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In the very near future gravitational wave astronomy is expected to become a reality, giving us a
completely new tool for exploring the universe around us. We provide an introduction to how
interferometric gravitational wave detectors work, suitable for students entering the field and
teachers who wish to cover the subject matter in an advanced undergraduate or beginning graduate
level course. ©2003 American Association of Physics Teachers.
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I. INTRODUCTION

It would have been difficult to imagine the wonders th
would later be revealed when Karl Jansky identified the fi
astronomical source of radio waves.1 Since that first aston
ishing discovery, astronomers have shown us views of
universe through a wide range of the electromagnetic sp
trum. This new vision has revealed to us wonders such
x-ray sources~black hole candidates; see for example, R
2!, the cosmic microwave background~a relic of the birth of
the universe, see for example, Refs. 3 and 4!, and gamma-ray
bursts~unknown origin5!. Not only have we explored vas
regions of the electromagnetic spectrum, we have pro
neutrinos from a supernova to learn about stellar collap6

and from the sun to learn fundamental physics.7 As our abil-
ity to detect different kinds of signals expands, so does
understanding of the universe around us. It is then natura
ask if there are other windows on the universe waiting to
discovered. Gravitational waves may provide us with j
such a window. As their name implies, gravitational wav
are propagating gravitational fields, analogous to the pro
gating electromagnetic fields we have so effectively prob
in recent years. We know that astronomical sources of gr
tational waves exist, but, as of this writing, we have yet
achieve positive detection of gravitational waves on eart

This is a field potentially rich with the promise of disco
ery. There are currently a number of experiments being
formed and developed around the world to try and de
gravitational waves.8–14 Much of this effort centers aroun
interferometric detectors, and this paper introduces h
these detectors work. Specifically, we will describe the o
cal configuration of an interferometric detector and how
converts a gravitational wave into a measurable signal. In
process, we will touch on several important topics in mod
experimental physics, including nulled lock-in detection a
optical Fabry–Perot cavities.

II. GRAVITATIONAL WAVES

A. Properties of gravitational waves

Before we jump into the physics of gravitational wa
detectors, let us look at some of the properties of th
waves. The existence of gravitational waves is predicted
general relativity, where they arise as wave-like solutions
Einstein’s~linearized! field equations.15 Gravitational waves
are similar in many ways to electromagnetic waves, wh
are similarly predicted from wave-like solutions to Ma
well’s equations. Both kinds of waves propagate at the sp
365 Am. J. Phys.71 ~4!, April 2003 http://ojps.aip.org/aj
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of light; both are transverse, meaning that the forces t
exert are perpendicular to the direction of propagation, a
both exhibit two orthogonal polarizations. Because an el
tromagnetic wave carries propagating electric and magn
fields, it should come as no surprise that a gravitational w
carries a gravitational field. Although the field in an electr
magnetic wave exerts a force only on charged particles,
field in a gravitational wave exerts forces on all objects. F
electromagnetic waves, the direction of the force exerted
a charged particle is relatively straightforward. A linear
polarized plane wave propagating along thez axis will exert
an oscillating force on a charged particle along, say, thy
axis. This force will push the~charged! particle up and down
along they axis. ~We are neglecting the contribution of th
magnetic field in this example, which is fine as long as
velocity of the charged particle remains small.!

The effect of a gravitational wave on matter is a little mo
subtle. Instead of simply exerting an oscillating force on
object along a fixed axis, a gravitational wave produce
force that stretches and squeezes the object along two a
as shown in Fig. 1. If a gravitational wave propagating alo
the z axis ~into the page! encounters such an object, th
object will feel a compressive force along they axis and
simultaneously a stretching force along thex axis. Half a
period later, the force along they axis will have reversed
sign and will stretch the object, while thex force will be
compressive. This configuration describes one polarizat
known as ‘‘1 ’’ relative to these axes. The other polarizatio
denoted ‘‘3, ’’ has the forces along a pair of axes rotated 4
from the1 case.

The spatial pattern of this force resembles the tidal fo
exerted on a moon as it orbits a planet, and the force exe
by a gravitational wave is commonly referred to as tidal.
we replace our target object with a collection of smaller fr
masses not connected to each other, then the gravitati
wave just moves those masses in the same pattern as
scribed above: pulling them together along they axis and
pushing them apart along thex axis, then reversing sign in
the next half period.

The spatial distribution of the force exerted by a gravi
tional wave is more complicated than that of an electrom
netic wave, so it is perhaps not surprising that its magnitu
is more subtle as well. A gravitational wave induces astrain
in an object. The amount of stretch or compression along
x or y axis is proportional to the length of the object alon
that axis. The larger the object, the more it stretches. B
365p/ © 2003 American Association of Physics Teachers
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facts, that a gravitational wave induces a strain and
this strain is in a tidal pattern, influence the design of o
detector.

To be precise, a gravitational wave actually produce
perturbation in the metric of space–time, but as long as
target object is small compared with the wavelength of
gravitational wave, our tidal forces view is equivalent.16

B. Gravitational radiation

Similar to the way electromagnetic waves are emitted
accelerating charges, gravitational waves are emitted by
celerating masses. However, the energy emitted in the f
of gravitational waves for most objects in nonrelativistic i
teractions is quite small. This is not only due to the fund
mentally weak nature of gravity, but also to the fact that m
only comes in one sign. The familiar and prominent dipo
radiation of electrodynamics does not occur for gravitatio
radiation because it is impossible to produce an oscilla
dipole moment about the center of mass in a system of
teracting particles. The combination of the difficulty of ge
erating gravitational waves and the weak nature of the gr
tational field itself makes detecting gravitational waves qu
difficult.

The gravitational waves have the best chance of be
detected, and the ones that are perhaps the most intere
from an astronomer’s point of view, are those produced
cataclysmic events, such as black hole collisions or typ
supernovae. Such events involve gravity in the strong fi
nonlinear regime, and the radiation emitted can carry in
mation about what occurs under these conditions. This
gime is new territory for physics as well as astronomy,
general relativity has so far only been studied experiment
in the weak-field limit.

C. Sources of gravitational radiation

It is generally accepted that gravitational waves exist. N
only are they predicted by general relativity, a we
established theory, we also have at least one known em
of gravitational radiation: PSR1913116, a binary system
composed of two neutron stars, one of which is a pulsa17

The orbital period of this system is quite short, less tha
hours, which means that two very massive, very comp
objects~the two neutron stars! experience strong, regular ac
celerations. General relativity predicts that this syst
should be losing energy in the form of gravitational rad
tion. As this energy is lost, the two neutron stars should d
closer together, and as a result, the orbital period of the
tem should slowly decrease. We can calculate what the

Fig. 1. An example of how a gravitational wave affects a compliant obj
such as a rubber duck. The wave is propagating into the page and pola
in such a way that its tidal forces are oriented along thex and y axes.~a!
The undisturbed object before the arrival of the wave;~b! a time when the
tidal forces, represented by arrows, are at maximum amplitude;~c! the ob-
ject one-half period later, when the tidal forces have reversed. Even
clysmic astronomical events may only produce a few cycles detectab
ground-based instruments.
366 Am. J. Phys., Vol. 71, No. 4, April 2003
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bital decay of the system should be based on general rel
ity. Because one of the neutron stars is a pulsar, a fine na
clock, we can also accurately measure the orbital period
plot it as a function of time.~We can tell where the system i
in its orbit by looking at the Doppler shift in the pulsar
signal.! This procedure is exactly what Russell Hulse a
Joseph Taylor did as part of an extensive study
PSR1913116. Over the course of years of observation, t
system’s slow orbital decay beautifully matched the pred
tions of energy loss from the emission of gravitation
waves.18,19 ~Hulse and Taylor won a Nobel Prize for th
work in 1993.!

