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In the very near future gravitational wave astronomy is expected to become a reality, giving us a
completely new tool for exploring the universe around us. We provide an introduction to how
interferometric gravitational wave detectors work, suitable for students entering the field and
teachers who wish to cover the subject matter in an advanced undergraduate or beginning graduate
level course. ©2003 American Association of Physics Teachers.
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I. INTRODUCTION of light; both are transverse, meaning that the forces they
exert are perpendicular to the direction of propagation, and
both exhibit two orthogonal polarizations. Because an elec-

; ; X - ttroma netic wave carries propagating electric and magnetic
astronomical source of radio waveSince that first aston- g propag g g

<hing di " h h i ¢ thfields, it should come as no surprise that a gravitational wave
IShINg dISCovery, astronomers have Sown us VIBws of @, jeg 5 gravitational field. Although the field in an electro-

trum. This new vision has revealed to us wonders such (fﬁagnetic wave exerts a force only on charged particles, the
' 3feld in a gravitational wave exerts forces on all objects. For

)Z(;r?w/ source_s(bla_ck hole csndll(dates(;dsetle_ forf teﬁart?_ptlﬁ, I}?ef'electromagnetic waves, the direction of the force exerted on
, (N€ cosmic microwave backgrouf@ refic of the birth of 5 charged particle is relatively straightforward. A linearly

the universe, see for example, Refs. 3 apdd gamma-rayt polarized plane wave propagating along thaxis will exert

bursts (unknown origirf). Not only have we explored vas ilating f h d icle al h
regions of the electromagnetic spectrum, we have probefi 0scilating force on a charged particle along, say,jthe

neutrinos from a supernova to learn about stellar colfapse?Xis- This force will push thécharged particle up and down
and from the sun to learn fundamental phy<iés our abil-  along they axis. (We are neglecting the contribution of the
ity to detect different kinds of signals expands, so does oufagnetic field in this example, which is fine as long as the
understanding of the universe around us. It is then natural t¥elocity of the charged particle remains small.
ask if there are other windows on the universe waiting to be The effect of a gravitational wave on matter is a little more
discovered. Gravitational waves may provide us with justsubtle. Instead of simply exerting an oscillating force on an
such a window. As their name implies, gravitational wavesobject along a fixed axis, a gravitational wave produces a
are propagating gravitational fields, analogous to the propdorce that stretches and squeezes the object along two axes,
gating electromagnetic fields we have so effectively probeds shown in Fig. 1. If a gravitational wave propagating along
in recent years. We know that astronomical sources of gravithe z axis (into the pagg encounters such an object, the
tational waves exist, but, as of this writing, we have yet toobject will feel a compressive force along tlyeaxis and
achieve positive detection of gravitational waves on earth. simultaneously a stretching force along theaxis. Half a
This is a field potentially rich with the promise of discov- period later, the force along the axis will have reversed
ery. There are currently a number of experiments being Pelsign and will stretch the object, while the force will be
formed and developed around the world to try and detectymhressive. This configuration describes one polarization,

. . _14 .
gravitational waves. ™ Much of this effort centers around 00" s relative to these axes. The other polarization,
interferometric detectors, and this paper introduces hovx(/j ted ™ " has the f | i of tated 45°
these detectors work. Specifically, we will describe the opti- enote »has fheforces along a pair of axes rotate
cal configuration of an interferometric detector and how itffom the + case. _ .
converts a gravitational wave into a measurable signal. In the The spatial pattern of this force resembles the tidal force
process, we will touch on several important topics in moderrEXerted on a moon as it orbits a planet, and the force exerted

experimental physics, including nulled lock-in detection anddy @ gravitational wave is commonly referred to as tidal. If

It would have been difficult to imagine the wonders that
would later be revealed when Karl Jansky identified the firs

optical Fabry—Perot cavities. we replace our target object with a collection of smaller free
masses not connected to each other, then the gravitational
Il. GRAVITATIONAL WAVES wave just moves those masses in the same pattern as de-

scribed above: pulling them together along theaxis and

pushing them apart along theaxis, then reversing sign in
Before we jump into the physics of gravitational wave the next half period.

detectors, let us look at some of the properties of these The spatial distribution of the force exerted by a gravita-

waves. The existence of gravitational waves is predicted byional wave is more complicated than that of an electromag-

general relativity, where they arise as wave-like solutions taetic wave, so it is perhaps not surprising that its magnitude

Einstein’s(linearized field equations® Gravitational waves is more subtle as well. A gravitational wave inducestrain

are similar in many ways to electromagnetic waves, whichin an object. The amount of stretch or compression along the

are similarly predicted from wave-like solutions to Max- X or y axis is proportional to the length of the object along

well's equations. Both kinds of waves propagate at the speethat axis. The larger the object, the more it stretches. Both

A. Properties of gravitational waves
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I bital decay of the system should be based on general relativ-
ity. Because one of the neutron stars is a pulsar, a fine natural
|:> @ <::| clock, we can also accurately measure the orbital period and
plot it as a function of time(We can tell where the system is
in its orbit by looking at the Doppler shift in the pulsar’s
@ signal) This procedure is exactly what Russell Hulse and
Fig. 1. An example of how a gravitational wave affects a compliant object,‘]oSeph Taylor did as part of an extensive St_Udy of
such as a rubber duck. The wave is propagating into the page and polarizddSR1913- 16. Over the course of years of observation, the
in such a way that its tidal forces are oriented alongsttendy axes.(a) system’s slow orbital decay beautifully matched the predic-
The undisturbed object before the arrival of the wai;a time when the  tions of energy loss from the emission of gravita’[ional
tidal forces, represented by arrows, are at maximum ampliti@iehe ob-  \waves!®% (Hulse and Taylor won a Nobel Prize for this
ject one-half peri(_)d later, when the tidal forces have reversed. Even cate*,—vork in 1993)
clysmic astron_om|ca| events may only produce a few cycles detectable to AIthough the existence of gravitational waves was consid-
ground-based instruments. . AR : o
ered to be confirmed by this indirect observation, exploiting
the information carried by the waves requires direct observa-
facts, that a gravitational wave induces a strain and thafon Of the waves themselves. We do not want to observe
them only to confirm their existence, we want to use them to

this strain is in a tidal pattern, influence the design of our'™" . ;
detector. get information about the systems that emit them. To be ob-

To be precise, a gravitational wave actually produces Sservable by an earth-based detector, a gravitational wave sig-

perturbation in the metric of space—time, but as long as oup@! should be both strong and have a relatively high fre-

target object is small compared with the wavelength of thelUency. Strong signals are usually easier to detect than weak
gravitational wave, our tidal forces view is equivalg?n. ones, and seismic disturbances are less likely to interfere

o o with a measurement at high frequencies than at lower ones.
B. Gravitational radiation The roughly 7.75 hour period of PSR19436 makes its

