
 

PSS  
 

Software for the Periodic Source Search 
 

User Guide 
 
 
 

 
 

 
 
 
Version 02-11-2005 
Updated version in  http://grwavsf.roma1.infn.it/PSS/OtherDoc/PSS_UG.pdf 



 2



 3

Contents 
 

 
Introduction ................................................................................................................... 6 
Programming environments..........................................................................................8 

Matlab................................................................................................................................................8 
The gw project...........................................................................................................................10 

C.......................................................................................................................................................11 
SFC formats ................................................................................................................. 12 

Basics ...............................................................................................................................................12 
Compressed data formats.............................................................................................................13 

LogX format ..............................................................................................................................13 
Sparse vector formats ...............................................................................................................14 

PSS SFC files ..................................................................................................................................16 
Data preparation .......................................................................................................... 18 

Format change ...............................................................................................................................18 
Data selection.................................................................................................................................21 

Basic sds operations..................................................................................................................21 
Choice of periods......................................................................................................................23 

Search for events ...........................................................................................................................25 
Filtering in a ds framework......................................................................................................25 
The ev-ew structures ................................................................................................................25 
Coincidences..............................................................................................................................26 
Event periodicities ....................................................................................................................27 

SFDB............................................................................................................................ 29 
Theory .............................................................................................................................................29 
Procedure........................................................................................................................................30 
Software ..........................................................................................................................................31 

pss_sfdb......................................................................................................................................31 
Software ..........................................................................................................................................32 

Time-frequency data quality ....................................................................................... 33 
Peak map ..................................................................................................................... 35 

Peak map creation .........................................................................................................................35 
Other peak map creation procedures.....................................................................................37 

Hough transform ......................................................................................................... 42 
Theory .............................................................................................................................................42 
Implementation..............................................................................................................................43 
Use of the library ...........................................................................................................................47 
Function prototypes .............................................................................................................49 
Program flow from the user point of view................................................................49 
User assigned parameters ................................................................................................50 
Performance issue .................................................................................................................50 

Results of gprof...................................................................................................................50 
Comments .............................................................................................................................55 

pss_explorer ...................................................................................................................................57 
pss_hough.......................................................................................................................................57 



 4

Supervisor..................................................................................................................... 58 
Basics ...............................................................................................................................................58 
Outline of the supervisor .............................................................................................................60 
Implementation of the Supervisor ..............................................................................................61 

Candidate database and coincidences ........................................................................ 62 
The database...................................................................................................................................62 
Browsing the PSC database..........................................................................................................64 
Searching for coincidences in the PSC database.......................................................................64 

Coherent follow-up ...................................................................................................... 65 
Theory and simulation................................................................................................. 66 

Snag pss gw project .......................................................................................................................66 
PSS detection theory .....................................................................................................................66 
Sampled data simulation...............................................................................................................66 
Time-frequency map simulation..................................................................................................68 
Peak map simulation .....................................................................................................................69 

Low resolution simulation .......................................................................................................69 
High resolution simulation ......................................................................................................70 

Candidate simulation.....................................................................................................................71 
Time and astronomical functions................................................................................................72 

Time ............................................................................................................................................72 
Astronomical coordinates ........................................................................................................73 
Source and Antenna structures ...............................................................................................74 
Doppler effect ...........................................................................................................................75 
Sidereal response.......................................................................................................................79 

Tests and benchmarks................................................................................................. 80 
The PSS_bench program..............................................................................................................80 

The interactive program...........................................................................................................80 
The reports.................................................................................................................................82 

SFDB...............................................................................................................................................85 
Hough transform...........................................................................................................................85 

Service routines............................................................................................................ 86 
Matlab service routines .................................................................................................................86 
pss_lib..............................................................................................................................................87 
pss_rog ............................................................................................................................................87 

General parameter structure ........................................................................................ 88 
Main pss_ structure .......................................................................................................................88 
const_ structure .............................................................................................................................90 
source_  structure ..........................................................................................................................91 
antenna_  structure........................................................................................................................92 
data_  structure ..............................................................................................................................93 
fft_  structure .................................................................................................................................94 
band_  structure .............................................................................................................................95 
sfdb_  structure ..............................................................................................................................96 
tfmap_  structure ...........................................................................................................................97 
tfpmap_  structure .........................................................................................................................98 
hmap_  structure............................................................................................................................99 
cohe_  structure ...........................................................................................................................100 
ss_  structure ................................................................................................................................101 



 5

candidate_  structure ...................................................................................................................102 
event_  structure ..........................................................................................................................103 
computing_  structure.................................................................................................................104 

The PSS databases......................................................................................................105 
General structure of PSS databases ..........................................................................................105 
The h-reconstructed database....................................................................................................107 
The sfdb database........................................................................................................................107 
The normalized spectra database ..............................................................................................107 
The peak-map database ..............................................................................................................107 
The candidate database...............................................................................................................107 
Database Metadata ......................................................................................................................107 

Server docs...............................................................................................................................107 
Analysis docs............................................................................................................................107 
Antenna docs ...........................................................................................................................108 

File System utilities ......................................................................................................................108 
Appendix.....................................................................................................................109 

Doppler effect computation ......................................................................................................109 
pss_astro...................................................................................................................................109 

Programming tips ........................................................................................................................113 
Windows FrameLib ................................................................................................................113 

 



 6

Introduction 
 
The PSS software is intended to process data of gravitational antennas to search for periodic 
sources. 
 
It is based on two programming environments: MatLab and C. The first is basically oriented 
to interactive work, the second to batch or production work (in particular on the Beowulf 
farms). 
 
The input gravitational antenna data on which the PSS software operates can be in various 
formats, as the frame (Ligo-Virgo) format, the R87 (ROG) format, or the sds format (that 
is one of the Snag-SFC formats). The data produced at the various stages of the processing 
are stored in one of the Snag-SFC formats. The candidate database has a particular format. 
 
There are some procedure to prepare data for processing. There is a basic check for timing 
and basic quality control. A report is created. 
Then the Short FFT Database (SFDB) is created. This is done in different way depending on 
the antenna type. For interferometric antennas it is done for 4 bands, obtaining 4 SFDBs. 
For bar antennas it is done for a single band. 
 
The SFDB contains also a collection of “very short” periodograms. It has many uses, in 
particular it is used for the time-frequency data quality. 
From the SFDB the peak map is obtained; it is the starting point for the Hough transform. 
 
The Hough transform (the “incoherent step” of a hierarchical procedure), that is the main 
part of our procedure, is normally run on a Beowulf computer farm. A Supervisor program 
creates and manages the set of tasks. 
 
The Hough transform produces a huge number (billions) of candidate sources, each defined 
by a starting frequency, a position in the sky and a value of the spin-down parameter. These 
are stored in a database and when there are independent data analysis (for different periods 
or for different antennas), a coincidence search is performed on them.  
The resultant candidates are then followed-up to verify their compliance with the hypothesis 
of being a periodic gravitational source, to refine their parameters and to compute  other 
(like polarization). 
 
An important part of the package is the simulation modules. 
 
This guides ends with a report of various tests done of some parts of this package. 
 
More information can be found on the programming guides and other documents: 
 

• Snag2_PG 
• PSS_PG 
• PSS_astro_PG 



 7

• PSS_astro_UG 
• PSS_Hough_PG 
• Supervisor_PG 
 



 8

Programming environments 
Matlab 

 
For the MatLab environment the Snag toolbox is used. It contains more than 800 m 
functions (February 2004) and has PSS as one of the projects regarding the gravitational 
waves (in snag\projects\gw\pss). It is almost completely independent from other 
toolboxes. 
 
There are two useful interactive gui programs in Snag: 
 

 snag , provides a GUI access to the Snag functionalities. It can be used 
“stand-alone”,  or in conjunction with the normal Matlab prompt use of 
Snag. At the Matlab command prompt, type snag . A window appears: 

 

 
 

It has a text window, where are listed the gds that have been created and 
some buttons.  
 



 9

For a more extensive description of this, see the Snag2_UG. 
 

 data_browser , that is a Snag  application (part of the gw project) to access and 
simulate gravitational antennas data. It is started by typing data_browser (or just 
db, if the alias is activated). This opens a window 

 

 
 
with a text window and some buttons. The text window shows the “status” of the 
DataBrowser , as is due to the default and user’s settings. 
 
 
 
The parts that are developed in this environment are labeled [MatLab environment]. 
 



 10

The gw project 
 
Inside Snag, a gravitational wave project has been developed. An important of this project is 
the DataBrowser (showed in the preceding sub-section). 
Other parts of this project are: 
 

 astro , on astronomical computations (coordinate conversion, doppler 
computations) 

 
 time , with a set of functions dealing with the time. Among the others: 

 
o conversions between mjd (modified julian date), gps and tai times 
o sidereal time 
o conversions between vectorial and string time formats 

 
 sources , about gravitational sources (pulses, chirps and periodic signals) 

 
 pss , specifically for the PSS software (see the sub-section devoted to it in 

Simulation and theory) 
 gw_sim, with data simulation 

 
 radpat , for the radiation pattern and response of antennas (sidereal response of an 

antenna, sky coverage,…) 



 11

C 
 
The C environment contains a library and some module. The library contains: 
 

 pss_snag :  routines to operate with the snag objects (GD, DM, DS, RING, MCH) 

 pss_math : basic mathematical routines  

 pss_serv :  service routine (among the others, vector utilities, string utilities, bit 

utilities, interactive utilities, “simple file” management 

 pss_gw : physical parameters management 

 pss_astro : astronomical routines 

 pss_frame : routines for frame format access 

 pss_r87 : routines for r87 format access 

 pss_sfc : routines for the sfc file formats management 

 pss_snf : routines for snf format management (partially obsolete) 

 
The other modules are: 
 

 pss_bench :  for computer benchmarks 

 pss_math : basic mathematical routines  

 pss_sfdb :  for short FFT data base and peak maps creation and management 

 pss_hough : for hough transform 

 pss_cohe : for the coherent step of the hierarchical search  

 pss_ss : Hough tasks management and supervision 

 
The parts that are developed in this environment are labeled [C environment]. 



 12

SFC formats 
 

Basics 
 
The basic feature of the file formats here collected is the ease of access to the data. 
 
 The "ease of access" means: 
 

 the software to access the data consists in a few lines of basic code 
 the data can be accessed easily by any environment and language 
 the byte level structure is immediately intelligible 
 no unneeded information is present 
 the number of pointers and structures is minimized 
 the structure fits the needs 
 the access is fast and, possibly, direct 
 the need for generality is tempered by the need for easiness. 

 
  The collection is composed by: 
 

 sds, simple data stream format, for finite or "infinite" number of  equispaced samples, 
in one or more channels, all with the same sampling time 

 sbl, simple block data format, in a more general case; a block can contain one or more 
data types: any block have the same structure (i.e. the sequence and the format of the 
channels is the same) and the same length (i.e. the number of data in a block for a 
certain channel, is always the same). 

 vbl, varying length block data format, where the structure of all the blocks is the same, 
but the length can be different. 

 gbl, general block data format: it is not a format, but practically a sequence of 
superblocks, each following one of the preceding formats; it is a repository  of data, 
not necessary well structured for an effective analysis, but good for storage, 
exchange, etc.. 

 
A set of files can be: 
 
 internally collected, i.e. ordered serially or in parallel using the internal file pointers (for 

example subsequent data files, or to put together different sampling time channels) 
 externally collected, i.e. logically linked by a collection script file, as it happens for 

internal collecting 
 embedded in a single file, with a toc at the beginning or at the end. This is the case of 

the gbl files. 
 
A file can be wrapped by adding one or more external headers (for example describing the 
computer which wrote the file). 



 13

The SFC data formats are presented in the Snag2 Programming Guide (Snag2_PG.pdf). 
 
 

Compressed data formats 
LogX format 

 
This is a format that can describe a real number (float) with little more than 16, 8, 4, 2 or 1 bits. X 
indicates this number of bits.  
It uses normally a logarithmic coding, but can use also linear coding and, in particular cases, the 
normal floating 32-bit format. In the case that all the data to be coded are equal, only one data is 
archived (plus the stat variable). 
It best applies to sets of homogeneous numbers.  
Let us divide the data in sets that are enough homogeneous, as a continuous stretch of sampled data. 
The conversion procedure computes the minimum and the maximum of the set and the minimum 
and the maximum of the absolute values of the set, checks if the numbers are all positive or negative, 
or if are all equal, then computes the better way to describe them as a power of a certain base 
multiplied by a constant (plus a sign). So, any non-zero number of the set is represented by 
 

xi = Si * m * bE
i 

 
or, if all the number of the set have the same sign, 
 

xi = S * m * bE
i 

 
where  
 

• Si  is the sign (one bit) 
• m  is the minimum absolute value of the numbers in the set 
• b  is the base, computed from the minimum and the maximum absolute value of the 

numbers of the set 
• Ei is the (positive) exponent (15 or 16 bits for Log16, 7 or 8 bits for Log8, and so on). 

 
The coded datum 0 always codes the uncoded value 0 (also if such a value doesn’t exist). 
 
m, b, and a control variable that says if all the number are positive, negative or mixed are stored in a 
header. The data bits contain S and E or only E. 
The minimum and maximum values can be imposed externally, as saturation values. 
 
In case of mixed sign data, in order to have automatic computation of m and b, an epsval (a 
minimum non-zero absolute value) should be defined. If this is put to 0, this value is substituted with 
the minimum non-zero absolute datum. 
 
The zero, in the case of mixed sign data, is coded as “111…11”, while “000…00” is the code for the 
number m (“1000…00” is –m, “0111…11” is the maximum value and “111…110” the minimum). 
 
The mean percentage error in the case of a gaussian white sequence is, in the case of Log16, better 
then 10-4 . 



 14

 
Also a linear coding is possible: 
 

xi = m + b * Ei 
 
Also in this case, the coded datum 0 always codes the uncoded value 0 (also if such a value doesn’t 
exist). 
In case of linear coding, if the data are “mixed sign” (really or imposed) and X is 8 or 16, E is a 
signed integer, otherwise it is an unsigned integer: normally, in the first case, m is 0. 
 
