The Relativistic Quantum World

A lecture series on Relativity Theory and Quantum Mechanics

Marcel Merk
Studium Generale Maastricht
Sep 10 – Oct 8, 2025

Relativity

Quantum

Relativity	Sep. 10: Sep. 17:	Lecture 1: The Principle of Relativity and the Speed of Light Lecture 2: Time Dilation and Lorentz Contraction Lecture 3: The Lorentz Transformation and Paradoxes Lecture 4: General Relativity and Gravitational Waves
Quantum Mechanics	Sep. 24: Oct. 1:	Lecture 5: The Early Quantum Theory Lecture 6: Feynman's Double Slit Experiment Lecture 7: Wheeler's Delayed Choice and Schrodinger's Cat Lecture 8: Quantum Reality and the EPR Paradox
Standard Model	Oct. 8:	Lecture 9: The Standard Model and Antimatter Lecture 10: Why is there something rather than nothing?

Lecture notes, written for this course, are available: www.nikhef.nl/~i93/Teaching/ Prerequisite for the course: High school level physics & mathematics.

Relativity and Quantum Mechanics

Relativity and Quantum Mechanics

Pie de Bökkum Ensinck de Kletskop Flup de Koojstart

Operetta by Jacques Pirson, executed by Fons Olterdissen (1928)

1: Elementary Particles "All things come in three"

Largest "photocamera" on earth

- 45 m x 25 m
- 3000 physicists

80 MegaPixel "camera": 40.000.000 pictures per second

Elementary Particles

Generation:

III**Charge** II

quarks

+2/3 e

-1/3 e

3 "generations" of particles?!

leptons

-1 e

(1956)

 v_{τ}

0 e

Matter

Elementary Particles

Generation:

IIICharge II+2/3 e quarks u (1995)

(1976)

(1978)

-1/3 e

3 "generations" of particles?!

leptons

-1 e

 v_{τ}

0 e

Matter

Elementary Particles

Generation:

III**Charge** II

quarks

+2/3 e

-1/3 e

3 "generations" of particles?!

leptons

-1 e

(1956)

0 e

Paul Dirac and antimatter

- 1928:
 - Dirac's relativistic quantum theory
 - Prediction: for each matter particle there exists an identical antimatter particle!
- 1932:
 - Anderson discovers the anti-electron

Dirac

AntiDirac

Matter and Antimatter

Alpha experiment: successor of Athena

News on 27 Sept 2023:

- See: <u>CERN news</u>
- Several thousands of antimatter hydrogen atoms were dropped in the gravitational field
- Antimatter falls "down" to earth in the same way as matter does

Albert Einstein: Energy = matter + antimatter

Creation:

Energy → matter + antimatter :

Annihilation:

matter + antimatter → energy :

Albert Einstein: Energy = matter + antimatter

Creation:

Energy → matter + antimatter :

Annihilation:

matter + antimatter → energy :

"It is my understanding that the gentleman ordered both the pasta and the antipasta."

Is there antimatter in nature?

Does it occur on earth?

- No, we would immediately see it:
 - "Annihilation"

- Is there antimatter in cosmic radiation?
 - The AMS experiment

Are there antimatter galaxies?

Early Universe: where did the antimatter go?

Only matter

Early Universe: where did the antimatter go?

Why is there something rather than nothing?

The early hot universe

Time=0.0000000001 second

So: "teeny weeny" more matter particles than antimatter particles

The expanding and cooling universe

Time ~1 second

After coolingandannihilate

What remains: lots of light and a bit of matter

Ratio : 100000000

Cosmic Microwave Background Radiation

1964: Penzias and Wilson discover: "background light" (photons)
Remnant of the Big Bang

A temperature map...

Of the univesre

For each matter particle there are a billion photons...

The universe as we see it today

Observed
Background light:

"many" (1000000000)

RemainingMatter particles:

"few" (1)

How did we get a small asymmetry in the Big Bang?

3: Forces: "Standard Model"

Giel ("de Piele") Hameleers: also standard model?

3: Forces: "Standard Model"

Forces in Quantum Mechanics: exchange of quanta

"Repulsive force"

There is no "action at a distance"

"Atractive force"

Four fundamental forces of nature

Gravity:

Quantum Graviton exchange?

Acts on particles with mass

Strong nuclear force:

Quantum gluon exchange:

Electromagnetism:

Quantum photon exchange:

Acts on all charged particles

Weak nuclear force:

Acts on all particles

Quantum W, Z exchange:

How strong are the forces?