Although the existence of gravitational waves was cons
ered to be confirmed by this indirect observation, exploiti
the information carried by the waves requires direct obser
tion of the waves themselves. We do not want to obse
them only to confirm their existence, we want to use them
get information about the systems that emit them. To be
servable by an earth-based detector, a gravitational wave
nal should be both strong and have a relatively high f
quency. Strong signals are usually easier to detect than w
ones, and seismic disturbances are less likely to inter
with a measurement at high frequencies than at lower o
The roughly 7.75 hour period of PSR1913116 makes its
gravitational radiation inaccessible to a ground-based de
tor, but a system with a period of 10 milliseconds or le
would probably produce an observable signal in such a
tector. Fortunately, the shorter the period of a binary syst
the greater the acceleration involved, and hence the m
energy emitted in the form of gravitational waves. The ne
tron stars in a binary system, such as PSR1913116, spiral in
toward each other as they lose energy, and the period of
system decreases. The two neutron stars will get closer
gether over time, and speed up, until they eventually colli
merging to form a single, massive object. Just before
collision, the orbital frequency can be quite high, and orb
periods of 10 ms or less are easily attainable. Moreover,
amplitude of the gravitational radiation emitted increas
dramatically as this inspiral~or binary coalescence!
progresses. The waveform of the signal produced is expe
to provide a wealth of new information on the dynamics
the merger, and that is the scientific information we se
Other possible sources of strong, high-frequency grav
tional waves include black hole–black hole mergers and t
II Supernovae.~For a review of possible sources, see Chap
of Ref. 16.! These are just a few of the expected sources
gravitational radiation. A complete review of all of the po
sible sources belongs in a separate article devoted entire
that subject. The most interesting sources, of course, wil
the ones we did not anticipate.

III. A MICHELSON INTERFEROMETER AS A
GRAVITATIONAL WAVE DETECTOR

Most modern interferometric detectors are based on
Michelson design. Michelson interferometry is particular
well-suited for detecting gravitational waves because of
geometry of the tidal force the waves produce. A clas
Michelson interferometer, shown in Fig. 2, is sensitive
differential motion between thex- andy-arms, just the kind
of strain produced by a gravitational wave. In this basic co
figuration, light enters the interferometer and is split in tw
by a beam splitter. The two resulting beams travel down
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ta-
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arms, reflect off the end mirrors, and recombine to interf
back at the beam splitter.20 The light emitted at the observa
tion or antisymmetricport provides a measure of the diffe
ence between the lengths of the interferometer’s arms.~The
symmetricport, from which light returns to the laser, als
contains information about the relative arm lengths. Con
vation of energy requires that the power coming out of
symmetric and antisymmetric ports, along with any pow
lost in the instrument, accounts for all of the input power!

Let us consider quantitatively the response of a sim
Michelson interferometer to a gravitational wave. It is n
difficult to derive an expression for the electric field at t
output of the interferometer,Eout, as a function of the elec
tric field at its input,Ein ,

Eout5
1
2 ~r xe

ik2,x2r ye
ik2,y!Ein . ~1!

Here,x and,y are the lengths of the two arms,k is the wave
number for the light we are using, andr x and r y are the
amplitude reflectivities of the end mirrors. In our conventio
a perfectly reflecting mirror hasr 521.

The power falling on the photodiode in Fig. 2 is the squa
of the magnitude of the electric field,uEoutu2, or, for perfectly
reflecting end mirrors,

Pout5Pin cos2@k~,x2,y!#, ~2!

where Pin5uEinu2 is the power entering the interferomete
provided by the laser in Fig. 2. This output power, and he
the voltage produced by the photodiode, varies sinusoid
with the difference in arm lengths, as shown in Fig. 3. If w
let the arm lengths in the absence of a gravitational wave
,x and ,y , then we can write the total arm length as,x

1d,x and,y1d,y , where a gravitational wave induces th
perturbationsd,x andd,y . If we write the strain induced by
the gravitational wave as

h[
d,x2d,y

,
, ~3!

then we can write the power at the output of the interfero
eter as

Fig. 2. A basic Michelson interferometer is sensitive to the kinds of stra
gravitational wave will produce. Incident laser light is split by a beam sp
ter, sent down orthogonal paths along thex andy axis, reflected from mir-
rors at the ends of these paths, and recombined back at the beam splitte
interference between these two return beams produces a net intensity t
sensitive to differential changes in the lengths of the arms.
367 Am. J. Phys., Vol. 71, No. 4, April 2003
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Pout5Pin cos2@k~D,1,h!#, ~4!

whereD,5,x2,y is the asymmetry in the arm lengths
the absence of a signal, and the average arm length,
5(,x1,y)/2. In this paper we will assume that the gravit
tional wave strain is very small—small enough thatk,h
!1. We can then choose an operating point at someD, and
look at the small perturbations in the output power arou
that point that the gravitational wave produces. We can
scribe this small-signal response mathematically by a Ta
expansion aboutD,.

Pout5Pin cos2~kD, !1Pin

]

]u
cos2uU

u5kD,

~k,h!1¯ .

~5!

The response of our simple Michelson interferometer to
gravitational wave strainh is proportional to the derivative
of the output power with respect toD,, so the obvious thing
to do is to operate at the point where that derivative is ma
mum, which is point 1 in Fig. 3. At this pointkD,5p/4, and

Pout'
Pin

2
@122k,h#. ~6!

Unfortunately, we are then left with a fairly large dc term
Pin cos2(kD,)5Pin/2 in this case, which will fluctuate ifD,
varies due to any perturbations on the mirrors, whether it
a gravitational wave, or seismic disturbance, etc. More
portantly, this dc term is proportional toPin , which can fluc-
tuate even if the mirrors remain still.

Measuring small changes in a large signal is seldom
effective way to do experimental physics. If the amplitude
the gravitational wave we want to study is very small, as
too often the case, fluctuations in the dc term describ
above can completely obscure our signal. What we need
way to reduce or even eliminate the dc term while retain
and, if possible, boosting our signal. How we meet these
goals is the subject of this paper.

a
-

The
t is

Fig. 3. The intensity of the light at the observation port versus the differe
in arm lengths~units ofl, the wavelength of the light!. Operating at point 1
maximizes the change in power for a given change in arm lengths, but
makes the instrument sensitive to intensity noise in the light source. O
ating at point 2 eliminates this problem, but, in a simple Michelson int
ferometer, it reduces the signal to a second-order effect.
367E. D. Black and R. N. Gutenkunst
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IV. TURNING A MICHELSON INTERFEROMETER
INTO A PRACTICAL GRAVITATIONAL WAVE
DETECTOR

There are four things we need to do to our simple Mic
elson interferometer to make it an effective gravitation
wave detector.