In case of data dimension X less than 8 (4, 2 or 1: the sub-byte coding), the logarithmic format is 
substituted by a look-up table format. In such case, a look-up table of (2X – 1) fixed thresholds tk  
(0<k<2X – 2), in ascending order, must be supplied. Data < t0 are coded as 0, data between tk-1 and 
tk are coded as k and data greater than the last threshold are coded as 11..1 .  In the case of linear 
sub-byte coding, the coded data are unsigned. 
 
Here is a summary of the LogX format: 
 
Number 
of bits 32 16 8 4 2 1 0 

        
Coding float 2 linear 

2 logarithmic 
2 linear 
2 logarithmic

linear 
look-up

linear 
look-up

linear 
look-
up 

constant 

 
Logarithmic coding can be done using X or X-1 bits for the exponent, depending if the last bit is 
used for the sign. Linear coding can be (for X = 8 or 16) signed or unsigned integer coded. 
Linear and logarithmic coding can be adaptive. 
So, totally, we have 16 different LogX formats (7 linear, 4 logarithmic, 3 look-up table, 1 float and 1 
constant float), 11 of which can be adaptive.  
 
 

Sparse vector formats 
 
Sparse vector is a vector where most of the elements are 0.  We call “density” the percentage 
of non-zero elements. Sparse matrixes are formed by sparse vectors. 
Sometimes (binary matrices) the non-zero elements are all ones and sometimes they are also 
aggregated. In this last case the binary derivative (0 if no variation, 1 if a variation is present) 
is often a sparse vector with lower density value. 
We represent sparse vectors with the “run-of-0 coding”. It consists in giving just the number 
of subsequent zeros, followed by the value of the non-zero element. In the case of binary 
vectors, the value of the non-zero element is not reported. 
 
Examples: 
 
{1.2  0  0  0  0  0  3.2  0  0  0  0  0  0  2.3  0  0  0  0  0  0  0  0  3.0  0  0  0  2.} 
 
coded as  {0  1.2  5  3.2  6  2.3  8  3.0  3  2.} 



 15

 
binary case: 
{0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0}  
 
coded as  {3 6 8 0 3} 
 
aggregate binary case: 
 
{1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0  1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1} 
 
binary derived as 
 
{1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0  1 0 0} 
 
coded as 
 
{0 2 7 3 5 4 9 2}. 
 
In practice the number of subsequent zeroes is expressed by an unsigned integer variable 
with b = 4, 8, 16 or 32 bits; one is added to the coded values, in such a way that the value 0 
is an escape character used if more than 2n-2 zeroes should be represented; in such case the 
datum is put in a side array of uint32. 
 
In practice, there are 5 different cases: 
 

sparse, non-binary  ⇒  the 0-runs and the non-zero elements 
sparse, binary   ⇒  only the 0-runs of the sequence 
sparse, derived binary  ⇒  only the 0-runs of the derived sequence 
non-sparse, non-binary  ⇒  normal vector (a float per element) 
non-sparse, binary  ⇒  one bit per element 
 

 
 
 



 16

PSS SFC files 
 
The PSS (Periodic Source Search) project uses many different types of data to be stored. 
Namely: 
 

• h-reconstructed sampled data, raw and purged 
• Short FFT data bases 
• Peak maps 
• Hough maps 
• PS candidates 
• Events 

 
Each of these has a peculiar type of SFC.  
 

• h-reconstructed sampled data, raw and purged 
 

This type of data are normally stored with simple SDS. 
 

• Short FFT data bases 
 

The data are stored in a SBL file. 
 
In the user field there are other information like: 

• [I] FFT length (number of samples of the time series) 
• [I] Interlacing size (number of interlaced samples) 
• [D] sampling time of the time series 

[S] window (used on the time series) 
 
The blocks contain: 
 

o one half of the FFT of purged sampled data 
o one short power spectrum 
o one one-minute mean vector 
o a set of parameters as: 

• [I] number of added zeros (for errors, holes or over-resolution) 
• [D] time stamp of the first time datum (mjd) 
• [D]  time stamp of the first time datum (gps time) 
• [D] fraction of the FFT time that was padded with zeros 
• [D] velocity of the detector at time of the first datum (vix,viy,viz: coordinates 

in Ecliptic reference frame, fraction of c) 
• [D] velocity of the detector at time of the middle datum (vmx,vmy,vmz: 

coordinates in Ecliptic reference frame, fraction of c) 
• [D] velocity of the detector at time of the last datum (vfx,vfy,vfz: coordinates 

in Ecliptic reference frame, fraction of c) 



 17

• [D] mean velocity of the detector during the FFT time (vx,vy,vz: coordinates 
in Ecliptic reference frame, fraction of c) 

• [D] initial sidereal time 
 

 
• Peak maps 

 
The data are stored in a VBL file. The structure is similar to that of the SFDB, but a peak 
vector takes the place of the FFT. the format of the peak vector is a sparse binary vector, so 
the real length of each block is not constant. 
 

• Hough maps 
 

The data are stored in SBL or VBL files. The parameter to be stored in each block 
(containing a single Hough map) are: 
 

• the length of the record 
• the parameters of the hough map (amin, da, na, dmin, da, nd) 
• the spin down parameters (nspin, spin1,spin2,…) 
• the number of used periodograms and the type (interlaced, windowed,…) 
• the initial times and length of each periodogram 
• the type and the parameters of the threshold 

 
• PS candidates and Events 

 
• These data could be stored in an SDS file, with many channels, but, for the 

necessity of easy random access needed for such data bases, a peculiar format 
will be used. 

 
 



 18

Data preparation 
Format change 

 
[C environment] 
In order to use some Snag features in a more proficient way, the frame format data must be 
must be converted in the sds format. This can be accomplished by the interactive program 
FrameUtil.exe: 
 

 
 

Very useful are the two dump file facilities, that give a resume of all the frames. 
 
The program can be used also in batch, creating a batch file as this: 
 
8                                                     ! ask batch mode 
1                                                     ! sets batch mode 
1                                                     ! ask item choice of the directory 
X:\x\E4\h_recon\                           ! the directory 
3                                                     ! ask channel choice 
dL_20kHz                                      ! channel 
4                                                     ! ask item DataType file name block  
hout                                               ! the block 
2                                                     ! ask item File choice  
hrec-710517600-3600.gwf            ! the file 
6                                                     ! creates the sds file 
2                                                     ! ask item File choice 
hrec-710521200-3600.gwf            ! 
6                                                     ! creates the sds file 
2                                                     ! ask item File choice 
hrec-710524800-3600.gwf            ! 
6                                                     ! creates the sds file 



 19

12                                                   ! exit 
 
To create easily the batch file, create a list of the files to be converted and then edit it. In 
Windows the command is  
 

dir /b  > list.txt 
 

and can be issued with the command file to_list.bat ; it creates a file list.txt, to be edited to 
create the batch command file.  
 
To start the program a batch command can be created containing something like  
 

D:\SF_Prog\C.NET\FrameUtil\Release\frameutil < batchwork.txt > out.txt 
 

If we have a set of sds files, we can "concatenate" them, i.e. put in each of them the correct 
values for filspre and filspost, so the data can be seen as a continuous stream, and one can 
access at any of them pointing to any file of the chain (also not containing the given datum). 
This concatenation is performed, for example, by the function 
 

 sds_concatenate(folder,filelist) , where folder is the folder containing the 
files and filelist a file containing the file list (similar to the above list.txt) in the 
correct order. Be sure that the files in the list are in the correct order ! 

 
A more complex operation on a set of sds files is performed by 
 

 sds_reshape(listin,maxndat,folderin,folderout) ,  that constructs a new set 
of sds files with different maximum length and concatenates them. In this way a 
more efficient data set is built. 

 
o listin  is a file containing the file list (similar to the above list.txt) in the 

correct order 
o maxndat is the maximum number of data for a channel 
o folderin and folderout are the folders containing the input and output data 

 
When all the files of a run are produced and concatenated (possibly with sds_reshape), they 
should be checked by 
 

 check_sds_conc(outfile) , that analyzes the set of files, producing a report 
in outfile (or on the screen, if outfile is absent). Here is an example of one of 
these reports (c5-data.check): 

 
VIR_hrec_20041203_004502_.sds 03-Dec-2004 00:45:02.000000  duration: 3790.000000 s  chs: 
h_4kHz  - err = 0.000000  
    1598.000000 s --> HOLE at 03-Dec-2004 01:48:12.000000   
VIR_hrec_20041203_021450_.sds 03-Dec-2004 02:14:50.000000  duration: 12500.000000 s  chs: 
h_4kHz  - err = 0.000000  
VIR_hrec_20041203_054310_.sds 03-Dec-2004 05:43:10.000000  duration: 1949.000000 s  chs: 
h_4kHz  - err = 0.000000  
    50.000000 s --> HOLE at 03-Dec-2004 06:15:39.000000   
VIR_hrec_20041203_061629_.sds 03-Dec-2004 06:16:29.000000  duration: 4490.000000 s  chs: 
h_4kHz  - err = 0.000000  
    13172.000000 s --> HOLE at 03-Dec-2004 07:31:19.000000   



 20

VIR_hrec_20041203_111051_.sds 03-Dec-2004 11:10:51.000000  duration: 881.000000 s  chs: 
h_4kHz  - err = 0.000000  
    57.000000 s --> HOLE at 03-Dec-2004 11:25:32.000000   
VIR_hrec_20041203_112629_.sds 03-Dec-2004 11:26:29.000000  duration: 803.000000 s  chs: 
h_4kHz  - err = 0.000000  
    23392.000000 s --> HOLE at 03-Dec-2004 11:39:52.000000   
VIR_hrec_20041203_180944_.sds 03-Dec-2004 18:09:44.000000  duration: 776.000000 s  chs: 
h_4kHz  - err = 0.000000  
    106.000000 s --> HOLE at 03-Dec-2004 18:22:40.000000   
VIR_hrec_20041203_182426_.sds 03-Dec-2004 18:24:26.000000  duration: 9454.000000 s  chs: 
h_4kHz  - err = 0.000000  
    51.000000 s --> HOLE at 03-Dec-2004 21:02:00.000000   
VIR_hrec_20041203_210251_.sds 03-Dec-2004 21:02:51.000000  duration: 15.000000 s  chs: 
h_4kHz  - err = 0.000000  
    42.000000 s --> HOLE at 03-Dec-2004 21:03:06.000000     
 
   ……………………………………………………… 
 
 
                        Summary  
 
 133 files start: 03-Dec-2004 00:45:02.000000  end: 06-Dec-2004 14:28:21.000000   Tobs = 
3.571748 days 
 
   129 holes  of total duration 141025.000000 s     percentage = 0.456985  
 

 



 21

Data selection 
[MatLab environment] 

Basic sds operations 
 
If the sampled data are in the sds format, it is easy to perform a variety of tasks. Here we will 
speak of higher level tasks (lower levels are discussed in the programming guides). Among 
the others, of particular interest for the PSS : 
 

 sfc_=sfc_open(file) , that outputs the sfc structure of the file 
 

 [chss,ndatatot,fsamp,t0,t0gps]=sds_getchinfo(file) , that shows the UTC 
time and outputs channels (in a cell array), the total number of data, the sampling 
frequency and the initial time both in MJD (modified julian date) and gps. 

 
 g=sds2gd_selt(file,chn,t) , creates a gd from file, channel number chn and t = 

[initial time, duration]; if the parameters are not present, asks interactively. 
 

 sds_spmean(frbands,file,chn,fftlen,nmax) , creates an sds file, named 
psmean.sds, containing the spectral means for many different bands. frbands is an 
Nx2 matrix containing the bands; if it is not present, it can be input as a text file like, 
for example, 

 
0 20 
20 48 
48 52 
52 70 
70 98 
98 102 
102 200 
200 500 
500 1000 
1000 2000 

 
file and chn are the file and the channel number, fftlen is the length of the FFT and 
nmax the maximum number of output data (put a big number and all the 
concatenated files will be analyzed). 
 

 m=sds2mp(file,t) , creates an mp  (multi-plot structure) from an sds file (the 
command can be issued without parameter and asks interactively). For example, it 
can be applied to the spectral mean sds file created by sds_spmean. The mp 
structure can be showed by mp_plot(m,3) (m is the mp and 3 means log y), 
obtaining (on E4 data of the CIF) 



 22

 
or else (among other choices) 

 
The abscissa is in hours from the 0 hours of the first day. 

 crea_ps(sdsfile,chn,lfft,red) , creates an sbl file containing power spectra of 
data (similar to that produced for the sfdb), from channel number chn, a "big FFT 
length" lfft and a length of the power spectra lfft/red. 

 



 23

Choice of periods 
[MatLab environment] 

 
The choice of the periods on which the SFDB should be created (and then are to be 
analyzed) can be done by the use of the Virgo data quality information and of the basic 
instruments like those shown in the preceding section. 
 
In Snag there are some useful interactive functions that helps in choosing prtiods: 
 

 xx=sel_absc(typ,y,x,file) , the easyest one, where typ (0,1,2,3) indicates the type 
of plot (simple, logx, logy, logxy), y is a gd or an array, x is simply 0 (if y is a gd) or 
the abscissa array, file (if present) is the file to put the output, i.e. the starting and 
ending points of the chosen periods; xx is an (n,2) array with the bounds of the 
chosen periods. This program is very simple to use: you can directly choose the start 
and stop abscissa of as many periods you want; when you chose the stop point, the 
chosen period is colored in red and you are prompted if you choose another period 

 

 
 

The problem with this function is that it is not possible to zoom the plot for more 
precise choice. 



 24

 sel_absc_hp(typ,y,x) , permits the use of the zoom and so an high precision 
choice. It uses global variables (ini9399, end9399, n9399 as the beginning times, 
ending times and number of periods); The data of the periods are put in a file 
named fil9399.txt. The input variables typ, y and x have the same use of the 
function sel_absc.  

