

(typically of the order of one kHz).
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x
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t = T/2

t = T/4

t = 3T/4

t = 0

Figure 1.2: Laboratory view of the effect over a circle of freely falling test masses, located
in the x-y plane, of a “+” polarized (on the left) and a “×” polarized (on the right)
gravitational wave of period T, propagating in the z direction. A Michelson interferometer,
whose beam splitter is placed to the center of the circle and whose two end mirrors are
along the axes x and y, is also shown.

Considerable improvements have been done since Weber’s first detector to enhance

the sensitivity, till to get over, in narrow band, the expected level for the interfero-

metric antennæ. These kind of newly conceived detection apparatus are the aim of

several research projects all over the world. VIRGO is one of these. The working

principle of an interferometric detector is described below.

Let us consider a “+” polarized gravitational plane wave of frequency f propa-

gating in the z direction. According to (1.2) and (1.4), the metric element is written:

ds2 = −c2dt2 + [1 + h(z, t)] dx2 + [1− h(z, t)] dy2 + dz2. (1.15)

Suppose now to have a Michelson interferometer whose beam splitter is placed in

the origin of the reference frame. Its two end mirrors lie at a distance L along the x

and y axis, respectively. Let the optics of the interferometer be freely falling masses.

For a photon ds2 = 0 holds, hence it is possible to calculate from (1.15) the time the

light takes to complete a round trip in each arm of the interferometer. In the x arm

the light travel time from the beam splitter to the end mirror is:

τ (1)
x =

∫ t1

0

dt =
1

c

∫ L

0

√
1 + h(t)dx ' 1

c

∫ L

0

(
1 +

1

2
h(t)

)
dx. (1.16)
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In the same way, the return trip takes a time

τ (2)
x ' 1

c

∫ 0

L

(
1 +

1

2
h(t)

)
dx. (1.17)

The two integrals can be easily calculated by replacing h(t) with h0e
i2πft and remem-

bering that t = x/c in (1.16) and t = (2L−x)/c in (1.17). Hence, the resulting travel

time is:

τx = τ (1)
x + τ (2)

x = τ0 +
h0

i4πf

[
ei2πfτ0 − 1

]
, (1.18)

where τ0 = 2L/c is the classical travel time for a complete round trip.

Along the y axis the light picks the effect of h22 = −h11 and one gets:

τy = τ0 −
h0

i4πf

[
ei2πfτ0 − 1

]
. (1.19)

For low frequency wave (fτ0 � 1), the perturbation h can be considered constant

during the light round trip, so the second term in right hand side of (1.18) and (1.19)

can be approximated to hτ0/2.

From the point of view of an observer in the laboratory, the variation of travel

times can be interpreted as a variation in the arms length due to the impinging

gravitational wave (see fig. 1.2). In the low frequency approximation we can write:

Lx(t) =
1

2
cτx = L

(
1 +

h(t)

2

)
(1.20)

for the x arm and

Ly(t) =
1

2
cτy = L

(
1− h(t)

2

)
(1.21)

for the y one.

When the two waveforms arrive to the the beam splitter they are thus “out of

sync” and a photodiode at the output of the interferometer would measure a phase

variation

δφ(t) =
4πL

λ
h(t)eiπfτ0

sin(πfτ0)

(πfτ0)
, (1.22)

where λ is the laser wavelength.

From the above description it is clear that an interferometer can be used as a

gravitational wave detector. The interferometer response is plotted in fig. 1.3 as a
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Figure 1.3: Phase response of an interferometer to gravitational waves of fixed amplitude
10−21, for different lengths of the arms. The phase shift increases with increasing arms
length, at the cost of a bandwidth reduction. The performance of a 3 km Fabry–Perot (FP)
interferometer like VIRGO (see next chapter) is comparable to that of a 100 km Michelson.
The response of a 5×106 long Michelson (like the forthcoming space interferometer LISA[29])
is also shown.

function of the impinging gravitational wave frequency: the interferometric transducer

acts as a low pass filter starts attenuating at frequencies f ∼ c/2L, that is when the

period of the wave is comparable to the travel time τ0. For low frequency wave the

interferometer response is flat:

δφ(t) =
4πL

λ
h(t). (1.23)

The latter equation shows straightforwardly that the longer the arms of the interfer-

ometer, the bigger the phase shift due to a gravitational wave.





Chapter 2

Interferometric antennæ

The newly conceived interferometric antennæ show a wide band sensitivity. They are

indeed designed for detecting gravitational signals with frequencies ranging from a few

Hz to some kHz. The difficulties in realizing such an apparatus can be summarized

by a single, astonishing number: 10−18 meters! It is the order of magnitude of the

mirror displacements when a typical impulsive gravitational signal of extragalactic

origin, whose amplitude is expected to be h ∼ 10−21, impinges an interferometer with

3 km long arms, like VIRGO.

In principle, what happens is described in the last section of the previous chap-

ter. The VIRGO interferometer has vertically suspended optical components and the

gravitational wave effects are measurable on the horizontal plane. Beside the reduc-

tion of the frequency band accessible to the detection, the suspension transmits to

the mirrors the ground vibrations, so limiting the interferometer sensitivity. Other

sources of noise are bound to the electronics, to the laser source, to the mechanics

and thermodynamic characteristics of all the components of the apparatus and, last

but not least, to the variation of local gravitational field.

It is well understood how extending the detection band and, at the same time,

keeping the noise level reasonably low, means remarkable scientific and technological

efforts but represents also a challenging and ambitious goal.

13
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2.1 The suspended interferometer

Let us consider a test mass m suspended to a rigid structure by means of a thin wire

of length l, i.e. a simple pendulum. For small oscillations, the well known equation

of motion of the mass m is:

mẍ+
mg

l
x = Fext(t), (2.1)

where Fext is an external force applied to the the mass and we are neglecting the

dissipation term. In the frequency domain the solution is given by:

x̂(ω) =
F̂ext(ω)/m

ω2
0 − ω2

, (2.2)

where ω0 =
√
g/l holds. For frequencies ω � ω0 this equation becomes:

mω2x̂(ω) + F̂ext(ω) ' 0 (2.3)

and, getting back to the time domain, we find:

mẍ ' Fext(t) (2.4)

that is, the mass responds to the external force as it was free.

In section 1.4 we calculated the effect of a gravitational wave on a Michelson

interferometer with freely falling optics. Equation (2.4) shows that a ground based

interferometer, whose optical components are suspended to form pendulums, behaves

like a freely falling one for frequencies of the impinging gravitational wave above the

pendulum resonant frequency.

Above a certain frequency, the phase response of a suspended interferometric

receiver is described by the equation (1.22) for a gravitational waves propagating

in the vertical (z) direction and with polarization axes parallel to the arms of the

interferometer. If the gravitational wave is coming from a generic direction picked

out by the two angles θ and ϕ and with polarization axes rotated at an angle ψ

relative to the plane ϕ = const, as sketched in fig. 2.1, in the equation (1.22) h(t)

has to be replaced by the factor[12]

[F+ (θ, ϕ, ψ)h+(t) + F× (θ, ϕ, ψ)h×(t)],
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Figure 2.1: The angles θ, ϕ and ψ that characterize the propagation and the detection of
a gravitational wave.

where:

F+ (θ, ϕ, ψ) = 1
2
(1 + cos2 θ) cos 2ϕ cos 2ψ − cos θ sin 2ϕ sin 2ψ

F× (θ, ϕ, ψ) = 1
2
(1 + cos2 θ) cos 2ϕ sin 2ψ − cos θ sin 2ϕ cos 2ψ.

(2.5)

From equations (2.5) we can deduce that the interferometer, even if it has a

fixed orientation, can detect gravitational waves propagating in whatever direction

except the ones along both the bisector of the angle formed by the two arms and its

perpendicular (θ = π/2, ϕ = ±π/4 rad).

2.2 Noise in an interferometric antenna

Several sources of noise can introduce spurious signals capable to mask the weak

effects due to an impinging gravitational wave. Some of them affect the position

of the optical components (displacement noise), others are intrinsic noises of the

read–out system (phase noise). Anyhow, they affect the phase shift recorded by the
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photodiode at output of the interferometer.

In order to compare it to the expected signal hS(t), one can consider the contri-

bution of the noise to the phase shift as well as it was due to a fictitious gravitational

wave of amplitude hN(t). In the following, we will refer to this as the equivalent strain

noise. Since noise has a stochastic behaviour, it is better to describe it in terms of

its power spectral density (or simply spectrum):

SN(f) = lim
T→∞

1

T

∣∣∣∣∣
∫ T/2

−T/2

hN(t)ei2πftdt

∣∣∣∣∣
2

. (2.6)

In the gravitational wave community, the single–sided (defined only for positive

frequencies) linear spectral density or linear spectrum is used rather than (2.6):

h̃N(f)
def
=

√
2SN(f). (2.7)

Once known the linear spectral density of noise, it is possible to evaluate the

Signal–to–Noise ratio (SNR) in order to obtain the minimum amplitude that a grav-

itational wave must have for being detected. The SNR depends not only on the

absolute level of noise, but on many parameters such as the observation time, the

degree of theoretical knowledge of the gravitational wave emission and the data anal-

ysis strategy. Hence, knowing the amplitude of the wave and the noise of the receiver

is not enough to decide whether the signal is detectable or not. For instance, for a

burst signal of duration τ we can roughly write down the signal to noise ratio as:

SNR ' h
√
τ(

h̃N(f)
)

∆f= 1
τ

, (2.8)

where the linear spectral density of the noise is averaged over the bandwidth ∆f = 1
τ

of the signal. The larger the signal bandwidth, the more degraded the SNR. On the

other hand, the signal to noise ratio for a periodic gravitational wave of frequency

fGW depends on the observation time T :

SNR ' h
√
T

h̃N(fGW )
. (2.9)

The antenna sensitivity for periodic signals is proportional to the inverse square root

of the observation time, therefore, in spite of their small amplitude, periodic gravita-

tional waves are likely to be detected operating for a suitable integration time.
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Figure 2.2: Michelson interferometer with delay lines. Beams are made bounce back and
forth in the arms several times before they recombine onto the beam splitter. The phase
shift induced by the gravitational wave is so amplified.

2.3 Delay lines and Fabry–Perot cavities

As we pointed out in section 1.4, the interferometer arm lengths play a fundamental

role in increasing the phase response of the antenna (see eq. (1.23)). The need to in-

crease the phase shift due to a gravitational signal is dictated by the existence of noise

which affects only the phase of the laser beam without creating a real displacements

of the mirror. The detection condition (S/N ≥ 1) for the expected gravitational sig-

nals would require, for a simple Michelson interferometer, an unrealistic arm length

(also for budget reasons). A way to improve the phase response is to increase only

the optical path length of the beams by bouncing the light back and forth several

times along the arms before it returns to the beam splitter. In such a way the phase

difference induced in a single round trip is multiplied by the number of cycles the

light does in each arm. Current and planned interferometric antennæ are using one

of the two schemes described below: delay lines and Fabry–Perot interferometers.
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Figure 2.3: Fabry–Perot cavities are replacing the arms of the interferometer. The phase
shift induced by the gravitational wave is amplified by storing the light into the cavities for
a time depending on their finesse F .

2.3.1 Delay lines

In fig. 2.2 the optical layout of a Michelson interferometer with delay lines[14] is

sketched. The laser beams are made to bounce back and forth in the arms a large

number of times N before they recombine onto the beam splitter. When a gravita-

tional wave of frequency fGW impinges the interferometer, according to eq. (1.22),

the bouncing light beam will build up, during its N round trips, a total phase delay

δφD.L. =
4πNLh

λ

sin (πfGW τs)

(πfGW τs)
, (2.10)

where the storage time τs = 2NL/c is the amount of time the light spends into each

delay line. For low frequency wave (fGW · τs � 1) the phase response is N times

better than the the response obtained with a single bounce of the light.
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2.3.2 Fabry–Perot

In the Fabry–Perot system, as shown in fig. 2.3, each arm is operated as a resonant

Fabry–Perot cavity[15]: light from the laser is split at the beam splitter and enters

the two cavities through the back of the partially transmitting input mirrors. The

two end mirrors have reflectivity close to unit (within a p.p.m.) and the entering light

gets resonantly trapped into the cavities.

Slight changes in the length of each cavity drive the cavity slightly off resonance

and thereby produce sharp changes in the phase of the exiting light. Consequently,

when the light beams reflected by each cavity recombine at the beam splitter their

relative phase is highly depending on the modulation δL of the length L of the two

cavities.

The phase response to an impinging gravitational wave of a Fabry–Perot type

interferometric receiver is given by:

δφF.P. ' τs
8πc

λ

h√
1 + (4πfGW τs)

2
. (2.11)

Here the storage time τs is defined through the Fabry–Perot finesse F , a parameter

measuring the sharpness of the resonant cavity:

τs =
2L

c

F
2π
. (2.12)

When compared to a simple Michelson of the same length, a Fabry–Perot inter-

ferometer with cavities of finesse F shows a phase response F/2π times better, as

well as the actual length of the interferometer was increased by the same factor.

As for the case of a Michelson interferometer, with or without delay lines, the phase

response of the Fabry–Perot interferometer is quite flat until the frequency of the

observed gravitational wave becomes comparable to the inverse time the light spends

traveling into each arm: here the response starts decreasing because the photons

integrate the space–time perturbation over a whole (ore more than one) period of the

gravitational wave (see fig. 1.3).

At this point one might reasonably think that it is possible to indefinitely enhance

the phase response of an interferometric receiver, even of small dimension, by folding

the optical path into suitable delay lines or Fabry–Perot cavities. But unfortunately,

as we will show in the next sections, this would also increase the uncertainty on the
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Figure 2.4: Optical scheme of a Fabry–Perot interferometer with power recycling. The
recycling mirror between the laser and the beam splitter reflects the light back to the
interferometer which is locked on the dark fringe.

mirror position. Let us make a step behind to section 1.4 where we found out that

the phase shift due to the impinging gravitational wave could be also explained as a

strain of the arms of the interferometer: the “displacement response” only depends

on the actual arm length hence this one has to be chosen in such a way to overcome

the effects due to the noise affecting the mirror position.

2.4 Photon counting noise and quantum limit

An interferometric detector like VIRGO aims to measure length variations below 10−18

m, that is about 1/1000 of a proton diameter. This number would be meaningless

while thinking about the position of a single atom, whereas it makes sense if we deal

with a crystal made of a huge number of atoms whose averaged position is measured by

the laser beam wavefront. Nevertheless, a quantum limit to the achievable precision

exists, how predicted by the Heisemberg uncertainty relation.
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Actually, the ultimate noise which affects the phase shift at the output of the

detector is the photon counting noise ∆φpc due to the anticorrelated fluctuations ∆n

of the number of photons n in the interferometer arms, according to the uncertainty

relation 〈∆φ2〉 · 〈∆n2〉 ≥ 1. For a photon coherent state ∆n =
√
n and we can write

the phase fluctuations due to photons counting error as:

〈∆φ2
pc〉 '

1

n
=

hν

WT
, (2.13)

where h is the Planck’s constant, ν is the laser frequency, W is the power of the

beam entering the interferometer and T is the measurement time. The linear spectral

density of this phase fluctuation is straightforward:

˜∆φpc =

√
2hν

W
(2.14)

and we can find the linear spectral density of the equivalent strain noise affecting a

Fabry–Perot interferometer by inverting equation (2.11):

h̃FP
shot(f) =

λ

8πL

2π

F

√
hν

2W

√
1 + (4πfτs)2. (2.15)

The level of this noise, usually called shot noise, can be reduced by increasing the

power of light circulating into the interferometer[16, 17]. If the interferometer is locked

on the dark fringe, most of the power reflected back to the laser can be recycled by

inserting an additional mirror between the laser and the beam splitter which reflects

back the light towards the interferometer (see fig. 2.4). The interferometer can be

described as a composite mirror which, together with the recycling mirror, forms a

recycling cavity to be kept in resonance. With this power recycling technique the

power stored into the arms can be increased by a large factor, thus reducing the shot

noise level.

Beside the above mentioned phase noise, the quantum fluctuations of the number

of photons are also responsible of fluctuations in the radiation pressure on the mirrors

of the interferometer. The displacement noise produced ∆xpr is proportional to the

square root of the number of photons hitting the mirrors hence, to the power circu-

lating into the interferometer. The accuracy in measuring the mirror position is so

limited by the incoherent sum of this pressure radiation noise and the displacement
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noise producing the phase shift ∆φpc. In terms of linear spectral density, the total

displacement of a mirror of mass M is:

∆̃xn(f) =

√(
λ

4π

)2 (
1

2N

)2
2hν

W
+

(
1

2Mc

)2 (
2N

(2πf)2

)2

2hνW, (2.16)

where N indicates how many times the optical path is “folded”, i.e. N for the

delay lines and F/2π for the Fabry–Perot cavities. Folding makes decrease the first

contribution while enhancing the second in the right hand term of equation (2.16). At

a given frequency f there is an optimum laser power that minimize the total quantum

noise:

Wopt =

(
1

2N

)2
Mc2

ω
(2πf)2 (2.17)

and the corresponding minimum displacement is close to the standard quantum limit

for the accuracy with which the position of a mass M can be measured:

∆xql(f) =

√
h̄

M

1

2πf
. (2.18)

Actually, the interferometric receiver is very similar to the Heisemberg microscope:

here the mirrors are playing the role of the particle whose position has to be mea-

sured and the laser beam is the analogous of the photon which is used to do the

measurement.

The quantum limit for the sensitivity of the interferometric detection of gravita-

tional waves is easily obtained combining equations (1.20) and (2.18). For a given

frequency f we have:

hql(f) =
1

πfL

√
h̄

M
. (2.19)

The function hql(f) is not the linear spectral density of a noise but it represents

the minimum detectable amplitude for a gravitational wave of a given frequency f .

Anyhow, it can be used as well as it was a linear spectral density to trace a borderline

in the spectral sensitivity plot that characterizes the receiver performances.
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Figure 2.5: Linear spectrum of the horizontal seismic displacement measured at Pisa INFN
laboratories on a Sunday (low human activity, ξ ∼ 0.1 while in weekdays ξ ∼ 0.3 ÷ 0.5).
The curve shows a rough 1/f2 slope above 1 Hz. The broad peak at 0.14 Hz is found all
over the world and is due to the oceans activity.