~1! Make it big. Because a gravitational wave induces
straind,/, between two free masses, the total distan
each end mirror moves,d,, will be proportional to the
arm length,,. The longest practical arm lengths fo
ground-based detectors are on the order of a few kilo
ters. We will show later that byfolding the interferom-
eter, we can squeeze effective arm lengths of sev
hundred kilometers or more into just a few kilometers

~2! Use a lot of laser power. Not surprisingly, the brighter
the light source we use, the stronger that our output
nal will be. However, there is one additional benefit
using a lot of laser power that may not be obvious at fi
glance. The effects of shot noise are reduced as the l
power is increased. Using a very powerful laser for
light source is one obvious way to increase the pow
used, but there are clever tricks that we can use to
crease the power going into the instrument even mo
One such technique that is commonly used is power
cycling, a scheme by which any unused light exiting t
symmetric port~that is, going back to the laser instead
falling on the photodiode! is recycled back into the in
terferometer. We will discuss both power recycling a
the effect of shot noise on the output of an interferom
ric gravitational wave detector.

~3! Decouple external noise sources. Some noise sources
such as seismic noise, act directly on the mirrors a
thus compete directly with gravitational waves to pr
duce an output signal. Other noise sources do not per
the mirrors directly and can be thought of as externa
the instrument. A cleverly designed interferometer c
be made largely insensitive to a wide variety of the
external noise sources, and we will look at one techniq
that is widely used in many areas of experimental ph
ics: nulled lock-in detection. We will show how nulle
lock-in detection is implemented in an interferomet
gravitational wave detector to decouple its output fro
fluctuations in the input powerPin .

~4! Reduce the noise in the mirrors. The largest strain16 that
we expect to observe from a gravitational wave is on
order of 10221, which gives a mirror motion of 4
310218 m in a detector with 4 km arms. Obviously w
must reduce the level of ambient noise in the mirrors
a level comparable to or smaller than this, at the frequ
cies that we expect to observe. We will not go into phy
cal noise reduction techniques here, except to note
the entire interferometer must be enclosed in vacu
and mounted on a high-performance seismic-isolat
system. As of this writing, noise reduction is a field
active and ongoing research.

Making the interferometer large and using a lot of pow
enhances our signal, while decoupling external noise sou
eliminates the dc term we found problematic in Sec. III.
this paper we will consider only these three items. A tre
368 Am. J. Phys., Vol. 71, No. 4, April 2003
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ment of reducing the noise intrinsic to the mirrors is beyo
the scope of this article, and an introduction to that subjec
given in Ref. 16.

V. DECOUPLING INTENSITY NOISE: NULLED
LOCK-IN DETECTION

A. Null-point operation

To eliminate the dc term in the output, interferometers
gravitational wave detection operate at the point labeled
Fig. 3, known as thenull point. Arm lengths are chosen s
that, after passing back through the beam splitter, the
beams are 180° out of phase at the output~asymmetric! port.
In the absence of a gravitational wave, they interfere p
fectly destructively, and no light falls upon the photodete
tor; the port is ‘‘dark,’’ even if the power delivered by th
laser fluctuates.

The electric field at the output of a Michelson interferom
eter is given by Eq.~1!. For a dark fringe Eq.~1! becomes

Eout52 iE ine
ik(,x1,y) sin~k,h!, ~7!

where we have assumed thatr x5r y521. At this point, we
introduce a graphical method of visualizing the calculati
of the output of an interferometer. Because we are us
complex numbers to represent electric fields, we may p
these numbers as vectors in the complex plane, as in Fig
~This approach will be familiar to anyone who has studi
phasors.! When we write the electric field in a light beam a
Eeivt, we separate the time and spatial components of
phase intoeivt andE, respectively. In Fig. 4, we plot the rea
and imaginary parts of the spatial componentE as a function
of the position along the beam. As we advance along
beam, the spatial phase advances, and for each wavelenl
we travel, the vector representingE sweeps around a ful
circle in the complex plane. We can represent the calcula
of the interferometer output graphically, as in Fig. 5. He
we sketch the spatial components of the beam just before
light strikes the beam splitter the first time, whereE is purely
real, and after returning from each arm, where the differ

Fig. 4. An electromagnetic wave can be represented by a complex num
The length of the arrow corresponds to the amplitude of the wave, and
angle the arrow makes with the real axis corresponds to its phase.
368E. D. Black and R. N. Gutenkunst
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tial motion of the end mirrors has introduced a small phas
E. This phase is positive for they arm ~the arm along they
axis!, but negative for thex arm because the mirrors move
opposite directions under the influence of the gravitatio
wave. When it reflects off of the beam splitter, the light fro
the x arm acquires a 180° phase shift, so that when it co
bines with the light from they arm, destructive interferenc
occurs and, in the absence of a gravitational wave, the po
dark. In the presence of a gravitational wave, the sm
imaginary components acquired in thex and y arms add
constructively after the beam splitter, resulting in a sm
purely imaginaryE. That this field is 90° out of phase wit
the light incident on the beam splitter will be important lat
when we talk about lock-in detection. The power falling
the photodetector is the square of the amplitude of this sm
imaginaryE, just after the photodetector.

Pout5Pin sin2~k,h!'Pink
2,2h2, ~8!

which is proportional to the square of the strain,h2. We
expecth to be very small, on the order of 10221 or less, so an
output proportional toh2, rather thanh, would be quite
small and very difficult to detect.~For a kilometer-scale in-
terferometer,Pin would have to be on the order of a kilowa
to produce more than one photon per second inPout.) Op-
erating at the null point has eliminated our intensity noi
but it has also nearly killed our signal. Fortunately, there i
way to recover the signal without coupling to the intens
noise, and that is the subject of Sec. V B.

B. Obtaining a linear signal: Lock-in detection

We can recover a signal that is linear inh without reintro-
ducing intensity noise by using lock-in detection.21 In lock-in
detection, we modulate the signal and observe the resu
change in the output of the instrument. We then compare
change with our modulation signal to measure the deriva

Fig. 5. When one arm is lengthened and the other shortened slightly
gravitational wave, the two beams in the arms acquire equal but opp
small phase shifts. The beam splitter introduces an additional 180°
between them. The two beams add so that the net result is a small amp
beam phase shifted 90° from the input beam.
369 Am. J. Phys., Vol. 71, No. 4, April 2003
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of the instrument’s output with respect to a signal. At the n
point both the output power and its derivative are zero,
while a gravitational wave produces a second-order cha
in the output power, it produces a first-order change in
derivative. This first-order signal is something we have
chance of detecting.

1. Sidebands

Lock-in detection requires that we modulate the sign
The most obvious way to do that would be to purposefu
move the mirrors in a way that mimics a gravitational wa
signal. In practice, however, it is easier to both impleme
and describe this modulation by acting on the phase of
laser using a Pockels cell. A Pockels cell is essentially ju
block of dielectric material with an index of refraction th
depends on an applied electric field. If we pass the incid
beam through a Pockels cell and apply an oscillating elec
field to it, we will modulate the phase of the light going in
the interferometer, as shown in Fig. 6. The electric field
the light going into the interferometer can then be written

Ein5E0ei (vt1b sin Vt)

'E0@J0~b!eivt1J1~b!ei (v1V)t2J1~b!ei (v2V)t#, ~9!

whereJ0 andJ1 are zeroth and first order Bessel function
The first term on the right-hand side of Eq.~9! is called the
carrier; the next two are referred to as thesidebands.