 

 
 

There are some easy rules that appear at beginning: 
 

 



 25

Search for events 
[MatLab environment] 

 

Filtering in a ds framework 
 
 

The ev-ew structures 
 
The event management is done by the use of the ev-ew Snag structure (see the 
programming guide Snag2_PG.pdf). An event is defined by a set of parameters, like 
 

o the (starting) time of the event (in days, normally mjd) 
o the time of the maximum (in days, normally mjd) 
o the channel 
o the amplitude 
o the critical ratio 
o the length (in seconds) 
o … 

 
The difference between the ev and ew structures is that the first describes a single event (so 
a set of events is an array of structures), the second describes a set of events. The ew 
structure is normally more efficient, but the ev structure is more rich (it can contain also the 
shape of the event). The two function ew2ev and ev2ew transform one type in the other 
(losing the shape, if present). 
A set of events is associated to a channel structure that describes the channels that produced 
the events, constituting a new event/channel structure evch. 
 
There is a number of auxiliary functions to manage events: 
 

 chstr=crea_chstr(nch) , creates a channel structure for events; nch is the 
number of channels   

 evch=crea_ev(n,chstr,tobs) , creates an event-channel structure, simulating n 
events in the time span tobs, and with the channel structure chstr 

 evch=crea_evch(chstr,evstr) , creates an event-channel structure, from a 
channel structure and an event structure 

 [fil,dir,fid]=save_ech(ch,direv,fil,mode,capt) , save a channel structure in an 
ascii file that can be edited; ch is the channel structure, direv and fil are the default 
folder and file, mode is 0 for standard, 1 for the full evch, capt is the caption 

 [fil,dir]=save_ev(ev,direv,fil,mode,fid,capt) , save an event structure in an 
ascii file that can be edited; ev is the event structure, direv and fil are the default 



 26

folder and file, mode is 0 for standard, 1 for the full evch, fid is the file identifier (or 
0), capt is the caption 

 save_evch(evch) , saves an evch structure in Matlab format 

 load_evch , interactively loads an evch structure in Matlab format 

 eo=sort_ev(ei) , time sorts an event structure 

 out=ev_sel(in,ch,t,a,l) , selects events on the basis of the channel, time 
occurrence, amplitude and length. 

o  in and out are the input and output evch structure,  

o ch , if it is an array, it is the probability selection of different channels (if < 0, 
the channel disappear), otherwise is not used; 

o t, a, l  , if it is an array of length 2, defines the interval of acceptance; if the 
first element is greater than the second, they defines the interval of rejection 

 chstr=stat_ev(evch) , statistics for events 

 dd=ev_dens(evch,selch,dt,n) , event densities; 

o evch  event/channel structure 

o selch  selection array for the channels (0 exclude, 1 include) 

o dt  time interval 

o n  number of time intervals 

 ev_plot(evch,type) , plots events. type is: 
 

0. simple 
1. amplitude colored 
2. length colored 
3. both 
4. stem3 amplitude 
5. stem3 length 
6. stem3 both 

 
 

Coincidences 
 
To study coincidences between events a set of functions is provided: 
 

 [dcp,ini3,len3,dens] = ev_coin(evch,selch,dt,n,type,coinfun) , creates a 
delay coincidence plot (dcp)  and finds coincident events (ini3, len3 are the initial 
times and lengths, dens is the event density, if used). In input: 

o evch is an event/channel structure 



 27

o selch is a selection array, with the dimension of the number of channels, that 
defines which channels are to be put in coincidence: every channels can be 

 0  excluded 

 1  put in the first group 

 2  put in the second group 

 3  put in both 

o dt  is the time resolution (s) 

o n  is the number of delays for each side 

o type  an array indicating the coincidence type:  

type(1) :   1  only event maxima 

     2  whole length coincidences 

type(2) :   1  normal 

     2  density normalized  

type(3) :   density time scale (s) for density normalization 

o coinfun  if exists, external coincidence function is enabled. The coincidence 
function is > 0 if the events are "compatible"; the inputs are 
(len1,len2,amp1,amp2), that are the lengths and amplitudes for the two 
coincident event. 

It produces the plot of the delay coincidences and its histogram. 

 [dcp,in3,len3]=vec_coin(in1,len1,in2,len2,dt,n,coinfun,a1,a2) , is one of 
the coincidence engines used inside ev_coin. It considers  the length of the events 

 [dcp,in3]=vec_coin_nolen(in1,in2,dt,n,coinfun,a1,a2) , is one of the 
coincidence engines used inside ev_coin. It considers  the length of the events as 
dt. 

 ch=ev_corr(evch,dt,mode) , computes and visualize the correlation matrix 
between all the channels. mode = 1 is for symmetric operation, mode = 0 is for 
"time arrow" coincidence (causality). It produces also the map of the matrix. 

 evcho=cl_search(evchi,dt) , identifies cluster of events and labels the events 
with the cluster index 

 

Event periodicities 
 
An important point in the event analysis is the study of periodicities. This is performed by 
the following functions: 
 

 sp=ev_spec(evch,selev,minfr,maxfr,res) , that performs the event 
spectrum; in input we need: 



 28

o evch     event/channel structure 
o selch    channelt selection array (0 excluded channel) 
o minfr    minimum frequency 
o maxfr    maximum frequency 
o res      resolution (minimum 1, typical 6) 

 
 pd=ev_period(evch,selch,dt,n,mode,long,narm), event periodicity study 

(phase diagram); in input we need: 
o evch     event/channel structure 
o selch    channel selection array (0 excluded channel) 
o dt         period 
o n          number of bins of the phase diagram (pd) 
o mode   = 0  simple events 

   = 1  density normalization; mode(1) = 1, mode(2) = bin width (s) 
= 2  amplitude; mode(1) = 2, mode(2) = 0,1,2 (normal, abs, square) 

o long   longitude (for local periodicities (local solar and sidereal) 
o narm  number of harmonics 

 
 



 29

SFDB 
 

Theory 
 
The maximum time length of an FFT such that a Doppler shifted sinusoidal signal remains 
in a single bin  is 
 

 
 
 

 
 
where TE and RE are the period and the radius of the “rotation epicycle” and nG is the 
maximum frequency of interest of the FFT. 
 
Because we want to explore a large frequency band (from ~10 Hz up to ~2000 Hz), the 
choice of a single FFT time duration is not good because, as we saw, 
 

 

1
2

max GT ν
−

∝  
 
so we propose to use 4 different SFDB bands: 
 
 

 
Short FFT data base 

 
 Band 1 Band 2 Band 3 Band 4 

Max frequency per band 2000.0000 500.0000 125.0000 31.2500 
Observed bands 1500.0000 375.0000 93.7500 23.4375 
Max duration for an FFT 2445.6679 4891.3359 9782.6717 19565.3435 
Max len for an FFT (max freq) 9.7827E+06    
Length of an FFT (max freq) 8.3886E+06    
Length of the FFTs 8388608 4194304 2097152 1048576 
FFT duration 2097.15 4194.30 8388.61 16777.22 
Number of FFTs 9.5367E+03 4.7684E+03 2.3842E+03 1.1921E+03
     
SFDB storage (GB) 160.00 40.00 10.00 2.50 
Storage for sampled data (GB) 80.00    
Total disk storage (GB) 292.50    
 

5

max 2

1.1 10
4E

E G G

cT T s
Rπ ν ν

⋅
= ⋅ ≈



 30

Procedure 
 

o apply a frequency domain anti-aliasing filter and sub-sample (if 20 kHz data) 

 

o high events identification and removal 

o create a stream with low and high frequency attenuation  

o identify the events on this stream (starting time and length) with the adaptive 

procedure. After this, this stream is no more used. 

o smooth removal of the events in the original stream (purged stream) 

o estimate the power of the purged stream every minute (or so), creating the 

PTS (power time series) 

 

o for each of the 4 sub-bands of the SFDB : 

o (not for the first band) apply anti-aliasing and subsample 

o create the (windowed, interlaced) FFTs, both simple and double resolution: 

the simple resolution are archived for the following steps, the double is used 

for the peak map 

o create a low resolution spectrum estimate (VSPS - Very Short Power 

Spectrum, e.g. length 16384) 

 



 31

Software 
[C environment] 

 
 

Routines 
 
 

pss_sfdb 
 
 



 32

Software 
[MatLab environment] 

 
There is also a software to create a SFDB using Matlab. This can be used for checking and 
particular purposes. 
 

 crea_sfdb(sdsfile,chn,lfft,red) , can be used also interactively without 
arguments; sdsfile is the first sds file to be processed, chn is the channel number,  
lfft is the length of the (non-reduced) ffts, red is the reduction factor for the 
requested band (normally 1, 4, 16, 64). A file sfdb.sbl is created, with the fft 
collection. 



 33

Time-frequency data quality 
[MatLab environment] 

 
 
The time-frequency data quality analysis is done using  
 

a) the set of power spectra created together with the SFDB 
 
b) the set of power spectra created by the function crea_ps  

 
c) the high resolution periodograms obtained directly from the SFDB FFTs 

 
In the cases a) and b), the time-frequency map can be imported in a gd2  with the function 
 

 g2=sbl2gd2_sel(file,chn,x,y) , where file is the sbl file containing the power 
spectra (for example, an sfdb file), chn the channel number in the sbl file, x a 2 
value array containing the min and the max block, y a 2 value array containing the 
min and the max index of the spectrum frequencies 

 
From this gd2 an array can be extracted and on it the map2hist and imap_hist can be 
applied: 
 

 [h,xout]=map2hist(m,n,par,linlog) , creates a set of histograms, one for each 
frequency bin, of the various spectral amplitudes of that bin at all the times. m is the 
time-frequency spectral map, n is the number of bins for the histograms, linlog (= 
0,1) determines if the histogram is done on the value spectral values of the spectra 
or on their logarithms, par is the set of parameters to do the histograms: 

o if m is an mx2 array, it contains the min and the max of the histograms 
o if m = 0, the bounds of the histograms are computed automatically by taking 

the minimum and the maximum of all the data 
o if m = 1,  the bounds of the histograms are computed automatically by taking 

the minimum and the maximum of every bin. 
 

 imap_hist(h,x,y) , is used to plot the histogram map; h is the histogram map, x is 
the frequency value, y the spectral values (if the scale is unique). Here are the two 
maps for the two cases of par=0 and par=1. 

 



 34

 
 



 35

 

Peak map 
 
From the SFDB we can obtain the "peak map", i.e. a time-frequency map containing the 
relative maxima of the periodograms built taking the square modulus of the short FFTs. 
 
To obtain the peak map, the procedure is the following: 
 

o read a short FFT of the data from the database 
 

o using this, construct an enhanced resolution periodogram 
 

o equalize the periodogram, using, for example, the ps_autoequalize procedure 
 

o find the maxima of the equalized spectrum above a given threshold (for 
example 2) 

 
The stored data can be just 1 and 0 (binary sparse matrix) or also the values of the maxima 
of the not equalized spectra (this in order to evaluate the "physical" amplitude (instead of the 
"statistical" amplitude). 
 
The format of the file can be sbl or vbl, depending if a normal or compressed form is 
chosen. The peak map file contains all the side information of the SFDB "parent" file. 
 
 

Peak map creation 
[MatLab environment] 

 
The peak map can be created by 
 

 crea_peakmap(sblfil,thresh,typ) , where sblfil is the SFDB file, thresh is the 
threshold and typ is the type (0 normal with amplitudes, 1 compressed with 
amplitudes, 2 normal only binary, 3 compressed only binary). Here there is an image 
of the peak data (with zooms): 



 36

 
 



 37

 
 

Other peak map creation procedures 
 
Various techniques have been studied to construct effective peak maps. The main problem is 
that of the presence of big peaks, that “obscure” the area around.  
 
The basic procedure is the following: 
 

 [ind,fr,snr1,amp,peaks,snr]=sp_find_fpeaks(in,tau,thr,inv), based on the 
gd_findev function idea, that is adaptive mean computation,  with 

 
o in        input gd or array 
o tau       AR(1) tau (in samples) 
o thr       threshold 
o inv       1 -> starting from the end, 2 -> min of both 
o   
o ind       index of the peak (of the snr array) 
o fr        peak frequencies 
o snr1     peak snr 
o amp     peak amplitudes 
o peaks  sparse array 
o snr       the total snr array 

 
Applying this procedure to a plot like  
 



 38

We have, with inv=0, 
 



 39

   
 
 
 
And with inv = 2, 
 



 40

 
 
 
 

 [i,fr,s,peaks,snr]=sp_find_fpeaks_nl(in,tau,maxdin,maxage,thr,inv), based 
on the gd_findev_nl function idea, that is adaptive mean computation non-linearly 
corrected, with 

 
o in        input gd or array 
o tau       AR(1) tau (in samples) 
o maxdin maximum input variation to evaluate statistics 
o maxage max age to not update the statistics (same size of tau) 
o thr       threshold 
o inv       1 -> starting from the end, 2 -> min of both 
o   



 41

o ind       index of the peak (of the snr array) 
o fr        peak frequencies 
o snr1     peak snr 
o amp     peak amplitudes 
o peaks  sparse array 
o snr       the total snr array 

 
 
Applied to the same spectrum obtains: 
 

 
 
 

 
 
 



 42

Hough transform 
[C environment] 

 
PSS_hough is a C code which performs the all-sky Hough transform of a given time-
frequency peak map. 
 