2.5 Mirror position disturbances

2.5.1 Seismic noise

A ground based interferometric antenna suffers of the permanent soil vibrations in-

duced by seismic activity, wind, oceans activity and human activity. They are trans-

mitted to the optical components throughout the suspension systems and the result-

ing noise is the main limitation to the sensitivity of the receiver in the low frequency

range. The way to get rid of this noise making the ground based gravitational wave

detection possible is the subject of this thesis and will be largely discussed in the

following chapters.

There is no universal law describing seismic disturbance. Its intensity can change

of orders of magnitude depending on the place where it is measured, but also, in

the same place, it can change from a day to another. A general 1/f2 behaviour at

frequencies above 1 Hz has been found everywhere due to the transmission properties

of soil and rocks. The displacement of a generic point of soil is roughly isotropic and,

in our laboratory, can be approximately described by an empirical formulation of its
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linear spectral density:

x̃soil(f) = ξ
10−6

f 2

[
f 2 + f 2

0

f 2 + f 2
1

]
m√
Hz
, (2.20)

where ξ ∼ 0.1÷ 1 m · Hz
3
2 , f0 ∼ 0.1 Hz and f1 ∼ 0.5 Hz. The linear spectral density

of seismic displacement measured in a horizontal direction on a day with low human

activity is shown in fig. 2.5.

In section 2.1 we have seen how suspending the optics of the interferometer makes

them freely falling masses above the resonant frequency of the suspension. If we want

to take into account the transmission of soil vibrations we have to modify the equation

(2.1) adding the position of the suspension point x0, directly connected to the noisy

ground, to the elastic term

mẍ+
mg

l
(x− x0) = Fext (2.21)

which gives in the frequency domain

x̂(ω) =
ω2

0x̂0(ω)

ω2
0 − ω2

+
F̂ext(ω)/m

ω2
0 − ω2

. (2.22)

The transmission of soil vibrations from the suspension point to the payload is de-

scribed by the transfer function TF (ω) of the suspension. This is defined as the

ratio between the Fourier transform of the payload displacement and that of the dis-

placement of the suspension point when no external force is applied. For the simple

pendulum, as well as for a simple oscillator, we have:

TF (ω) =
x̂(ω)

x̂0(ω)
=

ω2
0

ω2
0 − ω2

. (2.23)

For frequencies below the pendulum resonant frequency (f � f0), it is TF (ω) ' 1, the

suspension is rigid and the vibrations are entirely transmitted. Above the resonant

frequency (f � f0) the suspension is a soft connection with the soil and vibrations

are attenuated:

TF (ω) ' ω2
0

ω2
� 1. (2.24)

The transfer function in equation (2.23) diverges for f = f0 since we are neglecting

the dissipative term. In any realistic oscillator the amount of dissipation determines
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the quality factor Q and, at the resonant frequency, the excitation is amplified by

this factor:

|TF (ω0)| = Q. (2.25)

If N simple oscillators are cascaded, N eigenmodes of eigenfrequencies fi are

present. The transfer function, neglecting again the dissipation, is:

TF (ω) =
N∏

i=1

ω2
i

ω2
i − ω2

. (2.26)

Well above the higher resonant frequency, the transmission of vibrations decreases N

times more rapidly than in the simple oscillator:

TF (ω) '
∏

i ω
2
i

ω2N
. (2.27)

Once known the transfer function TF (f) of the suspension system and assuming

they are the same for all the optical components, we can write down the linear spectral

density of the equivalent strain noise for the interferometric detector:

h̃seism(f) =
2

L
|TFsusp(f)| ξ 10−6

f 2

[
f 2 + f 2

0

f 2 + f 2
1

]
, (2.28)

where, for consistency with equation (2.20) the arms length L has to be expressed in

meters.

2.5.2 Gravity gradient noise

Seismic noise is not a fundamental physical limit: in principle it is possible to reduce

the transmission of soil vibrations to the optical components by suspending them

to cascade of longer and longer pendula, in order to push toward zero all the reso-

nant frequencies. Unfortunately, there is another way the soil vibrations affect the

interferometer optics limiting the efficiency of the seismic isolation: through the local

gravitational field. Due to the seismic waves, the mass density distribution around

the mirrors fluctuates and the local gravitational field fluctuates as well. These fluc-

tuations directly couple with the mirrors bypassing the vibration isolation system.

An estimation of the equivalent strain noise is given by[18]:

h̃ggn =
2

3
√
π

Gρ

L

xsoil(f)

f 2
, (2.29)
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Figure 2.6: Calculated linear spectral density of the thermal noise for a pendulum (l = 1 m,
m = 1 kg) for two values of the dissipation factor φ.

where G is the gravitational constant, ρ is the average local soil density and xsoil(f)

is the local seismic spectrum.

The gravity gradient noise, also called newtonian noise, sets the limit at low

frequency of the sensitivity achievable by a ground based interferometric antenna.

There is a frequency (a few Hz) at which this noise dominates over the other non–

seismic noises. Below this frequency the seismic attenuation becomes useless and the

sensitivity of the interferometer cannot be improved any more. In the next chapter

we will clarify this statement when we describe in detail the VIRGO sensitivity curve.

2.5.3 Thermal noise

Thermal noise is associated with internal dissipation phenomena. According to

the fluctuation–dissipation theorem[19], dissipation phenomena are connected to a

stochastic motion of the system itself. For a linear mechanical system, we can write

its equation of motion in the frequency domain in terms of an external force Fext(ω)

necessary to cause the system to move with a sinusoidal velocity of amplitude v(ω):

Fext = Zv, (2.30)
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where the function Z(ω) is called the impedance. The fluctuation–dissipation theorem

states that, at thermodynamic equilibrium, the power spectrum F 2
therm(ω) of the

minimal fluctuating force on a system is given by:

F 2
therm(ω) = 4kBT<(Z(ω)), (2.31)

where <(Z) indicates the real (i.e. dissipative) part of the impedance, kB is the

Boltzmann’s constant, and T is the absolute temperature.

If we consider again our simple oscillator, in the hypothesis of dissipation due to

the material structure, the system losses can be modeled in the frequency domain by

adding an imaginary component to the elastic constant k[20]:

−mω2x̂(ω) + k [1 + iφ(ω)] x̂(ω) = F̂ext. (2.32)

The function φ(ω) represents the phase lag between the mass displacement at a

given frequency and the sinusoidal driving force. Experimentally, φ(ω) is found to be

roughly constant and, for low loss materials, it is φ� 1[21].

Using the fluctuation–dissipation theory and a little algebra, the spectrum of the

mass displacement is written:

SXth
(ω) =

4kBTφω
2
0

mω [(ω2
0 − ω2)2 + ω4

0φ
2]
, (2.33)

where we remember that ω0/2π =
√
k/m is the oscillator resonant frequency. It can

be shown that, for a low loss material, the quality factor is Q = 1/φ(ω0).

The dependence on the frequency of the linear spectrum can be summarized as

follows:

x̃th(ω) ' C
√
φ

ω0

· 1

ω1/2
for ω � ω0;

x̃th(ω) =
C√
φω3

0

for ω = ω0; (2.34)

x̃th(ω) ' C
√
φω0 ·

1

ω5/2
for ω � ω0;

where we have put C =
√

4kBT/m.

As we can see, the off resonance parts of the linear spectrum are both proportional

to the square root of φ: far from resonance, the thermal noise is reduced while using

high Q materials (see fig. 2.6) and, even if at resonance the peak is higher, it is
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also sharper. This agrees with the equipartition theorem from which it arises that the

mean square fluctuation < x2 >, in other words the integral of the displacement power

spectrum, is proportional to kBT , independently on Q. Increasing the Q factor means

to confine the amount of thermal noise in a narrower and narrower band around the

resonant frequency of the oscillator.

For complex mechanical systems such as the mirror suspension or the lattice of

the mirror itself, the thermal noise has to be calculated taking into account all the

vibrational modes. Each mode is characterized by its resonant frequency ωn/2π, its

quality factor Qn and its effective mass µn, defined as:

µn =
En

ω2
nx

2
n

, (2.35)

where En is the mode energy and xn is the oscillation amplitude. The analogous of

equation (2.32) for a complex system is written:

SXth
(ω) =

4kBT

ω

∑
n

φnω
2
n

µn [(ω2
n − ω2)2 + ω4

nφ
2
n]
. (2.36)

Far from resonances, the frequency dependence is the same as in equation (2.34).

Thermal noise affecting the interferometer sensitivity arises from the internal dis-

sipation which is present both in the wires supporting the mirrors and in the mirrors

themselves. Beside the pendulum mode, the suspension wires also show higher fre-

quencies normal modes, called violin modes, which are excited by thermal fluctuations

as well. As it will be shown in next chapter, the pendulum mode contribution is the

main limit to the antenna sensitivity from a few Hz to a few tens of Hz. For higher

frequencies, up to hundreds of Hz, the thermal noise due to the mirror dominates

over the other noises. Each mirror is indeed a quartz cylinder with several mechan-

ical drum modes whose thermal excitation disturbs the position or the shape of the

reflecting surface.

Thermal noise is highly depending on the mechanical properties of the materi-

als. High Q materials have to be used for reducing the thermal noise limit to the

interferometer sensitivity. At the same time, it is important to keep all the resonant

frequencies of the suspensions and of the mirrors outside the aimed detection band.
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2.5.4 Creep

The stressed mechanical parts of the suspensions may be sources of mirror position

disturbances due to creep phenomena. A creep event is a sudden release of the

stress accumulated in the lattice which can produce a mirror displacement orders

of magnitude higher than the ones expected from impinging gravitational waves.

Moreover, integrated creep effect causes a weakening in the most stressed parts of the

mirror suspension, turning into a remarkable lowering of the vertical position of the

mirror.

The in depth investigation performed by the author about the creep noise, as well

as the identification of the best creep free materials to reduce it, is the subject of

chapter 6 of this thesis.

2.6 Laser Instabilities

2.6.1 Frequency fluctuations

In principle, the arms of an interferometer for gravitational wave detection can be of

different lengths. In practice, the two arms have to be nearly equal because of laser

frequency fluctuations. The phase response of an interferometer depends on the laser

wavelength and therefore, on its frequency ν = c/λ. If ∆̃ν(f) is the linear spectral

density of the laser frequency fluctuations and if the arms are unequal, there will be a

phase shift δ̃φ at the output of the interferometer even if the mirror position remains

unchanged:

δφ =
2π∆̃ν

c
∆Lopt, (2.37)

where ∆Lopt is the static difference in the optical path length between the two arms.

The equivalent strain noise noise is then:

h̃ff (f) =
∆̃ν(f)

ν

∆Lopt

Lopt

. (2.38)

For an asymmetry factor β = ∆Lopt/Lopt of about 1% (this is what expected in

VIRGO), a frequency stability of about 10−5 Hz/
√

Hz is required at 100 Hz. An

available uncontrolled laser generally presents a stability of 102 Hz/
√

Hz, this means

that the laser frequency fluctuations have to be reduced by a factor 107.
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2.6.2 Power fluctuations

Beside the frequency fluctuations, lasers are also affected by emitted power fluctu-

ations. Actually, the photodiode at the output of the interferometer measures the

power Pout of the “ordinary” beam returned by the beam splitter, according to

Pout =
Pin

2
[1 + cos (φ0 + δφ)] , (2.39)

where Pin is the laser input power, φ0 is the chosen operating point and δφ is the

phase shift induced by the signal we want to detect.

The power response of the interferometer to the mirror displacement is maximum

at φ0 = π/2 so, with this choice and taking into account the power fluctuations ∆P ,

the output power results:

Pout =
Pin + ∆P

2
(1− sin δφ) ≈ Pin

2

(
1 +

∆P

Pin

− δφ

)
. (2.40)

In order not to mask the effect of a true signal, the power stability should exhibit a

level extremely difficult to reach: the detection condition would be, e.g. for VIRGO,

∆P/Pin � δφ ≈ 10−11.

To overcome the power fluctuation noise it is better to operate the interferometer

on the dark fringe, that is at φ0 = π. In this case it is:

Pout =
Pin + ∆P

4
· (δφ)2 (2.41)

and detecting a signal only requires ∆P � Pin. The drawback of this choice is that

the power response of the receiver is much worse and, above all, it is not sensitive to

the sign of δφ. To obtain an adequate response maintaining the dark fringe operation

the below described Pound–Drever signal extraction is used.

2.6.3 Heterodyne detection

A common lock–in technique to get rid of the 1/f noise in interferometric detector

is to modulate in phase the laser in order to produce sidebands. Phase modulation

can be done by introducing Pockel cells in the two arms of Michelson interferometer.

If the two cells are driven in anti–phase with a sinusoidal voltage at frequency Ω/2π,

the output phase is:

Pout =
Pin

2
[1 + cosφ0 + δφ+ 2m sin Ωt] . (2.42)
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The parameter m is the modulation index and measures the energy of the sidebands.

Equation (2.42) can be simplified if the interferometer is operated around the dark

fringe (φ0 ' π) and the modulation index is small (m � 1). Neglecting the higher

order harmonics, we have:

Pout '
Pin

2
[1− J0(2m) + 2δφJ1(2m) sin Ωt] , (2.43)

where J0 and J1 are the Bessel function of order 0 and 1, respectively. The latter

equation shows that modulating the light turns into a first order dependence of the

output power on the phase shift even if the interferometer is kept on the dark fringe.

Heterodyne detection allows to perform measurements at frequencies where the

laser instabilities are smaller and the 1/f noise of the electronics is less important.

2.7 Other sources of noise

Here is a list of some other sources of noise which have been considered in designing

an interferometer like VIRGO.

2.7.1 Refraction index fluctuations

Fluctuations of the gas pressure generate fluctuations of the refractive index and,

consequently, a phase noise. The intensity of the noise is proportional to the gas

polarizability and the main residual gas is expected to be hydrogen. In order to keep

this phase noise below the shot noise level, the interferometer has to be contained in

an ultra high vacuum pipe. The required total pressure is less than 10−9 mbar.

2.7.2 Acoustic noise

The vacuum level required to eliminate the above mentioned noise due to refractive

index fluctuation is sufficient to isolate the optical components from acoustic noise and

from thermal noise associated to viscous damping. The newtonian noise associated

to the acoustic waves is not reduced but it is expected to not affect the interferometer

sensitivity.
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2.7.3 Scattered light

Photons scattered by mirror imperfections and bouncing on the pipe walls get a

different phase due to modulating effect of pipe seismic vibrations. If such photons

recombine with the laser beam a phase noise will arise. To get rid of this problem, a

set of absorbing baffles is placed along the pipe[22].

2.7.4 Light in higher modes

The electric field of the laser beam may be decomposed into a sum of different modes

and each of them acquires a different phase shift while propagating in the cavities.

Only one mode has to be selected for a correct operation. For this purpose an optical

cavity, called mode cleaner, capable of selecting the TEM00 mode only, is usually

placed between the laser and the interferometer.



Chapter 3

The VIRGO project

At present five ground based interferometric detectors are near to be operating in

the world: two in USA (LIGO)[23], one in Italy (VIRGO)[24, 25], one in Germany

(GEO600)[26] and one in Japan (TAMA)[27]. Among them VIRGO is the only one

which aims to reach high sensitivity at low frequency too. A sixth interferometer is

expected to be built in the forthcoming years in Australia (ACIGA)[28].

The goal of VIRGO is to obtain a sensitivity of h̃ ≈ 10−23 1/
√

Hz above 100 Hz

(limited by shot noise) and, above a few Hz, to reduce the seismic noise well below

the thermal noise floor limiting the antenna sensitivity in the low frequency range

(h̃ ≈ 10−21 1/
√

Hz @ 10 Hz)[30]. The apparatus, a Michelson interferometer with

two Fabry–Perot cavities 3 km long, has been built at the site of Cascina, near Pisa.

In this chapter we want to outline the design of the VIRGO antenna and to

compare its target sensitivity with the expected amplitude of the gravitational signals

coming from the astrophysical sources discussed in chapter 1.

33
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Fabry-Perot cavities
L = 3 km, F = 50

Input mirrors
d = 10 cm
R = 98%

Beam splitter
d = 10 cm
R = T = 50%

Recycling-mirror
d = 10 cm
R = 98%

Photodiode
InGaAs, = 0.85η

End mirrors
d = 30 cm
r = 3450 m
R > 99.99%

Mode cleaner
cavity, F = 1000

Laser
Nd:Yag, P = 20 W

Prestabilization cavity,
F = 10000

Recyicling
cavity, F = 50

Figure 3.1: Scheme of the VIRGO interferometer with the 3 km long Fabry–Perot cavities
and the recycling cavity.

3.1 The VIRGO apparatus

The main items of the VIRGO apparatus for gravitational wave detection are: optics,

suspensions and vacuum. Each of them has to exhibit very special (often unique of

ones’ kind) features in order to reach the required specifications.

3.1.1 Optics

The optical layout of the VIRGO interferometer is shown in fig. 3.1.

Laser source : it is a Nd:Yag emitting at λ = 1064 nm. The laser wavelength is not

critical: the reason of this choice is that lasers emitting in the infrared region

are more powerful. The output power in the TME00 mode is about 20 W. The

stability requirements are:
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1. power

∆̃P

P
<

{
3 · 10−5/

√
Hz @ f = 10 Hz

3 · 10−7/
√

Hz @ 100 < f < 1000 Hz;
(3.1)

2. frequency

∆̃ν

ν
≈

{
10−4/

√
Hz @ f = 10 Hz

10−6/
√

Hz @ 100 < f < 1000 Hz.
(3.2)

The laser, including the stabilization optronics and the phase modulator, is not

under vacuum but it is placed on an optical table within a clean room.

Input bench : it is an under vacuum and suspended optical bench. It is equipped

with a rigid triangular reference cavity (for the pre–stabilization of the laser

frequency), the input and output mirrors of the mode cleaner and the main

beam expansion and alignment optronics.