We can calculate the electric field exiting the interfero
eter by considering the carrier and sidebands separately
define the transfer functiont of an interferometer for light of
any given wavelength as the ratio of the output electric fi
to the incident field,

t[
Eout

Ein
, ~10!

whereEout is given by Eq.~1!. Our modulated beam is com
posed of three different wavelengths, so we can find an
pression for the light exiting the interferometer by applyi
the appropriate transfer function to each part, that is,

a
ite
ift
de

Fig. 6. We can use lock-in detection to recover a linear signal from a d
port.
369E. D. Black and R. N. Gutenkunst
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Eout5E0@ tcJ0~b!eivt1t1J1~b!ei (v1V)t

2t2J1~b!ei (v2V)t#, ~11!

wheretc is the transfer function for the carrier, andt6 are the
transfer functions for the sidebands. We can calculate a
these transfer functions from Eq.~1!, and in fact Eq.~1!
gives the transfer function of the carrier immediately. T
transfer functions for the sidebands can be obtained by
same procedure, if we use for their wave numbers

k65
v6V

c
52pS 1

l
6

1

lmod
D . ~12!

Here lmod is the wavelength of an electromagnetic wa
with frequencyV. The transfer functions for the sideban
are then

t65 i sinF2pS ,x2,y

l
6

,x2,y

lmod
D G eik6(,x1,y). ~13!

2. Schnupp asymmetry

Now comes a really clever part. We still want the output
the interferometer to be dark for the carrier, but if it is al
dark for our sidebands, we still would have a second-or
signal inh. If, however, we introduce a difference in the ar
lengthsD,[,x2,y , we can arrange for the output of th
interferometer to be dark for the carrier but not dark for t
sidebands. This trick is often attributed to Lise Schnupp,
the difference in arm lengthsD, is known as the Schnup
asymmetry.22,23

With the Schnupp asymmetry andr x5r y521, the side-
bands’ transfer function reduces to

t657 i sinF2pS D,

lmod
D G ei @~v6V!/c#(,x1,y). ~14!

We will neglect the change inD, produced by a passin
gravitational wave.

3. Output of the instrument

The total electric field of the light exiting the interferom
eter is then

Eout5Eine
ik(,x1,y)F iJ0~b!2p

,

l
h

12iJ1~b!sinS 2p
D,

lmod
D cosS Vt14p

,

lmod
D G , ~15!

where we have used Eq.~7! to calculatetc . The power fall-
ing on our photodiode, as shown in Fig. 6, is then

Pout5PinJ0
2~b!4p2

,2

l
h212PinJ1

2~b!sin2S 2p
D,

lmod
D

12PinJ1
2~b!sin2S 2p

D,

lmod
D cosS 2Vt18p

,

lmod
D

1PinJ0~b!J1~b!4p
,

l
h sinS 2p

D,

lmod
D

3cosS Vt14p
,

lmod
D . ~16!
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The voltage the photodiode produces is linearly proportio
to the power falling on it, so for our purposes the signal
measure at the photodiode will beVpd5RPout, whereR is
the response of the photodiode.

There are four terms in this signal: two dc, one oscillati
at 2V, and one oscillating atV. The one oscillating atV is
proportional to the gravitational wave strainh and is the term
we would like to isolate and measure. We isolate this te
through a process that is standard in lock-in detection kno
as mixing, followed by low-pass filtering, or averaging ov
time. Mixing just means multiplication, and a mixer is
nonlinear device that takes two voltages on its inputs a
produces a voltage at its output that is proportional to
product of the voltages at its inputs. If we feedVpd into one
input andVosccos(Vt1f) into the other, then we can write
the time-averaged output of the mixer as

Vsignal5^Vpdcos~Vt1f!&

52p~RPin!J0~b!J1~b!
,

l
sinS 2p

D,

lmod
Dh, ~17!

where we have adjusted the user-specified phasef to maxi-
mize the signal, and we have assumed that the amplitudeVosc
is fixed and does not contribute to changes in the output.
signal we measure is now linear inh and zero in the absenc
of a gravitational wave. There is no dc offset to couple flu
tuations inPin to the output. A graphical representation
this calculation is illustrated in Fig. 7.

The sensitivity of our nulled lock-in scheme depends
the average length of the arms,, the input laser powerPin ,
and the size of the Schnupp asymmetryD,, all of which we
would like to optimize to boost our signal. The best choice
the Schnupp asymmetry for this configuration isD,
'lmod/4, and this choice is neither difficult to achieve nor
very strict requirement. The size of the interferometer a
the input power, however, should both be made as large
possible, and there are some interesting tricks for increa
both. We will consider techniques for increasingPin and, in
the next two sections.

Fig. 7. The power out of the dark port is the modulus squared of the sum
all the interfering beams. The two sidebands add to produce an oscillatio
the modulation frequency. There are three terms in the resulting power.
signal is extracted from the term that is the product of the sidebands an
carrier.
370E. D. Black and R. N. Gutenkunst
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VI. INCREASING THE ARM LENGTH:
FABRY-PEROT CAVITIES IN THE ARMS

As we saw in Sec. V, longer arms yield larger signals.
Earth, we cannot afford to build arbitrarily long arms, but w
can increase the effective length of the arms by bouncing
light back and forth within them, orfolding. Figure 8 shows
a simple folding scheme for one arm of an interferome
where an optical length of 5, is folded into a physical length
of only ,. This is conceptually the easiest folding scheme
understand, and it is the one that Michelson and Morley u
in their famous experiment. However, this scheme require
number of different mirrors, one for each fold in the optic
path. A simpler scheme to implement, one that involves o
two mirrors regardless of the number of folds, involves t
use of a Fabry–Perot cavity.24

A comprehensive treatment of Fabry–Perot cavities can
found in a good optics text, such as Hecht20 or Siegman.25 In
this analysis we are only concerned with the transfer fu
tions of these cavities, so let us briefly review what we ne
to know to proceed. A Fabry–Perot cavity is just two par
lel, partially transmitting mirrors, as shown in Fig. 9. Most
the light falling on the input mirror reflects off of it, and thi
light is referred to as thepromptly reflectedbeam. Some
light, however, leaks through and circulates between the
put and output mirrors. If this light returns from one roun
trip in-phase with new light leaking in, constructive interfe
ence will occur and a standing wave will build up, a con
tion known as resonance. The amplitude of this stand

Fig. 8. A simple mirror versus an optical delay line. In a simple mirror, lig
travels a distance, and reflects back, picking up a phase shift proportio
to ,. If the mirror moves, the change in the phase shift is proportional toD,.
An optical path length of distance 5, can be folded into a physical length,
with extra mirrors. If the end mirrors, three in this figure, all move byD,,
the change in the phase of the reflected light is proportional to 5,. We would
expect a gravitational wave to move all the end mirrors together.