Similar to the way electromagnetic waves are emitted byfravitational radiation inaccessible to a ground-based detec-
or, but a system with a period of 10 milliseconds or less

accelerating charges, gravitational waves are emitted by ac- Id babl d b ble sianal i had
celerating masses. However, the energy emitted in the forrﬁ/mtJ Erota 3,: pl)rothucehanto tsF]erva .eds%nabl_n suc at e
of gravitational waves for most objects in nonrelativistic in- ector. rortunately, the snhorter the period or a binary system,

teractions is quite small. This is not only due to the funda—the greater the.acceleratmn mvolyeq, and hence the more
mentally weak nature of gravity, but also to the fact that mas&Nergy em'ttEd n the form of gravitational waves. The_ neu-
only comes in one sign. The familiar and prominent dipole!TON Stars in & binary system, such as PSR¥918, spiral in
radiation of electrodynamics does not occur for gravitationafoward each other as they lose energy, and the period of the
radiation because it is impossible to produce an oscillatingYStem decreases. The two neutron stars will get closer to-
dipole moment about the center of mass in a system of in ether over time, and speed up, until they eventually collide,

teracting particles. The combination of the difficulty of gen- Merging to form a single, massive object. Just before this
erating gravitational waves and the weak nature of the gravicellision, the orbital frequency can be quite high, and orbital
tational field itself makes detecting gravitational waves quitg?€r0ds of 10 ms or less are easily attainable. Moreover, the
difficult. amplltu.de of the grawtgtlor)al radlat!on emitted increases
The gravitational waves have the best chance of beingramatically as this inspiral(or binary coalescenge
detected, and the ones that are perhaps the most interestiRiP9resses. The waveform of the signal produced is expected
from an astronomer’s point of view, are those produced byO Provide a wealth of new information on the dynamics of
cataclysmic events, such as black hole collisions or type ifn® merger, and that is the scientific information we seek.
supernovae. Such events involve gravity in the strong fieldOther possible sources of strong, high-frequency gravita-
nonlinear regime, and the radiation emitted can carry inforional waves include black hole—black hole mergers and type
mation about what occurs under these conditions. This rell Supernovae(For a review of possible sources, see Chap. 3
gime is new territory for physics as well as astronomy, aLOf Ref. 16) These are just a few of the expected sources of

general relativity has so far only been studied experimentallgravitational radiation. A complete review of all of the pos-
in the weak-field limit. sible sources belongs in a separate article devoted entirely to

that subject. The most interesting sources, of course, will be
the ones we did not anticipate.

£y o
oty

(a) (b)

C. Sources of gravitational radiation

It is generally accepted that gravitational waves exist. Not
only are they predicted by general relativity, a well- IIl. A MICHELSON INTERFEROMETER AS A
established theory, we also have at least one known emittetRAVITATIONAL WAVE DETECTOR
of gravitational radiation: PSR19%316, a binary system
composed of two neutron stars, one of which is a pdisar. Most modern interferometric detectors are based on the
The orbital period of this system is quite short, less than gMichelson design. Michelson interferometry is particularly
hours, which means that two very massive, very compacwell-suited for detecting gravitational waves because of the
objects(the two neutron staysxperience strong, regular ac- geometry of the tidal force the waves produce. A classic
celerations. General relativity predicts that this systemMichelson interferometer, shown in Fig. 2, is sensitive to
should be losing energy in the form of gravitational radia-differential motion between the- andy-arms, just the kind
tion. As this energy is lost, the two neutron stars should driftof strain produced by a gravitational wave. In this basic con-
closer together, and as a result, the orbital period of the sydiguration, light enters the interferometer and is split in two
tem should slowly decrease. We can calculate what the oby a beam splitter. The two resulting beams travel down the
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v Fig. 3. The intensity of the light at the observation port versus the difference
in arm lengthgunits of A, the wavelength of the lightOperating at point 1

Fig. 2. A basic Michelson interferometer is sensitive to the kinds of strain amaximizes the change in power for a given change in arm lengths, but also
gravitational wave will produce. Incident laser light is split by a beam split- makes the instrument sensitive to intensity noise in the light source. Oper-
ter, sent down orthogonal paths along thandy axis, reflected from mir-  ating at point 2 eliminates this problem, but, in a simple Michelson inter-
rors at the ends of these paths, and recombined back at the beam splitter. Tisgometer, it reduces the signal to a second-order effect.
interference between these two return beams produces a net intensity that is
sensitive to differential changes in the lengths of the arms.

Pou=Pin COL[K(AL+ €h)], (4)

arms, reflect off the end mirrors, and recombine to interfere . . .
back at the beam splitté?.The light emitted at the observa- WhereAé=¢,— ¢, is the asymmetry in the arm lengths in
tion or antisymmetrigport provides a measure of the differ- the absence of a signal, and the average arm length is
ence between the lengths of the interferometer’s affitee = (£x+ ¢,)/2. In this paper we will assume that the gravita-
symmetricport, from which light returns to the laser, also tional wave strain is very small—small enough theth
contains information about the relative arm lengths. Conser<1. We can then choose an operating point at sdrfieand
vation of energy requires that the power coming out of thelook at the small perturbations in the output power around
symmetric and antisymmetric ports, along with any powerthat point that the gravitational wave produces. We can de-
lost in the instrument, accounts for all of the input power. scribe this small-signal response mathematically by a Taylor
Let us consider quantitatively the response of a simpleaxpansion abouh¥.
Michelson interferometer to a gravitational wave. It is not
difficult to derive an expression for the electric field at the

output of the interferometeE,, as a function of the elec- Pou= Pin COS(KA )+ Pmicoszu (K€h)+--- .
tric field at its input,E;, u u=ka¢ -
) . 5
Eou= %(rxelkyx_ ryell<2()') Ein - (1)

Here(, and¢, are the lengths of the two arnisjs the wave The response of our simple Michelson interferometer to a

number for the light we are using, ang andr, are the gravitational wave straitn is proportional to the derivative

amplitude reflectivities of the end mirrors. In our convention,of the output power with respect tb¢, so the obvious thing

a perfectly reflecting mirror has= — 1. to do is to operate at the point where that derivative is maxi-
The power falling on the photodiode in Fig. 2 is the squaremum, which is point 1 in Fig. 3. At this poifkA { = /4, and

of the magnitude of the electric fieltE {2, or, for perfectly

reflecting end mirrors,

Pou= Pin COSTK(£x—€y)], )

Whefe Pin=|Ei| is th_e power en_tering the interferometer, Unfortunately, we are then left with a fairly large dc term
provided by the laser in Fig. 2. This output power, and hence-pin coZ(kA0)=P. /2 in this case, which will fluctuate if¢

the voltage produced by the photodiode, varies S'inusmda”\//aries due to any perturbations on the mirrors, whether it be

with the difference in arm lengths, as shown in Fig. 3. If we itational ismic disturb M X
let the arm lengths in the absence of a gravitational wave bé graV|tat|0|ja wave, or seismic IStUr ance, etc. More Im-
portantly, this dc term is proportional #,, which can fluc-

¢y and €y, then we can write the total arm length &g fuat i the mi in still
+6¢, and{,+ 8¢, where a gravitational wave induces the '1&'c SVEn I € MIrrors remain sav. . .
Measuring small changes in a large signal is seldom an

perturba"uor.]séex andgé, . If we write the strain induced by effective way to do experimental physics. If the amplitude of
the gravitational wave as the gravitational wave we want to study is very small, as is
8y~ ¢, too often the case, fluctuations in the dc term described
v 3 above can completely obscure our signal. What we need is a

way to reduce or even eliminate the dc term while retaining
then we can write the power at the output of the interferom-and, if possible, boosting our signal. How we meet these two
eter as goals is the subject of this paper.