Mode cleaner : it is a triangular cavity 144 m long. Input and output mirrors are

mounted on the input bench, the far mirror is suspended and is connected to

the input bench by means of a dedicated vacuum pipe.

Power recycling : the recycling mirror (10 cm diameter, 98% reflectivity) is sus-

pended and, with the interferometer, forms a resonant cavity. The foreseen

recycling factor, defined as the ratio between the power stored in the cavity and

the input power, is about 50: a power of about 1 kW is expected on the beam

splitter.

Central interferometer : the suspended beam splitter (10 cm diameter), and the

two Fabry–Perot cavities form the real interferometer.

Fabry–Perot cavities : each of them is 3 km long with finesse F = 50. The input

mirrors are 10 cm diameter, flat and 98% reflectivity. The output mirrors are

100% reflectivity (within a few p.p.m.) and they are larger (30 cm diameter)

than the input ones and curved to take into account the laser beam divergence.

Both input and output mirrors are suspended.

Detection system : it is composed of a suspended bench under vacuum and an

optical table outside the vacuum system. The bench supports the output mode
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cleaner and the optics to split and collimate the beam on the photodiodes

(quantum efficiency η = 0.85) for the locking and the signal detection, which

are placed on the table.

Mirrors : they are monolithic blocks of quartz and have to exhibit enhanced optical

performances besides enhanced mechanical quality factors and high internal

resonant frequencies for thermal noise reduction. Special techniques of surface

treatment are used to reduce losses in reflectivity.

3.1.2 Suspensions

The mirror suspensions carry out a double work: the first is to make the interfer-

ometer a freely falling one (see section 2.1), the second concerns the isolation from

the soil vibrations that would be transmitted to the mirrors throughout the suspen-

sions themselves. The Pisa VIRGO group has developed a suspension system, called

superattenuator capable to inhibit the transmission of soil vibrations to the mirror

above a few Hz in all the 6 degrees of freedom. Essentially, the superattenuator is

a multi–stage pendulum about 9 m tall. The detailed description of this device is

deferred to the next chapter and below.

Six full superattenuators (tall towers) are suspending the mirrors of the Fabry–

Perot cavities, the beam splitter and the recycling mirror. Since the less seismic

isolation requirement, three shorter version (short towers) are utilized to suspend

the input bench, the far mirror of the mode cleaner and the bench of the detection

system.

3.1.3 Vacuum system

The volume under vacuum of the VIRGO apparatus (see fig. 3.2) is divided in two

parts: the pipe containing the optics and the towers containing the superattenuators.

The pipe is 1.2 m diameter and composed of 15 m long modules connected by bellows

and resting on special supports allowing the pipe “breath” induced by the baking or

by the daily thermal excursion. As mentioned above, the requirement for the noise

due to the fluctuations of the refraction index of being at least a factor 10 below the

dominant noises, sets the limit for the total pressure to 10−9 mbar. A more strict limit
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Figure 3.2: The vacuum setup of the VIRGO interferometer.
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of 10−14 mbar is set for the partial pressure of hydrocarbons because these molecules

can stick on the surfaces of mirrors and degrade their quality.

The ultra high vacuum required in the pipe cannot be achieved in the towers, be-

cause of the large number of devices the superattenuators are provided with. There-

fore, the towers are divided in two sections by a separating roof and communicating

only through a narrow conductance hole for passing the wire holding the last stage

of the suspension. In the upper part a total pressure of 10−6 mbar is foreseen.

3.2 Interferometer locking

Locking the interferometer means to actively control the position of the test masses

supporting the mirrors in order to keep the interferometer on the dark fringe and

both the Fabry–Perot and the recycling cavities in resonance with the laser. These

four conditions are fulfilled by extracting the error signals from the interferometer,

and by driving the actuators for the mirror positioning through feedback correction

signals [31].

The resonance conditions for the cavities require their lengths to be controlled

within 1/10000λ ≈ 10−10 m but actually, the root mean square (rms) motion of each

mirror should be not larger than 10−12 m since the dynamic range limitations of the

read–out electronics.

On the other hand, the suspended mirror, because of the suspension resonant

modes, exhibits a low frequency swing of the order of tens of µm. This wide motion,

entirely confined between 0 and 2 Hz, has to be compensated by means of a suitable

control strategy without reinjecting noise into the detection band.

3.3 VIRGO sensitivity

The evaluation of the detector sensitivity is based on the prediction on the intensities

of the various noise sources. The total expected noise is converted in the equivalent

strain noise h̃N(f) defined in section 2.2 and usually called VIRGO sensitivity curve.

The predicted sensitivity curve for the VIRGO antenna is shown in fig. 3.3. De-

pending on the region of frequencies, three different sources of noise are the dominant

ones[32].
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Figure 3.3: Spectral sensitivity of the VIRGO antenna: the contribution of the main noise
sources is shown.
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Seismic noise is expected to be dominant up to about 3 Hz, thanks to the attenu-

ation performance of the superattenuators. This is the low frequency detection

threshold of the antenna. A further improvement of the attenuation by lower-

ing the resonant frequencies of the suspension system (see section 2.5) is useless

because in that case, as we can see in fig. 3.3, the expected newtonian noise

would limit the antenna sensitivity.

Thermal noise dominates from 3 to about 500 Hz; up to about 30 Hz the noise

is due to thermal fluctuation of the pendulum formed by the mirror and its

suspension wires; above 30 Hz the tail contribution due to the high frequency

internal modes of the mirrors is dominant.

Shot noise dominates above 500 Hz. Before the reader worries about the sight

of a non–white shot noise, it is worth remembering that we refer to the shot

noise (and similarly for the other noises) as the equivalent strain noise h̃FP
shot(f)

defined in equation 2.15. The flat phase noise due to the photon counting error

is obtained by multiplying our shot noise by the phase response of the Fabry–

Perot interferometer.

The sharp peaks, apart from those at about 7 Hz, are due to contribution to

thermal noise of the violin modes of the mirror suspension wires; they are in pairs

because the two cavity mirrors have different masses. The double peak at 7 Hz is

due to thermal noise associated to the main vertical mode of the marionetta–mirror

system.

With these assumptions about the spectral sensitivity of the antenna, we can

review the various astrophysical sources of gravitational waves for evaluating the

expected SNR for each of them.

3.3.1 Signals from coalescing binaries

The coalescence of two compact stars is the most promising event to be detected by

the first generation of interferometric receivers. The extraction of the signal from the

interferometer noisy output will be performed by cross correlating it with the signal

expected from the theory (template). To achieve the detection it is very important to

have accurate theoretical templates and a large effort is being made in this direction.
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The expected SNR for a coalescence event has been calculated in the newtonian

approximation[33], and it results that about 1 neutron star–neutron star coalescence

every 50 years would be observed by VIRGO. Higher SNR is expected as well as the

mass of the involved objects increases. More optimistic estimates about the rates of

occurrence of coalescence events allow us to be more confident on the detection of the

emitted signals.

The SNR for detecting coalescing binaries depends on the minimum frequency at

which the detector can start the integration. Starting the integration at 70 Hz would

reduce the SNR of about 20% with respect to starting at 4 Hz, hence the importance

of extending the detection band toward the low frequency region.

3.3.2 Bursts from stellar collapses

During the last years it has become more evident that the detection of stellar collapses

will not be an easy goal for first generation interferometers. Large uncertainties affect

the hydrodynamics simulation codes and the evaluated templates. Most of the pre-

dicted collapse processes produce gravitational waves detectable only within galactic

distance. Even in case of SNR > 1 a multiple coincidence detection is required for

discriminating between real events and non–gaussian noise. The creation of a net-

work of interferometers and other detectors (such as resonant bars, neutrino detectors,

optical telescopes, γ bursts detectors) working in coincidence should allow the unam-

biguous detection of a burst event as well as, by measuring the delay time between

different detection of the same event, the determination of the source direction in the

sky.

3.3.3 Periodic signals

Most of the known pulsars are located in the central region of our galaxy and their

distance from the Earth ranges from 5 to 20 kpc. As shown in fig. 1.1, most of them

emits gravitational waves at frequencies below 10 Hz: this is one of the reasons for

the big experimental effort to extend VIRGO sensitivity down to low frequency.

While the spinning frequencies are known with high accuracy, the estimate of the

intensity of the emitted gravitational signals is affected by large uncertainties. Only

an upper bound can be put on the values of the ellipticity ε (see subsection 1.4.2) to
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compare the amplitude of the signal to the actual detector sensitivity according to

equation (2.9). The results are shown in fig. 3.4. The sensitivity of the interferometer

can be enhanced in a narrow band around the emission frequency (at the price of

reducing the sensitivity outside the band) using a signal recycling technique [34, 35].

3.3.4 Stochastic background

The measurements from COBE set a stringent upper limit to the stochastic back-

ground intensity at low frequency. Standard inflationary models predict a constant

stochastic background spectrum and thus this upper limit could be extended to higher

frequencies, in the detection band of the ground based interferometers[38]. This up-

per limit is orders of magnitude below the sensitivity of present interferometers so,

a single antenna would not be enough to detect the stochastic background of relic

gravitational waves. The only possibility is to cross correlate the output of two (or

more) detectors. They should be far apart in order to not correlate local noise and

close enough to maintain correlation for gravitational waves in the VIRGO/LIGO

range. A distance of tens of km is suitable to fulfill these conditions[36, 37].

Nevertheless, recent string cosmology models[39] predict a more complex spectrum
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which should satisfy the COBE limitation at low frequency and, at the same time,

they should contain gravitational waves in the VIRGO/LIGO range which might be

detectable.





Chapter 4

Extending the detection band to

low frequency: the superattenuator

The detection of gravitational waves would be limited, at low frequencies, if the

soil vibrations were transmitted throughout the suspensions of the mirrors. They

would induce position disturbances (∼ 10−9 m/
√

Hz @ 10 Hz) larger and larger

than the displacements expected from gravitational signals (∼ 10−18 m/
√

Hz @ 10

Hz). The detection band of the interferometric antenna VIRGO is extended down

to few Hertz, thanks to the special system of suspension of the optical components

designed to strongly reduce the transmission of soil vibrations: the superattenuator.

The importance to obtain enhanced sensibility at low frequency too, has been shown

in the last section of the previous chapter.

The superattenuator conceived and realized in Pisa is a chain of mechanical filters,

each of them aiming to suppress the transmission of vibrations to the following stage

in all six degrees of freedom. Beside the passive attenuation, this suspension system is

suitable for the active control of the position of the optical components. By means of a

multi–stage control strategy, the residual motions of the mirrors can be reduced down

to the specific requirements (δxrms ∼ 10−12 m) to lock the interferometer without

injecting noise into the detection band.

45
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Laser beam

δx

δz

3 km

3 10-4 rad

Figure 4.1: Effect of the Earth curvature on the vertical–horizontal motion coupling: the
direction of the gravity over a length of 3 km changes of an angle of α = 3 · 10−4 rad. A
vertical displacement of the mirror δz turns into a differential displacement δx = α · δz in
the beam direction.

4.1 The VIRGO superattenuator

4.1.1 Passive attenuation

Although in theory only the components of the vibrations along the laser beam di-

rections affect the interferometer, the suspension system must be effective in all the

translation and the angular degrees of freedom. Indeed, in a real mechanical system,

there are unavoidable couplings among the different degrees of freedom, at least be-

cause of geometrical factors. A minimum coupling factor between the beam direction

and the vertical one is due to the Earth curvature, as the suspensions of the input

and the end mirrors of a Fabry–Perot 3 km long are not parallel but form an angle

of 3 · 10−4 rad (see fig.4.1). Moreover, motions in directions different from that of the

beam can compromise the mirrors alignment.

In order to get an uniform an gradual attenuation in all the degrees of freedom,

the superattenuator has been designed as a chain of mechanical filters in cascade:
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each of them attenuates the vibrations transmitted from the previous stage to the

next one. In this scheme, coupling factors of about 1% are expected: a conservative

number which takes into account all the possible mechanical and geometrical causes.

The working principle is that one of the cascade of N oscillators described in

section 2.5.1: according to equation (2.27), well above the highest resonant frequency,

the vibrations are attenuated by a factor C/f2N , where the constant C is the product

of the square of the N resonant frequencies of the system.

Horizontal attenuation. For the movements in the horizontal plane, i.e. the work-

ing plane of the interferometer, the superattenuator acts as a pure multi–stage

pendulum: each stage holds the next one by means of a steel wire. In order to

decrease the frequency detection threshold, it is necessary to reduce the reso-

nant frequencies of the chain and thence to increase the length of the pendula.

Practical limitations have led to the choice of a chain of five pendula with a to-

tal length of about 7 m. The normal modes of the multi–stage pendulum have

resonant frequencies ranging from 0.16 Hz to about 2.5 Hz and the required

attenuation should be provided starting from 4 Hz.

Rotational modes. A chain of suspended extended masses acts as a chain of os-

cillators also in the angular degrees of freedom, providing a strong attenuation

of the rotational motions above its resonant frequencies. In order to reduce

the frequencies of the rotational modes of the chain around the vertical axis

well below the detection band, each filter is a large diameter cylindrical tank,

exhibiting a high momentum of inertia. Moreover, the diameters of the suspen-

sion wires have been reduced as much as possible (few mm) so to decrease their

return torque which opposes to the rotation of the chain and which determines

its rotational resonant frequencies. The coupling between linear and rotational

modes is minimized by suspending each stage in a fully concentric way so that

only very small torques can be exerted on the chain.

The frequencies of the tilt modes of each filter, that are the rotational modes

around the two horizontal axes, can be reduced by minimizing the distance

between the clamping points of the two steel wires connecting the filter to the

neighboring ones. Moreover, the wires are attached as close as possible to the

center of mass in order to reduce the arm of the reaction torque.
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Figure 4.2: View from below of the VIRGO superattenuator. We can distinguish two of
the three legs of the inverted pendulum and, from the top to the bottom, the filter 0, the
standard filters 1 to 4, the steering filter, the marionetta and the mirror–reference mass
system. The safety frame surrounding the suspension system is also visible.
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Figure 4.3: View of the superattenuator inside its vacuum chamber.
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Thanks to these arrangements, the angular oscillations show resonant frequen-

cies lower than 1 Hz.

Vertical attenuation A chain of simple pendula does not attenuate the vertical

vibrations of the suspension point. The vertical attenuation is obtained by

endowing each filter of a series of cantilever, triangular shaped, steel blades

(hereafter called blades) acting as springs. They are arranged in a converging

set and the next stage of the chain is hanged to their tips. So we have a chain

of mechanical oscillators whose resonant frequencies are ranging from 1.4 Hz to

7 Hz. In the next chapter it will be shown how it is possible to reduce all these

frequencies below 2.5 Hz as well as for the horizontal directions.

The whole superattenuator chain, shown in fig. 4.2 and fig. 4.3, is made of

four standard filters plus a modified one, called steering filter, which supports the

control system for the optical payload: the marionetta sustaining the mirror–reference

mass system. The upper extremity of the chain is connected to a pre–isolator stage

consisting of a three–legs inverted pendulum supporting the filter 0 . The entire

system is surrounded by a safety structure, named safety frame.

4.1.2 Active control

The seismic motion of the suspension point is amplified at the resonant frequencies

of the superattenuator chain, leading to large resonant oscillations of the mirror.

Moreover, at very low frequencies, motions due to both local thermal effects and tidal

deformations are completely transmitted by the suspensions. The rms motion of the

mirrors, along the beam direction, results to be several orders of magnitude beyond

the maximum rms displacement tolerable for the interferometer locking (10−12 m, see

section 3.2).

In order to compensate for these motions one must control the position of the

mirror by sending correction signals to suitable actuators. This control cannot be

performed by acting directly on the mirrors because of the finite dynamic range

of the digital electronic system. In particular, the maximum force one can apply

in proximity of the mirror is limited by the DAC card used to convert the digital

correction signal to the analog one which is sent to the actuators for the mirror

positioning. Compensation forces corresponding to displacement of the mirror along
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the beam larger than one micron, even if in quasi DC, would induce a large electronic

noise floor into the detection band. This noise floor affects the driving currents of

the actuators causing mechanical vibrations of the components to which the force is

applied. If large forces were exerted too close to the mirror, these vibrations would

not be filtered enough and they would be almost entirely transmitted to the mirror,

so limiting the antenna sensitivity.

Such considerations have imposed to adopt a control strategy in which the com-

pensation forces are exerted in three control points along the chain:

1) from the safety frame to the pre–isolator stage;

2) from the steering filter to the marionetta;

3) from the reference mass to the mirror.

The active control of the mirror position is performed by acting on these three

points in different bands of frequency and different dynamic ranges. The very low

frequency motions (from DC to 100 mHz) are compensated at the pre–isolator level.

Here, large forces can be exerted since the high frequency noise injected is filtered by

the superattenuator chain.

At higher frequency, where the chain exhibits its resonant modes, it is hopeless to

try to control the motion of the mirror by means of the top stage actuators. Indeed,

roughly speaking, a too large delay would be introduced by the resonances of the

system between the actuation force and the motion of the mirror. This implies that,

above 100 mHz, the compensation has to be applied, in any case, downstream the

chain, close to the mirror.

Because of the above mentioned dynamic constrain, we must be sure that the

mirror residual motion, above 100 mHz, does not exceed the amplitude of one micron.

To fulfill this requirement, an active damping of the resonant modes of the chain is

performed at the pre–isolator level (see section 4.3). The control above 100 mHz is

then divided into two bands: up to 1 Hz, the mirror position is controlled by means

of the steering filter–maroinetta system and, above 1 Hz, the correction forces are

exerted directly on the mirror from the reference mass.
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Figure 4.4: Section of a standard filter. The part in red can move with respect to the body
of the filter.

4.2 Standard filters

The section of a standard filter is shown in fig. 4.4. The main body of the filter is

a rigid steel cylinder 100 kg weigh, 70 cm diameter and 18.5 cm height. This one

forms the fixed part of the mechanical filter and is suspended to the previous stage

by means of a steel wire 1.3 m long and whose diameter ranges from 1.85 to 4 mm,

according to the load. As shown in fig. 4.2, the distance between filter 0 and filter 1

is larger than 1.3 m so to allow the insertion of an additional filter, if necessary.