	Gravity	Weak (Electro	Electromagnetic weak)	Strong
Carried By	Graviton (not yet observed)	w* w z o	Photon	Gluon
Acts on	AII	Quarks and Leptons	Quarks and Charged Leptons and W W	Quarks and Gluons
Strength	0.0000000000000 0000000000000000000000	0.0001	1	60

Standard Model: Particles and Forces

24 april 2013

Standard Model: Theory

 $-\frac{1}{2}\partial_{\nu}g^{a}_{\mu}\partial_{\nu}g^{a}_{\mu} - g_{s}f^{abc}\partial_{\mu}g^{a}_{\nu}g^{b}_{\mu}g^{c}_{\nu} - \frac{1}{4}g^{2}_{s}f^{abc}f^{ade}g^{b}_{\mu}g^{c}_{\nu}g^{d}_{\mu}g^{e}_{\nu} +$ $\frac{1}{2}ig^{2}_{s}(\bar{q}^{x}_{t}\gamma^{\mu}q^{x}_{j})g^{a}_{\mu} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}\bar{G}^{a}G^{b}g^{c}_{\mu} - \partial_{\nu}W^{+}_{\mu}\partial_{\nu}W^{-}_{\mu} -$

 $M^2W_{\mu}^+W_{\mu}^- - \frac{1}{2}\partial_{\nu}Z_{\mu}^0\partial_{\nu}Z_{\mu}^0 - \frac{1}{2c_{\pi}^2}M^2Z_{\mu}^0Z_{\mu}^0 - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu}$ $\frac{1}{2}m_h^2H^2 - \partial_\mu\phi^+\partial_\mu\phi^- - M^2\phi^+\phi^- - \frac{1}{2}\partial_\mu\phi^0\partial_\mu\phi^0 - \frac{1}{2c^2}M\phi^0$ $\frac{2M}{g}H + \frac{1}{2}(H^2 + \phi^0\phi^0 + 2\phi^+\phi^-)] + \frac{2M^4}{s^2}\alpha_h - igc_w[\partial_{\nu}]$ $W_{\nu}^{+}W_{\mu}^{-}) - Z_{\nu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + Z_{\mu}^{0}(W_{\mu}^{-})$ $W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - A_{\nu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-})]$ $W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - \frac{1}{2}g^{2}W_{\mu}^{+}$ $\frac{1}{2}g^2W_{\mu}^+W_{\nu}^-W_{\mu}^+W_{\nu}^- + g^2c_w^2(Z_{\mu}^0W_{\mu}^+Z_{\nu}^0W_{\nu}^- - Z_{\mu}^0Z_{\mu}^0)$ $g^2 s_w^2 (A_\mu^{\dagger} W_\mu^+ A_\nu W_\nu^- - A_\mu A_\mu W_\nu^+ W_\nu^-) + g^2 s_w c_w [A_\mu Z_\nu^+]$ $W_{\nu}^{+}W_{\mu}^{-}) - 2A_{\mu}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}] - g\alpha[H^{3} + H\phi^{0}\phi^{0} + 2H\phi^{0}\phi^{0}]$ $\frac{1}{8}g^2\alpha_h[H^4+(\phi^0)^4+4(\phi^+\phi^-)^2+4(\phi^0)^2\phi^+\phi^-+4H^2\phi^+\phi^$ $gMW_{\mu}^{+}W_{\mu}^{-}H - \frac{1}{2}g\frac{M}{c^{2}}Z_{\mu}^{0}Z_{\mu}^{0}H - \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{0})]$ $W_{\iota\iota}^-(\phi^0\partial_\mu\phi^+ - \phi^+\partial_\mu\phi^0)] + \frac{1}{2}g[W_{\iota\iota}^+(H\partial_\mu\phi^- - \phi^-\partial_\mu H) - \psi^-(H\partial_\mu\phi^- - \phi^-\partial_\mu H)] + \frac{1}{2}g[W_{\iota\iota}^+(H\partial_\mu\phi^- - \phi^-\partial_\mu H)] + \frac{1}{2}g[W_{\iota\iota}$ $[\phi^{+}\partial_{\mu}H)] + \frac{1}{2}g\frac{1}{G_{cr}}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0} - \phi^{0}\partial_{\mu}H) - ig\frac{s_{\mu\nu}^{2}}{G_{cr}}MZ_{\mu}^{0}(W_{\mu}^{+})$ $igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})-ig\frac{1-2c_{u}^{2}}{2c_{w}}Z_{\mu}^{0}(\phi^{+}\partial_{\mu}\phi^{-}-igs_{w}A_{\mu}(\phi^{+}\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}\phi^{+})-\frac{1}{4}g^{2}W_{\mu}^{+}W_{\mu}^{-}[H^{2}+(\phi^{0})]$ $\frac{1}{4}g^2\frac{1}{e^2}Z_{\mu}^0Z_{\mu}^0[H^2+(\phi^0)^2+2(2s_w^2-1)^2\phi^+\phi^-]-\frac{1}{2}g^2\frac{s_w^2}{c_w}$ $W_{\mu}^{-}\phi^{+}) - \frac{1}{2}ig^{2}\frac{s_{uu}^{2}}{c_{w}}Z_{\mu}^{0}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) + \frac{1}{2}g^{2}s_{w}A_{\mu}$ $W_{\mu}^{-}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) - g^{2}\frac{s_{w}}{c_{w}}(2c_{w}^{2} - C_{w}^{-}\phi^{-})$ $g^1 s_w^2 A_\mu A_\mu \phi^+ \phi^- - \bar{e}^\lambda (\gamma \partial + m_e^\lambda) e^\lambda - \bar{\nu}^\lambda \gamma \partial \nu^\lambda - \bar{u}_i^\lambda (\gamma \partial + m_e^\lambda) e^\lambda$ $m_d^{\lambda} d_i^{\lambda} + igs_w A_{\mu} [-(\bar{e}^{\lambda} \gamma e^{\lambda}) + \frac{2}{2} (\bar{u}_i^{\lambda} \gamma u_i^{\lambda}) - \frac{1}{2} (\bar{d}_i^{\lambda} \gamma d_i^{\lambda})] + \frac{i}{dd}$ $(\gamma^{5})\nu^{\lambda}) + (\bar{e}^{\lambda}\gamma^{\mu}(4s_{w}^{2} - 1 - \gamma^{5})e^{\lambda}) + (\bar{u}_{i}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2} - 1)e^{\lambda})$ $(\bar{d}_j^{\lambda}\gamma^{\mu}(1-\tfrac{8}{3}s_w^2-\gamma^5)d_j^{\lambda})]+\tfrac{i\varrho}{2\sqrt{2}}W_{\mu}^+[(\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^5)e^{\lambda})]$ γ^{5}) $C_{\lambda\kappa}d_{j}^{\kappa}$] + $\frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda}) + (\bar{d}_{j}^{\kappa}C_{\lambda\kappa}^{\dagger}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda})]$ $\frac{ig}{2\sqrt{2}}\frac{m_e^\lambda}{M}[-\phi^+(\bar{\nu}^\lambda(1-\gamma^5)e^\lambda)+\phi^-(\bar{e}^\lambda(1+\gamma^5)\nu^\lambda)]-\frac{g}{2},$ $i\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda})] + \frac{ig}{2M\sqrt{2}}\phi^{+}[-m_{d}^{\kappa}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{5})d_{j}^{\kappa}) + m_{d}^{\kappa}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{5})d_{j}^{\kappa})]$ $\gamma^5)d_j^{\kappa}] + \frac{ig}{2M\sqrt{2}}\phi^-[m_d^{\lambda}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^5)u_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger})]$ $\frac{g}{2}\frac{m_{\alpha}^{\lambda}}{M}H(\bar{u}_{i}^{\lambda}u_{i}^{\lambda}) - \frac{g}{2}\frac{m_{\alpha}^{\lambda}}{M}H(\bar{d}_{i}^{\lambda}d_{i}^{\lambda}) + \frac{ig}{2}\frac{m_{\alpha}^{\lambda}}{M}\phi^{0}(\bar{u}_{i}^{\lambda}\gamma^{5}u_{i}^{\lambda}) - \frac{ig}{2}\frac{g}{i}$ $\bar{X}^{+}(\partial^{2}-M^{2})X^{+}+\bar{X}^{-}(\partial^{2}-M^{2})X^{-}+\bar{X}^{0}(\partial^{2}-\frac{M^{2}}{2})X^{-}$ $iqc_mW_n^+(\partial_\mu\bar{X}^0X^--\partial_\mu\bar{X}^+X^0)+iqs_mW_n^+(\partial_\mu\bar{Y}X^-)$ $igc_wW_{\mu}^-(\partial_{\mu}\bar{X}^-X^0 - \partial_{\mu}\bar{X}^0X^+) + igs_wW_{\mu}^-(\partial_{\mu}\bar{X}^-Y$ $igc_w Z^0_\mu(\bar{\partial}_\mu \bar{X}^+ X^+ - \bar{\partial}_\mu \bar{X}^- X^-) + igs_w A_\mu(\bar{\partial}_\mu \bar{X}^+ X^+ - \bar{\partial}_\mu \bar{X}^- X^-)$ $\frac{1}{2}gM[\bar{X}^{+}X^{+}H+\bar{X}^{-}X^{-}H+\frac{1}{c_{s}^{2}}\bar{X}^{0}X^{0}H]+\frac{1-2c_{w}^{2}}{2c_{w}}igM$ $\bar{X}^-X^0\phi^-] + \frac{1}{2c_w}igM[\bar{X}^0X^-\phi^+ - \bar{X}^0X^+\phi^-] + igMs_w[\bar{X}^0X^-\phi^+ - \bar{X}^0X^+\phi^-]$ $\bar{X}^{0}X^{+}\phi^{-}] + \frac{1}{2}igM[\bar{X}^{+}X^{+}\phi^{0} - \bar{X}^{-}X^{-}\phi^{0}]$

"The formula"

"The building blocks"

"The formula"

"The building blocks"

1865: Maxwell equations

"The formula"

"The building blocks"

Matter particles

"The formula"

"The building blocks"

Englert

Higgs

1964: Standard Model <u>prediction:</u> empty space is not empty!

"The formula"

"The building blocks"

Mass is generated by the Higgs field!

1972: With 3 copies of particles an asymmetry between matter and antimatter is possible!

How did antimatter disappear in the Big bang?

0.000001% matter

(+99.999999% radiation)

Antimaterie not the exact mirror image of matter?!

Theoretically this requires three copies of all particles!

Higgs boson