Pin
Pour — [1—2k¢h]. (6)

h
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V. TURNING A MICHELSON INTERFEROMETER Im of E

INTO A PRACTICAL GRAVITATIONAL WAVE e 1 o,
DETECTOR . .
o 0.75 .
There are four things we need to do to our simple Mich- ° .
elson interferometer to make it an effective gravitational 0.5
wave detector. o s *
(1) Make it big Because a gravitational wave induces a *® °
strain 6¢/¢ between two free masses, the total distance e Re of E
each end mirror moves3¢, will be proportional to the -1 -0.75-0.5-0.25 0.25 0.5 0.75 1
arm length,¢. The longest practical arm lengths for ® ~0.25 *
ground-based detectors are on the order of a few kilome- o .
ters. We will show later that bjolding the interferom- ~0.5
eter, we can squeeze effective arm lengths of severa e *
hundred kilometers or more into just a few kilometers. . ~0.75 .
(2) Use a lot of laser powerNot surprisingly, the brighter ° °
the light source we use, the stronger that our output sig- ¢ . Y i

nal will be. However, there is one additional benefit to

using a lot of laser power that may not be obvious at firstFig. 4. An electromagnetic wave can be represented by a complex number.
glance. The effects of shot noise are reduced as the |aséhe length of the arrow corresponds to the amplitude of the wave, and the
power is increased. Using a very powerful laser for aangle the arrow makes with the real axis corresponds to its phase.

light source is one obvious way to increase the power

used, but there are clever tricks that we can use 10 iNgyont of reducing the noise intrinsic to the mirrors is beyond

crease the power going into the instrument even moréy,q scope of this article, and an introduction to that subject is
One such technique that is commonly used is power regiven in Ref. 16.

cycling, a scheme by which any unused light exiting the
symmetric por{that is, going back to the laser instead ofV DECOUPLING INTENSITY NOISE: NULLED
falling on the photodiodeis recycled back into the in- LbCK—IN DETECTION '
terferometer. We will discuss both power recycling and
the effect of shot noise on the output of an interferomet-A. Null-point operation
ric gravitational wave detector.

(3) Decouple external noise sourceSome noise sources,
such as seismic noise, act directly on the mirrors an

To eliminate the dc term in the output, interferometers for
ravitational wave detection operate at the point labeled 2 in
. ; Y ig. 3, known as theull point. Arm lengths are chosen so
thus compete directly with gravitational waves to pro- hat, after passing back through the beam splitter, the two
duce an output signal. Other noise sources do not pertur, ea;ns are 180° out of phase at the outasymmetri |,oort
e e L of 8 ATl e absence of a gravtaonal e, ey nerire per.

’ nfectly destructively, and no light falls upon the photodetec-

be made largely insensitive to a wide variety of these, . jhe hort s “dark,” even if the power delivered by the
external noise sources, and we will look at one technique, e fluctuates.

that is widely used in many areas of experimental phys- Thg glectric field at the output of a Michelson interferom-

ics: rjulled quk-in_dgtection. We will shoyv how nulleq eter is given by Eq(1). For a dark fringe Eq(1) becomes
lock-in detection is implemented in an interferometric

gravitational wave detector to decouple its output from  Eou= ~iEis€’ x4 sin(keh), (7)

fluctuations in the input powe;, . where we have assumed tirgt=r,= — 1. At this point, we
(4) Reduce the noise in the mirrorShe largest straffi that  introduce a graphical method of visualizing the calculation
we expect to observe from a gravitational wave is on theof the output of an interferometer. Because we are using
order of 102Y, which gives a mirror motion of 4 complex numbers to represent electric fields, we may plot
X 10 ¥ m in a detector with 4 km arms. Obviously we these numbers as vectors in the complex plane, as in Fig. 4.
must reduce the level of ambient noise in the mirrors to(This approach will be familiar to anyone who has studied
a level comparable to or smaller than this, at the frequenPhasors.When we write the electric field in a light beam as
cies that we expect to observe. We will not go into physi-E€ ', we separate the time and spatial components of the
cal noise reduction techniques here, except to note thdthase intee'“* andE, respectively. In Fig. 4, we plot the real
the entire interferometer must be enclosed in vacuunand imaginary parts of the spatial componErds a function
and mounted on a high-performance seismic-isolatiorof the position along the beam. As we advance along the
system. As of this writing, noise reduction is a field of beam, the spatial phase advances, and for each wavelbength
active and ongoing research. we travel, the vector representirig) sweeps around a full
circle in the complex plane. We can represent the calculation
Making the interferometer large and using a lot of powerof the interferometer output graphically, as in Fig. 5. Here,
enhances our signal, while decoupling external noise sourcege sketch the spatial components of the beam just before the
eliminates the dc term we found problematic in Sec. Ill. Inlight strikes the beam splitter the first time, whé&rés purely
this paper we will consider only these three items. A treat+eal, and after returning from each arm, where the differen-
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Fig. 6. We can use lock-in detection to recover a linear signal from a dark
Fig. 5. When one arm is lengthened and the other shortened slightly by BOrt.
gravitational wave, the two beams in the arms acquire equal but opposite
small phase shifts. The beam splitter introduces an additional 180° shift

between them. The two beams add so that the net result is a small amplitudef the inst t tout with tt . | Atth I
beam phase shifted 90° from the input beam. ol the Instrument's output with respect to a signal. enu

point both the output power and its derivative are zero, but

while a gravitational wave produces a second-order change
Ij]n the output power, it produces a first-order change in its

derivative. This first-order signal is something we have a

chance of detecting.

tial motion of the end mirrors has introduced a small phase i
E. This phase is positive for thg arm (the arm along the
axis), but negative for the arm because the mirrors move in
opposite directions under the influence of the gravitational

wave. When it reflects off of the beam splitter, the light from 1 sigebands

the x arm acquires a 180° phase shift, so that when it com- ] . ) )
bines with the light from they arm, destructive interference _ LOCk-in detection requires that we modulate the signal.
occurs and, in the absence of a gravitational wave, the port iSh® MOost obvious way to do that would be to purposefully
dark. In the presence of a gravitational wave, the small0Ve the mirrors in a way that mimics a gravitational wave
imaginary components acquired in tkeand y arms add signal. In practice, howeV(_ar, it is easier to both implement
constructively after the beam splitter, resulting in a small and describe this modulation by acting on the phase of the

. . e o ... laser using a Pockels cell. A Pockels cell is essentially just a
pure_ly 'mag_'”any- That this fleld_ IS 90. out .Of phase with block of dielectric material with an index of refraction that
the light incident on the beam splitter will be important later,

when we talk about lock-in detection. The power falling on depends on an applied electric field. If we pass the incident

, . . eam through a Pockels cell and apply an oscillating electric
Fhe p_hotodetgctor is the square of the amplitude of this smal ield to it, we will modulate the phase of the light going into
imaginaryE, just after the photodetector.