Theory 
 

The Hough transform is a robust parameter estimator for patterns in digital images. 
It can be used to estimate the parameters of a curve which best fits a given set of points. 
The basic  idea is that of mapping the data into the parameter space and identifying the 
parameter values as clusters of points. 
For instance, suppose our data are distributed as a straight line: y=m*x+q. In this case the 
parameters to be determined are the slope m and the intercepta q. To each point (x,y) a new 
straight line in the parameter space with equation q=y-m*x corresponds. That is, we can 
draw a line in the parameter space for each pair (x,y) and all these will intersect in a point 
(m,q) identifying the parameters of the original line. If noise is present several “clusters” of 
points will appear in the parameter space. 
In our case, the original data are the points in the time-frequency peak map and the 
transformed data are points in the source parameter space: ,...),,,,( 000 fffδα , i.e. the 
source position (in ecliptical coordinates), the source intrinsic frequency and the value of the 
spin-down parameters. 
Assuming that there is no spin-down, the relation among each point in the time-frequency 
plane and the points in the parameter space is given by the Doppler effect equation 

 
c
nvfff k
⋅

=− 00  

where kf  is the frequency of a peak, v  is the detector velocity vector and n  is the versor 
identifying the direction of the source. From this equation we find that the locus of points in 
the sky to which a source emitting a signal at frequency at 0f  could belong, if a peak at 
frequency kf  is found, is a circle with radius phi given by: 

    

c
vf

ff k

0

0cos
−

=ϕ  

and centered in the direction of the detector velocity vector. 
Due to the frequency discretization, in fact we have an “annulus”, delimited by two circles 
rather than a single circle for each peak. 
Peaks belonging to the same spectrum produce concentric annuli, while moving from one 
spectrum to the following the center of the annuli moves on the celestial sphere around the 
ecliptic. Moreover, also the circles radius changes in time, because of the variation of the 
modulus of the detector velocity vector. 



 43

For a given value of the source reference frequency 0f  and spin-down, calculating the annuli 
corresponding to all the peaks in the time-frequency map and properly summing them, in 
order to take into account the source spin-down, we compute the Hough map. 
For each value of the source reference frequency we have several Hough maps, depending 
on the number of possible different values of the spin-down parameters.  
The number of spin-down parameters that must be taken into account depends on the 

minimum source decay time, 
0

0

f
f

=τ  which we search for. In order to limit the overall 

needed computing power to a reasonable value, we choose yr410≈τ  which implies that 
only the first spin-down parameter, 0f  , must be considered. 
The total number of Hough maps that are built is given by 

00 ff NN ⋅ , i.e. the product of the 
number of different frequency values and of the number of different values of the first spin-
down parameter. 
As explained in the introduction, due to the noisy data, billions of candidates will be selected    
in this ensemble of Hough maps. 
 

Implementation 
 
As said in the previous section, at each peak in the time-frequency peak map an annulus on 
the celestial sphere corresponds. The computation of the Hough transform consists, 
basically, in the computation of the annuli associated to all the peaks present in the time-
frequency peak map and in summing them in order to take into account the spin-down.  
For performance reasons, in our implementation we use a set of look-up tables (LUT), each 
of which is, basically, a standard C array where the coordinates of the points of all the 
possible left semi-circles (which are annuli borders) corresponding to a given source 
reference frequency are stored. 
In order to build a LUT we need: 

- the source reference frequency 0f ; 
- the the detector velocity vector v  at a given time; 
- the frequency bin width df (this is fixed in each frequency band). 

Then,  
- make a loop on the latitude of the circle centers 0δ  (the longitude is chosen zero); 
- make a loop on the frequency bins in the Doppler band around 0f ; for each 

frequency bin calculate the circle radius )cos(ϕ ; 
- calculate the minimum and maximum pixel of each circle (i.e )(),( maxmin δδ ii ); 
- make a loop on the “ordinate” (int) of each circle (i.e from )( minδi to )( maxδi ) 
- calculate the “abscissa” α (float) of the circle points (in the left semi-plane) using the 

equation )cos()cos(/))sin()sin()(cos()cos( 00 δδδδϕα −= . 
In principle, a new LUT should be built for each frequency 0f ; however it can be shown 
that the same LUT holds, generally, for several frequencies (i.e. the circle radius varies much 
less than a pixel moving from a frequency to a near one).  



 44

 
For the construction of the Hough map, for a fixed source reference frequency, we pick 
from the corresponding LUT the semi-circles corresponding to the selected peaks in the 
time frequency map. 
For each peak we need to take from the LUT a pair of consecutive semi-circles. 
Each semi-circle is properly shifted in α in order to take into account the actual sidereal 
time; the right part of the circle is obtained by reflecting the left part around the line 0αα = . 
The coordinates of all the points are discretized. At the end, we have 4 borders for each 
peak.  
We sum +1 to the pixels of the external left border and of the inner right border and, on the 
contrary, we sum -1 to the external right border and to the inner left border. This means that 
annuli are represented through their ‘derivative”. The detector beam pattern and the noise 
non stationarity can be taken into account at this stage. 
Then, for each time slice we build a Partial Hough Map Derivative (PHMD) and we sum the 
PHMDs in different ways corresponding to different time slices depending on the spin-
down value. In this way we obtain a total Hough Map Derivative (HMD). Finally, each 
HMD is integrated obtaining the total Hough Map (HM).  Practically, each HM is a standard 
C array where the number count of all the sky pixels is registered. 
In the present implementation the same LUT is used for all the time slices, for a given 0f . 
As a matter of fact, when moving from a time slice to another, the modulus of the detector 
velocity vector changes and then changes also the radius of the circle corresponding to a 
given peak. As a consequence, an error is introduced. This could be taken into account for 
instance by interpolating the circles stored in the LUT.   
 
These are the main steps of the program: 

1. Read the file containing the peaks and related information (da aggiornare). 
The input file contains the following general information: 

- detector name; 
- source reference frequency 0f ; 
- total number of peaks in the file; 
- FFT duration ( FFTT ); 
- number of time slices considered (nSpec); 
- spin-down decay time (tau); 

            Then, for each time slice, the following quantities are given: 
- sidereal time (tsid); 
- snr (associated to tsid); 
- number of peaks at that time; 
- detector velocity ( δα vvv ,|,| ); 
-  list of peaks. 

 
2. Inizialization of the LUT and of the Hough map 

This is done using some of the information read in the input file. 
3. Construction of the LUT 

The LUT is built for a given source reference frequency 0f and a given time and 
then it is used for all the times and for a range of frequencies. If needed, i.e. if the 



 45

frequency goes out of the its range of validity, it is re-calculated during the 
computation of the Hough transform. 

4. Construction and sum of the PHMDs 
This is done for each initial reference frequency 0f . The sums of the PHMDs are 
done according to the different possible values of the spin-down parameter and each 
corresponds to a given “slope” in the time-frequency plane. Each sum produces a 
total Hough map derivative (HMD). 

5. Integration of the HMD  
This operation is done once for each reference frequency and produces the total 
Hough map (HM). 

6. Selection of candidates 
Once an HM has been built, candidates are selected and used in the next steps of the 
analysis. 

 
 
The PSS_hough code is made of the following files: 
 
pss_hough.c: main file 
readParameters.c: contains the function long readParameters(int,char *) 
readPeaks.c: contains the function int * readPeaks(char *, float *, float *,  int *, float *, float *, float 
*, char *) 
flush_cache.c: contains the function void flush_cache(); only for test purpose – not used in 
production 
lutInitialize.c: contains the function void lutInitialize() 
lutBuild.c: contains the function void lutBuild(float, float *) 
drawCircles.c: contains the function void DrawLeftCircle(float, float, float, float, float, int, int , float 
*) 
houghRad.c: contains the function void houghRad(char *) 
radpat.c: contains the functions  float * radpat_interf(struct Antenna *) 
      float * radpat_interf_eclip(struct Antenna *) 
     float * radpat_bar(struct Antenna *) 
    float * radpat_bar_eclip(struct Antenna *) 
houghBuild.c: contains the function void houghBuild(FILE *, float *, float *, float *, float *, int *, 
int *, float *) 
houghInitialize.c: contains the function void houghInitialize() 
phmdDrawCircle.c: contains the functions                                                                             
                                          void DrawCircleNext(float, float, float, int, int, int, int, float *, float *) 
         void DrawCircleNextOpp(float, float, float, int, int, int, int, float *, float *) 
         void DrawCircleNextInit(float, float, float, int, int, float *) 
         void DrawCircleNextFin(float, float, float, int, int, float *)   
         void DrawCircleNextNoBeam(float, int, int, int, int, float *, float *) 
         void DrawCircleNextOppNoBeam(float, int, int, int, int, float *, float *) 
         void DrawCircleNextInitNoBeam(float, int, int, float *) 
         void DrawCircleNextFinNoBeam(float, int, int, float *) 
phmdtophm.c: contains the function void phmdtophm() 
candidates.c: contains the function void candidates(FILE *, float, float) 
lutData.c: contains external variables definition 



 46

cycle_counter.c: contains function unsigned long long realcc(void); only for test purpose – not 
used in production 
lutParameters.h: contains parameters definition 
lut.h: contains global variables declaration 
 
The program is compiled through the following Makefile: 
 
CC2 = /usr/pgi/linux86/bin/pgcc 
CC = gcc 
 
#regular compile 
CFLAGS =  -O3 -ffast-math -funroll-loops -fexpensive-optimizations  
CFLAGS2 = -O2 -fastsse -Mcache_align -Minfo   
 
# ----------------------------------------------------------- 
 
OBJS =  lutData.o readParameters.o lutInitialize.o\ 
 houghInitialize.o lutBuild.o readPeaks.o houghBuild.o \ 
 drawCircles.o phmdDrawCircle.o \ 
  cycle_counter.o flush_cache.o phmdtophm.o \ 
 houghRad.o radpat.c candidates.o 
 
LUTH = lut.h  lutParameters.h 
RADH = radpat.h 
# ----------------------------------------------------------- 
# default target 
 
all: pss_hough  
 
# ----------------------------------------------------------- 
# produce object files 
 
cycle_counter.o: cycle_counter.c cycle_counter.h 
 $(CC) -c $(CFLAGS) cycle_counter.c 
 
lutData.o: lutData.c $(LUTH) 
 $(CC) -c $(CFLAGS) lutData.c 
 
readParameters.o: readParameters.c $(LUTH)  
 $(CC) -c $(CFLAGS) readParameters.c 
 
lutInitialize.o: lutInitialize.c $(LUTH)  
 $(CC) -c $(CFLAGS) lutInitialize.c 
 
houghInitialize.o: houghInitialize.c $(LUTH)  
 $(CC) -c $(CFLAGS) houghInitialize.c 
 
lutBuild.o: lutBuild.c $(LUTH)  
 $(CC) -c $(CFLAGS) lutBuild.c 
 
readPeaks.o: readPeaks.c $(LUTH)  
 $(CC) -c $(CFLAGS) readPeaks.c 
 
houghBuild.o: houghBuild.c $(LUTH)   
 $(CC) -c $(CFLAGS) houghBuild.c 



 47

 
drawCircles.o: drawCircles.c $(LUTH)  
 $(CC) -c $(CFLAGS) drawCircles.c 
 
# 
phmdDrawCircle.o: phmdDrawCircle.c $(LUTH)  
 $(CC2) -c $(CFLAGS2) phmdDrawCircle.c  
 
phmdtophm.o: phmdtophm.c $(LUTH) 
 $(CC) -c $(CFLAGS)  phmdtophm.c 
 
houghRad.o: houghRad.c $(RADH) 
 $(CC) -c $(CFLAGS) houghRad.c 
 
radpat.o: radpat.c $(RADH) 
 $(CC) -c $(CFLAGS) radpat.c  
 
candidates.o: candidates.c $(LUTH)  
 $(CC) -c $(CFLAGS) candidates.c 
 
# ----------------------------------------------------------- 
 
# link test code 
 
 
pss_hough: pss_hough.c cycle_counter.h $(LUTH) $(OBJS) 
 $(CC) $(CFLAGS) -DANYCC=realcc pss_hough.c $(OBJS) -o $@ -lm 
 
 
# ----------------------------------------------------------- 
 
# cleaning... 
 
clean: 
 rm -f pss_hough 
 
cleanobjs: 
 rm -f $(OBJS) 
 
cleanall: cleanobjs clean 
 
   
#-------------------end makefile-------------------------------------------------- 
 
Note that the pgcc compiler is used for the file phmdDrawCircle, because this gives a much 
more performing code. 
 
The program is launched with ./pss_hough <inputfile>. 
If no <inpufile> is specified, the default one (peakmap.in) is used. 
 

Use of the library 
 



 48

 
The library can be divided, from a logical point of view, into two parts. 
 
1) Building of the Look Up Table (LUT) for a given reference frequency. 

Given a source search frequency, the circles corresponding to all the possible 
peaks in the Doppler band of the chosen frequency are computed. The 
ecliptic coordinate system is used. As a consequence, the circles have centers 
in a narrow belt around the ecliptic. This belt is discretized so that circle 
center ordinates are taken in discrete set. Also the sky is discretized in a 
number of pixels, then two circles with the same center are distinguishable 
only if their radii differ by at least one pixel. 
 
For each circle center and for each radius, there is a loop on the ordinate 
values and, correspondingly, the values of the abscissa (as real values) for 
the left semi-circle are computed. This is done for performance reasons, since 
it is then very simple to determine the corresponding right semi-circle using 
simmetry arguments. 
 
The computed abscissae are stored into an array which is the look-up table. 
Another array is created, containing the index (along the vertical direction) of 
the pixels corresponding to the minimum and the maximum of each circle 
and cumulative difference between them. 
 

2) Calculation of the Hough Map (HM). 
 The HM is an histogram in the sky coordinates. A list of peaks is read from 
time-frequency peak map. For each peak, two semi-circles are read from the 
LUT: one corresponding to the current peak and one corresponding the peak 
immediately before (in the LUT). This is done because each peak, in a 
discretized space, produces an annulus of pixels, delimited by a pair of 
circles. The center of each semicircle is properly shifted, depending on the 
time index, and the corresponding right half is computed; then for each peak 
we have four semicircles. Semicircles with radius less than 90 degrees and 
circles with radius larger than 90 degrees are treated separately.  To the 
pixels of each semicircle are assigned values +1 and -1 respectively, or a real 
value, properly determined, if the adaptive Hough map is computed.  
 
These procedure is applied for each peak of the peak map and for each time 
the reference frequency is properly shifted in order to take into account the 
source spin-down.  
 
At the end we have a Hough map derivative (HMD) which is then integrated 
to produce the final Hough map. For each assumed value of the source spin-
down and for each source reference frequency, a HM is obtained. In each HM 
candidates, i.e. pixels where the number count is above a given threshold, 
are then selected.      
 