The basis of the triangular blade spring for the vertical attenuation are clamped

to the outer circumference of the bottom of the cylinder. The tips of the blades are

connected to a movable central column which is constrained, by means of two systems

of four centering wires, to move only in the vertical direction into the central pot of

the main cylinder.

The central column supports a crossbar which extends over the top of the filter

body and to which the inner matrices of the magnetic antispring are fixed (see next

chapter). To the central column it is clamped the wire suspending the next stage.
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Figure 4.5: Top view of a standard filter.

The tips of the blades, the central column, the crossbar and the suspension wire form

the moving part of a vertical oscillator loaded with the weight of the stages below.

The main vertical mode, useful for the vertical attenuation, is at 1.4 Hz without the

antispring. Since this is a complex system, other resonant modes are present. These

modes limit the attenuation performances so they have to be damped by means of

special absorption devices described in the following of this thesis.

The blade springs are pre–bent in order to assume a straight horizontal configura-

tion once loaded (see fig. 4.7). Each blade is designed to have a nominal load ranging

from 40 to 90 kg and the triangular shape guarantees a uniform distribution of the

stress in order to minimize the maximum internal stress. The number of blades for

each filter ranges from a maximum of 12 to a minimum of 4 according to the position

of the filter along the chain and therefore, to the load they have to hold. The choice of

the best material for the realization of the blades (and, in general, of all the stressed

components of the superattenuator) is also a topic of this thesis.

The position of the movable part of the filter with respect to the main body can
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Figure 4.6: Bottom view of a standard filter.

be adjusted by changing the slope of some blades (movable blades) through suitable

setting screws. A further fine remote adjustment is obtained by using the so called

fishing rod. This device consists of a soft blade spring connected to the crossbar

through a thin wire (here is the affinity with the fishing tool) and working in parallel

to the other blades: a stepping motor can change the slope of the fishing rod and the

remote positioning of the movable part of the filter can be achieved with the accuracy

of few µm within a range of some mm. A Linear Variable Differential Transformer

(LVDT) is used to measure the position of the crossbar with respect to the filter body.

4.3 Pre–isolator stage

The chain of mechanical filters is suspended to an ultra–low frequency pre–isolator

stage. Beside providing a large reduction of the intensity of the seismic noise exciting

the chain normal modes, the very softness of an ultra–low frequency stage makes it

the ideal platform to apply the active damping of the resonant modes of the chain.
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Figure 4.7: Triangular shaped blade spring of VIRGO mechanical filters; a) upper view;
b) side view: the suitable pre–bending assures a straight shape once the blade is loaded so
it acts as a vertical spring.

Moreover, it makes it possible to move the entire chain over the long period range

using gentle coil–magnet actuators with low power consumption.

The pre–isolator stage is itself an x, y, z and θz (i.e. the rotation around the

vertical axis) oscillator with a much lower resonant frequency (about 30 mHz) for

the horizontal translation modes. In the horizontal directions the attenuation is

performed by means of an inverted pendulum[40] composed by three rigid columns

(legs), 6 m tall, each connected to the ground through a flexible joint and supporting

a top table. A modified mechanical filter, called filter 0, placed on the top table exerts

the vertical attenuation.

In order to adjust the horizontal offset of the chain, motorized springs act on the

legs of the inverted pendulum from the safety frame. An endless screw is driven by

a stepping motor to adjust the vertical position of the chain from the crossbar of the

filter 0. Three LVDT sensors measure the position of the top stage with respect to
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Figure 4.8: View of the steering filter with its four legs for the control of the marionetta.

the safety frame while the vertical position is read by means of a CCD camera looking

at the mirror.

The active damping is performed by means of three horizontal and two vertical

coil–magnet pairs placed between the top table and the safety frame and between the

body of the filter 0 and its crossbar, respectively. Since the LVDT signals refer to

a noisy structure, the sensors to drive the actuators are home made accelerometers

(inertial damping).

4.4 Steering filter

The last filter of the chain is commonly called filter 7 (see fig. 4.8) since the former

superattenuator was designed to have 7 filters. It is basically a standard filter but

it is equipped with devices to fulfill additional features. Four columns about 1 m

long extend from the bottom of the filter, each supporing a driving coil facing a

corresponding small magnet fixed to each arm of the marionetta. By driving the coils

with proper currents, forces and torques can be applied to the marionetta to control
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Figure 4.9: The marionetta and the mirror–reference mass system suspended to the steering
filter.

the position of the mirror within the band of 0.1-1 Hz.

The angular positioning of the filter in the horizontal plane is achievable by means

of motorized setting screws and ceramic balls bearings which allow both the rotation

of the filter with respect to its suspension wire and the rotation of the marionetta

with respect to the filter itself.

4.5 Optical payload

The marionetta hanging from the steering filter is the last stage of this complex

suspension system for the optical components of the interferometer. It is essentially

a cross shaped structure supporting the mirror and the reference mass through two

couples of looping steel wires (see fig. 4.9). The aim of the marionetta is to allow

to finely control the position and the alignment of the mirror for the interferometer

locking.

Final adjustments of the position of the mirror along the beam direction above

1 Hz are applied directly to the mirror from the reference mass which surrounds it.
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Figure 4.10: Simulated superattenuator transfer function along the beam direction. A
vertical–horizontal coupling factor αmech = 0.01 has been assumed.

The reference mass is suspended by the superattenuator and therefore, it is seismic

noise free as well as the mirror. The position control is exerted by means of four coils

mounted on the reference mass facing four magnets placed on the mirror. The refer-

ence mass is made of dielectric material in order to avoid Foucault current dissipation

that would increase the thermal noise affecting the mirror.

4.6 Superattenuator expected performances

In fig. 4.10 the calculated transfer function of the superattenuator along the beam

direction is shown. The expected performance of the suspension chain is the result of

a six degrees of freedom simulation code, SIESTA[41], in which a vertical–horizontal

coupling factor of 0.01 has been assumed, while the coupling between the beam direc-

tion and the other ones has been considered negligible. Above 10 Hz the attenuation

performance is degraded by the internal resonant modes which will be treated in

chapter 6: a plateau is found rather than a f−2N behaviour.

The superattenuator is expected to completely fulfill its specifications. The plateau

is in a range where the residual seismic noise is largely dominated by thermal noise, as
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Figure 4.11: Integrated rms motion of the mirror as expected from the calculated super-
attenuator transfer function of fig. 4.10.
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shown in fig. 3.3. Moreover, the internal vibrations responsible of the peaks between

40 and 100 Hz will be efficiently damped by passive absorption devices developed

by the author and described in chapter 6. The seismic noise starts dominating over

other noises at f < fmin = 3 Hz. We consider this as the low frequency threshold of

the VIRGO detection band.

As discussed at the beginning of this chapter, the seismic noise is attenuated by a

huge factor above 10 Hz, but it is amplified at the resonant frequencies. This causes

large resonant motions of the mirror. Fig. 4.11 shows the expected rms motion of

the mirror without the active damping of the superattenuator normal modes. Such

a seismic excited motion would be too large whit respect to the allowable dynamic

range (less than 1 µ above 100 mHz) of the payload control, hence the necessity of

the active damping.

Non linear effects have been considered in the simulation[42]: fig. 4.12 shows that

the effect of up–conversion associated to the quartic term of the antisprings potential

is dominated by the linear behavior of the system.



Chapter 5

Vertical attenuation: the magnetic

antispring

The mechanical and geometric characteristics of the filters are bound by practical

limitation. Consequently, the attenuation performances are limited as well, since they

are determined by the resonant frequencies of the system. The pendulum frequency

of the filter is bound to the length of the suspension wire and this one is limited

by the available vertical space in the vacuum chamber: the achievable frequency is

of about 0.5 Hz. The whole chain has all the horizontal normal modes below 3 Hz

exerting the required attenuation starting from about 4 Hz.

On the other hand, the vertical attenuation of the chain shows a higher threshold

frequency, at about 7 Hz. Indeed, the vertical resonant frequency of a filter is of about

1.5 Hz, well above the horizontal one. This would limit the low frequency sensitivity

of the interferometer because of the coupling between the two degrees of freedom.

The reduction of the vertical resonant frequencies of the chain is made feasible

by mounting on each filter a set of permanent magnets (magnetic antispring) which

allows the lowering of the vertical resonant frequency of each filter to less than 0.5

Hz[43]. It comes out that the threshold frequency of attenuation is lowered from 7

Hz to about 4 Hz.

61
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Figure 5.1: a) Working principle of the magnetic antispring: the two facing magnets are
constrained to move along the vertical direction (y axis). b) Qualitative behaviour of the
force between the magnets as a function of the vertical offset y.

5.1 The magnetic antispring

The working principle of the magnetic antispring is based on the repulsive force

reciprocally exerted by two magnets having horizontally opposite magnetic moment

and constrained to move only along the vertical direction. In fig. 5.1 a) it is sketched

what happens: the magnet A exerts on the magnet B in the position y, a repulsive

force whose vertical (y direction) component can be written:

Fy(y) = F (y) sinα, (5.1)

where F (y) is the module of the force and we have indicated only the dependence

on the y coordinate. The horizontal separation d between the magnet is fixed and

α is the angle the force direction forms with the horizontal axis. The behaviour of

Fy versus the y coordinate is qualitatively shown in fig. 5.1 b): within an interval

depending on the magnets separation the repulsive force increases with the absolute

value of y, then it decreases until it vanishes. It is only in twice this interval that the

system exhibits the antispring feature. For small displacements δy around a point y

of the above mentioned interval, the (5.1) can be linearized:

Fy(y + ∆y) = Fy(y) +
∂Fy(y)

∂y
∆y, (5.2)
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where the derivative in the right hand term is positive and it is equivalent to a

“negative stiffness” whose absolute value will be indicated with kas(y).

Actually, the antispring system consists of two pairs of matrices of permanent

magnets in repulsive configuration which act in order to reduce the stiffness of the

vertical oscillator near its equilibrium point. As shown in fig. 4.4, two matrices are

mounted on the top of the filter body in such a way to face the other two which are

fixed to the crossbar and therefore are solidal with the moving part of the filter. Using

two pairs of matrices allows to get a strong vertical anti–stiffness without applying

resulting lateral forces to the crossbar.

Each matrix of the antispring is made of two or four lines of ferroxdure magnets,

6 × 2 × 1.5 cm3, producing a nominal magnetic field of 0.36 Tesla in the direction

parallel to the 1.5 cm dimension. We decided to put each line of magnets in the matrix

with the sense of the magnetic field opposite both to that of the neighboring line in

the same matrix and to that of the line facing on the matrix in front of it. This

configuration allows to minimize the total magnetic moment dipole of the system,

reducing the coupling with external magnetic field.

The number of the magnets in each line, as well as the number of the lines,

depends on the required anti–stiffness which depends on the stiffness of the blades

and therefore, on the load to be supported by the filter the antispring are mounted

on[30]. The fine regulation of the anti–stiffness, during the assembling phase, is

obtained by means of setting screws which allow to vary the distance between the

matrices mounted on the filter body and the ones on the crossbar.

The antispring acts in parallel to the blade springs. Let us indicate with y the

vertical displacement of the movable part with respect to the filter body, choosing

as origin of the axis the position where the antispring matrices are perfectly aligned

(y = 0 in equation (5.2)). The resulting vertical force applied to the central column

will be:

FR(y) = −Mg + Fy(y)− ks · (y − l0), (5.3)

where Mg is the load of the filter, Ks the stiffness of the blade springs and l0 rep-

resents the rest length of the blade springs. If y0 is the equilibrium point, for small

displacements ∆y around it, the equation of motion of the mass M results, according

to (5.2):

Mδ̈y = − [ks − kas(y0)] δy, (5.4)



64 Chapter 5. Vertical attenuation: the magnetic antispring

LVDTTr
AV1

AV2

ADC

DAQ

AS

L

PZ

CT
WW

Tc

AS      Spectrum Analyzer
ADC   Analogic to digital converter
DAQ   Data acquisition
AV      Vertical accelerometers
LVDT Position sensor

PZ   Piezoelectic actuator
Tr    Thermoresistor
CT   Thermal controller
Tc    Thermocouple
W    Lamps (200 W)

F     Mechanical filter
L     Load (650 kg)

Safety structure
Thermal insulator

F F

Figure 5.2: Experimental set up for the measurement on the mechanical filter prototype.

which admits oscillating solution with frequency f0 = (1/2π)
√

(ks − kas)/M when

the condition ks > kas holds. The validity of this approximation depends on how

much rapidly kas varies with the offset y between the magnets.

At y = 0 kas has the maximum value and the minimum variation with the offset.

The behaviour of the anti–stiffness depends on the horizontal separation between

the magnets: the lower the separation the narrower the range in which kas slowly

varies with the offset. For too low values of this separation, the stability condition

ks > kas can be no longer satisfied in an interval of y included between regions where

it still holds, giving rise to a mechanical bistability. To improve the behaviour at low

frequency we can increase the number of the magnets. In this way we obtain the

same frequency with a larger horizontal separation since the repulsive force has been

increased.

On the other hand, it is sufficient to take the vertical resonant frequency of each

filter just below the respective pendulum resonant frequency (0.5 Hz) so that all the

vertical modes of the chain will have resonant frequencies below that of the horizontal



5.2. Filter prototype 65

0

100

200

300

400

500

-3 -2 -1 0 1 2 3

Fr
eq

ue
nc

y 
[m

H
z]

Vertical offset  [mm]

d=8.875 mm

d=9.03 mm

d=9.25 mm

d=9.625

Figure 5.3: Vertical resonant frequency of the mechanical filter versus the equilibrium point
position for different values of the magnets separation d. The two lowest values, have no
equilibrium points near zero (bistability condition).

ones and the sensitivity of the interferometer will be limited, below 4 Hz, by the

horizontal seismic noise.

According to the results of the survey described below, the number of the magnets

to mount on each filter has been chosen so that kas has a pretty linear behaviour within

a range of at least 2 mm around the zero offset.

5.2 Filter prototype

For the full characterization of the mechanical filter, a detailed survey has been carried

out by the author on a filter prototype equipped with 12 blades[44]. The experimental

setup is sketched in fig. 5.2. The filter with its load of about 650 kg is enclosed in a

double box of thermal insulator to ensure an enviroment thermal stability within a

tenth of degree. A piezoelectric actuator can excite the system in the vertical direction

allowing the measurement of the transfer function in that direction. The signal of two

accelerometers placed on the filter body and on the load, respectively, are collected

and processed by a HP spectrum analyzer. The position of the moving part of the

filter is also measured by means of an LVDT sensor whose signal is sent both to the
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Figure 5.4: Module of the vertical transfer function of the filter with the antispring (solid
line). Below 20 Hz the attenuation is better of about a factor 10 than the case without the
antispring (dashed line).

spectrum analyzer and to an ADC converter connected to a computer.

In order to study the behaviour of the magnetic antispring described in the pre-

vious section, a series of measurements of the main vertical resonant frequency has

been done for different values of the separation between the matrices of magnets and

for different operating temperatures.

5.2.1 Dependence on setting point

The results of the measurements about the dependence of the main resonant frequency

on the vertical offset between the magnets are shown in fig. 5.3. The measurements

have been repeated for four different values of the separation between the matrices at

a temperature of 30 ◦C. The curves show as the antispring can be easily set to reach

the aimed goal: to take the main vertical resonant frequency below the limit of 0.5

Hz.

Fig. 5.4 shows the effect of the antispring on the vertical transfer function of

the filter (solid line). The distance between the matrices is set to have a resonant
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Figure 5.5: Mechanical bistability in a measurement at 26.3 ◦C. The system oscillates
around an equilibrium point which is slowly lowered by thermal drift. Once the bistability
zone at about -0.1 mm is reached, the system jumps to the other equilibrium point at about
-0.5 mm. At t = 855 s we newly excite the system.

frequency of about 0.4 Hz when the magnets are perfectly aligned. By the compari-

son with the vertical transfer function of the bare filter (dashed line) is evident the

enhancement of the attenuation at low frequencies. Starting from about 20 Hz the

attenuation performance of the filter becomes worse, either with or without the anti-

spring, because of the inner resonant modes of the filter. In the next chapter we will

deal with this subject.

From the resonant frequency behaviour one can deduce the dependence of the

anti–stiffness on the relative position of the magnets. When they are perfectly aligned

(y0 = 0), kas is maximum and the frequency assumes its minimum value (minimum

vertical frequency). When the horizontal separation decreases, the curves will be-

come narrower and the anti–stiffness will vary more rapidly with the magnet offset;

moreover, its maximum value increases.

For the lower curves in fig. 5.3, the magnets separation is too small and there are

no stable equilibrium position near to zero: here the system experiences a mechanical

bistability. What happens is shown in fig. 5.5 which reports the recording of the
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Figure 5.6: Vertical resonant frequency of the mechanical filter versus the equilibrium point
position at different temperatures for the 7×3 magnets antispring. The separation of the
matrices is 9.25 mm.

crossbar displacement in the neighborhood of the zone of instability. The equilibrium

point slowly goes down because of thermal drift (see next section), then the system

jumps to the another equilibrium point in a symmetric position with respect to the

“zero” of the magnets (different from the zero of the scale).

5.2.2 Dependence on temperature

The permanent magnetic field of the antispring is very sensitive to the temperature

variation: the magnitude of the field will decreases (increases) when the temperature

increases (decreases). Two series of measurements at different temperatures have

been done: the first one on an antispring with matrices of 7 × 3 magnets and 9.25

mm horizontal separation (see fig. 5.6), the second one on an antispring with 5 × 3

magnets matrices separated by 4.5 mm (see fig. 5.7).

The values of the measured minimum vertical frequencies are plotted versus the

temperature in fig. 5.8, and we can deduce that the frequency varies almost linearly
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Figure 5.7: Vertical resonant frequency of the mechanical filter versus the equilibrium point
position at different temperatures for the 5×3 magnets antispring. The matrices separation
is 4.5 mm.

within the interval of interest. The relation

∆fmin

δT
=

15mHz
◦C

± 2mHz
◦C

(5.5)

is in good agreement with the dependence on temperature of the anti–stiffness ex-

pected to be of about 0.4%/◦C[45].