the interferometer, as shown in Fig. 6. The electric field of
Pou= Pin Sirf(k€h)~ P, k?€h?, (8)  the light going into the interferometer can then be written as

which is proportional to the square of the straif. We  Ein=Ege'(“*#siney

expecth to be v_ery smallz, on the order of 18" or less, so_an %EO[JO(IB)eiwt+Jl(lg)ei(w+ﬂ)t_Jl(ﬁ)ei(wfﬂ)t]' 9)
output proportional toh<, rather thanh, would be quite . )
small and very difficult to detectFor a kilometer-scale in- WhereJo andJ; are zeroth and first order Bessel functions.
terferometerP;, would have to be on the order of a kilowatt The first term on the right-hand side of E§) is called the

to produce more than one photon per secon®g.) Op- carrier; the next two are referred to as teelebands

erating at the null point has eliminated our intensity noise, Ve can calculate trr]‘e electric field exiting the mterferlom-
but it has also nearly killed our signal. Fortunately, there is &£1€" by considering the carrier and sidebands separately. We

way to recover the signal without coupling to the intensitydeﬁ”e_ the transfer functionof an _interferometer for Iigh_t 01_‘
noise, and that is the subject of Sec. VB. any given wavelength as the ratio of the output electric field

to the incident field,
B. Obtaining a linear signal: Lock-in detection Eout

t= ,
We can recover a signal that is linearhirwithout reintro- Ein
ducing intensity noise by using lock-in detectirin lock-in ~ whereE, is given by Eq.(1). Our modulated beam is com-
detection, we modulate the signal and observe the resultingosed of three different wavelengths, so we can find an ex-
change in the output of the instrument. We then compare thairession for the light exiting the interferometer by applying
change with our modulation signal to measure the derivativéhe appropriate transfer function to each part, that is,

(10
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Eou=Eoltedo(B)e @i+t (B)e (@Mt The voltage the photodiode produces is linearly proportional
o-Q)t to the power falling on it, so for our purposes the signal we
—t.Jy(B)e 1, (1) measure at the photodiode will b&,=RP,,;, whereR is

wheret, is the transfer function for the carrier, andare the ~ the response of the photodiode. o
transfer functions for the sidebands. We can calculate all of There are four terms in this signal: two dc, one oscillating
these transfer functions from Eql), and in fact Eq.(1)  at 22, and one oscillating af). The one oscillating af) is
gives the transfer function of the carrier immediately. TheProportional to the gravitational wave strdirand is the term
transfer functions for the sidebands can be obtained by th&e would like to isolate and measure. We isolate this term

same procedure, if we use for their wave numbers through a process that is standard in lock-in detection known
as mixing, followed by low-pass filtering, or averaging over
K :“’iﬂ —om E+ 1 ) (12) time. Mixing just means multiplication, and a mixer is a

- c N ANmod nonlinear device that takes two voltages on its inputs and

produces a voltage at its output that is proportional to the
product of the voltages at its inputs. If we fe¥g, into one
input andVs.cos(Qt+ ¢) into the other, then we can write

Here \noq IS the wavelength of an electromagnetic wave
with frequency(). The transfer functions for the sidebands

are then the time-averaged output of the mixer as
06—ty €X—€y) _
t.=isin 27| —2+x—2| | ekl 13
- F{ 7T( A N mod (13 Vsignal: <VpdC0§(Qt+¢)>
¢ At
2. Schnupp asymmetry :ZW(RPin)JO(ﬁ)Jl(ﬁ)Xsm 2m h, (17)
mod

Now comes a really clever part. We still want the output of

the interferometer to be dark for the carrier, but if it is alsoyhere we have adjusted the user-specified pliate maxi-
dark for our sidebands, we still would have a second-ordefi-e the signal, and we have assumed that the amphtygle
signal inh. If, however, we introduce a difference in the arm s fixed and does not contribute to changes in the output. The

lengthsA¢=¢,—¢,, we can arrange for the output of the signa| we measure is now linearfinand zero in the absence
interferometer to be dark for the carrier but not dark for theys 5 gravitational wave. There is no dc offset to couple fluc-

sidebands. This trick is often attributed to Lise Schnupp, ang,ations in P, to the output. A graphical representation of
the differeng:zesin arm lengthA ¢ is known as the Schnupp his calculation is illustrated in Fig. 7.
asymmetry’> , The sensitivity of our nulled lock-in scheme depends on
With the Schnupp asymmetry amg=r,=—1, the side-  the average length of the arnfisthe input laser poweP,,,

bands’ transfer function reduces to and the size of the Schnupp asymmetrg, all of which we

Al would like to optimize to boost our signal. The best choice of

t.==isin 2w N
mod

the Schnupp asymmetry for this configuration is€
] . ) ~Amod4, and this choice is neither difficult to achieve nor a
We will neglect the change i ¢ produced by a passing very strict requirement. The size of the interferometer and
gravitational wave. the input power, however, should both be made as large as
possible, and there are some interesting tricks for increasing
both. We will consider techniques for increasifg and< in

el (0= Q)/cl(b, ) (14)

3. Output of the instrument the next two sections.
The total electric field of the light exiting the interferom-
eter is then
. ¢ Sidebands Carrier
Eou= Eine’ (&t &y iJO(,B)Zﬂ'Xh R, T 2
A 7240 T A T A B | B
: . A¢ 4 L
+2iJ4(B)sin 2 cog Qt+47 , (15
)\mod )\mod _____ )
where we have used E(j) to calculatet.. The power fall- \ AR RN
ing on our photodiode, as shown in Fig. 6, is then i+ * =
€2 A€ '
Pou=Pind3(B) 47> —h?+ 2PmJ§(ﬁ)sin2< 2m )
A N mod 2 2
+2PmJ§(,8)Sin2( 2 )COS( 20t+87 ) ¢ i+ [ i+ 2 ¢ P X f 1
A mod mod [ i
€ - Af AT N . S Xt e
+ PinJO(ﬁ)Jl(ﬁMﬂ'x hsin 27 \ Fig. 7. The power out of the dark port is the modulus squared of the sum of
mod all the interfering beams. The two sidebands add to produce an oscillation at
the modulation frequency. There are three terms in the resulting power. The
X co{ Qt+4m ) . (16) signal is extracted from the term that is the product of the sidebands and the
mod carrier.
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I 4

— — —5L- — — > Fig. 10. We can substantially increase the effective arm length of a gravi-
tational wave detector by folding the arms. In the figure the folding is done
Fig. 8. A simple mirror versus an optical delay line. In a simple mirror, light with Fabry—Perot cavities.
travels a distancé and reflects back, picking up a phase shift proportional
to €. If the mirror moves, the change in the phase shift is proportionakto