 



 49

Function prototypes 
 

void lutInitialize(float); 
void houghInitialize(houghD_t *, hough_t *, hough_t *); 
long readParameters(int argc, char *argv[], char *, char *, float 
*); 
void readInfoPeakmap(char *, int *, int *,  float *, float *, int 
*, float *, int *); 
void lutBuild(float,float *); 
int * readPeaks(float, float, float, float, float *,float *, int 
*, float *, float *, float *, char *, int *, int *); 
void houghBuild(FILE *, float, float,  int, int, float *, char *, 
houghD_t *, hough_t *, 
hough_t *); 
void DrawLeftCircle(float, float, float, float, float, int, int, 
float *); 
void DrawCircleNextAdap(float, float, float, int, int, int, int, 
float *, float *, houghD_t *); 
void DrawCircleNextOppAdap(float, float, float, int, int, int, 
int, float *, float *, houghD_t *); 
void DrawCircleInitAdap(float, float, float, int, int, float *, 
houghD_t *); 
void DrawCircleFinAdap(float, float, float, int, int, float *, 
houghD_t *); 
void DrawCircleNext(float, int, int, int, int, float *, float *, 
houghD_t *); 
void DrawCircleNextOpp(float, int, int, int, int, float *, float 
*, houghD_t *); 
void DrawCircleInit(float, int, int, float *, houghD_t *); 
void DrawCircleFin(float, int, int, float *, houghD_t *); 
void houghRad(char *); 
float *radpat_interf(struct Antenna *); 
float *radpat_interf_eclip(struct Antenna *); 
float *radpat_bar(struct Antenna *); 
float *radpat_bar_eclip(struct Antenna *); 
void hmd2hm(houghD_t *, hough_t *, hough_t *);                                  
void writeMaps(houghD_t *, hough_t *, hough_t *); 
void candidates(FILE *, float, float, float, hough_t *); 
 
In green is the function through which the user can interact with the library. 
 

Program flow from the user point of view 
 
From the user point of view, the library takes a time-frequency peak map as 
input (binary file) and produces a set of candidates at the output, each defined 
by a reference frequency, a position in the sky and a spin-down value. The 
number of frequencies to be explored is automatically determined on the base of 
the input peak map and the number of spin-down values is computed on the 
basis of the minimum spin-down decay time (which can be assigned by the 



 50

user). If the adaptive Hough transform must be computed, the user can choose 
a detector (default: Virgo); this is needed to calculate the detector response 
which is a function of the detector geometry and its position and orientation on 
the Earth. At the moment, only the Virgo and Nautilus detectors are supported.  
The library is thought as part of the PSS data analysis program; this means 
that a user typically will run the entire data analysis procedure and only 
occasionally will run the PSS_hough library as a standalone program. As a 
consequence, the possibilities of interaction of the user with the library are 
rather limited. In the next section, the parameters that a user can assign are 
listed. 
 

User assigned parameters 
 
The user can assign three parameters:  
1. the detector name (option: d; default value: virgo) 
2. the name of the input file (eventually full path) containing the peak map 

(option: f; default value: pm.dat) 
3. the minimum spin-down decay time, in seconds (option: s; default value: 

10^4 years) 
 
To run the library (as a standalone program): 
./pss_hough d <detector name> f <input file name> s <minimum decay time> 
 
 

Performance issue 
 

Performance is an important issue for the PSS_hough library. The computation 
of the Hough transform is the heaviest part of the data analysis procedure and 
it is then important to have a software as much efficient as possible. The 
present implementation of the Hough transform computation is the fastest we 
have developed up to now. Possibly, faster versions will be released in the 
future. 
In the next subsections results of the timing and profiling of the library are 
given and discussed.  
 

Results of gprof 
 

Machine: grwavcp.roma1.infn.it 
Processor: Intel Pentium 4 
L2 cache: 1MB 
RAM: 1GB 
 
The code has been compiled with options: 
-pg -O3 -ffast-math -funroll-loops -fexpensive-optimizations  
 



 51

Program parameters: 
Search frequency: 330Hz 
Number of spectra: 4911 (corresponding to 6 months of data) 
RAD=0 (non-adaptive Hough map) 
 
The following profile has been obtained with the unix/linux tool gprof.  
 
Flat profile: 
 
Each sample counts as 0.01 seconds. 
  %   cumulative   self              self     total            
 time   seconds   seconds    calls   s/call   s/call  name     
 48.02      5.33     5.33   103601     0.00     0.00  DrawCircleNext 
 45.95     10.43     5.10   106354     0.00     0.00  DrawCircleNextOpp 
  3.42     10.81     0.38     6270     0.00     0.00  DrawLeftCircle 
  1.71     11.00     0.19        1     0.19     0.19  writeMaps 
  0.36     11.04     0.04        1     0.04    10.53  houghBuild 
  0.27     11.07     0.03        1     0.03     0.03  candidates 
  0.09     11.08     0.01      799     0.00     0.00  DrawCircleInit 
  0.09     11.09     0.01        1     0.01     0.01  hmd2hm 
  0.09     11.10     0.01        1     0.01     0.01  readPeaks 
  0.00     11.10     0.00      169     0.00     0.00  DrawCircleFin 
  0.00     11.10     0.00        1     0.00     0.00  gridInitialize 
  0.00     11.10     0.00        1     0.00     0.00  houghInitialize 
  0.00     11.10     0.00        1     0.00     0.38  lutBuild 
  0.00     11.10     0.00        1     0.00     0.00  readInfoPeakmap 
  0.00     11.10     0.00        1     0.00     0.00  readParameters 
 
 %         the percentage of the total running time of the 
time       program used by this function. 
 
cumulative a running sum of the number of seconds accounted 
 seconds   for by this function and those listed above it. 
 
 self      the number of seconds accounted for by this 
seconds    function alone.  This is the major sort for this 
           listing. 
 
calls      the number of times this function was invoked, if 
           this function is profiled, else blank. 
  
 self      the average number of milliseconds spent in this 
ms/call    function per call, if this function is profiled, 
    else blank. 
 
 total     the average number of milliseconds spent in this 
ms/call    function and its descendents per call, if this  
    function is profiled, else blank. 
 
name       the name of the function.  This is the minor sort 
           for this listing. The index shows the location of 
    the function in the gprof listing. If the index is 
    in parenthesis it shows where it would appear in 
    the gprof listing if it were to be printed. 
 
       Call graph (explanation follows) 



 52

 
 
granularity: each sample hit covers 4 byte(s) for 0.09% of 11.10 
seconds 
 
index % time    self  children    called     name 
                                                 <spontaneous> 
[1]    100.0    0.00   11.10                 main [1] 
                0.04   10.49       1/1           houghBuild [2] 
                0.00    0.38       1/1           lutBuild [6] 
                0.19    0.00       1/1           writeMaps [7] 
                0.00    0.00       1/1           readParameters [16] 
                0.00    0.00       1/1           readInfoPeakmap [15] 
                0.00    0.00       1/1           gridInitialize [13] 
----------------------------------------------- 
                0.04   10.49       1/1           main [1] 
[2]     94.9    0.04   10.49       1         houghBuild [2] 
                5.33    0.00  103601/103601      DrawCircleNext [3] 
                5.10    0.00  106354/106354      DrawCircleNextOpp [4] 
                0.03    0.00       1/1           candidates [8] 
                0.01    0.00     799/799         DrawCircleInit [9] 
                0.01    0.00       1/1           readPeaks [11] 
                0.01    0.00       1/1           hmd2hm [10] 
                0.00    0.00     169/169         DrawCircleFin [12] 
                0.00    0.00       1/1           houghInitialize [14] 
----------------------------------------------- 
                5.33    0.00  103601/103601      houghBuild [2] 
[3]     48.0    5.33    0.00  103601         DrawCircleNext [3] 
----------------------------------------------- 
                5.10    0.00  106354/106354      houghBuild [2] 
[4]     45.9    5.10    0.00  106354         DrawCircleNextOpp [4] 
----------------------------------------------- 
                0.38    0.00    6270/6270        lutBuild [6] 
[5]      3.4    0.38    0.00    6270         DrawLeftCircle [5] 
----------------------------------------------- 
                0.00    0.38       1/1           main [1] 
[6]      3.4    0.00    0.38       1         lutBuild [6] 
                0.38    0.00    6270/6270        DrawLeftCircle [5] 
----------------------------------------------- 
                0.19    0.00       1/1           main [1] 
[7]      1.7    0.19    0.00       1         writeMaps [7] 
----------------------------------------------- 
                0.03    0.00       1/1           houghBuild [2] 
[8]      0.3    0.03    0.00       1         candidates [8] 
----------------------------------------------- 
                0.01    0.00     799/799         houghBuild [2] 
[9]      0.1    0.01    0.00     799         DrawCircleInit [9] 
----------------------------------------------- 
                0.01    0.00       1/1           houghBuild [2] 
[10]     0.1    0.01    0.00       1         hmd2hm [10] 
----------------------------------------------- 
                0.01    0.00       1/1           houghBuild [2] 
[11]     0.1    0.01    0.00       1         readPeaks [11] 
----------------------------------------------- 
                0.00    0.00     169/169         houghBuild [2] 
[12]     0.0    0.00    0.00     169         DrawCircleFin [12] 
----------------------------------------------- 



 53

                0.00    0.00       1/1           main [1] 
[13]     0.0    0.00    0.00       1         gridInitialize [13] 
----------------------------------------------- 
                0.00    0.00       1/1           houghBuild [2] 
[14]     0.0    0.00    0.00       1         houghInitialize [14] 
----------------------------------------------- 
                0.00    0.00       1/1           main [1] 
[15]     0.0    0.00    0.00       1         readInfoPeakmap [15] 
----------------------------------------------- 
                0.00    0.00       1/1           main [1] 
[16]     0.0    0.00    0.00       1         readParameters [16] 
----------------------------------------------- 
 
 This table describes the call tree of the program, and was sorted by 
 the total amount of time spent in each function and its children. 
 
 Each entry in this table consists of several lines.  The line with the 
 index number at the left hand margin lists the current function. 
 The lines above it list the functions that called this function, 
 and the lines below it list the functions this one called. 
 This line lists: 
     index A unique number given to each element of the table. 
  Index numbers are sorted numerically. 
  The index number is printed next to every function name so 
  it is easier to look up where the function in the table. 
 
     % time This is the percentage of the `total' time that was spent 
  in this function and its children.  Note that due to 
  different viewpoints, functions excluded by options, etc, 
  these numbers will NOT add up to 100%. 
 
     self This is the total amount of time spent in this function. 
 
     children This is the total amount of time propagated into this 
  function by its children. 
 
     called This is the number of times the function was called. 
  If the function called itself recursively, the number 
  only includes non-recursive calls, and is followed by 
  a `+' and the number of recursive calls. 
 
     name The name of the current function.  The index number is 
  printed after it.  If the function is a member of a 
  cycle, the cycle number is printed between the 
  function's name and the index number. 
 
 
 For the function's parents, the fields have the following meanings: 
 
     self This is the amount of time that was propagated directly 
  from the function into this parent. 
 
     children This is the amount of time that was propagated from 
  the function's children into this parent. 
 
     called This is the number of times this parent called the 
  function `/' the total number of times the function 



 54

  was called.  Recursive calls to the function are not 
  included in the number after the `/'. 
 
     name This is the name of the parent.  The parent's index 
  number is printed after it.  If the parent is a 
  member of a cycle, the cycle number is printed between 
  the name and the index number. 
 
 If the parents of the function cannot be determined, the word 
 `<spontaneous>' is printed in the `name' field, and all the other 
 fields are blank. 
 
 For the function's children, the fields have the following meanings: 
 
     self This is the amount of time that was propagated directly 
  from the child into the function. 
 
     children This is the amount of time that was propagated from 
the 
  child's children to the function. 
 
     called This is the number of times the function called 
  this child `/' the total number of times the child 
  was called.  Recursive calls by the child are not 
  listed in the number after the `/'. 
 
     name This is the name of the child.  The child's index 
  number is printed after it.  If the child is a 
  member of a cycle, the cycle number is printed 
  between the name and the index number. 
 
 If there are any cycles (circles) in the call graph, there is an 
 entry for the cycle-as-a-whole.  This entry shows who called the 
 cycle (as parents) and the members of the cycle (as children.) 
 The `+' recursive calls entry shows the number of function calls that 
 were internal to the cycle, and the calls entry for each member shows, 
 for that member, how many times it was called from other members of 
 the cycle. 
 



 55

 
Index by function name 
 
  [12] DrawCircleFin           [8] candidates              [6] lutBuild 
   [9] DrawCircleInit         [13] gridInitialize         [15] 
readInfoPeakmap 
   [3] DrawCircleNext         [10] hmd2hm                 [16] 
readParameters 
   [4] DrawCircleNextOpp       [2] houghBuild             [11] 
readPeaks 
   [5] DrawLeftCircle         [14] houghInitialize         [7] 
writeMaps 
 
 

Comments 
 
It is clear from the profiling that most of the time is spent in the functions 
DrawCircleNext and DrawCircleNextOpp. This is due to two facts: 

1. these functions are called a number of times equal to the number of 
circles which must be ‘drawn’. The time spent in each call is about 50 
microseconds. 

2. In these functions a large array, the Hough map derivative, is accessed in 
a random way and this results in a large number of cache misses. If we 
could access it in a more regular way, a gain in performances of at least 
a factor of 2 could be obtained. We will try to reduce this bottleneck in 
the next releases of the library. 

 
Compiling the library with the pgcc compiler, performances improve by about 
20%.  
Similar results are obtained taking a search frequency in the highest frequency 
band (500Hz-2kHz). 
For lower bands (<31.25Hz; 31.25Hz-125Hz), the weight of the functions 
DrawCircleNext and DrawCircleNextOpp gradually decreases because the 
dimension of the Hough map derivatives becomes smaller and, consequently, 
decreases the number of cache misses. 
 