Fig. 9. A kind of delay line can be made with only two mirrors, if they a
partially transmissive; in this configuration it is known as a Fabry–Pe
cavity. The angle between the incident and reflected beams is greatly e
gerated. Normally this angle would be zero, that is, the reflected be
travel back along the incident, and the beams bouncing back and
between the mirrors form a standing wave. In this example, only the in
~left! mirror is partially transmissive.
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wave can become quite large, much larger than the amplit
of the incident light. When resonance occurs, the small fr
tion of that light that leaks out of the input and output m
rors can become comparable in intensity to the incident
promptly reflected beams. When this happens, the resu
leakage beam will interfere with the promptly reflecte
beam, and some interesting things will result.

Near resonance, the phase of this leakage beam is
sensitive to the distance between the mirrors, so a Fab
Perot cavity can be used as a high-precision measuring
vice, capable of detecting very small deviations in the d
tance between its mirrors. If the resonance condition is
satisfied exactly, then any small phase shift that the li
picks up in one round trip will get amplified by the tota
number of round trips it makes before leaking out. In th
sense the standing wave is analogous to the multiple bou
in a delay line, where the number of bounces is determi
by the average storage time of the cavity, that is, the aver
number of round trips a photon makes before leaking b
out. If we replace the arms of a gravitational wave detec
with long Fabry–Perot cavities, as shown in Fig. 10, we c
achieve folding and increase the effective arm length b
factor proportional to the storage time, or the average nu
ber of bounces, of the cavity.

Thinking of a Fabry–Perot cavity as a delay line is use
conceptually, but for a quantitative model the analogy is
limited use. We will need a quantitative model of Fabry
Perot cavities, so we now establish a few important prop
ties of Fabry–Perot cavities.

The ratio of the incident to reflected electric fields ju
before the input mirror is known as the reflection coefficie
of the cavity and is easy to derive. The result is

r 5
2r i1r o~r i

21t i
2!ei4pL/l

12r i r oei4pL/l , ~18!

whereL is the length of the cavity,r i and r o are the ampli-
tude reflection coefficients of the input and output mirro
and t i is the amplitude transmission coefficient of the inp
mirror. For lossless mirrorsur u21utu251. Resonance occur
whenever 2L5Nl, whereN is an integer. How precisely
this condition must be met for resonance to occur depend
the reflectivities of the input and output mirrors. If the inp
mirror has a relatively high transmission coefficient, that
if it lets a fairly large amount of the incident light leak int
the cavity, then the condition 2L5Nl does not have to be
met very precisely for resonance to occur. If the input mir
is highly reflective, then the tolerances on 2L5Nl are much

l

t
g-
s

th
ut

Fig. 10. We can substantially increase the effective arm length of a gr
tational wave detector by folding the arms. In the figure the folding is do
with Fabry–Perot cavities.
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tighter. A measure of how sensitive the cavity is to chan
in L or l is thefinesseof the cavity,F, and is defined as the
full width at half maximum of the amplitude of the standin
wave inside the cavity, or linewidth, divided by the spaci
between resonances, or free spectral range. If we considl
fixed and allowL to vary, then the finesse is given by

F[
DL lw

l/2
, ~19!

whereDLlw is the linewidth. As we have said, this linewidt
depends on the reflectivities of the mirrors, so we may
well define the finesse in terms of these reflectivities. For
Fabry–Perot cavity, the finesse can be written as25

F5
pAr i r o

12r i r o
. ~20!

Now let’s discuss how the reflectivities of the mirrors a
fect the behavior of the cavity. If we plot the reflection c
efficient of a Fabry–Perot cavity in the complex plane,
find that it is always a circle.26 The properties of this circle
depend on the properties of the cavity, and there are th
cases that we need to consider,r i5r o , r i,r o , andr i.r o .
The reflection coefficients for each case are illustrated in F
11. Far from resonance, the reflection coefficient for e
case is close to21, and its phase is relatively insensitive
changes inL or l. As we approach resonance, say by swe
ing L at a constant rate, the reflection coefficient advan
around the circle in the counterclockwise direction, picki
up speed as it approaches the rightmost edge of the circle
resonance, the reflection coefficient lies on the rightm
edge of the circle, and its phase changes the most rapidly
a given change inL. After we pass through resonance, t
reflection coefficient tracks along the top half of the circ
and approaches21 again, slowing down as it gets farthe
from resonance. It is this sensitivity in phase to changes iL
near resonance that makes a Fabry–Perot cavity a u
device for measuring small changes in distance between
mirrors, and that is why we want to use it in our gravitation
wave detector.

If both mirrors are lossless and have equal reflectiviti
then on resonance the net reflected beam vanishes. Suffi
power builds up inside the cavity that the leakage beam
actly cancels the promptly reflected beam, and the reflec
coefficient goes to zero. All of the incident power gets tra
mitted through the cavity. When this condition is satisfi

Fig. 11. The amplitude reflection coefficients for Fabry–Perot cavities
circles in the complex plane;r i and r o are the amplitude reflection coeffi
cients of the input and output mirrors, respectively.
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(r i5r o and both mirrors are lossless!, the cavity is referred
to ascritically coupled. If the output mirror is much more
reflective than the input mirror, and again both are lossle
then very little light gets transmitted through the cavity, ev
on resonance. The leakage beam~through the input mirror!
has a larger amplitude than the promptly reflected beam,
there is some net reflected light even on resonance. In
case the cavity is referred to asovercoupled. If the output
mirror is less reflective than the input mirror, then again lit
light gets transmitted through the cavity on resonance. T
time, however, it is the promptly reflected beam that dom
nates, and the phase of the net reflected light is2180°, as
shown in Fig. 11.~Note that the leakage beam is 180° out
phase with the promptly reflected beam on resonance,
gardless of the coupling.!

If we want to use Fabry–Perot cavities as delay lines
the arms of a Michelson interferometer and recombine
light back at the beam splitter, and especially if we want
implement power recycling, it is best for us to use a stron
over-coupled cavity. In this case essentially all of the light
reflected when the cavity is on resonance, and the phas
this reflected light is very sensitive to deviations from res
nance, as shown in Fig. 12.

Near resonance, the reflection coefficient for an ov
coupled, lossy Fabry–Perot cavity of lengthL and finesse
Fac is approximately

r x,y5S 12
1

p
Face D F11 i8Fac

dLx,y

l G , ~21!

wheredLx,y represents a small length deviation in either t
x or y arm from perfect resonance, and we have appro
mated the finesse of an overcoupled cavity by

Fac'
2p

t i
2 . ~22!

e

Fig. 12. On resonance, a small change in the length of a Fabry–Perot c
dramatically changes its reflection coefficient. The amplitude reflection
efficient for an over-coupled Fabry–Perot cavity is plotted. Resonance
11, and the plot uses LIGO values for the mirrors~Ref. 27!. 1000 points are
plotted uniformly over a length ofl/2.
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The parametere is the fractional power lost in one round tri
inside the cavity, which is typically small but not negligib
for a 4 km Fabry–Perot cavity. For the arm cavity to b
overcoupled, this loss must be less than the transmissio
the arm cavity’s input mirror, and in all our approximation
for the arm cavities we will assume this to be the case.

