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The Relativistic Quantum World
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Uncertainty Relation

It is not possible to determine position and momentum at the same time:

Several plane waves Wave packet
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Werner Heisenberg

A particle does not have well defined position and momentum at the same time.




The wave function v
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The wave function v
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Lecture 6

Feynman’s Double Slit Experiment

“It doesn’t matter how beautiful your theory is, it doesn’t matter
how smart you are. If it doesn’t agree with experiment it’s wrong.”
- Richard Feynman




Richard Feynman (1918 — 1988)

Nobelprize 1965: Quantum Electrodynamics
(Path Integral formulation of quantum mechanics)

Mostly known from: = Feynman diagrams
* Challenger investigation
* Popular books

Challenger disaster 1986

Feynman diagram



Richard Feynman (1918 — 1988)

Nobelprize 1965: Quantum Electrodynamics
(Path Integral formulation of quantum mechanics)
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Richard Feynman and the double slit experiment 8

The double slit experiment demonstrates the fundamental aspect of the quantum world.




The Double Slit Experiment

Case 1.
An Experiment with Bullets
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Case 1: Experiment with Bullets

A gun fires bullets in random direction. Slits 1 and 2 are openings through which
bullets can pass. A moveable detector “collects” bullets and counts them.
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P, is the probability curve when only slit 1 is open
P, is the probability curve when only slit 2 is open

What is the probability curve when both slit 1 and slit 2 are open?




Case 1: Experiment with Bullets

A gun fires bullets in random direction. Slits 1 and 2 are openings through which
bullets can pass. A moveable detector “collects” bullets and counts them.
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P, is the probability curve when only slit 1 is open
P, is the probability curve when only slit 2 is open

When both slits are open: Py, =P, + P,

We can just add up the probabilities.




The Double Slit Experiment

Case 2:
An Experiment with Waves




Interference : water, sound, light

Waves: Interference principle: Water: Interference pattern:
WAVES SUM
IN PHASE ADDITION
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[ WAVE INTERFERENCE |

Sound: Active noise cancellation: Light: Thomas Young experiment:
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Anti Noise

sound + sound
can give silence

J light + light can
give darkness!




Case 2: Experiment with Waves
We replace the gun by a wave generator: think of water waves. Slits 1 and 2 act as new wave sources.
The detector measures now the intensity (energy) in the wave.
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The intensity of a wave is the square of the amplitude...



Intermezzo: Wave Oscillation & Intensity

Energy in the oscillation (up-down) movement of the molecules:
E.i, = 1/, mv? and vis proportional to the amplitude or height: v = h
So that the intensity of the wave is: I =~ h?
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Formula for the resulting oscillation of a water molecule somewhere in the wave:

W(t) = hcos(2mtft + ¢) f =frequency
and the Intensity: | = h? ¢ = phase




Case 2: Experiment with Waves

When both slits are open there are two contributions to the wave the oscillation
at the detector: R(t) = R{(t) + R,(t)
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First combine: W(t) = W, (t) + W, (¢t)
Afterwards look at the amplitude and intensity of the resulting wave!




For math lovers: let’s calculate

Wi,(t) = hycos(2mft + ¢p;) + h, cos(2mf t + ¢p,)
Assume equal size waves: hy = h, = h

Amplitude (arb. units)

Find amplitude of sum wave W, (t).

Interference: Ap = 0° (Waves nearly identical)
— — NO —— Wave 1: sin(wt)
¢1 ¢2 0 —— Wave 2: sin(wt + Aygj
—— Sum: Wave 1 + Wave 2

1 1
From math textbook: cos(4) + cos(B) = 2 cos (E (A — B)> CoS <§ (A + B))

0 2 4 6 8 10 12
t (arbitrary units)
Interference: Ap = 90° (Quadrature)
15} —— Wave 1: sin(wt)

—— Wave 2: sin(wt + Ag)
— Sum: Wave 1 + Wave 2

Use thistofind: | w _(£) = b’ cos (ant N §(¢1 n ¢2)) y
With h' = 2h cos (%(¢1 — ¢2))/ E
If p1 — ¢pp = 0° then double resulting amplitude: |
constructive interference g om0

If ¢p; — P, = 180° then zero resulting amplitude: ;L

destructive interference
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2 4 6 8 10 12
t (arbitrary units)

Interference: Ap = 180° (Out of Phase)

~—— Wave 1: sin{wt)
—— Wave 2: sin(wt + Ag)
—— Sum: Wave 1 + Wave 2
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Interference of Waves UM

cos Ap = 1
Propagation /\_/W\/
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Interfering waves: A¢p = ¢, — ¢, /
I, = |W; + W,|? = h% + h% + 2h h, cos(Ag)

Regions of constructive interference: I, =2 x (I; + 1)

Regions of destructive interference: I;, =0




Case 2: Experiment with Waves

When both slits are open there are two contributions to the wave the oscillation
at the detector: W (t) = Wy (t) + W,(t)
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First combine: W(t) = W, (t) + W, (t)
Afterwards look at the amplitude and intensity of the resulting wave!