An optical path length of distance/®an be folded into a physical length . .
with extra mirrors. If the end mirrors, three in this figure, all moveA%; wave can become quite large, much larger than the amplitude

the change in the phase of the reflected light is proportionafiVe would ~ Of the incident light. When resonance occurs, the small frac-
expect a gravitational wave to move all the end mirrors together. tion of that light that leaks out of the input and output mir-
rors can become comparable in intensity to the incident and
promptly reflected beams. When this happens, the resulting
VI. INCREASING THE ARM LENGTH: leakage beam will interfere with the promptly reflected
FABRY-PEROT CAVITIES IN THE ARMS beam, and some interesting things will result.
] ] ) Near resonance, the phase of this leakage beam is very
As we saw in Sec. V, longer arms yield larger signals. Onsensitive to the distance between the mirrors, so a Fabry—
Eal‘th, we cannot aﬁord to bU|Id arb|trar|ly |0ng arms, but we Perot Cavity can be used as a high_precision measuring de_
can increase the effective length of the arms by bouncing thgice, capable of detecting very small deviations in the dis-
light back and forth within them, dolding. Figure 8 shows tance between its mirrors. If the resonance condition is not
a simple folding scheme for one arm of an interferometergatisfied exactly, then any small phase shift that the light
where an optical length oféSis folded into a physical length picks up in one round trip will get amplified by the total
of only £. This is conceptually the easiest folding scheme tohymber of round trips it makes before leaking out. In this
understand, and it is the one that Michelson and Morley usegdense the standing wave is analogous to the multiple bounces
in their famous experiment. However, this scheme requires g 3 delay line, where the number of bounces is determined
number of different mirrors, one for each fold in the optical py the average storage time of the cavity, that is, the average
path. A simpler scheme to implement, one that involves onlynumber of round trips a photon makes before leaking back
two mirrors regardless of the number of folds, involves thegyt, |f we replace the arms of a gravitational wave detector
use of a Fabry—I_Derot cavity. - with long Fabry—Perot cavities, as shown in Fig. 10, we can
A comprehensive treatment of Fabry -Perot cavities can bgchieve folding and increase the effective arm length by a
found in a good optics text, such as Héfhir Siegmarf®In  factor proportional to the storage time, or the average num-
this analysis we are only concerned with the transfer funcher of bounces, of the cavity.
tiOﬂS of these Ca.VitieS, SO |et us bl’leﬂy reVieW What we need Thinking Of a Fabry_Perot Cavity as a deiay |ine is usefui
to know to proceed. A Fabry—Perot cavity is just two paral-conceptually, but for a quantitative model the analogy is of
lel, partially transmitting mirrors, as shown in Fig. 9. Most of |imited use. We will need a quantitative model of Fabry—

the ||ght fal“ng on the input mirror reflects off of |t, and this Perot Cavitiesy SO we now establish a few important proper-
light is referred to as the@romptly reflectecbeam. Some ties of Fabry—Perot cavities.

light, however, leaks through and circulates between the in- The ratio of the incident to reflected electric fields just

put and output mirrors. If this light returns from one round pefore the input mirror is known as the reflection coefficient

trip in-phase with new light leaking in, constructive interfer- of the cavity and is easy to derive. The result is
ence will occur and a standing wave will build up, a condi-

tion known as resonance. The amplitude of this standing —ritro(ritf)el

111 @%mm , (18)
T wherelL is the length of the cavity;; andr, are the ampli-
tude reflection coefficients of the input and output mirrors,
| andt; is the amplitude transmission coefficient of the input
— ] mirror. For lossless mirrorgr|2+ |t|?=1. Resonance occurs
— T — — — whenever 2 =N\, whereN is an integer. How precisely

this condition must be met for resonance to occur depends on
Fig. 9. Akind of delay line can be made with only two mirrors, if they are the reflectivities of the input and output mirrors. If the input
partially transmissive; in this configuration it is known as a Fabry—Perotmirror has a relatively high transmission coefficient, that is,
cavity. The angle between the incident and reflected beams is greatly exagf it |ats a famy Iarge amount of the incident |ight leak into

gerated. Normally this angle would be zero, that is, the reflected beam . L.
travel back along the incident, and the beams bouncing back and fortlﬁhe cavity, then the conditionl2=N\ does not have to be

between the mirrors form a standing wave. In this example, only the inpu{net. very preci;ely for resonance to occur. If the input mirror
(left) mirror is partially transmissive. is highly reflective, then the tolerances oh22N\ are much
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Fig. 11. The amplitude reflection coefficients for Fabry—Perot cavities are -0.25
circles in the complex plane; andr, are the amplitude reflection coeffi-
cients of the input and output mirrors, respectively. 0.5
[ -0.
[
]
tighter. A measure of how sensitive the cavity is to changes ® . ~0.75 i
in L or \ is thefinesseof the cavity,/F, and is defined as the .
full width at half maximum of the amplitude of the standing o _, .

wave inside the cavity, or linewidth, divided by the spacing
between resonances, or free spectral range. If we considerrig. 12. On resonance, a small change in the length of a Fabry—Perot cavity

fixed and allowL to vary, then the finesse is given by dramatically changes its reflection coefficient. The amplitude reflection co-
efficient for an over-coupled Fabry—Perot cavity is plotted. Resonance is at
AI-Iw +1, and the plot uses LIGO values for the mirr@Ref. 27. 1000 points are
= N2’ (19 plotted uniformly over a length af/2.

whereAL,,, is the linewidth. As we have said, this linewidth
depends on the reflectivities of the mirrors, so we may agr;=r, and both mirrors are losslesshe cavity is referred
well define the finesse in terms of these reflectivities. For anyo ascritically coupled If the output mirror is much more
Fabry—Perot cavity, the finesse can be writtef? as reflective than the input mirror, and again both are lossless,
then very little light gets transmitted through the cavity, even
_7 r‘ro_ (20) on resonance. The leakage beé&hrough the input mirror
1-rire has a larger amplitude than the promptly reflected beam, and
Now let’s discuss how the reflectivities of the mirrors af- there is some net reflected light even on resonance. In this

fect the behavior of the cavity. If we plot the reflection co- €aS€ the cavity is referred to asercoupled|f the output
efficient of a Fabry—Perot cavity in the complex plane, weMirror is less reflgctlve than the input mirror, then again I|tt|g
find that it is always a circlé® The properties of this circle I9ht gets transmitted through the cavity on resonance. This
depend on the properties of the cavity, and there are thrédM€, however, it is the promptly reflected beam thf‘t domi-
cases that we need to consider=r,, r,<r,, andr;>r,. nates, gnd_the phase of the net reflected Ilgh_f K80°, as
The reflection coefficients for each case are illustrated in FigShown in Fig. 11(Note that the leakage beam is 180° out of
11. Far from resonance, the reflection coefficient for eactphase with the promptly reflected beam on resonance, re-
case is close te- 1, and its phase is relatively insensitive to 9ardless of the coupling.