We may use the reflection coefficients in Eq.~21! in place
of the ordinary mirror reflection coefficientsr x,y in Eq. ~1! to
find the transfer function of an interferometer with Fabr
Perot cavities in its arms. Only the carrier needs to reson
in the arm cavities. We will assume that the sidebands refl
off the arm cavities’ input mirrors, and we will use a refle
tion coefficient of r x,y521 for them. Then the Schnup
asymmetry only needs to be introduced between the b
splitter and the arm cavities’ input masses, and these
tances can be only a few meters, as opposed to several
meters between the mirrors that form the Fabry–Perot c
ties in the arms. From now on we will use a lower-case,x,y
to refer to the distance between the beam splitter and
first, or input, mirror in thex and y arms. We will use an
upper caseLx,y to refer to the lengths of the Fabry–Per
cavities in the arms. Assuming that both arm cavities h
the same lengthL in the absence of a gravitational wave a
that,x,y!L, we can get the transfer functions of an interfe
ometer with Fabry–Perot cavity arms for both the carrier a
the sidebands by combining Eqs.~1! and ~21!. They are,
approximately,

tc
ifo5 i4eik(,x1,y)Fac

L

l S 12
1

p
Face Dh, ~23!

and

t6
ifo57 ieik6(,x1,y) sinS 2p

D,

l D , ~24!

wheret ifo is the transfer function of the complete interferom
eter, and the subscriptsc and 6 refer to the carrier and
sidebands, respectively. These transfer functions yield a
modulated signal of

Vsignal54~RPin!J0~b!J1~b!Fac

L

l
sinS 2p

D,

lmod
D

3S 12
1

p
Face Dh, ~25!

where we have again optimized the phasef in the mixing
process to maximize our signal. The introduction of foldi
using Fabry–Perot cavities in the arms has increased th
fective length of the arms by about a factor ofFac, with a
corresponding increase in the strength of the readout sig
A representative value of the finesse of an arm cavity i
real detector isFac'130.27

VII. BOOSTING THE EFFECTIVE POWER: POWER
RECYCLING

We have seen how folding increases the effective lengtL
of an interferometer without the need to make the instrum
physically larger. Now we will turn to the input powerPin
and see how that can be boosted, with a corresponding b
in the response of the instrument.

The most obvious solution is to use a stronger light sou
As of this writing, most gravitational wave detectors use
373 Am. J. Phys., Vol. 71, No. 4, April 2003
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sers that operate on the order of 10 W, and 100 W lasers
in development. However, in a process similar to folding,
can increase the effective power going into the instrum
without changing the power of the laser. How is this po
sible? Well, if the output port is dark, energy conservati
demands that the majority of the light gets reflected ba
toward the laser. If we could somehow recycle this was
light and send it back into the interferometer, we could bo
the sensitivity of the instrument without having to develop
more powerful laser.~And we could get even more out o
such a laser when it becomes available.!

We saw in Sec. VI how a Fabry–Perot cavity could
used to implement folding of an optical path. A similar co
cept can also be used to implement power recycling.28 In this
case, we place a single, partially transmitting mirror betwe
the laser and the beam splitter in our gravitational wave
tector. The interferometer itself, the beam splitter and ar
acts like a partially transmitting mirror, as shown in Fig. 1
Some of the light incident on the beam splitter gets transm
ted through the instrument, coming out the dark port, wh
most of it ~most of the carrier, anyway! gets reflected back
toward the laser. If we think of the interferometer as a co
pound mirror, we can use it as the output mirror of a Fabr
Perot cavity, placing a second, ordinary mirror between
and the laser. This second mirror then acts as the input
ror, and if we control the distance between it and the int
ferometer~the compound output mirror!, then we can build
up a standing wave between the two, effectively increas
the power incident on the interferometer by a factor prop
tional to the finesse of the resulting cavity. We will refer
this cavity as therecycling cavity, and we refer to the mirror
we have introduced between the laser and the beam sp
as therecycling mirror.

The transmission coefficient of the complete interfero
eter, including power recycling and Fabry–Perot cavities
the arms, is the transmission coefficient of the recycling c
ity, with the recycling mirror forming the input mirror and
the rest of the interferometer acting as the output mirror. T
recycling cavity reflection coefficient is just given by E
~18!, with the transmission and reflection coefficients of t
compound mirror, the interferometer with Fabry–Perot a
cavities, substituted for the output mirror coefficientsto and
r o . The transmission coefficient of the recycling cavity is t
same as that for any Fabry–Perot cavity, or

t rc5
t rmt ifoei2p,rm–bs/l

12r rmr ifoei4p,rm–bs/l
, ~26!

wheret rm and r rm are the transmission and reflection coef
cients for the recycling mirror,t ifo and r ifo are the transmis-
sion and reflection coefficients for the rest of the interfero
eter, and, rm–bs is the distance from the recycling mirror t
the beam splitter. Another way to think of, rm–bs is the dis-
tance between the input and~compound! output mirrors in
the recycling cavity.

We calculated the transmission coefficientst ifo for the car-
rier and sidebands in Sec. VI. The reflection coefficients
calculated in a similar manner:

r ifo5 1
2 eik(,x1,y)@r xe

ik(,x2,y)1r ye
2 ik(,x2,y)#. ~27!

Here, as before,,x is the distance from the beam splitter
the first mirror in thex arm ~the input mirror to thex-arm’s
Fabry–Perot cavity!, and ,y is the distance from the beam
splitter to they-arm’s input mirror.
373E. D. Black and R. N. Gutenkunst
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A. Sidebands

For the sidebands that do not resonate in the arm cavi
the reflection coefficients are

r x5r y521. ~28!

This result yields

r 6
ifo52eik6(,x1,y) cosS 2p

D,

lmod
D ~29!

and

t6
ifo57 ieik6(,x1,y) sinS 2p

D,

lmod
D . ~30!

If we substitute these into our expression forr rc @Eq. ~18!
with the appropriate input and output mirror coefficients
the recycling cavity#, we find that the resonance condition
now

eik6(2,rm–bs1,x1,y)521, ~31!

and critical coupling, that is, optimum recycling, requir
that we adjust the Schnupp asymmetry so that

cosS 2p
D,

lmod
D5r rm . ~32!

With these conditions, the transmission coefficients for
sidebands through the recycling cavity~the complete inter-
ferometer! are

t6
rc56 ie2 ik6,rm–bs. ~33!

The full power of the sidebands gets transmitted, and
field picks up a phase factor.

B. Carrier

We can calculate the transmission and reflection coe
cients of the compound mirror for the carrier the same w
we calculated them for the sidebands. Using the reflec
coefficients r x,y from an overcoupled Fabry–Perot cavi
near resonance, we find

tc
ifo5 ieik(,x1,y)4Fac

L

l
hS 12

1

p
Face D ~34!

and

r c
ifo5eik(,x1,y)S 12

1

p
Face D . ~35!

If we use these results to find the carrier transmission
reflection coefficients for the recycling cavity, we find th
the resonance condition is

eik(2,rm–bs1,x1,y)511, ~36!

and the requirement for critical coupling is

r rm5S 12
1

p
Face D . ~37!