A useful way to compare the code performances on different platforms is to 
compute the “equivalent number of clock cycles” needed to increase by 1 the 
number count in a given pixel of a Hough map. 
In the following table some results are reported for different values of the search 
frequency f. The other parameters are the same as those given at the beginning 
of the previous section. 
 
 
 Pentium 4 Pentium 4 Xeon Opteron 64 bit 

CPU (GHz) 2.8 2.8 2.4 2.2 
L2 cache (MB) 1 1 .512 1 

compiler gcc 3.2 pgcc 6.1 gcc 3.2 gcc 3.2 
f=20Hz 40 34 41 29 
f=80Hz 43 34 64 32 



 56

f=320Hz 69 57 79 70 
 
 
 



 57

[MatLab environment] 
 

pss_explorer 
 
 

pss_hough 
 
 



 58

Supervisor 
 

Basics 
 
We call Supervisor (SV) the ensemble of services and programs we are developing for 
farm/job management. It is built on top of a batch system which controls job scheduling 
and load balancing (PBS, see later for a more detailed description). The batch system can be 
customized according to the user’s needs; the SV in some cases uses  the PBS API functions.   
Let us see how the SV enters in the general scheme for the hierarchical procedure developed 
for the periodic sources search. 
Schematically, these are the main steps in the data analysis procedure: 

1. build SFDB: construction of the SFDB from the h-reconstructed data; 
2. peak selection: selection of peaks in the periodograms obtained from the SFDB; 
3. incoherent step: the peaks are the input of the HT; 
4. candidate selection: candidates in the output of the HT are selected; 
5. coherent step: initial data are corrected, longer FFTs are calculated  and a new peak-

map is produced. 
Steps 2-5 are repeated until the length of FFTs is equal to the total observation time. 
The SV enters in: 
peak selection: after peak selection, a service running on the master node, data_prod, will 
produce input files for the HT; each input file will consist of lists of  peaks corresponding to 
a given frequency band (plus the components of the detector velocity vector).  
incoherent step, coherent step: in these phases a service, job_sub,   is dedicated to job 
submission and workload management on the farm nodes. Note, concerning the coherent 
part of the analysis, that at least the first coherent step will be performed on several 
processors because the computing power needed, though small with respect to what we 
need for the first incoherent step, is not negligible. 
candidate selection: after candidate selection, a service running on the master node, 
data_out, copies output files (two kinds of files, one containing candidates and the other 
containing information on the jobs) on the storage.  
steps (2,5]: a service, running on the master is dedicated to the monitoring of farm nodes 
and of PSS-jobs; a service, running on “secondary masters”, is dedicated to the monitoring 
of the master node. 
 
In the following picture the relation between the main steps in the data analysis procedure 
and the Supervisor services is outlined. In particular, monitoring services, i.e. farm_mon and 
mast_mon, are not tied to a specific point of the analysis chain but act on the whole ‘space’ 
delimited by the ‘box’.   



 59

 
 



 60

Outline of the supervisor 
 
We call master the node where the active SV is running: it is the machine from where most 
of the management is done; we call slave, or Computing Node (CN), a machine where 
calculations are done; the master will be also a CN. We call Storage Element (SE) the 
machine where data (both input and output) are stored.   
We assume the cluster is on a private network, with the masters (both “primary” and 
“secondary”) as the only interface to the LAN. Secondary masters are CN which can replace 
the master if this fails. Moreover, some of the CN can be also part of a grid farm. 
We distinguish two types of jobs: PSS_jobs , which are directly managed by the SV, and N-
jobs which run on the CN. In general, we can think a PSS-job as made of several  
N-job, plus some information. 
Now, we list the main steps in the SV activity: 
 

1. supervisor start: SV starts on the master; 
2. master monitoring start: SV starts the master monitoring service on “secondary” 

masters; “secondary” masters are ordered according to the rank (active master has 
rank 0, the second one has rank 1 and so on) 

3. node status monitoring: SV periodically checks the status of all CN and produce a 
report; 

4. master status monitoring: on each “secondary” master a service periodically 
checks the status of all the masters of greater rank and, if no active master exists, the 
node where it is running becomes the new primary master and start farm 
management;  

5. input data production: The active SV produces input data on the master; 
6. job submission: The active SV starts the PSS-job: creates a PSS-job folder on the SE 

and manages the workload of the CNs; 
7. job status monitoring: The status of a PSS-job is periodically monitored (querying 

the node(s) where it is running), saved on a file and distributed among all the 
secondary masters. This is needed if the active master crushes and must be replaced 
by another one. The status of a PSS-job contains the information listed in ref A.  

8. output file copy: The final results of each N-job are stored in the PSS-job folder on 
the SE; a copy is kept also on the node where the job run. 

 
ref A: the status of a PSS-job contain the following information: 
 

- the name of the submitting machine (the master); 
- the submission time; 
- on which CNs (one or more) and which of these, if any, have the (sleeping) SV; 
- the workload distribution (i.e. the N-jobs: name, submission time, input data,….); 
- all the important events (end time of a N-job, and the exit status, crashes, 

problems,….).  
 

All these information are collected in a file and also in a C structure. 
 



 61

Implementation of the Supervisor 
 
The steps outlined in the last paragraph can be translated in a number of services 
which “form” the SV program and which we have already introduced in the previous 
section: 
 

a. data_prod: Production of input data files starting from the SFDB; 

b. job_sub: Job submission, workload management and retrieval of output 

files; 

c. data_out: Management of output files; 

d. farm_mon: Monitoring of  PSS-jobs and slave nodes; 

e. mast_mon: Monitoring of master node. 

 
 
The mapping between the SV steps and services is the following: 
 

SV activity 
 

Service 
 

node status monitoring farm_mon 
master status monitoring mast_mon 
input data production data_prod 
job submission job_sub 
job status monitoring farm_mon 
output file copy data_out 

 
      
  
In the following figure a schematic view of the SV services and their relation with the 
cluster environment is given.  
In the implementation of the services we sometimes rely on the PBS batch system. 
This has been conceived for job distribution and workload management and gives to 
the user a set of commands also for job/node/queues monitoring. In particular, we 
use the Batch Interface Library (IFL) which provides a set of user callable functions 
with, approximately, a one to one correlation with client commands.  
 
 



 62

Candidate database and 
coincidences 

 

The database 
 
Periodic Source Candidates are stored in particular huge data bases, named PSC_DB. In this 
case only one spin-down parameter is considered. 
 
A PSC_DB is a collection of files and folders, contained in a folder with name 
PSC_DBxxxxxx . 
 
This folder contains  
 

• a readme.txt file,  
• a data-base creation log file psc.log,  
• a doc file psc.doc with the documentation,  
• a psc.dat file that is a script with peculiarities of that DB, like the starting time, the 

sampling time, the length of the ffts, the number of spin-down parameters, the 
antenna coordinates,… 

• 20 folders named 0000, 0100, 0200,…., 1900 
 
each of these folders contain 10 folders named 00, 10, 20,…., 90 and each of these last 
contain 10 files, one for each hertz of starting frequency. The name of the files refer to the 
name of the PSC_DB and to the covered frequency range, for example, 
pss_cand_1394.cand or pss_cand_0101.cand . 
 
Each file has the following structure: 
 

Header 

protocol (e.g. 1 now) int4 1-4 
caption char128 5-132 
initial time (mjd) double 133-140 
sampling time double 141-148 
FFT length int8 149-156 
initial frequency of the file   
      (fft bins – first bin 0) 

int8 157-164 

delta lambda float 165-168 
delta beta float 169-172 
delta sd1 float 173-176 
delta CR float 177-180 



 63

delta mean Hough map (mh) float 181-184 
delta h float 185-188 

Any candidate 

frequency bin (from initial basic group) int2 1-2 
lambda index int2 3-4 
beta index int2 5-6 
sd1 index int2 7-8 
CR index int2 9-10 
mh index int2 11-12 
h index int2 13-14 
 
 
If the data-base contain 10^9 candidates, each file should contain about 500000 candidates. 
So the mean value for the dimension of the file is 
 

500000*12+44 ~ 6 MB 
 

and the total dimension of the data base should be about 12 GB. 
 
To perform the coincidence analysis, the files are supposed to be  
 



 64

Browsing the PSC database 
 
 

Searching for coincidences in the PSC database 
 
 



 65

Coherent follow-up 
 



 66

Theory and simulation 
Snag pss gw project 

 

PSS detection theory 
 

Sampled data simulation 
 
The basic periodic simulation function is 
 

 sim_sds(sim_str,fdb_str,doptab) , that creates one or more sds data files. It 
is based on two structures: 

 
o sim_str , a simulation structure with elements  
 

      type     = 0 stationary, 1 non-stationary 
      nss      non-stationarity structure (if type=1) 
      ant      antenna structure (only for for signal simulation) 
      sour     source structure (only for for signal simulation) 
      lfft     fft length for simulation 
      t0       initial time (mjd) 
      dt       sampling time (s) 

 
o fdb_str ,  a file database structure, with elements 
 

       folder   database folder 
       head     filename header (p.es. 'VIR_hrec_') 
       tail     filename tail (p.es. '_crab') 
       ndat     total number of data 
       fndat    number of data per file 

 
o doptab , the Doppler table. 

 
 fileout=realsim_sds(sds_in,chn,sim_str,fdb_str,doptab) , that adds 

simulated periodic source signal to a real data file. The parameters are: 
 

o  sds_in , the input sds file to be used 
 
o chn , the channel number 
 
o sim_str , a simulation structure with elements  



 67

 
      ant       antenna structure (only for for signal simulation) 
      sour     source structure (only for for signal simulation) 
      lchunk   chunk length for simulation 

 
o fdb_str ,  a file database structure, with elements 
 

       folder   database folder 
 

o doptab , the Doppler table. 
 

 
These functions, to simulate the periodic source signals, use  
 

 [d,source,data]=ps_chunk(source,antenna,data,doptab) , were source, 
antenna and data are the pss structures and doptab is the correct Doppler table. 
The data are simulated in chunks during which the frequency and amplitude is 
standard (but the chunks can also last a single sample; it is reasonable that last at 
least one or more seconds). The produced chunks can be added to real data or data 
simulated with sim_sds (or other). 

 
 



 68

Time-frequency map simulation 
 
The functions to simulate time-frequency spectra are obtained by the same functions that 
simulate the peak maps, with the input keyword tfspec set to 1. 
 



 69

Peak map simulation 
 
There are two simulation functions, one, easier, that can be used for the first incoherent 
step, when the data chunks have the length of no more than some hours, and another for 
the subsequent analysis, when the data chunks can be of more than one day. 
 
There are some function to create files to store peak map data: 
 

 pss_w_pm_0(pm,file) , that stores the peak map structure pf in the file file, in a 
very easy format. 

 

Low resolution simulation 
 

 pm=pss_sim_pm_lr(ant,sour,pmstr,doptab,nois,level,tfspec) , where: 
 

o ant  is an antenna structure, with elements: 
 lat latitude (in degrees) 
 long longitude (in degrees) 
 azim azimuth 
 type antenna type (1 -> bar, 2 -> interferometer) 

 
o sour    source structure array; elments used: 

 a       right ascension  (degrees)   
 d   declination      (degrees) 
 eps     fraction of linear polarization power 
 psi     angle of linear polarization 
 f0      un-Dopplered frequency at start time 
 df0     coefficient of first power spin-down (Hz/day) 
 ddf0   coefficient of second power spin-down (Hz/day^2) 
 snr     signal-to-noise ratio (linear; supposing white noise) 

 
o pmstr   peak map property structure 

 dt       sampling time (s) 
 lfft     fft length 
 frin     initial frequency 
 nfr      number of frequency bins 
 res      spectral resolution (in normalized units) 
 t0       initial time (mjd) 
 np       number of periodograms 
 thresh  threshold (typically 2) 
 win      window type (0 -> no, 1 -> pss); 

 
 



 70

o doptab  Doppler table (created by ...) 
table containing the Doppler data (depends on antenna and year) (a 
matrix (n*4) or (n*5) with: 

 first column   containing the times (normally every 10 min) 
 second col          x (in c units, in equatorial cartesian frame) 
 third col           y 
 fourth col          z 

 
o nois a pmstr.np array with noise levels, in standard deviations; 

 if the dimension is not   exact, the value 1 is given for all the 
periodograms 
 

o level   simulation level: 
1 no sid modulation, direct frequency computation, res=1 
2 sid modulation, direct frequency computation, res=1 
3 no sid modulation, fft frequency computation 
4 sid modulation, fft frequency computation 
 

o tfspec   if = 1, time-frequency spectrum, otherwise only peak map; default 0  
 

Output peak map structure: 
 

o pm      output peak map structure; elements: 
 np      number of periodograms 
 frin    initial frequency 
 nfr     number of frequency bins 
 dt      sampling time (s) 
 lfft    fft length 
 dfr     frequency bin width 
 res     spectral resolution (in normalized units) 
 t0      initial time (mjd) 
 thresh  threshold (typically 2) 
 win     window type (0 -> no, 1 -> pss); 
 t(:)    periodograms time 
 v(:,3)  periodograms detector velocity 
 PM      peak map (sparse matrix) or t-f spectrum (matrix) 

 
  
 

High resolution simulation 
 



 71

Candidate simulation 
[MatLab environment] 

 
 
The basic candidate simulation function is   
 

 crea_pssfakecand, that creates a candidate database. The folder structure 
should exist. It can be copied from the template that exists in the metadata sub-
directory. The input data are: 

 
o dircand, the candidate root directory, containing the folder structure 

(containing up to 2000 files in 200 folders, grouped in 20 parent folders 
 
o N, the number of candidates to create 
 
o band, wich band (1,2,3 or 4) 
 
o pss_cand_head, pss candidate file header structure and simulation 

parameters 
 
This function (no return values) can be launched by the m file batch_fakecreation (to be 
edited), that creates two pss candidate databases. 
 
The creation of a pss database of 108 candidates takes about 7 minutes on a 3GHz two-cpu 
computer. 
 



 72

Time and astronomical functions 
[MatLab environment] 

Time  
 
In Snag there is a number of time conversion functions. 