Actually, the thermal variation of the frequency is the sum of the variations of

both the magnets strength and the blades stiffness. Nevertheless, the measurement

of the latter has given the value of ∆K
K∆T

= 2.1·10−4

◦C
(see chapter 7), negligible with

respect to the former.

Moreover, the temperature variation indirectly affects the frequency through the

thermal drift of the equilibrium point. As shown in the next section, the temperature

variation induces the variation of the equilibrium position as a consequence of the

change of the total stiffness. Therefore, the variation of the frequency contains also

a contribution due to the kas dependence on y.
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Figure 5.8: Minimum vertical frequency versus temperature.

5.2.3 Quality factor

The characteristic decay time τ of the vertical oscillation has been evaluated from the

acquired data about the displacement of the moving part of the filter with respect to

the fixed one[49]. In fig. 5.9 the values of the decay time τi are plotted versus their

correspondent frequencies f0,i. The data refers to the two series of measurements

done to determine the temperature dependence.

Both the two group of measured τ show a linear dependence on the frequency f0

which means that the quality factor of the oscillator Q = πf0τ behaves like the square

of the resonant frequency. This experimental evidence disagrees with the viscous

damping mechanism where the decay time is independent on resonant frequency. In

fact our data agree with the description of the damping due to internal friction of

the material[20]. The mathematical formulation of this phenomenon is obtained by

adding an imaginary component to the stiffness ks of the blades spring:

ktot = ks(1 + iφ)− kas = (ks − kas)(1 + iφ′) (5.6)

with

φ′ =
ksφ

ks − kas

= φ
f 2

s

f 2
0

, (5.7)



5.2. Filter prototype 71

0 100 200 300 400 500 600
Frequency [mHz]

0

20

40

60

80

100

A
m

pl
itu

de
 d

ec
ay

 ti
m

e 
[s

]

5 x 3 magnets, d = 4.5 mm
7 x 3 magnets, d = 9.25 mm

Figure 5.9: Decay time of the oscillations versus resonant frequency for two different
configurations of the magnetic antispring.

where fs is the vertical resonant frequency of the filter without the antispring. From

the latter equation we can deduce the dependence on resonant frequency of the quality

factor which is also defined as the inverse of the phase lag φ. By inverting the (5.7)

we obtain:

Q(f0) =
f 2

0

φf2
s

. (5.8)

Therefore, the origin of the damping has to be ascribed to internal phenomena of

dissipation: internal friction of the blades, hysteresis of magnets and hysteresis of the

mechanical supports of the magnets matrices.

The measured values of the quality factor are rather low. Nevertheless, having low

values of Q is not a disvantage, at least on the upper stages of the superattenuator:

low quality factors suppress the transmission of the soil vibration at the resonant

frequencies of the chain. On the last stage, where the thermal noise can affect directly

the mirror, high Q materials have to be preferred. By the way, other requirements,

such as the low creep rate (see next chapter), have led our choice towards high Q

materials for the realization of the blades and of the magnets supports.
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5.3 Thermal stabilization

On the basis of the experimental data collected, relevant information about the sta-

bility of the superattenuator have been obtained; in particular it has been picked

out the necessity of thermal stabilization within 0.1 ◦C[46, 47] inside the vacuum

chambers containing the suspension systems so that the fluctuation of the vertical

position of the mirrors do not overload the alignment system. Moreover, the thermal

stabilization allows to eliminate the complex system of hydraulic adjustment of the

filter designed for the previous version of the superattenuator[48].

Here we estimate the vertical displacement of the suspended mirror due to changes

in the stiffness of the blade springs and magnetic antispring driven by temperature

variations.

As the total vertical stiffness of a mechanical filter changes, a new equilibrium

position is reached by its load. The equilibrium condition is:

Ks (y − l0)−Kasy +Mg = 0, (5.9)

where Ks and Kas are the blades and the antispring contribution to the total stiffness

Ktot, respectively, y is the vertical displacement from the perfectly–faced–magnets

position, l0 is the rest length of the blade springs treated as linear springs and Mg is

the filter load. The solution of (5.9) is easily obtained:

y0 =
Ksl0 −Mg

Ks −Kas

, (5.10)

and can be differentiated in order to obtain the thermal drift of the equilibrium

position:

δy0 =
δKs (Mg − l0Kas)

(Ks −Kas)
2 +

δKas (Ksl0 −Mg)

(Ks −Kas)
2 (5.11)

or, from the (5.10):

δy0 =
(l0 − y0) δKs

Ktot

+
y0δKas

Ktot

. (5.12)

In the real situation of the VIRGO mechanical filters we have y0 � l0 and we can

approximate l0 − y0 with l0 and Ks · l0 with Mg. So we can rewrite the (5.12) as:

δy0 '
g

(2πf0)
2

(
δKs

Ks

+
y0

l0

δKas

Kas

)
, (5.13)
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where the relation Ktot = M (2πf0)
2 has been used. By putting into the (5.13)

numerical values:

l0 ' 0.15 m; y0 ≤ 0.001 m

f0 ' 0.4 Hz

1
Ks

δKs

δT
≈ 2× 10−4/◦C

1
Kas

δKas

δT
≈ 4× 10−3/◦C

(the latter two coming from direct measurements), we can estimate the amount of

vertical displacement δys due to the blades contribution:

δys

δT
' 9.8

(2× π × 0.4)2 × 2.1× 10−4 ' 300 µm/◦C (5.14)

and δyas due to the magnets:

δyas

δT
' 0.001

0.15
× 9.8

(2× π × 0.4)2 × 4× 10−3 ' 30 µm/◦C. (5.15)

The total vertical displacement of the mirror due to the above described temper-

ature variation is obtained by summing the contribution of all the six filters of the

suspension chain. A big amount of vertical displacement cannot be compensated by

the position adjusting systems whose range is of a few mm. Moreover, all the motor

driven devices must be switched off during the data taking and this will further reduce

the capabilities of position correction.

By the way, there is a stronger stability requirement on the resonant frequencies

of the suspensions chain. Large thermal fluctuations of the frequencies cannot be

tolerated by the feedback system for the locking and for the active damping. With

a thermal stabilization within 0.1 ◦C, the residual thermal changes of the vertical

frequencies remains inside the natural width of the peaks, making much simpler the

locking and the active damping operations.

5.4 Assembling procedure

All the filters for the six VIRGO superattenuators plus the three short towers com-

posed only by the filter 0 and the steering filter (a total number of 42 filters), are
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assembled and tested by the people of the suspensions group, whose the author is

member. The filter assembling consists of well defined operations whose aim is to

guarantee the best working configuration and to reduce to the minimum further ad-

justments once the filter is mounted in its final position along the chain. The setting

of the antispring system is the most important of these operations.

The filter is suspended to a rigid structure and charged with its nominal load,

then the load is made oscillate and the frequency is measured through a commercial

accelerometer whose signal is sent to a spectrum analyzer. In order to evaluate the

minimum resonant frequency, the magnets offset is changed by adding small calibrated

weights (≈ 100 g) to the filter load and the frequency is measured for each offset

position. The contribution to the frequency variation due to the small changes of

the load (∆f/f ∼
√

∆m/m), is negligible with respect to the variation due to the

change of the antispring offset which, according to (5.10), results linearly dependent

on the added load. In this way we obtain a curve of the resonant frequency versus

the magnets offset, like the ones described in the previous section.

The filter is tuned to the desired vertical resonant frequency by setting the sep-

aration between the antispring matrices. It is impossible to get an accurate tuning

of the filter because of this trial–and–error method but, on the other hand, it is not

necessary. The requirement is to keep the vertical resonant frequency below the hor-

izontal one (about 0.5 Hz) and far enough from zero in order to avoid instabilities.

The conservative range between 300 and 400 Hz has to be considered acceptable. The

temperature dependence of the resonant frequency is also taken into account by using

the (5.5) to evaluate the frequency shift the filter will experience when it is put in its

final operating location.



Chapter 6

Mechanical limits: internal modes

The internal modes of some elements of the VIRGO mechanical filters limit their

performances. Around the frequencies of such modes the attenuation of the filters

becomes worse so that the isolation from seismic noise is compromised. In order to

damp these unwanted vibrations the filter structure has been designed to be rigid

as much as possible; where it has not been possible to do it, i.e. blade springs and

suspension wires, special dynamic absorption devices, hereafter called dampers, has

been designed.

The dampers are mounted on the vibrating elements in order to attenuate the

resonance. In this way we are able to keep the vertical transfer function of the filter

below the required value in all the frequency region affected by the internal vibration

we have dealt with (30-130 Hz).

Above 10 Hz, the vertical attenuation of a filter deviates from the 1/f2 behaviour

since the non negligible mass of the blades. Even if we damp the internal modes, a

sort of plateau remains between 30 and 100 Hz. Nevertheless, to keep the seismic

noise well below the thermal one which dominates this frequency region, this worse

attenuation is acceptable if we consider the trend of the seismic noise (see equation

(2.20)). For instance, at 10 Hz the linear spectral density of the thermal excited

displacement of the mirror is about 10−17 m/
√

Hz while for the soil vibrations we have

about 10−9 m/
√

Hz. The last value has to be multiplied by the vertical–horizontal

coupling factor (about 1%), this means that a vertical attenuation of 107 by the entire

suspension (less than 20 for each filter), will be sufficient to reach our goal. Things

get better for higher frequency.

75
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Figure 6.1: Vertical transfer function module of the filter 1 measured on the prototype
chain. The peak at 55 Hz is due to the crossbar mode; the first flexural modes of the blade
springs is responsible of the structure aruond 105 Hz.

6.1 Internal vibrations

In fig. 6.1 the vertical transfer function (VTF) of a filter is shown. The measurement

is taken on the filter 1 operating in the prototype superattenuator built in INFN–Pisa

laboratory, by placing two commercial accelerometers on the top vessels of the filter 1

and of the lying below filter (filter 2), respectively. The signals are sent to a spectrum

analyzer which automatically calculates the transfer function. The system is excited

by driving with white noise the two vertical coils for the active damping placed on

the top stage of the superattenuator.

What we can see in the VTF is that, beside the main resonant frequency, other two

relevant peaks are present. The first one at 55 Hz is due to the next stage suspension

wire which acts as a spring between the movable part of the filter (central column +

crossbar) and the body of the lower filter (see fig. 6.2 a)). The second one at about

105 Hz is due to the first flexural mode of the blade springs (see fig. 6.2 b)). Hereafter,

we will refer to these modes as the crossbar mode and the blade mode, respectively.

The value of the VTF at the frequency of these two peaks is above the unit. This
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a) b)

Figure 6.2: a) The suspension wire acts as a spring between the movable part of the upper
filter and the body of the lower one. b) The main mode of the spring blade (upper part)
and the first flexural one (lower part).

means that the filter does not attenuate seismic vibrations at such frequencies. As a

consequence, these resonances are channels throughout vibrations are quite entirely

transmitted from a stage to the next one.

Another evidence which arises from the measurement shown of fig. 6.1 is the

deviation from the 1/f2 behaviour of the VTF. Apart from the above mentioned

resonances, the vertical attenuation of the filter is damaged by the fact that the blade

springs have a not negligible mass and momentum of inertia. This cause a 1/f trend

which cannot be improved even by damping the internal resonant modes. By the

way, we are showing in this chapter that, once damped the the internal modes, the

vertical attenuation is enough to keep the seismic noise below the other noises which

are expected to limit the sensitivity of the interferometer.

Our dampers are essentially low–Q oscillators coupled with the element whose

vibration has to be attenuated. Since a low–Q oscillator dissipates most of energy at
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Figure 6.3: Schematic view of the damper for the crossbar mode.

its resonant frequency, we have decided to build dampers with adjustable resonant

frequency. In this way one can tune the damper at the frequency of the mode which

has to be attenuated.

The final version of the damper used to attenuate the crossbar mode is sketched

in fig. 6.3. It consists of a mass of 2.5 kg resting on three viton legs which are the

dissipating elements of the device. The length of the viton can be varied to adjust the

resonant frequency. To avoid stress on the viton legs, three soft steel springs sustain

the mass load. This damper is coupled with the vibration mode by fixing it onto the

crossbar of the filter. The final version of the crossbar dampers have been designed

by the author who has also attended to their realization and to their assembling on

all the VIRGO filters.

For the blade mode we use a 50 g weight connected to the center of each blade by

means of a viton rod, about 10 cm long (see fig. 6.4 a)). The length of the viton is

chosen to match the resonant frequency of the damper to the frequency of the first

flexural mode of the blade. In a previous model the viton rod worked in flexural mode

and the oscillating mass was lighter than the actual one (see fig. 6.4 b)). We have
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Figure 6.4: Damper for the blades mode. a) The new version with the viton working in
extension mode; b) in the old one the viton worked in flexural mode.

found that this new design is more efficient than the older one.

6.2 Damper characterization

The first generation of dampers has been tested by the author on a single blade spring

and on the prototype mechanical filter already seen in the previous chapter[44, 50].

These tests have confirmed the efficacy in attenuation and the feasibility of damper

tuning.

Blade dampers. A detailed characterization of the behaviour of the blade dampers

was obtained by studying their effects on the VTF of a single blade taken

apart from its filter. Then, the dampers have been mounted on the blades of

the prototype filter in order to damp the resonance due to their first flexural

mode. In the VTF shown in fig. 6.5 we can distinguish two effects of the blade
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Figure 6.5: Flexural modes of the 12 blades as they appear in the transfer function mea-
sured between the body and the crossbar of the filter prototype. In the circle, the structure
attributed to the vibration of the blades as single elements is picked out.

vibrations: the first is a series of peaks and notches attributed to the blades

oscillating as single elements; the second is a sharper peak, at a frequency a

little bit higher, identified as a coherent oscillation of all the blades. Since the

latter resonance limits the attenuation of the filter more than the single blade

contributions, all the dampers are tuned to oscillate at the frequency of that

collective mode, i.e. all the dampers have the same arm length. We, of course,

cannot directly measure the resonant frequency of the dampers, so we have to

change the length of the viton until we get the best attenuation. Once the best

tuning is found, the single blade modes result damped as well. A tolerance in

the tuning operation of about 1 mm on the length of the oscillating viton rod

has also been found.

Crossbar damper. An analogous survey on the crossbar damper has demonstrate

the feasibility of damping of the crossbar mode. A 1 mm tolerance has also

been estimated in determining the best length of the viton legs.

Dependence on temperature. The mechanical characteristic of viscous–elastic ma-

terials are very sensitive to temperature variations. In the previous chapter we
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Figure 6.6: Perspective view of the crossbar damper.

have seen that the superattenuators have to work at a stabilized temperature

but, at the time this survey was done, the working temperature had not been

well defined yet. If the working temperature had been too high (or too low) to

carry out the assembling operations we would have had to be able to foresee

the change in the dampers performances due to the different temperatures. The

measurements at different temperatures of the efficacy of the dampers allow us

to determine an empirical relationship for the correction to apply to the active

length of the viton rods in case the temperature of the assembling operation is

different from the working temperature of the superattenuators. In the range

of temperatures between 22 and 35 ◦C, we have found:

∆L

∆T
∼= −0.1

mm
◦C

(6.1)

for the blade dampers and

∆L

∆T
∼= −0.05

mm
◦C

(6.2)

for the crossbar damper.
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Figure 6.7: Vertical transfer function modules of the filter 3 for three different values of
the oscillating mass of the blade dampers. The VTF of the filter without dampers is also
shown (long dashed line).

6.3 Superattenuator prototype

Before starting to install the superattenuators of the VIRGO interferometer, a com-

plete superattenuator prototype has been assembled in the laboratory of INFN–Pisa.

The prototype differs from the final superattenuator only for its height because of the

lower distance between the filter 1 and the top stage due to practical limitations.

A new series of measurements has been done to test the efficacy of the dampers

on the filters mounted along the prototype chain. The most important parameters

studied are the length of viton and the weight of the oscillating masses. The final

version of dampers has been chosen after studying different alternatives (in particular

for the blade dampers).

The fig. 6.7 shows how the VTF of a filter changes when the oscillating mass

of the blade dampers increases from 40 g to 52 g: the height of the residual peak

decrease but its frequency moves towards lower values, where the tail of the crossbar

mode rises the VTF. We have found that 50 g is a good compromise. Moreover, the

blade modes of each filter are all quite close to the same frequency so we can mount
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Figure 6.8: VTF module of the filter 3 with the crossbar damper (solid line) compared with
the undamped one (dashed line). The blades are also damped but using the old devices.

the blade dampers all with the same resonant frequency, that is with the same viton

length.

In the VTF shown in fig. 6.8 we can see the effect of the crossbar damper; the

dotted line is the filter VTF without dampers; here we have damped also the blades

but with the old dampers which are less efficient. Using the new blade dampers, as

we can see in fig. 6.9, the peaks of the blades completely disappear. At the time the

measurement was done this filter was the last mounted on the chain and was charged

with a 400 kg dummy load. In this condition, the VTF differs for about a factor 2

from that we would have measured if it had been loaded with the lower stages of the

superattenuator chain.

The frequency of the crossbar mode differs from a filter to another because of the

different masses involved and of the different suspension wire diameters. Therefore,

each damper has to be tuned at the specific frequency of the filter it will be mounted

on. A calibration curve of the device can be obtained by fitting the measured fre-

quencies f versus lengths of the viton legs L with the relationship we get from the
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Figure 6.9: VTF module of filter 4 full damped (solid line) compared with the undamped
one (dashed line).

elastic elongation law of materials:

f =
1

2π

√
3 · ES

LM
, (6.3)

where E is the Young modulus of the material, S is the section of the viton legs and

M is the mass of the damper (see fig. 6.10).