The requirements for resonance and critical coupling
both the carrier and the sidebands can be combined. The

cosS 2p
D,

lmod
D5r rm512

1

p
Face, ~38!

eik(2,rm–bs1,x1,y)511, ~39!
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eikmod(2,rm–bs1,x1,y)521. ~40!

The Schnupp asymmetry and the reflectance of the recyc
mirror must both be adjusted to match the product of the a
cavities’ loss and finesse, and the effective length of the
cycling cavity becomes the sum of, rm–bs and the average
length (,x1,y)/2. This effective length must be both a mu
tiple of l/2, wherel is the wavelength of the light used i
the interferometer, and a multiple oflmod/4, where the
modulation wavelength is given bylmod. The first condition
tells us that the carrier must be resonant in the recyc
cavity. Because the second condition islmod/45, rm–bs

1(,x1,y)/2, we say that the sidebands must be antire
nant in the recycling cavity. Becausel'1 mm and lmod

'30 m, it is not difficult to achieve both of these condition
at the same time.

With the conditions given by Eqs.~38!, ~39!, and~40! met,
the transfer function for the carrier through the recycli
cavity ~that is, the complete interferometer! becomes

tc
rc5 ie2 ik,rm–bs

4

Ap
FacAFrc

L

l
h, ~41!

where we have approximated the finesse of the optim
coupled recycling cavity as

Frc'
p

t i
2 . ~42!

C. DC response of the interferometer

We are now in a position to calculate the response of
complete interferometer, including lock-in detection, Fabr
Perot arm cavities, and power recycling as shown in Fig.
All we need to do is calculate the electric field of the lig
falling on the photodiode,

Eout5Ein@ tc
rcJ0~b!eivt1t1

rcJ1~b!ei (v1V)t

2t2
rcJ1~b!ei (v2V)t#, ~43!

then demodulate and average the resulting power.

Vsignal5R^uEoutu2 cos~Vt1f!&, ~44!

where the angled brackets^¯& denote time averaging. Th
result is

Vsignal5
4

Ap
~RPin!J0~b!J1~b!FacAFrc

L

l
h. ~45!

Note that the response of the interferometer is enhanced
AFrc, a relatively minor improvement compared with theFac
gain from using Fabry–Perot cavities as delay lines in
arms. A moment’s thought shows that this weaker dep
dence should not surprise us. The response of the basi
terferometer, given in Eq.~17!, is proportional to the electric
field in the carrier,APinJ0(b), multiplied by the field in the
sidebands,APinJ1(b), multiplied by the length of the arms
,. Folding the arms using Fabry–Perot cavities increases
effective length to (2/p)Fac,, because the total number o
round trips in a Fabry–Perot cavity is proportional to
finesse. The field in a cavity, however, is proportional to t
square root of its finesse. Because the sidebands do not
374E. D. Black and R. N. Gutenkunst



b
e

th
a
a
g
g
u
h
s

es
o
ig

to
es
ro

ig

r
fo
ly

at
ic

f

or
it

z.
ita
w

o
e

n
y
fr
y

be
a 4
d

of
ise
al
ex-
ve
are

vi-

ain

-

o-

of
d by
try.
the

e

de
tru-
to

e,
or
per

the
iven
t

ho-
nd-

we
e
the
nate in the arm cavities, only the carrier field is boosted
power recycling. The response of the instrument then is
hanced by the new field amplitude in the carrier, or

Ecarrier}AFacAPinJ0~b!. ~46!

D. AC response of the interferometer

So far we have performed all of our calculations under
assumption that the interferometer is in a quasistatic st
We have not taken into account dynamical effects. As long
any change in the instrument occurs on a time scale lon
than the time it takes light to propagate completely throu
the instrument, this assumption is valid. However, if o
gravitational wave signalh includes components at hig
enough frequencies, we cannot expect our quasistatic ver
of the response of the instrument to be valid. Before addr
ing the dynamic response of the interferometer, let us c
sider what these relevant time scales are, and what ‘‘h
frequency’’ means.

How long does it take for the light in the interferometer
come to a steady state? Put another way, how long do
take for an appreciable field to build up inside a Fabry–Pe
cavity so that the appropriate interference can occur? L
makes a single round trip inside a cavity in a time 2L/c, and
if we think of the finesse as a measure of the total numbe
round trips the light makes, then the relevant time scale
equilibrium in a Fabry–Perot cavity must be approximate

t;
2L

c
F. ~47!

Any signals at frequencies off 0!1/t will satisfy the quasi-
static requirement, but frequencies on the order of or gre
than 1/t will be high enough to begin to probe the dynam
response of the interferometer.

If the arm cavities have finesses of 130 and lengths o
km, the characteristic frequency is

1

t
;300 Hz, ~48!

which is low enough to be a problem if we are looking f
signals at frequencies up to a kilohertz. The recycling cav
on the other hand, also hasFrc'100, but its length is on the
order of 10 m, giving it a cutoff frequency closer to 100 kH
Our rough estimate shows that, for searching for grav
tional waves at frequencies above a few hundred Hz,
must take into account the storage timet of the arm cavities,
but not that of the recycling cavity.

A careful derivation shows that the finite storage time
the arm cavities introduces a single pole in the respons
the interferometer, and that the cutoff frequencyf 0 is actu-
ally 1/2t, or29

f 05
c

4LFac
. ~49!

The dynamic response of the interferometer to a gravitatio
wave signalh( f ) at frequencyf has the same frequenc
dependence as a simple, single-pole low-pass filter. For
quencies well below the recycling cavity’s cutoff frequenc
this response is27
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Vsignal~ f !

5
4

Ap
~RPin!J0~b!J1~b!FacAFrc

L

l

f 0

f 01 i f
h~ f !. ~50!

VIII. SHOT NOISE

No treatment of gravitational wave detectors would
complete without some consideration of noise. Even in
km instrument, a strain of 10221 produces motions of the en
mirrors on the order of 10218 m, or one-thousandth of the
diameter of an atomic nucleus. Any instrument capable
detecting such motion must have a very low intrinsic no
level. The extraordinary sensitivity required for gravitation
wave astronomy demands that our instrument have an
tremely low noise floor, and to accomplish that we must ha
an understanding of the physics behind the noise. There
three principal sources of noise in an interferometric gra
tational wave detector. They are

~1! Seismic noisewhich will perturb our mirrors if the
ground shakes and can mimic a gravitational wave str
h.

~2! Thermal noisedue to the motion of the individual mol
ecules in the mirrors and suspensions due to heat.

~3! Shot noisedue to the optical readout noise in our phot
detector.

The first two sources can be reduced by clever design
the tables and suspensions used to hold the mirrors, an
an appropriate choice of the mirror material and geome
The third, shot noise, is a fundamental consequence of
quantum nature of light.

In this section we will consider the limit that shot nois
places on our ability to detect a gravitational wave strainh.
The rms fluctuation in the power falling on the photodio
determines the shot noise seen in the readout of the ins
ment. We can use the standard formula for shot noise
calculate this fluctuation,30

DPshot,rms5A2\vPdcD f , ~51!

wherePdc is the average dc power falling on the photodiod
andD f is the measurement bandwidth. It will be useful f
us to express this noise in terms of a voltage fluctuation
unit bandwidth, or

Vshot~ f !5RA2\vPdc. ~52!