 
The basic time used in Snag is MJD (Modified Julian Date). Other time used are TAI and 
GPS time; the form of time (normally UTC time) is also string or vector. 

 

 t=s2mjd(str) and str=mjd2s(mjd) (str=mjds2s(mjd) for multiple 

operations), converts string time to mjd (modified julian date) and viceversa; 

example: mjd=s2mjd('25-Apr-2004 18:44:11') produces mjd = 53120.7806828704, 

and str=mjd2s(mjd) produces 25-Apr-2004 18:44:11.000004 . 

 str=mjd2s(mjd) , converts a modified julian date to string time; example:  

 v=mjd2v(mjd) and t=v2mjd(v), converts a modified julian date to vectorial time 

([year month day hour minute second]) and viceversa. 

 tgps=mjd2gps(mjd)  and mjd=gps2mjd(tgps) , converts mjd to gps time  

and viceversa. 

 tai=mjd2tai(mjd) and mjd=tai2mjd(tai) , converts mjd to tai  and viceversa. 

 tdt=tai2tdt(tai) , conversion from TAI to Terrestrial Dynamical Time 

 tsid=sid_tim(mjd,long) , sidereal time (in hours);  

o mjd        modified julian date (days) 

o long       longitude (positive if west of Grenwich; degrees) 

 



 73

Astronomical coordinates 
 

 [ao,do]=astro_coord(cin,cout,ai,di) ,  astronomical coordinate conversion, 
from cin to cout. Angles and tsid are in radiants. Local tsid and latitude is needed  
for conversions to and from the horizon coordinates. 

o cin and cout can be 
    'horizontal'      azimuth, altitude 
    'equatorial'      celestial equatorial: right ascension, declination 
    'ecliptical'       ecliptical: longitude, latitude 
    'galactic'         galactic longitude, latitude 

 
  epsilon = 23.4392911 deg is the aberration to right asc. and declination 
  if they are referred to the standard equinox of year 2000. 
  (epsilon = 23.4457889 deg, if they are referred to the standard equinox of  
  year 1950.) 
 

 
 



 74

Source and Antenna structures 
 
All the functions that need antenna or source information, use the following structures: 
 

 source structure (interactive function sour=i_source ) 
 

o a right ascension (degrees) 
o d declination (degrees) 
o eps percentage of linear polarization 
o psi angle of linear polarization (respect to the source meridian) 
o f0 frequency (epoch 0) 
o df0 frequency first derivative (epoch 0) (frequency variation per day) 
o ddf0 frequency second derivative (epoch 0) (df0 variation per day) 
o snr signal-to-noise ratio 
o fi difference of phase between circular and linear polarization 

 
 

 antenna structure (interactive function sour=i_antenna ) 
 

o type bar (1), interferometer (2),… 
o lat latitude (degrees) 
o long longitude (degrees) 
o heig heigth (m) 
o azim azimuth (degrees) 
o incl inclination (degrees) 



 75

Doppler effect 
 
The computation of the motion of the Earth respect to the Solar System Barycenter  is 
computed by pss_astro, an adaptation and enhancement of a code from JPL and NOVAS 
software. Among the other possible uses of pss_astro, there is the production of a table, 
depending on the location of the antenna and the year, that contains the velocity vector of 
the detector at certain times. The program, in C, is crea_table. For a given detector and a 
given time interval, expressed in mjd, it gives an output file with the following information (1 
minute step): 
 

 detector velocity vector v (normalized to c) in rectangolar Equatorial J2000 
coordinates referred to SSB 

 frequency variation, deinstein, due to the relativistic Einstein effect 
 
For a given detector and source, emitting at f_s, the observed frequency f_obs is evaluated, 
using the following formula: 
 
                               f_obs =  f_s * (1 - p • v ) - f_s*deinstein 
 
(where p is the unitary position vector of the source, in rectangular equatorial J2000 
coordinates). 
 
The code asks for the name of the detector. Presently only the detectors Virgo, Explorer and 
Nautilus are considered, but we plan to insert soon all the others (it is only a question of 
inserting them in the "detector" structure) 
 

 Detector ? (virgo, explorer, nautilus) 
 Initial mjd,  final mjd ? (from 1 Jan 1991 (48257)) e.g.:   48300  48500 

 
The output is a file with the name table.dat. This is a typical output: 
 
An example of the tables is the following (tableVirgo_2000-2010.dat, beginning): 

 
virgo: lat=43.631389,long=10.504444,azim=10.00000 (deg) 
velx/C,vely/C,velz/C in rect. Equatorial coord., deinstein  
Observed frequency at the detector = source_freq*(1-(source_pos x vel/C) - deinstein) 
 
    51544.00000000  -0.000100557372253   -0.000016371087845   -0.000006927597163   0.000000000335206537 
    51544.00694444  -0.000100537101901   -0.000016427927612   -0.000006932417453   0.000000000335208710 
    51544.01388889  -0.000100514848156   -0.000016483926814   -0.000006937237591   0.000000000335210877 
    51544.02083333  -0.000100490649671   -0.000016538999573   -0.000006942057575   0.000000000335213040 
    51544.02777778  -0.000100464548820   -0.000016593061781   -0.000006946877404   0.000000000335215197 
    51544.03472222  -0.000100436591616   -0.000016646031264   -0.000006951697077   0.000000000335217350 
 
 
 
Notes and observation: 
 

1. this code is based on the PSS_astro library, whose documentation is given in the 
PSS_astro_UG.doc and PSS_astro_PG.doc 



 76

2. it uses the JPL ephemeris file DE405 and files from IERS  for fine corrections of the 
time and nutation. These fine corrections (use of UT1 and not UTC, application of 
corrections to the nutation angles DPsi and DEpsilon) are provided by IERS only 
up-to-date, with the file eopc04.62-now. In case these files are not present for the 
time lag (or part of it) provided by the user, then the code does not use these fine 
corrections and a message appears on the screen and also in the file which is created. 

3. the deinstein corrections is at a level less than one part on one million. 
4. As shown with details in the documentation, the Einstein effect is only a small 

correction to the final Doppler effect, but, given the fact that it can be evaluated 
using only information on the detector, that is it does not depend on the source 
position, we have decided to store also this information. The Einstein effect gives a 
contribution which is -roughly speaking- 5 orders of magnitude lower compared to 
the revolution and  3 orders of magnitude lower compared to the rotation. On the 
contrary, the Shapiro effect (which is even smaller) depends also on the spurce and 
thus cannot be evaluated at this stage. There is a function in the PSS_astro code to 
add the Shapiro effect, if a very high precision is needed. The Shapiro effect gives a 
contribution which is -roughly speaking- 3 orders  of magnitude lower compared to 
the Einstein effect. 

_______________________________________________________________________ 
 
The time is MJD. Interpolation from a table at 10 minutes (one year about 5 MB, in matlab 
format 2 MB), gives rise to an error on each component less than 10^-13, so obtaining a 
maximum relative error of the order of 10^-9. Attention ! The computation of the MJD for 
future dates can be wrong by the unknown future leap seconds.  
 
The Doppler table used by the software is a [ 5 (or 4) x n] matrix, with the first column 
containing the times (in TAI days) and the following 3 columns contain the 3 components 
of the detector velocity divided by c. The fifth column, if exists, contains the Shapiro effect. 
It is  produced by the function  
 

 doptab=read_doppler_table(file,subsamp,fileout) , with  
 

o file             file created by crea_table 
o subsamp    subsampling (one every...)  
o fileout        output file (can be not present) 

 
The following function puts the Doppler table (the x, y, and z component of the velocity of 
the detector in single precision) in an sds file 

 
 doptab2sds(doptab,sdsfile,capt), with 

 
o doptab  the Doppler table 
o sdsfile  the sds file 
o capt  the caption of the sds file 

 
These sds files (that are tiny) can be read to produce the matrix doptab; the procedure to do 
it is: 
 



 77

 doptab=doptab_from_sds(subsamp,file) , with 
 

o subsamp the subsampling factor 
o file  the sds file (like tableVirgo_2000-2010.sds of 6670 kb) 

 
Normally the Doppler tables are computed and stored for long periods (e.g. 2000-2010), but 
for practical purposes (typically for spline interpolation) it is more practical and fast to use 
shorter tables. This is accomplished by extracting a sub-table from a big table by 
 

 subdoptab=reduce_doptab(doptab,tmin,tmax) , were doptab is the 
original table, tmin and tmax the time interval of the sub-table. 

 
The following function is a simple use of doptab: 
 

 dop=gw_doppler(doptab,source,t) , computes the percentage Doppler shift 
for the Earth motion. It works with a single time or with a single source 

 
o doptab    table containing the Doppler data (depends on antenna and year) 

                  (a matrix (n*4) or (n*5) with: 
                   first column       containing the times (normally every 10 min) 
                   second col         x (in c units, in equatorial cartesian frame) 
                   third col             y 
                   fourth col           z 
  fifth col              de-einstein (if present) 

o  source     pss structures or a double array (n*2) with  
                   first col    the sources alpha (in deg) 
                   second col   the source delta (in deg) 

o   t              time array TAI (in mjd days) 
 

This function uses the tables created by pss_astro, interpolating with spline().  
 

Here is the results for 2003: 
 

 
 
 



 78

There is also another function that computes the Doppler effect,  
 

 dop=gw_doppler1(v,source) , that uses the velocity vector of the detector and 
the source. 

 
Another example is  
 

 [v_x,v_y,v_z]=v_detector(doptab,t) ,  that creates the three arrays containing 
the three components of the detector velocity at the times of the array t. 

 
 



 79

Sidereal response 
 
Because of the radiation pattern of the antenna, the response to a gravitational source varies 
depending on the sidereal hour. A number of functions dealing with these problem are 
developed: 
 

 sr=sid_resp(antenna,source,n) , gives the sidereal response in energy; the 
parameters are: 

o antenna, an antenna structure 
o source, a source structure 
o n , the number of points in a sidereal day 



 80

Tests and benchmarks 
 

The PSS_bench program 
 

The interactive program 
 
The program starts from the command console. At the beginning the computer information 
appears 
 

 
 
The computer information resides in a header named local_header.h and should be 
changed anytime that the benchmark is installed on a new computer. It should be re-
compiled and linked for different configuration (important is the no_optimization). 
 
Then the main menu appears. It shows the different classes of benchmarks that can be run. 
 



 81

 
 
Then the menu of the particular class of benchmark appears. For example, for the basic 
benchmark: 
 

 
 
The benchmarks started from the main menu can be also reports. 
 



 82

The reports 

Basic report 
 
  PSS_bench report on Tue Feb 17 15:07:17 2004 
  
 
                  Computing System : Xeon 2.66 GHz  
                  Operative System : MS Windows XP  
                  Clock Frequency  : 2658  
                  RAM              : 2048 Mbytes 
                  Disk             : SCSI-3 ?  
                  Cache            : 256 kB ?  
                  Number of CPUs   : 2  
                  Computing power  : 2658 Mflops per CPU 
                  Nodes            : 1  
                  System identif.  : sf  
 
 Comment: ... 
              Lower values are better results 
 
                     Basic tests 
 
Integer: rough1,rough2,sum,product 
11.615460,16.187220,4.598340,27.005280 
Float  : rough1,rough2,sum,product 
13.290000,6.219720,1.674540,1.249260 
Double : rough1,rough2,sum,product 19.934999,7.894260,-
0.850560,-0.398700 
 
Sines  : 203.337006 
 
Vectors: length 100000 -> rough,sum = -7.043700,19.084440 
Crazy  : length 100000 -> no crazy,crazy = 
4.173060,40.667400 
 
                       FFT tests 
 
Four1  : 54.664391 (length 1048576) 
 
                      Hough tests 
 
LUT    : 12.260115 (nalpha, ndelta = 720, 360) 
 



 83

FFT report 
 
PSS_bench FFT (fftw) report on Tue Feb 17 15:07:42 2004 
  
 
             Computing System : Xeon 2.66 GHz  
             Operative System : MS Windows XP  
             Clock Frequency  : 2658  
             RAM              : 2048 Mbytes 
             Disk             : SCSI-3 ?  
             Cache            : 256 kB ?  
             Number of CPUs   : 2  
             Computing power  : 2658 Mflops per CPU 
             Nodes            : 1  
             System identif.  : sf  
 
 Comment: ... 
           Lower values are better results 
 
      length    efficiency loss  
 
       1024            4.28     (8.2474e-005 s/fft) 
       2048            3.93     (1.6667e-004 s/fft) 
       4096            3.38     (3.1250e-004 s/fft) 
       8192            3.12     (6.2500e-004 s/fft) 
      16384            5.99     (2.5833e-003 s/fft) 
      32768            5.59     (5.1667e-003 s/fft) 
      65536           11.91     (2.3500e-002 s/fft) 
     131072           11.21     (4.7000e-002 s/fft) 
     262144           13.18     (1.1700e-001 s/fft) 
     524288           10.41     (1.9500e-001 s/fft) 
    1048576           12.48     (4.9250e-001 s/fft) 
    2097152           10.09     (8.3600e-001 s/fft) 
    4194304           10.04     (1.7425e+000 s/fft) 
    8388608            9.86     (3.5780e+000 s/fft) 
 
 
 
 
PSS_bench FFT (four1) report on Tue Feb 17 17:38:49 2004 
  
 
             Computing System : Xeon 2.66 GHz  
             Operative System : MS Windows XP  
             Clock Frequency  : 2658  
             RAM              : 2048 Mbytes 
             Disk             : SCSI-3 ?  
             Cache            : 256 kB ?  
             Number of CPUs   : 2  
             Computing power  : 2658 Mflops per CPU 
             Nodes            : 1  
             System identif.  : sf  



 84

 
 Comment: ... 
                Lower values are better results 
 
      length    efficiency loss  
 
       1024          840.26     (1.6186e-002 s/fft) 
       2048          729.80     (3.0927e-002 s/fft) 
       4096          535.14     (4.9479e-002 s/fft) 
       8192          169.10     (3.3875e-002 s/fft) 
      16384            5.99     (2.5833e-003 s/fft) 
      32768            5.59     (5.1667e-003 s/fft) 
      65536           43.60     (8.6000e-002 s/fft) 
     131072           50.34     (2.1100e-001 s/fft) 
     262144           54.58     (4.8450e-001 s/fft) 
     524288           59.61     (1.1170e+000 s/fft) 
    1048576           60.20     (2.3750e+000 s/fft) 
    2097152           64.78     (5.3670e+000 s/fft) 
    4194304           69.76     (1.2110e+001 s/fft) 
    8388608           77.66     (2.8188e+001 s/fft) 
   16777216           79.28     (6.0047e+001 s/fft) 
 
 



 85

SFDB 
 

Hough transform 
 
 



 86

Service routines 
 

Matlab service routines 
 

 i_antenna 
 i_source 
 i_data 
 pss_par 
 ipss_par 
 source_tab 

 
 



 87

pss_lib 
 
 

pss_rog 
 
 
 



 88

General parameter structure 
 
All the parameters used for this software are organized in nested structures. Here all these 
structures are described. Any parent structure can lack some children. 
 