6.4 Superattenuator transfer function

In section 2.5 we defined the transfer function of an unidimensional oscillator. For a

linear mechanical system with six degrees of freedom, the transfer function is defined

as the linear operator connecting the Fourier transform of the input point displace-

ment to the Fourier transform of the output point displacement in all the six degrees

of freedom. Above a few Hz, the attenuation of our superattenuator is so strong that

it is not possible to perform a direct measurement of the 36 frequency–dependent

elements of the matrix: no commercial accelerometer is sensitive enough to detect

the small mirror residual displacement.
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Figure 6.10: Calibration curve of the crossbar damper with a 2.78 kg oscillating mass (the
mass of the accelerometer is also included).

An alternative strategy to measure the total transfer function can be adopted if

we think that our system interacts with the external environment only through the

input point. For such a system it is possible to write:

Xin = Tin · Fin and Xout = Tout · Fin, (6.4)

where the operators Tin and Tout do not depend on the force Fin applied to the input

point, since the system is linear. In particular, if Xi and Xi+1 are the input and the

output point of the i–th stage of the chain, respectively, we will have:

Xi+1 = Ti+1T
−1
i ·Xi. (6.5)

The transfer function in the right hand term of the latter equation does not depend

on the elements and on the external forces which are upstream of the input point Xi.

It can be directly evaluated by exciting the stage of the chain and by measuring the

displacements of the input and output points with commercial accelerometers which

are sensitive enough to detect the output signal after one stage of attenuation.

Now we can rewrite the (6.5) for the input and the output points of the entire

chain of n stages inserting n− 1 identity operators, so obtaining:

Xout = ToutT
−1
n · TnT

−1
n−1 · ... · T1T

−1
in ·Xin. (6.6)
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Therefore, the total transfer function of the entire superattenuator chain can be ob-

tained by multiplying the single stage transfer functions of equation (6.5) directly

measured on each stage.

In principle a total number of 12 accelerometers connected to a spectrum analyzer

with the same number of channels would be necessary to evaluate each matrix element

of the transfer function. In addition a very delicate analysis should be performed to

distinguish each matrix element from the others because of instrumental couplings

in the accelerometers. However, in the vertical direction each filter, as well as the

entire superattenuator, has a weak coupling with the other degrees of freedom. This

means that the 6 × 6 matrix is quasi–diagonal along the vertical direction. Two

accelerometers, one on each filter, monitoring the vertical displacement, are sufficient

to determine the diagonal element of the transfer function of a single stage. Moreover,

the diagonal term of the total VTF is well represented with the product of the single

diagonal terms. The error induced by small couplings has been estimated to be a few

percent.

The VTF of the prototype chain has been evaluated by multiplying the VTFs of

each single stage measured on the chain[51]. In the total VTF shown in fig. 6.11 we

can see how the crossbar mode peaks are suppressed by dampers except that of filter

0, at about 35 Hz, and that of filter 7, at about 50 Hz (indeed these two filters do

not have the crossbar damper). All the blades are also well damped.

The transfer function measurements has been performed along the horizontal axis

too. Since our system exhibits a rough cylindrical symmetry, the total transfer func-

tion measured along a fixed horizontal axis is very similar to the one measured along

any other horizontal axis. In this case the main trouble is due to the coupling of

translations along the horizontal axis with the rotations around the horizontal axis

(tilt) perpendicular to the first one. This can be explained by the presence of the

suspension wire. A tilt of the upper filter induces a bend in the lower filter suspension

wire which makes the lower filter translate. The presence of this coupling implies the

transfer function matrix is not diagonal along the horizontal axes. Therefore, it is

not possible to evaluate the entire superattenuator horizontal transfer function by

simply multiplying the diagonal terms of each single stage matrix. This method only

gives a rough estimation of the total horizontal transfer function, though its order of

magnitude is correct.
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Figure 6.11: Vertical transfer function module of the superattenuator chain. The function
is obtained by multiplying the VTFs of each filter measured on the chain.
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On the other hand, the comparison between the module of the horizontal transfer

function between two filters and the module of the vertical one shows that, above 10

Hz (resonant peaks excluded), the attenuation of each stage in the horizontal direction

is at least ten times better than the vertical attenuation. So, we can conclude that the

total horizontal transfer function is order of magnitude smaller than the vertical one.

In other words, the main seismic noise contribution in the VIRGO detection band

comes from the residual seismic vertical component coupled to the beam direction.

The measurement of the total vertical transfer function has demonstrate that

the superattenuator chain is able to isolate the optical components of the VIRGO

interferometer from seismic noise starting from a few Hz. Indeed, we have estimated

an attenuation factor ranging between 109 and 1013, in the frequency band from 4 to

200 Hz, for the seismic noise vertical component which represents the most important

contribution to the noise. With this attenuation the residual seismic noise, in the

above mentioned range of frequency, is negligible with respect to other noises limiting

the antenna sensitivity.



Chapter 7

Steel blade springs for the VIRGO

superattenuators

Static and dynamic stress affects the microscopic structure of the materials and can

change their macroscopic features. The mechanical filters are made up of different

elements which will be subject to stress, mainly static, for long time. Blades, wires,

hinges and clamps might suffer such deformations to induce a sag of the load of the

filter and, as a consequence, of the suspended mirror.

The phenomenon we refer to is known as micro–creep or simply creep. It is mainly

due to single microscopic yielding events at the crystalline structure level.

The creep is the source of two problems. The first is that a sag of a few microns

per day would require monthly reset of the filters working point and would saturate

the dynamic of any vertical positioning system of the chain in a few years. The second

is the noise induced by each single creep event.

A survey on a filter prototype had picked out the entity of these problems towards

the material for the realization of the blade springs and further researches were done

on special alloys which would have a lower creep. The solution has been indicated

in the Maraging steel and all the most stressed components of the superattenuator

are made of this material. The blades have undergone the special treatments we are

describing in this chapter.

89
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Figure 7.1: Vertical displacement of the load of the filter and temperature versus time.
It can be observed the vertical sag due to creep when the temperature is almost constant
around 26 ◦C.

7.1 Evidence of creep

By means of the experimental set–up described in section 5.2 the author carried out

a survey on the vertical lowering of the movable part of the filter prototype[55]. The

bare filter, without the antispring system, was loaded and the position of its crossbar

with respect to the filter body was observed through an LVDT sensor. We made a

series of measurement at different stabilized temperatures, each of them few weeks

long, in order to evaluate the speed of the filter sag as a function of the operating

temperature.

The fig. 7.1 shows the vertical displacement of the crossbar versus time in the

measurement taken at 26 ◦C. The recording of data started when the temperature

was at about 21 ◦C so we can see also the warming up phase of the system. The

values of the temperature are shown as well. It is possible to distinguish two different

trends. During the warming up the effects of the temperature variation prevail. As

the temperature increases the blades become softer and they need a larger flexion

to hold the weight of the applied load. These flexions are substantially elastic and

reversible. When the temperature is stabilized around 26 ◦C, unless a maximum daily
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Figure 7.2: Vertical displacement of the load of the filter versus temperature. In the region
around 26 ◦C we can distinguish the daily excursion of the temperature and the progressive
sag due to creep. The time flows from left to right.

excursion of about 0.4 ◦C and a slow increment of its average value, the slope of the

displacement curve does not agree with the temperature increment any more. This

is the creep.

The effect is still more evident if we consider the lowering of the crossbar as a

function of temperature (see fig. 7.2). From the linear trend concerning the warming

up phase we have been able to deduce the change of the crossbar position due to

the temperature variation. A value of −30 µm/◦C has been found. If this value is

attributed to the only variation of the stiffness of the blade springs ks, for this one

we obtain:
1

∆T

∆ks

ks

≈ 1

∆T

∆y0

y0

=
2.1× 10−4

◦C
, (7.1)

where y0 is the rest position of the tip of the blade (see fig. 4.7).

The curves shown in fig. 7.3 refer to the sag of the crossbar with respect to the

filter body measured at various temperatures after these had stabilized. The speed
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Figure 7.3: Vertical sag of the filter load versus time at different temperatures. The speed
of sag increases as temperature increases.

of sag increases with the temperature. We have guessed a time dependence of the

position y(t) like:

y(t) = λT (t) +Kt, (7.2)

where T (t) is the temperature as a function of the time and K is the speed of sag

due to the creep. By assuming, for the coefficient of thermal elongation λ, the value

of −30 µm/◦C previously determined and by subtracting from the measured data yi

the contribution λ · Ti, we have isolated the component due to the creep and have

estimated a value of K. For each measurement we have assumed that K was quite

constant in the small spread of temperature observed. The estimated values of the

speed of sag are plotted versus the temperature of the respective measurement in fig.

7.4, in which it is evident an exponential behaviour (see next section).

The sag observed in the above described measurements has to be entirely ascribed

to the creep of the blades, being these the most stressed components of the mechanical

filter. To confirm this claim, a further test aiming to rule out the creep of the filter
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Figure 7.4: Mean speed of sag of the movable part of the filter versus temperature. The
exponential trend is evident.

body and of the blade hinges was made. We clamped eight very strong and rigid

blades, 4 cm thick, to a filter which was then loaded with a 1.2 ton mass (about twice

the nominal load of the filter). The system was placed in a temperature controlled

chamber, at about 35 ◦C, and the sag of the load was measured by means of a

mechanical comparator placed between the crossbar and the filter body. Despite

the double acting load, no lowering of the blades tips, larger than the instrument

sensitivity (about 1 micron), was found in two weeks of observation. The wires were

also tested in similar condition with null results over two weeks.

The results of the measurements of the blade sag were rather alarming. The mea-

sured creep effect of 10–20 micron per day around the most likely VIRGO operating

temperature (at that time not yet defined) was much higher than the expected one

and a strong dependence on temperature was evident. No reduction of creep had

been observed on the time scale of weeks. In few days the filter sag would lead the

antispring matrices out of the right working range and a reset procedure would be
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necessary. This level of creep, absolutely unexpected, could not be tolerated by our

apparatus because it would saturate the dynamics of any feedback system of the

vertical positioning in a few month.

Moreover, as shown in the section below, creep is responsible of a sort of mechan-

ical shot noise which affects the suspended mirrors. The level of creep resulting from

our measurements would induce mirror displacements, in the beam direction, order

of magnitude larger than the expected displacement due to gravitational waves. The

maximum tolerable creep is set by the requirement to keep the noise induced well

below the thermal noise limit.

7.2 The creep phenomenon

The sag of the blades tips is the macroscopic evidence, easy to be measured, of

microscopic processes which happen at the level of the crystalline structure of the

material the blades are made of. To understand what happens it is necessary to

glance into the microscopic structure of metals. Here we will report a simplified

description of the topic, deferring the reader to specialized publications for a better

treatment[52, 53, 54].

7.2.1 Creep origin

As soon as the stress is applied to a polycrystalline solid, a quasi–equilibrium state

is reached where each grain is deformed along the local stress direction. Inside each

grain the stress is initially distributed rather uniformly throughout its volume. As

time goes on, thermal fluctuations shake free or generate dislocations : lines of defects

of the crystalline structure. This dislocations glide through the grain pushed by

the stress field pressure until they reach the surface of the grain or a pinning point

and there they accumulate. In this way they actually transport a part of the stress

originally distributed in all the grain volume, towards its boundary. If the built up

stress is enough to exceed the yield limit a grain slippage will occur and the energy

is released and distributed between the other grains. The energy released in a single

grain slippage is estimated to be of the order of hundreds of picoJoule, taking into

account the dimension of the grains and the applied stress.
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The speed of sag of the applied load is proportional to the average elongation due

to the single creep events and to the frequency at which they occur. The frequency

depends on the number of dislocations which can reach the grain surface and therefore,

it depends on temperature. The amount of dislocations inside a grain depends on

chemistry and physical processes the material has been undergone to. A fraction of

these dislocations proportional to an exponential of the applied stress has activation

energy comparable to the thermal energy KBT (i.e. the Boltzmann constant times

the absolute temperature) and it can move inducing creep in the long run. Although

very small (10−21 J at room temperature), thermal fluctuations are able to drive such

an event in which energy enormously higher are involved.

The frequency f at which the dislocation are used up is given by:

f = f0 · e
− E

KBT , (7.3)

where both the activation energy of the elementary creep process E (of the order

of eV) and the constant f0 depend on the detailed crystalline structure and on the

applied stress. E is not a fixed value because in the crystals there is an infinity

of slightly different kinds of dislocations, each with its own activation energy. The

observable E is rather the mean value of a distribution of activation energies.

Above a certain stress threshold the thermal energy fluctuations can shake free

only a limited number of available dislocations. In this regime, as time goes on, the

dislocations are progressively used up until they are exhausted. If the equation (7.3)

is applied to different kinds of dislocations, it is obvious that the ones with lower

activation energies will be used up faster. In absence of dislocation regeneration,

E grows with time because of the longer lifetime of the dislocations with higher

activation energies. As a consequence, the creep shows a logarithmic trend with time

while the speed of sag decreases as the inverse of time. Moreover it is possible to

eliminate all the dislocations which can be activate by aging the loaded sample at a

higher temperature. This regime is named α–creep.

Above the threshold level, the distributed stress is capable to continuously gen-

erate new dislocations. In this case the creep will induce a sag with constant speed

and we can speak of steady–state creep or β–creep. The tested blades were made of

AISI 1070 steel and we have found them to be in the β–creep regime.
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7.2.2 Creep noise

The main warning coming from the unexpected amount of creep concerns the noise

caused by the grain slippages. Each of them generates a quasi instantaneous pulse

which propagates throughout the materials at the speed of sound. A simple theoretical

model of a mirror suspension wire has been proposed to evaluate the noise induced

by the creep events[59]. The linear spectral density ỹ(Ω) of the vertical displacement

of the mirror due to grain slippages results to be:

ỹ(Ω) =
ω2

0√
(Ω2 − ω2

0)
2
+ γ2Ω2

qs
√
λ

Ω
, (7.4)

where ω0 is the vertical resonant frequency of the wire, γ is its dissipation factor, qs

and λ are the amplitude of a single slippage and the frequency they occur, respectively.

We can evaluate λ from experimental results on the speed of sag K like that ones

described in the previous section, being this two quantities bound by the simple

relation K = qs · λ. The amplitude qs is deducible from the above stated theory and

it results to be of the order of picometers.

From the experimental data it arose that the level of creep noise would be ex-

tremely high at the operating temperature foreseen for VIRGO (around room tem-

perature). The measured values of about 10 microns per day corresponds to hundreds

of “clicks” per second. The vibrations induced on the mirrors in the beam direction

were orders of magnitude higher than the displacement expected from the impinging

gravitational waves (typically 10−18 m) . Such vibrations could not be entirely at-

tenuated since they were generated all along the superattenuator chain. Some rough

conservative evaluations provided a strong limit to the maximum creep rate tolerable

in the last stage of the suspension: about 10−2 step/s which corresponds to a speed

of sag of about 1 nm per day. Particular attention had to be paid to the suspension

wires of the mirrors whose creep directly affects the mirrors themselves. A survey on

the creep in the mirror suspension wires has been carried out in the laboratories of

the INFN–Perugia[59].
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7.3 The Maraging solution

The high β–creep level we measured in the survey described in section 7.1 has to be

attributed to the pretty uniformity of the iron grains contained in high carbon steel

alloys like the AISI 1070 of the tested blades as well as the AISI 1085 of the suspension

wires. The dislocations (and the stress they carry), driven by the stress field, migrate

throughout the grains and accumulate either into defects or into the small carbon

crystals at the boundary of the grains. As the dislocations can be collected from the

entire volume of the grain to relatively small pinning points, the yield stress will be

eventually reached even for low applied loads.

To reach the desirable α–creep regime, the AISI 1070 would be loaded with less

than 15–20% of the commonly accepted elastic limit. However, the VIRGO require-

ments of low frequency oscillations involve high stress applied to the blade springs.

Indeed, it can be easily shown that the resonant frequency of the blades depends on

the inverse square root of the applied stress.

After evaluating different alternatives, we found a solution to the creep problem

in a completely different kind of steels: the precipitation hardened steel alloys. In

particular our choice was an alloy of the Maraging steel family: the Marval 18 C–

2501[56, 57].

In Maraging steels only about two thirds of the alloy is iron, the balance is made

of nickel, chromium, cobalt, molybdenum and titanium in finely weighted percentage.

The alloy presents iron grains of the same dimensions of normal steel (5–10 µm) but

they are populated by many millions of nanometer sized metal crystal which have

“precipitated” into the grains during the hardening process. In such a structure,

dislocations are not allowed to travel throughout the grain since they are stopped by

the nanocrystals. Therefore, the stress remains frozen within the grain volume and

the slippage threshold on its surface cannot be reached anymore.

We studied the behavior of the Maraging steel blades through a series of measure-

ments aiming to determine the amount of creep by monitoring the sag of the load

under different applied stresses, at different operating temperatures and after differ-

ent thermal treatments of the samples: the results were more than comfortable[57]:

no evidence of steady–state creep was found under a large range of test conditions.

1Marval 18 is a trademark of Aubert & Duval SA, 41, Rue de Viliers, Neuille–sur–Seine, F–92202,
France
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A similar survey was performed on the filter suspension wires[58].

Being the maximum tolerable creep rate beyond our measurement capabilities, we

could only indirectly estimate it. Indeed, the measurements at different temperatures

demonstrated that the creep rate, indistinguishable from zero at a certain tempera-

ture, could be deduced from the measurement at a higher temperature by scaling the

latter by a factor depending only on the difference of temperature. Since a factor of

reduction of three orders of magnitude was evaluated to be induced by a reduction

of temperature from 80 ◦C to 30 ◦C, a creep rate of less than one micron per day

at 80 ◦C would correspond to less than one nanometer per day at VIRGO operating

temperature (a value acceptable for VIRGO) . All the tested blades and wires made

of Maraging steel were observed to reach this level of creep within the duration of the

measurements (about two weeks).

From this survey, we found that the available dislocation consumption was accel-

erated, so lowering the creep rate, by increasing the operating temperature . In fact,

after baking the loaded blades, the creep rate at room temperature was practically

indistinguishable from zero in our experimental set–up.

Moreover, a technique to suddenly reduce the number of available dislocations,

as effective as the baking, is to “train” the blades at more than their nominal load.

A series of measurements aimed to monitor the acoustic emission activity while the

blades are loaded, has confirmed the above statement[60].