: If we want to use Fabry—Perot cavities as delay lines in
han i or\. As w roachr nan W - ; ' .
changes in. or \. As we approach resonance, say by sweep he arms of a Michelson interferometer and recombine the

ing L at a constant rate, the reflectlon_ coef_f|C|e_nt ad\_/ar_lce%ght back at the beam splitter, and especially if we want to
around the circle in the counterclockwise direction, picking:;

. X . mplement power recycling, it is best for us to use a strongly
up speed as it approaches the rightmost edge of the circle. d ver-coupled cavity. In this case essentially all of the light is

resonance, the reflection coefficient lies on the righ.tmo‘e’f{;flected when the cavity is on resonance, and the phase of

edge of the C|rclg, and its phase changes the most rapidly f%is reflected light is very sensitive to deviations from reso-

a given change iL. After we pass through resonance, thenance as shown in Fig. 12.

reflection coefficient tracks along the top half of the circle Nea’r resonance, the reflection coefficient for an over-

and approaches 1 again, slowing down as it gets farther coupled, lossy Fabry—Perot cavity of lengthand finesse

from resonance. It is this sensitivity in phase to changds in is approximately

near resonance that makes a Fabry—Perot cavity a useﬂa:liic

device for measuring small changes in distance between the 1

mirrors, and that is why we want to use it in our gravitational ~ "xy= ( 1- ;facf)

wave detector. o
If both mirrors are lossless and have equal reflectivitiesWhere Ly y represents a small length deviation in either the

then on resonance the net reflected beam vanishes. Sufficientor y arm from perfect resonance, and we have approxi-

power builds up inside the cavity that the leakage beam exmated the finesse of an overcoupled cavity by

actly cancels the promptly reflected beam, and the reflection 20

coefficient goes to zero. All of the incident power gets trans- 7, ~ —-. (22)

mitted through the cavity. When this condition is satisfied t

1+i8F, (21)

Olyy
CT )

372 Am. J. Phys., Vol. 71, No. 4, April 2003 E. D. Black and R. N. Gutenkunst 372



The parametee is the fractional power lost in one round trip sers that operate on the order of 10 W, and 100 W lasers are
inside the cavity, which is typically small but not negligible in development. However, in a process similar to folding, we
for a 4 km Fabry—Perot cavity. For the arm cavity to be can increase the effective power going into the instrument
overcoupled, this loss must be less than the transmission efithout changing the power of the laser. How is this pos-
the arm cavity’s input mirror, and in all our approximations sible? Well, if the output port is dark, energy conservation
for the arm cavities we will assume this to be the case. = demands that the majority of the light gets reflected back
We may use the reflection coefficients in E81) in place  toward the laser. If we could somehow recycle this wasted
of the ordinary mirror reflection coefficientg , in Eq.(1) to  light and send it back into the interferometer, we could boost
find the transfer function of an interferometer with Fabry—the sensitivity of the instrument without having to develop a
Perot cavities in its arms. Only the carrier needs to resonateore powerful laser(And we could get even more out of
in the arm cavities. We will assume that the sidebands reflecuch a laser when it becomes available.
off the arm cavities’ input mirrors, and we will use a reflec- We saw in Sec. VI how a Fabry—Perot cavity could be
tion coefficient Ofrx,y: —1 for them. Then the Schnupp used to implement foldlng of an optical path. A S|m|Iar_con-
asymmetry only needs to be introduced between the beaept can also be used to implement power recydiifig.this
splitter and the arm cavities’ input masses, and these dig-ase, we place a single, partially transmitting mirror between
tances can be only a few meters, as opposed to several kil§he laser and the beam splitter in our gravitational wave de-
meters between the mirrors that form the Fabry—Perot cavitector. The interferometer itself, the beam splitter and arms,
to refer to the distance between the beam splitter and the®me of the light incident on the beam splitter gets transmit-
first, or input, mirror in thex andy arms. We will use an ted throqgh the instrument, coming out the dark port, while
upper case.,, to refer to the lengths of the Fabry—Perot most of it (most of the carrier, anywaygets reflected back

cavities in the arms. Assuming that both arm cavities havéoc\)':ﬁr(;j r%?rcl)?svevg gavxeutskgqf:sf ttng grgfr;?r%?:rec;{fg?: gacborm__
the same length in the absence of a gravitational wave and? ' P y

. . Perot cavity, placing a second, ordinary mirror between it
that¢, <L, we can get the transfer functions of an interfer- 54 the |aser. This second mirror then acts as the input mir-

ometer with Fabry—Perot cavity arms for both the carrier anqq, and if we control the distance between it and the inter-
the sidebands by combining Eq€l) and (21). They are,  ferometer(the compound output mirrgrthen we can build
approximately, up a standing wave between the two, effectively increasing
A , L 1 the power incident on the interferometer by a factor propor-
tg°=i4e'k(€x”y)]-"acx( 1-— ace) h, (23)  tional to the finesse of the resulting cavity. We will refer to
. this cavity as theecycling cavity and we refer to the mirror

and we have introduced between the laser and the beam splitter
Al as therecycling mirror. N _
o= zjeik=(Extty sin(27r—), (24) The transmission coefficient of the complete interferom-
- A eter, including power recycling and Fabry—Perot cavities in

wheret'™ is the transfer function of the complete interferom- the arms, is the transmission coefficient of the recycling cav-

eter, and the subscripts and + refer to the carrier and ity, with the recycling mirror forming the input mirror and

sidebands. respectivelv. These transfer functions vield a d the rest of the interferometer acting as the output mirror. The
' P Y. y eFecycling cavity reflection coefficient is just given by Eq.

modulated signal of (18), with the transmission and reflection coefficients of the

¢ compound mirror, the interferometer with Fabry—Perot arm
) cavities, substituted for the output mirror coefficietgsand

r,. The transmission coefficient of the recycling cavity is the

L A
Vsigna™ 4(RPm)JO(,8)J1(,6')]-'aCX sm( 277)\ -
mo

1 B :
«|1- —facf) h, 25) same as that for any Fabry—Perot cavity, or
™ trmtifoe|27T€rm_bs/)\
where we have again optimized the phasén the mixing trc:1_rrmrifoel4ﬂ-€rm_bs/)\, @8

process to maximize our signal. The introduction of folding
using Fabry—Perot cavities in the arms has increased the etheret,,, andr,, are the transmission and reflection coeffi-
fective length of the arms by about a factor Bf., with a  cients for the recycling mirrot;, andr, are the transmis-
corresponding increase in the strength of the readout signasion and reflection coefficients for the rest of the interferom-
A representative value of the finesse of an arm cavity in ater, andl,,,_psis the distance from the recycling mirror to
real detector isF,~1302%' the beam splitter. Another way to think éf,,_,sis the dis-
tance between the input affdompound output mirrors in
the recycling cavity.
We calculated the transmission coefficietisfor the car-
rier and sidebands in Sec. VI. The reflection coefficients are
h calculated in a similar manner:

VII. BOOSTING THE EFFECTIVE POWER: POWER
RECYCLING

We have seen how folding increases the effective lehgt
of an interferometer without the need to make the instrument = %eik(€x+fy)[rxeik(€x—€y)+rye—ik(€x—€y)]_ (27)
physically larger. Now we will turn to the input powet;,

and see how that can be boosted, with a corresponding bodsre, as beforef, is the distance from the beam splitter to
in the response of the instrument. the first mirror in thex arm (the input mirror to thex-arm’s

The most obvious solution is to use a stronger light sourcef-abry—Perot cavity and €, is the distance from the beam
As of this writing, most gravitational wave detectors use la-splitter to they-arm’s input mirror.
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A. Sidebands and

For the sidebands that do not resonate in the arm cavities, —e'Xmod2¢m-bs™x¢y) = — 1 (40)

the reflection coefficients are The Schnupp asymmetry and the reflectance of the recycling

ry=ry=-—1 (28 mirror must both be adjusted to match the product of the arm
cavities’ loss and finesse, and the effective length of the re-
cycling cavity becomes the sum &f,,,_ps and the average
pifo— _ ik (¢x+¢y) cos( o A€ ) 29) I(_angth Cxt+ty)02. Th_is effective length must be_ both a ml_JI-

* tiple of NM/2, where\ is the wavelength of the light used in
the interferometer, and a multiple of,,4/4, where the
modulation wavelength is given by;,,4. The first condition

A€ ) tells us that the carrier must be resonant in the recycling

This result yields

A mod
and

(30 cavity. Because the second condition Ais,od4= € m_bs
+(€x+€y)/2, we say that the sidebands must be antireso-
nant in the recycling cavity. Because~1 um and \ g
~30 m, it is not difficult to achieve both of these conditions
at the same time.