 

Main pss_ structure 
 
This is the container for the other high level structures. The parameters are classified in 4 
classes:   
 

0 fixed 
1 primary or input  
2 derived 
3 analysis results 
4 other 

 
 

Structures Type Use 
   
const_  Mathematics, Physics and Astronomy constants 

source_ may contain 
arrays periodic source parameters 

antenna_ may contain 
arrays detector physical parameters 

data_  data parameters 
fft_  fft parameters 
band_  band description 

sfdb_ may contain 
arrays short fft data-base parameters 

tfmap_ may contain 
arrays time-frequency map 

tfpmap_ may contain 
arrays time-frequency peak map 

hmap_ may contain 
arrays hough map parameters 

cohe_  coherent follow-up parameters 
ss_  supervisor parameters 

candidate_ may contain 
arrays periodic source candidates 

event_ may contain 
arrays event parameters 

computing_  computing parameters 



 89

 



 90

const_ structure 
 
It contains: 
 

constant class type what 
    
pi 0  3.1415926535897932384626433832795 
e 0  2.7182818284590452353602874713527 
c 0  light velocity  -   299792458 
G 0  gravitational constant   -   6.67259E-11 
deg2rad 0  degree to radiants conversion 
Eorbv 0  Earth orbital velocity 
Erotv 0  Earth rotational velocity (at the equator) 
SY_s 0  sidereal year seconds 
SD_s 0  sidereal day seconds 
 
 



 91

source_  structure 
 
All the angles are in degrees. 
 

parameter class type what 
    
name 1   
a 1  rigth ascension or ecliptical longitude 
d 1  declination or ecliptical latitude 
eps 1  percentage of linear polarization power 
psi 1  polarization angle 
t00 1  f0 epoch (typically 1-1-2000)  
f0 1  initial (original) frequency 
df0 1  initial first derivative of the frequency 

(frequency variation per day) 
ddf0 1  second derivative of the frequency 

(df0 variation per day) 
h 1  h amplitude 
snr 1  signal-to-noise ratio 
coord 1 ? 0 -> equatorial,  1 -> ecliptical 
n 1  number of sources 
chphase 4  phase of the last chunk (used by 

pss_chunk) 
 



 92

antenna_  structure 
 
 
 

parameter class type what 
    
name 1   
long 1   
lat 1   
azim 1  azimuth 
alt 1  altitude over sea level 
incl 1  inclination 
type 1   
bar_  structure  
itf_  structure  
n 1  number of antennas 
 
 



 93

data_  structure 
 
 
 

parameter class type what 
    
dt 1  sampling time (s) 
sf 2  sampling frequency 
tobs 1  total observation time days) 
t0 1  initial time (mjd) 
iniwin 1 double array starting time of windows 
finwin 1 double array ending time of windows 
nwin 1  number of windows 
t 4  time (mjd) 
    
 
 



 94

fft_  structure 
 
This is a sub-structure used in (or in conjunction with) sfdb_, tfmap_ and tfpmap_ 
structures. It describes the working band. It can be also used alone. 
 
 

parameter class type what 
    
len 1  fft length (number of samples) 
tlen 2  fft time length 
N 1  number of ffts 
onev 1  take one fft every... 
df 2  frequency bin 
res 1  resolution 
interl 1  interlacing 
wind 1  window type 
frin 1  initial frequency 
tin 1  initial time 
unit 1  unity 
 
 
 
 



 95

band_  structure 
 
This is a sub-structure used in sfdb_, tfmap_ and tfpmap_ structures. It describes the 
working band. It can be also used alone. 
 
 

parameter class type what 
    
Bf1 1  initial frequency of the full band 
Bf2 1  final frequency of the full band 
f0 1  supposed initial unshifted frequency 
df0 1  f0 first derivative 
ddf0 1  f0 second derivative 
errf0 1  (band.f0-source.f0)/fft.df 
natb 3  "natural" sub-band (working band) 
knatb 1  widening factor of natural sub-band 
bf1 3  sub-band initial frequency 
bf2 3  sub-band final frequency 
 
 
 
 



 96

sfdb_  structure 
 
 
 

parameter class type what 
    
    
    
    
    
    
    
    
    
    
 
 
 



 97

tfmap_  structure 
 
 
 

parameter class type what 
    
    
    
    
    
    
    
    
    
    
 
 
 



 98

tfpmap_  structure 
 
 
 

parameter class type what 
    
    
    
    
    
    
    
    
    
    
 
 
 



 99

hmap_  structure 
 
 
 

parameter class type what 
    
    
    
    
    
    
    
    
    
    
 
 
 



 100

cohe_  structure 
 
 

parameter class type what 
    
    
    
    
    
    
    
    
    
    
 
 
 
 



 101

ss_  structure 
 
 

parameter class type what 
    
    
    
    
    
    
    
    
    
    
 
 
 



 102

candidate_  structure 
 
 
 

parameter class type what 
    
    
    
    
    
    
    
    
    
    
 
 



 103

event_  structure 
 
 
 

parameter class type what 
    
    
    
    
    
    
    
    
    
    
 
 
 



 104

computing_  structure 
 
 

parameter class type what 
    
    
    
    
    
    
    
    
    
    
 
 
 



 105

The PSS databases 
 
 

General structure of PSS databases 
 
The general organization of the PSS databases, i.e. the folder tree, is the following: 
 

• First level: antennas and general metadata (general, server and analysis) 
 
• Second level: data categories and antenna metadata. Data categories are: 

 
 sd – (sampled data) h-reconstructed or equivalent 
 sfdb - sfdb data 
 nsp - normalized spectra 
 pm - peak maps 
 cand - candidate 
 metadata - antenna metadata 
 analysis – analysis reports 

 
• Third level (optional): different data types 

 
• Other level: optional internal organization of sub-databases 

 
The naming of files is such that they are alphabetically ordered for the basic key (normally 
time). A possible implementation is the following: 
 
  AntennaName_DataType_StartTime_Characteristics.FormatExt 
 
where 
 

• AntennaName, for example: 
 

 Vir 
 Nau 
 Exp 

 
• DataType, for example: 
 

 raw 
 hrec 
 sfdb 
 nsp 



 106

 pm 
 

• StartTime, in the format  YYMMDD_hhmmss 
 

• Characteristics depends on the category 
 

• FormatExt depends on the data format (frame, r87, sds,…) 
 
 

The pss directory structure 
 

 
 



 107

 

The h-reconstructed database 
 
Third level is: frame, r87, sds. Fourth level can be runs or years. 
 
The naming is derived as easily as possible, by the original antenna name. 
 
 

The sfdb database 
 
 
 

The normalized spectra database 
 
 
 
 

The peak-map database 
 
 
 
 

The candidate database 
 
See “Candidate database and coincidences”, page 62. 
 

Database Metadata 
 

Server docs 
 
It should contain information on the available servers, how to reach them, what is supposed 
to contain. 
 

Analysis docs 
 



 108

This should contain the analysis batch log and where the results are stored. 
 
 

Antenna docs 
 
It should contain at least: 
 

• Antenna basic information (e.g. the position) 
• Channel names 
• Basic information on the runs 

 
 

File System utilities 
 
 
 

 
 



 109

Appendix 
Doppler effect computation 

pss_astro 
 
PSS_astro, is a C code for the computation of various astrometric quantities, coordinate 
transformations, evaluation of Doppler effect. It uses a JPL C code to read and manage the 
ephemerides file DE405. 
It also uses NOVAS (Naval Observatory Vector Astrometry Subroutines), a  C code, for the 
computation of a wide variety of common astrometric quantities. 
 
The JPL Planetary and Lunar Ephemerides can be downloaded from the site  
 
ftp://navigator.jpl.nasa.gov/pub/ephem/export/ 
by choosing the appropriate way, depending on the operating system (/unix is the directory 
for unix users and /ascii for non-unix users). 
The instructions are written is the description file, linked  at 
http://ssd.jpl.nasa.gov/eph_info.html 
or directly at 
ftp://navigator.jpl.nasa.gov/pub/ephem/export/usrguide 
 
 
Each ascii file contains 20 years of data, while each unix binary file contains 50 years of data. 
Anyway, we have experienced some problems with the binary UNIX files, while the ASCII 
files work properly even on an UNIX machine. 
Then, the procedure we have used to  download the ephemerides DE405 for the years 1980-
2020 is: 
 

• download, from the directory /ASCII, the files: ascp1980.405,  ascp2000.405 
• download, from the directory /FORTRAN, the code   asc2eph.f, which must 

be used to convert the ASCII files into binary files and to merge them  to form a 
single ephemeris file. 

Then : 
• in asc2eph.f,  set  the NRECL parameter to 4. 
• compile and link                                               

(g77 -c asc2eph.f    g77 -o asc2eph.out binmerge.o) 
• run the code, with the following syntax:                                                                                              

on Unix:                             
cat header.405 ascp1980.405 ascp2000.405 | ./asc2eph.out  

                 on windows (using command console):  
copy header.405 ascp1980.405 ascp2000.405  infile.405 

• and then run   asc2eph.out infile.405  
 



 110

This procedure  produces the binary file jpleph. 
We have renamed it to Jpleph.405. 
 

Theory: Astronomical Times 
 
A good introduction to the definitions of the Astronomical times is given here: 
http://www.gb.nrao.edu/~rfisher/Ephemerides/times.html 
 
TAI  is the International Atomic Time 
 
UTC is the  Coordinated Universal Time 
 
UTC = TAI - (number of leap seconds) 
 
TDT is the terrestrial dynamic time. It is not yet used for planetary motions calculations, but 
it is only used to calculate TDB, which takes into account relativistic effects. 
TDT = TAI + 32.184 = UTC + (number of leap seconds) + 32.184 
it is tied to the atomic time by a constant offset of 32.184 seconds. 
 
TDB is the Barycentric Dynamic Time 
approximately: 
TDB = TT + 0.001658 sin( g ) + 0.000014 sin( 2g )  seconds 
where 
 g = 357.53 + 0.9856003 ( JD - 2451545.0 )          degrees 
and JD is the Julian Date.  
UT1 is the Universal Time, and it is a measure of the actual rotation of the Earth. Hence it is 
not uniform. 
It is  the rotation of the Earth with respect to the mean position of the Sun. 
UTC is incremented by integer seconds (leap seconds) to stay within 0.7 seconds of UT1. 
Then he difference between UT1 and UTC is never greater than this.  
 Planetary motions are computed using TDB.  
UT1 should be used to evaluate  
GMST,  Greenwich Mean Sidereal Time 
but UTC can be used as a good approximation of UT1. 
In the code, we can use either UTC or UT1, by setting a 
flag. 
Sidereal time is the measure of the Earth's rotation with respect to distant celestial objects. 



111 
 
 

 

Theory: Contributions to the Doppler effect 
 
The Doppler shift, that is the frequency nu_doppler, observed at the detector, for a given 
source whose intrinsic frequency, supposed to be constant, is source->frequency is mainly  the 
result of : 
 
1)Earth revolution around the Sun 
2)Rotation 

and, 
1)relativistic delay (Einstein effect) 
2)light deflection in the Sun's field (Shapiro effect). 
 
To get an idea of the relative weight of these effects, we 
have run the code and we have written the separate contributions. 
 
We have used: detector Parkes, 
PSR 437 (supposed to be at rest, with ra and dec given at 
Epoch J2000). Their  coordinates are both defined in the header file, daspostare.h. 
Let us consider the quantity  
z=(source->frequency-nu_doppler)/source->frequency 
 
At the MJD 49353.0833 (January 1th, 1994) we get: 
1)Revolution:   2.916691723 *10^(-5) 
2)Rotation:       -4.3508614 * 10^(-7) 
3)Deinstein:     -3.3540 * 10^(-10) 
4)Dshapiro:      -4.65 * 10^(-13) 
 
Thus, the total value of the considered variable z is 

2.87314952 * 10^(-5), including Einstein and Shapiro. 
 

We have done a (not formal) comparison of these results with C. Cutler (Potsdam AEI). The 
results of the comparison have been: 
1)Cutler Revolution:   2.91669173 *10^(-5);  
2)Cutler Rotation:       -4.3508340 * 10^(-7); 
3)Cutler Deinstein:     -3.3439 * 10^(-10); 
4)Cutler Shapiro         -4.73 * 10^(-13); 
Cutler total value is     2.87315000 * 10^(-5). 
 
We have indicated in red those numbers that are different from Cutler's. 
 
Hence the difference between our result and Cutler result is, for the considered variable z, 
4.8 10^(-12). 
 
We recall that this comparison has been done not formally, 
on August 2000. In particular, we don' t know if Cutler now is  



112 
 
 

still getting these numbers. 
 
We have done this, and other comparisons using TEMPO. 
 
 



113 
 
 

Programming tips 
Windows FrameLib 

 
[FrameLib 6r18]  To construct the FrameLib.lib, we have to comment the line  
 

#include <unistd.h> 
 

in FrIO.c . The functions dup, open, close, write, read, lseek are not defined. They 
are used if it is not defined FRIOCFILE. 
 

 