We can think of this expression as a Fourier transform of
shot noise voltage, expressing the noise density at a g
frequency;Vshot in Eq. ~52! has units of volts per square-roo
hertz. Note that the amplitude of the shot noise in the p
todiode does not depend on frequency, only on the ba
width of our measurementD f .

This shot noise appears as a signal in our readout, and
would like to know how largeh has to be to stand out abov
the noise. All we have to do to answer this question is set
output of the instrument, Eq.~50!, equal to the signal due to
shot noise.

Vsignal~ f !5Vshot~ f ! ~53!

or
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A f 0

2

f 0
21 f 2 uhshot~ f !u

5A2\vPdcR. ~54!

The average dc power is simply found from the outp
field, as we calculated in Sec. VII,

Pout5^uEoutu2&52J1
2~b!Pin . ~55!

Equation~55! gives an expression for the shot noise limit
sensitivity of an interferometric detector, oruhshot( f )u:

uhshot~ f !u5
p

2

A\lc

J0~b!APinFacAFrcL
Af 0

21 f 2

f 0
2 . ~56!

Note that, even though the shot noise in the photodete
itself is frequency independent, the frequency-dependen
sponse of the interferometer makes the shot noise l
frequency-dependent at high frequencies as illustrated in
15. This effect is merely a result of dividing the~flat! shot
noise spectrum by the response of the interferometer.

Fig. 13. To understand how a single mirror can be used to implement po
recycling, we can treat the interferometer as a compound mirror and
sider it to be the output mirror of a Fabry–Perot cavity. The recycling mir
serves as the input mirror. If the resulting recycling cavity is critica
coupled, then no light is reflected back to the laser.

Fig. 14. The complete interferometric gravitational wave detector comb
Fabry–Perot arms, power recycling, and nulled lock-in detection.
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Representative parameters for a first-generation grav
tional wave detector areL54 km, l51 mm, Fac5130, Frc

5100, andPin510 W. These parameters give a dc sh
noise of approximately

uhshot~0!u'10223 Hz21/2. ~57!

IX. OPERATING AN INTERFEROMETRIC
GRAVITATIONAL WAVE DETECTOR

Our analysis of an interferometric gravitational wave d
tector has relied on resonance conditions being satisfi
which involves maintaining precise distances between m
rors over long periods of time. The systems necessary to h
the Fabry–Perot cavities in the arms on resonance, to h
the recycling mirror at its optimum position, and to keep t
output port dark for the carrier, are elaborate, sophistica
and beyond the scope of this paper. For our purposes,
analysis of signal extraction and shot noise, we can just
sume that all of these conditions are met. The autom
control systems that maintain them are considered trans
ent for this analysis, and their inner workings are a sepa
study of modern experimental techniques.

X. SUGGESTED PROBLEMS

~1! Derive the transmission coefficients for a simple Mic
elson interferometer at both the symmetric and antisymm
ric ports, Eqs.~1! and ~27!, respectively. There is a subtlet
here that is important to appreciate before going on to do
other calculations involving interferometry: The reflectio
coefficient of the beam splitter depends on the incoming
rection of the incident light. In our case, we considered
flection from the left to haver 521/& and from the right,
r 511/&. This assumption is a slight oversimplificatio
The mirrors in modern interferometers are made up
multilayer dielectric coatings, with complicated transmissi
and reflection coatings. Nevertheless, this asymmetry in
sign of the reflection coefficient, andnot the transmission
coefficient, is required for the instrument to satisfy conser
tion of energy. This is a general property of mirrors and
not limited to beam splitters.

Fig. 15. The shot noise limited sensitivity for a interferometric gravitation
wave detector withL54 km, Pin510 W, l51.064mm, Fac5130, and
Frc5100. The frequency dependence comes from dividing the shot nois
the photodiode by the response of the interferometer.
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~2! Derive the reflection and transmission coefficients fo
Fabry–Perot cavity, Eqs.~18! and ~26!, respectively. Again,
conservation of energy requires that the reflection coeffic
of the input mirror have a different sign for light inciden
from the left than for light incident from the right. The usu
derivation of these coefficients involves summing an infin
series.20 However, a more elegant method can be found
Siegman.25

~3! Field lines 1. Consider two points in space–time in th
x–y plane: an origin, described by~0,0,0,0!, and some other
point (ct,x,y,0). The intervals between these two points i
given, in the ordinary case of flat space–time, by

s252c2t21x21y2. ~58!

The differential interval between two points in space–tim
can be expressed more generally as

ds25gmn dxm dxn, ~59!

where the metricgmn is known as the metric tensor.~Here we
employ the usual Einstein summation convention of summ
tion over repeated indices.! For the flat space–time of speci
relativity, the metric tensor is

gmn5hmn5F 21, 0, 0, 0

0, 1, 0, 0

0, 0, 1, 0

0, 0, 0, 1

G . ~60!

We can describe a gravitational wave propagating along tz
axis, with ~low! frequencyv/2p and 1 polarization, by a
perturbation of this metric,15,16

gmn→hmn1hmn , ~61!

where the additional, perturbative term is given by

hmn5F 0, 0, 0, 0

0, 1, 0, 0

0, 0, 21, 0

0, 0, 0, 0

Gh cos@v~ t2z/c!#. ~62!

This change in the metric is analogous to the movement
free particle at coordinatesx andy under the influence of a
gravitational wave. Construct a vector field at a fixed timt
in thex–y plane that describes this change in the metric a
plot it.

Solution: The metric between the origin and any point
the x–y plane is given by

s252c2t21~x21y2!1~x22y2!h cos~vt !. ~63!

The change in the metric for a given point at coordinatex
andy at time t50 is then

ds25~x22y2!h. ~64!

We may visualize the pattern of motion induced by th
change in the metric by looking at the spatial gradient
ds2,

gW 5¹W ds252x î22y ĵ . ~65!

See Chap. 5 of Ref. 15 for a rigorous treatment of the the
of gravitational waves.

~4! Field lines 2. Consider the case of3 polarization,
where the metric perturbation is given by
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hmn5F 0, 0, 0, 0

0, 0, 1, 0

0, 1, 0, 0

0, 0, 0, 0

Gh cos@v~ t2z/c!#. ~66!

Again, construct and plot a vector field describing the lin
of force. Show that a Michelson interferometer with arm
oriented along thex and y axes is not sensitive to
3-polarized gravitational waves.

~5! The response of an interferometric gravitational wa
detector with Fabry–Perot arm cavities depends on the p
uct of the arm length and the arm cavity finesse,FacL. Why,
then, do we need to build detectors with kilometer-sc
arms? Wouldn’t it be easier to keep the arm lengths at a
tens of meters~laboratory scales! and compensate by increa
ing the arm-cavity finesse?

Solution: There are many answers to this question. T
easiest to understand, at this level, is that the response o
instrument, as in Eq.~50!, actually scales as the produ
FacLh. The amount of motion induced in the mirrors by
gravitational wave scales with the length of the instrume
Lh, whereas most external noise sources, such as seism
thermal noise, move the mirrors by an amount that is in
pendent of the arm length. Thus the signal-to-noise ratio
the instrument scales as the arm lengthL.
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