_ With the conditions given by Eq$38), (39), and(40) met,
elk=(2lm-ps(xtly)) = — 1 (31)  the transfer function for the carrier through the recycling
cavity (that is, the complete interferometdrecomes

tho=Figk=(txtty sin( 27
mod

If we substitute these into our expression for [Eq. (18)

with the appropriate input and output mirror coefficients for

the recycling cavity, we find that the resonance condition is

now

and critical coupling, that is, optimum recycling, requires
that we adjust the Schnupp asymmetry so that 4 L
rc_i~—ik¢

to=ie”"‘m-bs— ;}"acx/]-}c Xh’ (47

At
005(277)\ ):rrm. (32
mod where we have approximated the finesse of the optimally
With these conditions, the transmission coefficients for thecoupled recycling cavity as
sidebands through the recycling cavitjhe complete inter-
ferometey are 7 42)

B frc%t_Z-
= +ie K=lim-bs (33 i

T_he fqll power of the sidebands gets transmitted, and th¢s pc response of the interferometer
field picks up a phase factor.

We are now in a position to calculate the response of the
complete interferometer, including lock-in detection, Fabry—
Perot arm cavities, and power recycling as shown in Fig. 14.

We can calculate the transmission and reflection coeffiAll we need to do is calculate the electric field of the light
cients of the compound mirror for the carrier the same wayfalling on the photodiode,
we calculated them for the sidebands. Using the reflection _ rc it 1 rC (ot Ot
coefficientsr,, from an overcoupled Fabry—Perot cavity Eou=EinltsJo(B)€' ' +153y(B)e/F Y

B. Carrier

near resonance, we find —t"J,(B)e e~ MY, (43
tifo— jeik(tt b4 7 Eh( 1— ij,_- cf) (34) then demodulate and average the resulting power.
Cc ac)\ T a
and VsignaI: R<| EoutJ 2 cog t+ d’))' (44
L where the angled bracke{s -) denote time averaging. The
o= eik(€x+€y)( 1— _]:acf> _ (35) result is
a
L
If we use these results to find the carrier transmission and Vsignalz\/_—(RPin)JO(B)Jl(B)}—aC\/frCXh. (45)
reflection coefficients for the recycling cavity, we find that ™
the resonance condition is Note that the response of the interferometer is enhanced by
elk(2m-pst ExHly) = 4 1 (36)  VFr arelatively minor improvement compared with thg

. . L gain from using Fabry—Perot cavities as delay lines in the
and the requirement for critical coupling is arms. A moment's thought shows that this weaker depen-
1 dence should not surprise us. The response of the basic in-
Mm= ( 1- ;]:acf)- (37 terferometer, given in E17), is proportional to the electric
field in the carrier/P;,Jo(3), multiplied by the field in the

The requirements for resonance and critical coupling forsidebands,\/P_mJl(,B), multiplied by the length of the arms,

both the carrier and the sidebands can be combined. They ape Folding the arms using Fabry—Perot cavities increases the

A¢ 1 effective length to (2f)F,<£, because the total number of
005(277)\— :frm=1—; ac€; (38)  round trips in a Fabry—Perot cavity is proportional to its
_ mod finesse. The field in a cavity, however, is proportional to the
ek(@lmpsttx+ b)) = 41 (390  square root of its finesse. Because the sidebands do not reso-
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nate in the arm cavities, only the carrier field is boosted bWsigna(f )
power recycling. The response of the instrument then is en-

hanced by the new field amplitude in the carrier, or 4 L fy
= 77 (RPI(B) B Facl Fro 55 (T (5O
Ecarrie% \/fac\/P_inJO(IB)- (46)

D. AC response of the interferometer VIl SHOT NOISE

So far we have performed all of our calculations under thecox0 Iéiia\svrﬂﬁghtogognz?avggag%a;ra\{\tlﬁl)\;]eo?(?]tgigtgrsl’zx\/lg]u:g 284
assumption that the interferometer is in a quasistatic state. P . 132 S
We have not taken into account dynamical effects. As long a§™ Instrument, a strain of . produces motions of the end
any change in the instrument occurs on a time scale longdPirrors on the order of 10®m, or one-thousandth of the

than the time it takes light to propagate completely througrfliameter of an atomic nucleus. Any instrument capable of
the instrument, this assumption is valid. However, if ourdetecting such motion must have a very low intrinsic noise

gravitational wave signah includes components at high level. The extraordinary sensitivity required for gravitational

enough frequencies, we cannot expect our quasistatic versidh?Ve lasltronomy ﬂemandz tthat our w;;strr]utrr\]wetnt have tar? ex-
of the response of the instrument to be valid. Before addresdfémely low noise floor, and to accomplish that we must have
ing the dynamic response of the interferometer, let us condn understanding of the physics behind the noise. There are

sider what these relevant time scales are, and what .,higﬁhr_ee principal sources of noise in an interferometric gravi-
frequency” means tational wave detector. They are

How long does it take for the light in the interferometer to (1) Seismic noisewhich will perturb our mirrors if the
come to a steady state? Put another way, how long does it ground shakes and can mimic a gravitational wave strain
take for an appreciable field to build up inside a Fabry—Perot .
cavity so that the appropriate interference can occur? Light2) Thermal noisedue to the motion of the individual mol-
makes a single round trip inside a cavity in a time/e, and ecules in the mirrors and suspensions due to heat.

if we think of the finesse as a measure of the total number of3) Shot noisedue to the optical readout noise in our photo-
round trips the light makes, then the relevant time scale for  detector.

equilibrium in a Fabry—Perot cavity must be approximately
The first two sources can be reduced by clever design of
2L the tables and suspensions used to hold the mirrors, and by
T Tf' (47 an appropriate choice of the mirror material and geometry.
The third, shot noise, is a fundamental consequence of the
Any signals at frequencies df,<1/r will satisfy the quasi- guantum nature of light. . o .
static requirement, but frequencies on the order of or greater In this section we will consider the limit that shot noise
than 14 will be high enough to begin to probe the dynamic places on our ability to detect a gravitational wave stfain

response of the interferometer. The rms fluctuation in the power falling on the photodiode
If the arm cavities have finesses of 130 and lengths of 4letermines the shot noise seen in the readout of the instru-
km, the characteristic frequency is ment. We can use the standard formula for shot noise to

calculate this fluctuatiof’