Acoustic emission is a typical event detectable in metals during deformation. In

the case of loaded metallic samples, dislocation motion is one of the main sources

of detectable (ultrasonic) acoustic signals. The several set of events collected gets

evidence of a memory effect that influence the motion of dislocations in the Maraging

steel, known as Kaiser effect (see [60] and references therein). When a sample is firstly

loaded, then unloaded and finally reloaded in the same direction, the rate of acoustic

emission events is considerably reduced during the second loading cycle. A reduction

of the ultrasonic processes, corresponding to a reduction of the available dislocations,

is hence obtained by applying a few stress cycles to the steel blades improving, at the

same time, its stability on the microscopic scale.
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7.4 Heat treatments and tests

In order to satisfy the mechanical specification of the VIRGO detector, a complete

characterization of Maraging steel has been done to optimize the mechanical prop-

erties of the special elements we were going to build[61, 62]. Both the composition

of Marval 18 C–250 and its microstructure concur to reduce the microplasticity and

microcreep phenomena. The microstructure is strengthened by the aging treatment

which causes the precipitation of intermetallic particles, reducing the motion of dis-

locations. Therefore, a strong increment of strength of the material is reachable with

an adequate thermal treatment, as well as an improvement of its hardness and yield

point. We have determined that the best heat treatments to optimize the mechanical

properties of the Maraging steel is the following:

Material solution annealing. The elements made of Maraging steel are heated at

1113 ◦K (840 ◦C) for 1 h. At this temperature the material undergoes a complete

transition to the austenitic phase and the hardening elements (molybdenium,

nickel, cobalt and titanium) are in solution with other elements. During the

cooling phase in air, a massive martensitic formation with a high concentration

of lathe is generated. The dimensions of the lathes and the density of the

dislocations will determine the hardness of the material.

Aging process. The pieces are heated at 708 ◦K (435 ◦C) for 100 h. The aging

treatment causes the precipitation of an inter–metallic formation of thin parti-

cles which bring about a reduction in motion of the dislocations. The maximum

ultimate tensile strength is attained with a suitable combination of aging time

and furnace temperature. It has been found that, with this combination, the

dimension of the precipitates were more effective in locking the dislocations and

reducing the microplasticity phenomena.

For the best control of the final results, we decided to perform the aging process

of all the elements in Maraging steel for the VIRGO superattenuator construction by

ourselves. A suitable oven has been placed in the laboratory of INFN–Pisa for this

purpose and it has been equipped with a programmable temperature controller. A

small pipe connected to a set of gas–cylinders allows us to flux Argon into the oven

in order to get a poor oxygen atmosphere during the heat treatments.
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Figure 7.5: The apparatus to test the VIRGO blade springs.

The about 400 blade springs have undergone the following described special pro-

cedure, identified and performed by the author. Since the blades are bent to the

required curvature radius, according to their nominal load (see section 4.1.2), before

the hardening of the steel (otherwise it would be impossible to bend them) we first

perform a solution annealing (1 h @ 840 ◦C) to eliminate residual stresses due to

bending operations. After they are made cool down to room temperature, in air,

they are sent again to the bending in order to bring in correction to the curvature

radius, in case the heat treatment has caused small deformations. Then the blades

undergo the aging process (100 h @ 435 ◦C) at the end of which, they are quickly

cooled in water and ice.

7.4.1 Fatigue test

Once the heat treatment has been concluded, we submit each blade to a fatigue test,

a typical technique to take the materials to their optimal performances. Moreover,

as discussed in the previous section, fatigue test allows to eliminate the available

dislocations so to reduce the creep noise effects. The fatigue test we have decided to

adopt, consists of 10 cycles of load–unload the blade. A special testing machine has

been built to load the blades by means of a hydraulic piston (see fig. 7.5).

The base of the blade is clamped to the lateral beam of a rigid frame and its tip
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is connected to the piston through a steel wire. The base of the piston is fixed to the

top of the frame so that it works perpendicularly to the blade when the latter one

assumes its working flat configuration. The load is applied upwards. In each cycle

the piston pulls the tip of the blade from -45 mm to +45 mm with respect to the

working position of the blade, then it returns back. Each round trip takes about 40

seconds. In this way we apply to the blade a load which slowly increases up to about

30% more than the nominal one. We have estimated that this level of the applied

stress is sufficient to eliminate all the dislocations available at the nominal load (see

previous section) and, at the same time, it is far enough from the yield point.

During the tests, the position of the tip of the blade is read by a built–in position

sensor measuring the elongation of the piston. A strain–gauge cell placed between the

head of the piston and the tip of the blade measures the applied load. Both sensor and

piston operation are digitally controlled by a customized LABVIEW data acquisition

program running on a PC. A National Instruments ADC board and a home made

readout device are the interface between the PC and the testing machine. The above

described apparatus is part of a larger set up realized to test other components of the

VIRGO superattenuator[63]. Moreover, the blades testing machine has been used for

the acoustic emission measurements described in the previous section.

7.4.2 Characterization

Since first measurements we have found that the blades hardly ever assume a perfectly

flat shape when they are loaded to their nominal load. The reason of this is probably

in their processing: the blades birth flat, then they are bent nearly by hand and

slight deviations from a uniform curvature are likely to exist. These defects turn

out into a deviation from the flat shape the blade would assume if it had a uniform

curvature. As a consequence, when the nominal load is applied to the blade, its tip

will get a position, with respect to the filter body, different from the expected one.

It is important to notice that the position of the tip of the blades reflects the vertical

offset of the magnetic antispring. This mismatch can be compensated by acting on

the movable blades of the filter (see section 4.2).

From the collected data we can evaluate the actual working load supported by

each blade and its stiffness around the working point. According to the design of the

mechanical filter, we consider the working point of a blade the point where its tip
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Figure 7.6: Stress–strain curve of a blade spring as measured with the testing machine.
The blade behaves as a vertical spring in a range of about 30 mm around the working point.

lies on the plane defined by the support the blade is clamped to, i.e. the zero of our

measurements. In fig. 7.6 the measured stress–strain curve of a blade is shown: the

data refer to the last cycle of the fatigue test.

By means of a linear fit on the data in an interval of ±10 mm around the zero

strain, we estimate the value of both the actual load and the stiffness of the blade.

The values are then recorded in a database (MS Access) and utilized in the assembling

phase of the filters.



Chapter 8

VIRGO short towers

The installation of the VIRGO suspension systems started with the three short towers

holding the far mirror of the mode cleaner cavity, the injection bench and the detection

bench, respectively (see chapter 3). Since less seismic isolation is required, the short

towers are composed only by the pre–attenuation top stage with a reduced inverted

pendulum (2 m tall instead of 6 m) and by the steering filter suspending the last

stage.

More than seismic attenuation, the short towers are aiming to provide an effective

positioning system of the suspended items without introducing noise into the detection

band of the interferometer. Although they are different from the full version, we can

learn a lot by their installing and setting operations.

In this chapter we present a survey performed by the author on the dynamics of

the first installed short tower: the one suspending the bench on which the far mirror

of the mode cleaner cavity is mounted. For shortness, we will refer to this as the

Mode Cleaner tower. The mechanical characteristics of the chain are measured on

the apparatus in its working condition, apart from vacuum and thermal stabilization.

103
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Figure 8.1: The Mode Cleaner suspension system.

8.1 Mode Cleaner

The Mode Cleaner is a triangular cavity 144 m long. Input and output mirrors are

mounted on the input (or injection) bench, the far mirror is mounted on a suspended

bench inside a vacuum chamber which is connected to the input bench by means of

a dedicated vacuum pipe of reduced diameter. The finesse of the cavity is 1000 and

its aim is to select the mode TEM00 from the laser beam before it is injected in the

interferometer.

As shown in fig. 8.1, the Mode Cleaner suspension system is a short superatten-

uator consisting of only two mechanical filters: the filter 0 and the steering filter.

A steel suspension wire links together the two mechanical filters and the marionetta

to the steering filter. The marionetta is different from the one mounted on the tall

tower since it has a circular shape. Also the steering filter is modified with respect

to the one for the tall superattenuator: a structure extending from the bottom of the

filter replaces the legs in supporting the driving coils which are eight instead of four.

The coils, facing small magnets fixed to the outer circumference of the marionetta,

are used to control the position and the angular alignment of the optical bench. The
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Figure 8.2: Vertical transfer function marionetta → optical bench.

optical bench which hosts the mirror is suspended to the marionetta by means of

three steel wires. The filter 0 is supported by an inverted pendulum whose three legs

are 2 m long. The survey on the mechanical characteristics of the chain has been per-

formed by the author on the apparatus in its working condition, apart from vacuum

and thermal stabilization.

By using commercial accelerometers (PCB – mod. 393B12) and a Spectrum Ana-

lyzer (Ono–sokki) we have been able to determine the normal modes of the chain and

to check its attenuation performances. Four accelerometers have been positioned on

the vessels of both the filter 0 and the steering filter, on the marionetta and on the

optical bench, respectively. Vibrations have been injected by means of soft hammer

blows and/or by driving the coil–magnet positioning device on the top stage of the

chain.

8.2 Vertical dynamics

We have started with the measurement of the vertical transfer function (VTF) be-

tween 0 and 160 Hz of the last stage of the chain shown in fig. 8.2. Here we find



106 Chapter 8. VIRGO short towers

0 20 40 60 80 100 120 140 160
Frequency [Hz]

-80

-70

-60

-50

-40

-30

-20

-10

0

M
ag

 [
dB

]

Figure 8.3: Vertical transfer function steering filter → marionetta.

a structured peak at 40 ± 0.2 Hz due to recoil of the optical bench against its three

suspension wires acting as vertical springs. High order vibrational modes are present

above 100 Hz. This means that, in the vertical direction, the system marionetta–

optical bench behaves like a rigid object below 10 Hz. The VTF of the above stage,

measured between the steering filter and the marionetta, (see fig. 8.3) shows the

typical
(

f0

f

)2

trend with f0 ' 400 mHz due to the main vertical resonance of the

blade springs+magnetic antispring of the steering filter; at 19.8± 0.2 Hz there is the

crossbar mode of the steering filter (see chapter 5). Unfortunately, this VTF becomes

less clean as the frequency increases because of loss of coherence between the signals

of the two accelerometers, but we can still distinguish the zero–pole at about 40 Hz

due to the resonance of the lower stage and the peak at 50 Hz of the same resonance,

now coupled with the vertical modes of the steering filter. Multiplying the modules of

these two VTFs we obtain the module of the VTF steering filter–optical bench shown

in fig. 8.4 and compared with a direct measurement of the same one: the agreement

is good, at least until the measurements are meaningful.

The problem of transferring vibration throughout one attenuation stage is crucial
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Figure 8.4: Vertical transfer function steering filter → optical bench obtained by mul-
tiplying the modules of the single stage VTFs (solid line) compared with the measured
one (dashed line).
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Figure 8.5: Power spectrum of the accelerometer (in vertical direction) placed on the
steering filter.
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Figure 8.6: Low frequency power spectrum of the accelerometer (in vertical direction)
placed on the steering filter.

in measuring the VTF between the filter 0 and the steering filter: we cannot suf-

ficiently excite the upper filter to have on the lower one a good signal to calculate

the transfer function. Anyway, by measuring the power spectra we can get informa-

tion about the features of filter 0–steering filter stage. The power spectral density

of the signal of the accelerometer placed on the vessel of the steering filter has been

obtained by driving the vertical actuators of filter 0 with white noise. Through the

coil–magnet system used as actuators we have injected vibrations on the crossbar of

filter 0 so exciting the vertical modes of the chain. From the spectrum shown in fig.

8.5, we find that filter 0 has its crossbar mode at 18.2± 0.2 Hz.

At low frequencies, we find the two main vertical modes of the chain at 337 ± 6

and 812 ± 6 mHz, as it is evident in the power spectrum shown in fig. 8.6. This

measurement has been done by injecting withe noise only in the frequency band from

0 to 2.5 Hz and avoiding to excite rotations around any horizontal axis (tilts). Since

the accelerometer is placed quite far from the center of the vessel, it is sensible also

to tilt movements. When tilts are excited (see fig. 8.7), three peaks one order of

magnitude higher than the others, will appear at 431± 6, 756± 6 and 969± 6 mHz.
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Figure 8.7: Low frequency power spectrum of the accelerometer (in vertical direction)
placed on the steering filter with tilt excited.

It is difficult to say exactly which modes are responsible of these resonances because

of strictly coupling between horizontal and tilt modes, as we will show below.

8.3 Horizontal dynamics

Following the scheme of the previous section, let us analyze the horizontal dynamics.

In the horizontal tranfer function (HTF) steering filter–marionetta the structures due

to the three suspension wires suspending the optical bench dominate the scene above

20 Hz (see fig. 8.8). Below this frequency the curve goes like
(

f0

f

)2

with f0 ' 600

mHz. The measurements are affected by the same problems as for the vertical ones,

but we are confident that the general behaviour of the HTF, at least below 20 Hz,

is readable from them. By multiplying the HTF filter 0–steering filter by the HTF

steering filter–optical bench we obtain the HTF of the entire chain shown in fig. 8.9:

an attenuation of 105 − 106 is expected above 5 Hz.

At low frequency the power spectra of accelerometers exhibit the peaks of the main
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Figure 8.8: Horizontal transfer function steering filter →marionetta.
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Figure 8.9: Horizontal transfer function filter 0 → optical bench (solid line) obtained
by multiplying the single stage HTFs which are also shown (dashed lines).
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Figure 8.10: Low frequency power spectrum of the accelerometer (in the horizontal
direction) placed on the steering filter.
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Figure 8.11: Low frequency power spectrum of the accelerometer (in the horizontal
direction) placed on the filter 0.
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I3: 40 Hz

I2: 19.8 Hz

I1: 18.2 HzV1: 337 mHz V2: 812 mHz

Figure 8.12: Vertical modes

modes of the chain. Three of the peaks in fig. 8.10 have frequencies very close to that

of tilt mentioned above, so we attribute them to the coupling between horizontal and

tilt motions. The remaining two resonances, at 350 ± 12 mHz and 550 ± 12, can be

ascribed to a pure pendulum motion. The main resonance of the inverted pendulum

at 94 ± 6 mHz is visible in the power spectrum of the accelerometer placed on the

filter 0 (see fig. 8.11) where we also find a peak at 287± 6 mHz which misses in the

spectra of the other elements of the chain. This peak is due to rotation of the filter

0 around the vertical axis against the return torque of the inverted pendulum.

8.4 Modes of the chain

The modal analysis of the superattenuator chain is very important for the electro–

mechanics control of the system. The identification of the normal modes has been

performed by using the measurements described above and by observing directly the

motion of the chain elements. The short superattenuator tower can be regarded as
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a chain of six rigid bodies (2 filter bodies, 2 movable parts, marionetta and opti-

cal bench) connected by elastic elements (blade springs, suspension wires, centering

wires). With a simple calculation (number of rigid bodies × number of degrees of

freedom) we find that there must be 36 normal modes, without considering high or-

der vibrational modes of the elastic elements; this number can be strongly reduced if

we limit our analysis below ten Hz and we consider as rigid connections all the sus-

pension wires (only in vertical direction) and the centering wires (only in horizontal

directions). Assuming a cylindrical symmetry of the system the number of normal

modes we have to identify is reduced to 12:

4 pendulum modes;

2 vertical modes;

2 rotations around a horizontal axis (tilt);

4 rotations around the vertical axis.

We can consider this 12 modes as the real modes of the whole chain and the others

at higher frequencies as internal modes of a single stage, since the latter ones essen-

tially involve just the two bodies connected by the elastic element (e.g. crossbar mode

concerns a filter body and the movable part of the upper stage) inducing negligible

displacement to the other items of the chain.

The shape of the vertical modes are sketched in fig. 8.12 where we also show the

modes at higher frequency due to the suspension wires. In the mode V1 (@ 337 mHz)

the steering filter, the marionetta and the optical bench move in phase; the steering

filter moves in anti–phase with respect to the marionetta and the optical bench in

the mode V2 (@ 812 mHz). The modes I1, I2 and I3 are due to the suspension wires

acting as springs between the objects they connect.

From the measurements mentioned in previous sections, it is clear that there are

modes involving pendulum motion as well as tilts and an exact description of such

modes is hardly deducible. In fig. 8.13 we show our conclusions about pendulum and

rotational modes after measuring, with a chronometer, the period of the following

oscillations:
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H1: 94 mHz H2: 350 mHz H3: 550 mHz

H4: 969 mHz T2: 756 mHz

T1: 431 mHz

R1: 25 mHz R2: 287 mHz

Figure 8.13: Pendulum and rotational modes
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tilt of steering filter: 2.3± 0.05 s, 435± 10 mHz;

tilt of marionetta and optical bench in phase: 1.3± 0.05 s, 770± 30 mHz;

pendulum of marionetta and optical bench in anti–phase: 1.05±0.05 s, 950±
45 mHz;

rotation of all the chain in phase: 40± 1 s, 25± 1 mHz.

The modes H1 (@ 94 mHz), H2 (@ 350 mHz) and H3 (@ 550 mHz) can be

considered pure pendulum motion since their peaks appear only in the horizontal

power spectra of the filter 0 and the steering filter. The peaks of modes T1 (@ 431

mHz), T2 (@ 756 mHz) and H4 (@ 969 mHz) are also present in the vertical power

spectra, so they should involve both pendulum and tilt movements. The prefix H or T

in the above classification means that they are “mainly due to” horizontal (pendulum)

or tilt oscillations. For instance, the period of mode T1 is measured by tilting the

steering filter but the recoil of the marionetta–optical bench seems to be a pendulum

motion. Also the recoil of the filter 0 is horizontal because it cannot tilt.

For what concerns rotations around the vertical axis, we cannot see the mode in

which the steering filter rotates in anti–phase with respect to the marionetta and

the optical bench because the marionetta has a small rotational range: its rotation

is limited by the coils mounted on the structure extending from the steering filter.

The amplitude of permitted oscillations is not large enough to allow us to take a

measurement of their period. For the same reason, we cannot say anything about the

mode in which the marionetta and the optical bench rotate in anti–phase.