Case 2: Experiment with Waves

When both slits are open there are two contributions to the wave the oscillation
at the detector: W (t) = Wy (t) + W,(t)
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1 DETECTOR VA . No wave
; / < « Big wave
L / - No wave
%) % - - —»+—— Bigwave
WAVE % « // \\ a No wave
SOURCE HQ 4 « / };'2 Y Bigwave

Contrary to “bullets” we can not just add up Intensities
But we have to first add the waves.

WALL ABSORBER [, = |2 hp = [Py + Fol?
l» = |ha|?

Interference pattern: I, = |[W; + W,|? = h% + h5 + 2h h, cos(A¢)

Regions where waves are amplified and regions where waves are cancelled.




Double Slit Experiment with Light (Young)

A double slit experiment
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The Double Slit Experiment

Case 3:
An Experiment with Electrons




Case 3: Experiment with Electrons

From the detector counts deduce again the probabilities P, and P,
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What do we expect when both slits are open?




Case 3: Experiment with Electrons
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Case 3: Experiment with Electrons
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Case 3: Experiment with Electrons
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Case 3: Experiment with Electrons
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Case 3: Experiment with Electrons
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Case 3: Experiment

An Interference pattern!
The electron wave function behaves exactly like classical waves.
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Add the wave amplitudes:

The probability is the square of the sum:
Pio= lWaal? = [y +wol?= [y |2+ [y, |2+ 2yqy,




Case 3: Experiment with Electrons

Perhaps the electrons interfere with each other.
Reduce the intensity, shoot electrons one by one: samevresult.
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Case 3: Experiment with Electrons

Perhaps the electrons interfere with each other.
Reduce the intensity, shoot electrons one by one: same result.

X
¢ 7 '
>
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.7 |detected as a “lump” on the =
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El_l‘g.?fff screen, apparently it has —

ol gone through both slits! e
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P.S.: P> = |y, |?

Classically, light behaves light waves. However, if you shoot light,
photon per photon, it “comes in lumps”, just like electrons.
Quantum Mechanics: for photons it is the same story as for electrons.



Case 3: Experiment with Electrons

Perhaps the electrons interfere with each other.
Reduce the intensity, shoot electrons one by one: same result.

\WEVES

X

P2 = [yt y,|?

P.S.:
Classically, light behaves light waves. However, if you shoot light,

photon per photon, it “comes in lumps”, just like electrons.
Quantum Mechanics: for photons it is the same story as for electrons.




The Double Slit Experiment

Case 4:
A Different Experiment with Electrons

t




Case 4: Watch the Electrons

Let us try to out-smart the electron: just watch through which slit it goes!
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D, and D, are two “microscopes” looking at the slits 1 and 2, respectively.



Case 4: Watch the Electrons

When we watch through which slit the electrons go, we destroy the interference!
Now the electron behaves just like a classical particle (“bullet”).
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It requires an observation to let the quantum wave function “collapse” into reality.
As long as no measurement is made the wave function keeps “all options open”.




Case 3: Don’t Watch the Electrons

When we don’t watch through through which slit the electrons go,
the electron is an object that interferes with itself!
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It requires an observation to let the quantum wave function “collapse” into reality.
As long as no measurement is made the wave function keeps “all options open”.

If you watch half the time; you only get the interference for the cases you did not watch.



Case 3: Don’t Watch the Electrons

When we don’t watch through through which slit the electrons go,
the electron is an object that interferes with itself!
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By the act of watching a quantum object we interfere with the quantum

system and force it to bring one of its possible quantum states into reality.
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It requires an observation to let the quantum wave function “collapse” into reality.
As long as no measurement is made the wave function keeps “all options open”.

If you watch half the time; you only get the interference for the cases you did not watch.



Wave Particle Duality
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Next lecture we will try to out-smart nature one step further...
... and face the consequences.



Next Lecture: Wheeler’s Delayed Choice

John Wheeler (1911 — 2008):
Famous for work on gravitation
(Black holes — quantum gravity)

Replace detectors D, and D, with telescopes
T, and T, which are focused on slits 1 and 2

What happens if we afterwards would reconstruct
whether the electron went through slit 1 or slit 27

Z
2
o
< Z
] l ﬁ'i'&gce EZ » —
T b Ll ccecrnon
ELECTRON o ] GUN
GUN 2 7
. S *
’ Z
Z

Try to out-smart nature one step further... and face the consequences: Schrodinger’s cat.



Next Lecture...
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