1
—~300 Hz, (48 APgpot e V2 oPyAf, (51)

which is low enough to be a problem if we are looking forWherePdC is the average dc power falling on the photodiode,

signals at frequencies up to a kilohertz. The recycling cavity2NdAf is the measurement bandwidth. It will be useful for
on the other hand, also ha&,~100, but its length is on the us to express this noise in terms of a voltage fluctuation per
order of 10 m, giving it a cutoff frequency closer to 100 kHz. unit bandwidth, or

Our rough estimate shows that, for searching for gravita- N~
tional waves at frequencies above a few hundred Hz, we Vshol ) =Ry2h0Pqc.

must take into account th_e storage timef the arm cavities, We can think of this expression as a Fourier transform of the
but not that of the recycling cavity. . shot noise voltage, expressing the noise density at a given
A careful derivation shows that the finite storage time of, equency V. in Eq. (52) has units of volts per square-root
the arm cavities introduces a single pole in the response ertz Noté St?%.t the .amplitude of the shot noise in the pho-
the interferometer, and that the cutoff frequerfgyis actu- todiode does not depend on frequency, only on the band-

(52

9
ally 1/27, or* width of our measuremerf.
c This shot noise appears as a signal in our readout, and we
fo=—n. (49 would like to know how largén has to be to stand out above
AL Fae the noise. All we have to do to answer this question is set the

utput of the instrument, E@50), equal to the signal due to

The dynamic response of the interferometer to a gravitationaihOt noise

wave signalh(f) at frequencyf has the same frequency

dependence as a simple, single-pole low-pass filter. For fre- Vaignal f ) =Vsnof ) (53
guencies well below the recycling cavity’s cutoff frequency,

this response 4 or
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Fig. 13. To understand how a single mirror can be used to implement power 10 100 1000
recycling, we can treat the interferometer as a compound mirror and con-
sider it to be the output mirror of a Fabry—Perot cavity. The recycling mirror frequency (Hz)
serves as the input mirror. If the resulting recycling cavity is critically
coupled, then no light is reflected back to the laser. Fig. 15. The shot noise limited sensitivity for a interferometric gravitational

wave detector withL=4 km, P;,=10 W, A=1.064um, F,~130, and
F..=100. The frequency dependence comes from dividing the shot noise in
the photodiode by the response of the interferometer.

4
—=(RPin)Jo(B)I1(B) FacV F f . , . .
J ) Jo(B)J1(B) Fac f +f2| shol ) Representative parameters for a first-generation gravita-
tional wave detector are=4 km, \=1 um, F,.=130, F,
=\2hwPR. (54 =100, and P,,=10 W. These parameters give a dc shot
The average dc power is simply found from the outputnoIse of approximately
field, as we calculated in Sec. VII, |Nghof 0)| =107 28 Hz ™12, (57)
- 2y _ 512
Pour=(|Eoul®) =233(B)Pis. (59 |x. OPERATING AN INTERFEROMETRIC
Equation(55) gives an expression for the shot noise limited GRAVITATIONAL WAVE DETECTOR
sensitivity of an interferometric detector, ftgno(): Our analysis of an interferometric gravitational wave de-
> tector has relied on resonance conditions being satisfied,
Ve +f (56) which involves maintaining precise distances between mir-

[nsnof 1= 2 Jo( B VP Fac FreL f2 rors over long periods of time. The systems necessary to hold
the Fabry—Perot cavities in the arms on resonance, to hold
Note that, even though the shot noise in the photodetectdhe recycling mirror at its optimum position, and to keep the
itself is frequency independent, the frequency-dependent resutput port dark for the carrier, are elaborate, sophisticated,
sponse of the interferometer makes the shot noise limiand beyond the scope of this paper. For our purposes, the
frequency-dependent at high frequencies as illustrated in Figanalysis of signal extraction and shot noise, we can just as-
15. This effect is merely a result of dividing th#lat) shot sume that all of these conditions are met. The automatic
noise spectrum by the response of the interferometer. control systems that maintain them are considered transpar-
ent for this analysis, and their inner workings are a separate
study of modern experimental techniques.

X. SUGGESTED PROBLEMS

(1) Derive the transmission coefficients for a simple Mich-

Long Fabry-Perot Arms elson interferometer at both the symmetric and antisymmet-
ric ports, Eqs(1) and(27), respectively. There is a subtlety

Power _ here that is important to appreciate before going on to do any
Recycling other calculations involving interferometry: The reflection

coefficient of the beam splitter depends on the incoming di-
rection of the incident light. In our case, we considered re-
flection from the left to have = —1/2 and from the right,

Laser

r=+1W2. This assumption is a slight oversimplification.
(!) V The mirrors in modern interferometers are made up of
v multilayer dielectric coatings, with complicated transmission
Nulled and reflection coatings. Nevertheless, this asymmetry in the
LockIn | @‘ - - "®' ’b‘ —>| SIGNAL sign of the reflection coefficient, andot the transmission

coefficient, is required for the instrument to satisfy conserva-

Fig. 14. The complete interferometric gravitational wave detector combinedion _Of energy. This is a general property of mirrors and is
Fabry—Perot arms, power recycling, and nulled lock-in detection. not limited to beam splitters.
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(2) Derive the reflection and transmission coefficients for a 0, 0, O,
Fabry—Perot cavity, Eq$18) and (26), respectively. Again,
conservation of energy requires that the reflection coefficient h = 0,0 10 hcog w(t—2/c)] (66)
of the input mirror have a different sign for light incident #10, 1, 0, 0O '
from the left than for light incident from the right. The usual 0 0 0 0

derivation of these coefficients involves summing an infinite
series® However, a more elegant method can be found inAgain, construct and plot a vector field describing the lines
Siegmarf> of force. Show that a Michelson interferometer with arms
(3) Field lines 1 Consider two points in space—time in the oriented along thex and y axes is not sensitive to

x-y plane: an origin, described 149,0,0,0, and some other X -polarized gravitational waves.
point (ct,x,y,0). The intervals between these two points is  (5) The response of an interferometric gravitational wave
given, in the ordinary case of flat space—time, by detector with Fabry—Perot arm cavities depends on the prod-

2= — 22+ x2+y2, (58) uct of the arm length and f[he arm cavity finesSgCL. Why,

then, do we need to build detectors with kilometer-scale
The differential interval between two points in space—timearms? Wouldn't it be easier to keep the arm lengths at a few
can be expressed more generally as tens of meter¢laboratory scalesand compensate by increas-
v ing the arm-cavity finesse?

dsz—gwdx“dx ' (59 gSolution Thereyare many answers to this question. The
where the metrig,,, is known as the metric tensgklere we  easiest to understand, at this level, is that the response of the
employ the usual Einstein summation convention of summainstrument, as in Eq(50), actually scales as the product
tion over repeated indices-or the flat space—time of special F,Lh. The amount of motion induced in the mirrors by a

relativity, the metric tensor is gravitational wave scales with the length of the instrument,
1 0 0 Lh, wheregs most external _noise sources, such as sgismic or
o thermal noise, move the mirrors by an amount that is inde-
0, 1, 0, 0 pendent of the arm length. Thus the signal-to-noise ratio of
9ur=7w=| o 0, 1, 0| 60 the instrument scales as the arm length

0o, 0 0 1
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