Chapter 9

Performances of the VIRGO

superattenuators

In the previous chapters we have seen how to get rid of some limitations to the

performances of the VIRGO superattenuator. In particular, we have described how

to improve the attenuation through the magnetic antisprings so to obtain the seismic

isolation starts from about 3 Hz (chapter 5). The internal vibrations due to the

resonance of blade springs and suspension wires have been suppressed by means of

passive dampers (chapter 6). Finally, in order to overcome the problem of creep, we

have identified in the Maraging steel the best material for the realization of the most

stressed components of the superattenuator (chapter 7).

In chapter 6 an indirect evaluation of the vertical transfer function of the super-

attenuator prototype has been produced. Apart from that indirect measurement, we

will not be able to fully appreciate the performances of the superattenuator until

the 3 km Fabry–Perot interferometer starts working, since it is the only instrument

sensitive enough to measure the small residual motions of the suspended mirrors.

On the other hand, encouraging indications that the suspension specifications are

fulfilled are deduced from analyzing the data coming from the Central Interferometer

commissioning.

117
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Figure 9.1: Optical scheme of the Central Interferometer. In the first part of the commis-
sioning phase, an auxiliary laser source was used, since a parallel commissioning was carried
out on the injection system.

9.1 The Central Interferometer

The Central Interferometer (CITF) is the 6 m recycled Michelson interferometer made

up of the beam splitter, the recycling mirror and the input mirrors of the two Fabry–

Perot cavities, used in this case as end mirrors (see fig. 9.1). All the components of

the interferometer, used for the preliminary commissioning or the detector (injection

system, vacuum system, electronics, mechanics, etc.), are nearly identical to the ones

to be used in the final apparatus. The only important differences concern mirror

dimensions (reduced size in the CITF) and specifications. A description of the CITF

can be found in [64].

CITF (as well as VIRGO) works in feedback. This means that the interferometer

is kept on the dark fringe and any deviation from the destructive interference induced

by differential variations of the two arm lengths (or by optical noise) is compensated

for by the feedback correction signal. In the CITF the compensation is made by

moving the West mirror through the coils placed on the reference mass which act on

the facing magnets fixed to the back of the mirror (see chapter 4.5). In absence of
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detectable gravitational signal, in the low frequency range where the feedback gain

is high, the spectrum of West mirror compensation displacement is essentially the

sensitivity of our apparatus. The full CITF has been successfully locked, achieving a

displacement sensitivity around 10−16 m/
√

Hz above 1 kHz, of a few 10−15 m/
√

Hz

at 100 Hz and of a few 10−13 m/
√

Hz at 10 Hz.

9.2 Attenuation Performances

A measurement of the attenuation performance of the Superattenuator has been made

by using the CITF. The measured upper limit of residual seismic noise at the mirror

level turns out to be smaller than the thermal noise floor expected to limit the antenna

sensitivity in the low frequency region.

Below a few tens of Hz (where seismic isolation is crucial), the displacement sen-

sitivity of the CITF is not negligible (of the order of 10−13 m/
√

Hz), even if it is far

from the sensitivity expected for VIRGO (10−17 − 10−18 m/
√

Hz).

The measurement procedure consists of exciting the chain suspension point by

sinusoidal forces in the low frequency range and using the interferometer to measure

the residual excitation of the suspended mirror. As mentioned above, this can be

measured by the feedback voltage applied to the reference mass coils of the West

mirror in order to keep the interferometer locked on the dark fringe. The calibration

between applied DC voltage and corresponding mirror displacement (about 12 µm per

V) has been measured with an accuracy of a few percent[65]. A line in the spectrum

of the reference mass coil voltage that has the same frequency as that of the excitation

applied to the top stage can be attributed to compensation for a residual excitation

that has been partially transmitted, throughout the suspension chain, to the mirror.

In the horizontal plane the top stage is excited by injecting current into the three

coil–magnet actuators used for the inertial damping. The excitation lines are digitally

set by using the client program to implement inertial damping digital filters. The three

LVDT sensors and the three accelerometers provide two independent measurements of

the displacement of the suspension point in the horizontal plane. The measurements

by different sensors at frequency lines turn out to be equal with an accuracy of a few

percent. On the contrary, the noise floor of the accelerometers is much smaller than

the LVDT one in the interesting band.
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Figure 9.2: Linear spectral density of the horizontal displacement along the beam direction
of the chain suspension point, as measured by the top stage accelerometers (black line) and
of the mirror (gray line). The two curves have been done using a 10485 s long data bench.
The amplitudes of the three excitation lines (2.25, 4.1 and 9.8 Hz) are kept constant during
all the acquisition time.

The strategy to measure the effects of vertical vibrations on the interferometer

is the same. The two coil–magnet actuators assembled on filter 0 are used to excite

the suspension point of the filter chain in the vertical direction. Two accelerometers

and an LVDT sensor monitor its vertical motion in three independent ways. Once

again, the measurements by different sensors at the line frequencies are equal within

an accuracy of a few percent, even if the noise floors are different.

9.2.1 Horizontal attenuation

The suspension point of the West chain was excited for a few hours along a given

horizontal axis, with the CITF locked. Three lines at 2.25 Hz, 4.1 Hz and 9.8 Hz

were applied at the same time with amplitudes of a few tenths of Volt, limited by the

saturation of our sensors. The data coming from the top stage sensors were acquired

at 50 Hz, while the correction voltage at the mirror level was acquired at 10 kHz

and then decimated off–line at 50 Hz (after a steep anti–aliasing filtering). The linear
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Figure 9.3: Linear spectral density of the horizontal seismic displacement of the ground
(gray line) compared with the linear spectral density of the horizontal seismic displacement
of the top stage as measured by inertial damping accelerometers (black line). The spectra
are averaged 10 times taking into account ten benches of about 166 s (corresponding to a
frequency resolution of 6 · 10−3 Hz). This procedure makes the noise floor much smoother
with respect to the previous case.

spectral density of the horizontal displacement of the suspension point along the beam

axis is plotted in fig. 9.2, compared with the linear spectral density of the residual

mirror displacement. It is important to remember that, while the linear spectral

density of the noise floor is independent on the integration time, the linear spectral

density at the frequencies where lines appear increases with its square root. In our

case, where an integration time of 10,485 s has been considered (corresponding to a

spectral bin width of 9·10−5 Hz), only the line at 2.25 Hz can be detected at the mirror

level. Due to the steep Superattenuator attenuation, the residual displacement at

higher frequency lines is very small, below the CITF noise floor. At these frequencies,

inside the VIRGO detection band, only upper limits of horizontal transmission can

be provided.
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Frequency Top Displacement Mirror Displacement Transmission Transmission
(Hz) (m Hz−1/2) (m Hz−1/2) Top–Mirror Specifications

2.25 4.8 · 10−5 2.5 · 10−10 5 · 10−6 —
4.1 3.3 · 10−5 ≤ 2 · 10−12 ≤ 6 · 10−8 < 1.5 · 10−8

9.8 5.7 · 10−6 ≤ 4 · 10−13 ≤ 7 · 10−8 < 1 · 10−8

The two upper limits are sufficient to state that the residual seismic noise in

the band is, in the worst case, of the same order of magnitude of the thermal noise

floor. However, it is important to stress that, in our experiment, the excitation was

applied to the filter chain suspension point. The inverted pendulum reduces the

transmission of seismic vibrations from the ground to the chain suspension point,

increasing the attenuation performance of the superattenuator. In fig. 9.3, horizontal

ground seismic noise (measured by a commercial accelerometer fixed on the floor close

to the suspension) and horizontal vibrations of chain suspension point are compared.

One can see that an additional attenuation is provided at almost all frequencies. At

only around 8 Hz (where flexural modes of the inverted pendulum legs induce peaks

in the top stage displacement spectrum) this extra attenuation does not take place.

Looking at the bins close to the excitation lines the reader can infer what is the typical

horizontal seismic displacement of the chain suspension point at line frequencies (once

the lines are switched off). Multiplying the value of the linear spectral density of the

horizontal displacement of the chain suspension point (measured also when the lines

are off) by the transmission upper limits listed in the previous table, one obtains:

Frequency Top Displacement* Transmission Mirror seismic Mirror thermal
(Hz) (m Hz−1/2) Top–Mirror Displ.(m Hz−1/2) Displ.(m Hz−1/2)

4.1 7 · 10−11 ≤ 6 · 10−8 ≤ 4 · 10−18 9 · 10−17

9.8 9 · 10−11 ≤ 7 · 10−8 ≤ 6 · 10−18 < 9 · 10−18

* artificial line off.

The upper limit for residual seismic noise at 4 Hz (i.e. at the beginning of the

VIRGO detection band) is about a factor 20 smaller than the thermal noise floor.

Since the superattenuator transmission is a steep function of the frequency, to put a

so stringent limit at 4 Hz means to be confident that, at higher frequency, seismic

noise is completely negligible (even if the upper limit put by our experiment at 10 Hz

is of the same order of magnitude of thermal noise).
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Figure 9.4: Linear spectral density of the vertical displacement of the chain suspension
point, as measured by the top stage vertical accelerometers, (black line) and of the mirror
along the beam direction (gray line). The two curves have been obtained using a 2620 s
long data bench with excitation lines at 2.25, and 4.15 Hz. The amplitudes of the excitation
lines are kept constant during all the acquisition time.

9.2.2 Vertical attenuation

According to the above argumentation, in the vertical experiment we have decided

to concentrate almost all the allowable excitation on a line around 4 Hz (exactly 4.15

Hz). Our aim is to detect the line at the mirror level (or, at least, to put a more

severe upper limit on the chain transmission). Another excitation line is placed at

2.25 Hz with a reduced amplitude, since the detection of this line at the mirror level

is guaranteed by the not negligible transmission of filter chain at this frequency.

The linear spectral density of the vertical displacement of the suspension point is

plotted in fig. 9.4, compared with the linear spectral density of the residual mirror

displacement along the beam. The spectra has been computed on 2620 s (correspond-

ing to a spectral bin width of 3.8 · 10−4 Hz). The data are treated in the same way

of the horizontal case. Despite our efforts, only the line at 2.25 Hz is transmitted to

the mirror level enough to be detected. Since we are measuring mirror displacements

along the beam axis, the vertical–horizontal coupling factor is already included in our



124 Chapter 9. Performances of the VIRGO superattenuators

2 3 4 5

10
-3

10
-2

10
-1

1
 Displacement LSD (microns * Hz^-1/2)

 Hz

 Lines

Figure 9.5: Linear spectral density of the vertical seismic displacement of the ground
detected by a commercial accelerometer placed on the floor close to the suspension (gray
line) compared with the linear spectral density of the vertical seismic displacement of the
chain suspension point as measured by inertial damping accelerometers (black line). The
spectra are computed following the same procedure described in the caption of fig. 9.3.

measurement. The results are:

Frequency Top Vertical Mirror Horizontal Transmission Transmission
(Hz) Displ.(m Hz−1/2) Displ.(m Hz−1/2) Top(V)–Mirror(H) Specifications*

2.25 1.7 · 10−4 2.6 · 10−10 1.5 · 10−6 —
4.15 3.0 · 10−4 ≤ 3.0 · 10−12 ≤ 6 · 10−8 < 1.5 · 10−8

9.85 3.0 · 10−5 ≤ 6 · 10−13 ≤ 2 · 10−8 < 1 · 10−8

* Vertical–horizontal coupling factor included.

The upper limit at 9.85 Hz has been placed by another dedicated experiment,

with excitation energy concentrated around this frequency.

The upper limits are small enough to show that residual vertical seismic vibrations

of the mirror, transmitted in the beam direction, are of the same order of magnitude of

the thermal noise floor. Again, the attenuation of the pre–isolator stage has not been

taken into account. However, in the vertical direction, the additional attenuation is

not so large (see fig. 9.5), since we have just an additional mechanical filter (instead of
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the ultra–low frequency inverted pendulum). An upper limit of residual seismic noise

in the interferometer is given by the product of the vertical seismic displacement of

the chain suspension point (measured by the vertical accelerometers on the top stage)

and the transmission upper limit just measured. The results are:

Frequency Top Vertical* Transmission Mirror seismic Mirror thermal
(Hz) Displacement Top vertical – Hor. Displacement Hor. Displacement

(m Hz−1/2) Mirror horiz. (m Hz−1/2) (m Hz−1/2)

4.15 2 · 10−9 ≤ 10−8 ≤ 2 · 10−17 9 · 10−17

9.85 1 · 10−9 ≤ 2 · 10−8 ≤ 2 · 10−17 < 9 · 10−18

* artificial line off.

The seismic noise upper limit at 4 Hz is thus well below the thermal noise floor.

9.2.3 Low frequency vertical–horizontal coupling factor

The vertical–horizontal coupling factor has been estimated as follows: the vertical

superattenuator dynamics in the frequency range of the resonances is well modeled by

a chain of six point–like mass oscillators. The six masses (filters) and the six vertical

stiffnesses (of the blade–magnet antispring system) are the model parameters. A

direct accurate measurement of the filter masses was performed during the assembly

operations. On the contrary, the spring stiffnesses cannot be well known a priori.

Indeed, due to the complex magnetic antispring system, the stiffness strongly depends

on the temperature and on the filter setting point (see chapteer 5). Once the tower

is under vacuum these values can be different with respect to the open–air situation

(where a direct measurement would be possible).

However, the six main frequencies of the chain normal modes can be measured

accurately by the top stage accelerometers. Then, the exact values of the stiffnesses

of the single filters, at the time of our vertical experiment, can be recovered by means

of a numerical algorithm. The exact superattenuator vertical transfer function is

estimated by inserting the values of the masses and of the stiffnesses in the SIESTA

simulation code[41]. Taking into account all the superattenuator items, the simulation

code computes the superattenuator transfer function at any frequency. Comparing

the simulation results with the partial experimental data obtained by measuring the

transfer functions on single stages (see section 6.4), an agreement between simulation
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and reality within 10% is provided.

The vertical transmission estimated by the simulation turns out to be 2.9 · 10−5

at 2.25 Hz, while the measured vertical transmission (already multiplied by vertical–

horizontal coupling factor) is 1.5 · 10−6. The ratio of the last two numbers provides

thus an estimate of the vertical–horizontal coupling factor of about 5%. Taking into

account all error sources (calibration, simulation–reality agreement, precision of our

measurement, etc.) an error of the order of ten percent can be assumed.

9.3 Mirror displacements along the beam

As discussed in section 4.1, dynamical limitations impose that the compensation

displacement of the mirrors, to keep the interferometer on the dark fringe, cannot

exceed one micron above 100 mHz. The linear spectral density of the compensation

displacement along the beam direction, exerted on the West mirror to keep the CITF

locked, has been measured and is plotted in fig. 9.6. The integral of the spectrum,

providing the rms computed starting from a given frequency, is also shown.

The displacement compensating for residual differential motions of the interfer-

ometer mirrors, is induced by the correction currents driving the coils mounted on the

reference mass. The measurement of the displacement has been done by monitoring

the correction signal then, using a calibration factor of 5 · 10−6m/V for the voltage to

displacement conversion, by multiplying the displacement by the transfer function of

the system reference mass–mirror (a pendulum with a resonant frequency of 0.6 Hz).

The observed rms compensation displacement along the beam, in the band of the

horizontal resonances (above 100 mHz) is found to be well below one micron. It

is worth reminding that the locking of the CITF is made by sending the correction

signal only on the reference mass actuators. When the three–stage control described in

section 4.1 is performed, the very–low frequency motion will be compensated from the

top of chain, while the active control at the payload level will be able to compensate

for the small swing occurring above 100 mHz without injecting noise into the detection

band.
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Figure 9.6: Linear spectral density of the West mirror displacement along the beam direc-
tion (upper plot) and its rms computed starting from a given frequency (lower plot).
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9.4 Mirror thermal drift

The VIRGO central building exhibits an excellent thermal stability. The suspensions,

each located in a vacuum chamber experience small thermal excursions (around one

tenth of degree peak to peak on time scales of days). The dependence of the mir-

ror vertical position on temperature has been measured to be a few mm per Celsius

degree, depending on the suspension under study. We remind that the thermal depen-

dence of the vertical position of the mirror crucially depends on the vertical frequency

of the chain mechanical filters, varying from one tower to the other. The vertical po-

sition of the mirrors of the Beam Splitter, of the West Input and of the North Input

tower has been monitored for about three days by three CCD cameras, used for the

angular control of the interferometer. The three time plots (expressed in microns) are

displayed in fig. 9.7. Each point is the mean on 100 s of the mirror vertical position

(acquired at 1 Hz). The offset values have been subtracted.





Conclusion
Here is a brief summary of the main results of this work.

• The magnetic antispring system has been fully characterized. The devices have

been mounted and tuned on each VIRGO mechanical filter. Their effectiveness

in lowering the main vertical resonant frequencies of the superattenuator has

been proved.

• The dampers mounted on the VIRGO mechanical filters have been character-

ized. They suppress the filter internal modes to the required level.

• An indirect measurement of the vertical transfer function of the suspension

prototype has been provided by combining the transfer functions measured on

single stages. This preliminary measurement meets the specifications for the

vertical seismic noise attenuation.

• The Maraging steel is a good solution to the creep problem. The best heat

treatments for the components made of this material have been determined.

The dislocation motion responsible of creep can be inhibited by applying to

each blades a few load–unload cycles.

• The dynamics of the Mode Cleaner short tower has been experimentally studied

and the main resonant modes of the chain have been measured.

• Exciting the suspension top stage around 4 Hz we have observed that the resid-

ual mirror motions is well below the Central Interferometer noise floor. This

result allowed us to state that the VIRGO suspensions meet their main spec-

ification, i.e. that the residual seismic displacement of the mirrors along the

beam is well below the thermal noise floor.

• Compensation displacements smaller than one micron on time scales of tens

of seconds have to be applied on the West Input mirror to keep the Central

Interferometer locked. This small values of the low frequency swing of the

interferometer mirrors guarantee that it is possible to control the interferometer

without injecting noise into the antenna detection band.
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