The Relativistic Quantum World

A lecture series on

Relativity Theory and Quantum Mechanics

Quantum

Studium Generale Maastricht Nov 1 - Nov 29, 2023

The Relativistic Quantum World

Lecture notes, written for this course, are available: www.nikhef.nl/~i93/Teaching/
Prerequisite for the course: High school level physics \& mathematics.

Lecture 4

General Relativity and Gravitational Waves

"Do not worry about your difficulties in mathematics.
I can assure you mine are still greater."

- Albert Einstein

Ehrenfest Paradox

Rotating disk with ruler on the edge: Circumference: $C=2 \pi r$

Alice stands next to the disk and sees rulers on disk Lorentz contracted:
$C=2 \pi r / \gamma$
\rightarrow Circumference is smaller!

Bob moves on the disk and sees rulers next to disk contracted:
$C=2 \pi r \cdot \gamma$
\rightarrow Circumference is larger!

> A rotating object is not an inertial frame:
> - Postulate of relativity only worked for inertial frames
> - Need to adapt the postulates: special relativity \rightarrow general relativity

Einstein's "happiest thought"

(Inertial Frame)

Einstein's "happiest thought": there is no way to determine whether you are standing on the earth or accelerating upwards in a rocket in space!

The Eötvös Experiment

Gravity force G depends on Newton's law of gravity: gravitational mass
Centrifugal force F depends on Newton's law of motion inertial mass: inertial mass
The system did not rotate. $\rightarrow \mathrm{F}_{1} / \mathrm{F}_{2}=\mathrm{G}_{1} / \mathrm{G}_{2}$
\rightarrow Experimental proof that indeed gravitational mass is equivalent to inertial mass.

Bending of Light

Bending of light in gravitation field of the Sun

Enstindidelonied Qubornanulsiace
 And it was ahotit time too

Einstein's next thought experiment on light

Particle with mass m falling from tower:

$$
E=m c^{2} \quad \Rightarrow \quad E^{\prime}>E
$$

From quantum mechanics we know that the energy of light is related to frequency (and wavelength): $E=h f=h c / \lambda$

$$
E^{\prime}>E ? ?
$$

$$
\text { Perpetuum mobile? } \Rightarrow \text { No! }
$$

Photon loses energy $g h / c^{2}$ as it travels up the gravitational field!
\rightarrow Wavelength red-shift

$$
\begin{aligned}
E^{\prime} & =m c^{2}+\frac{1}{2} m v^{2}=m c^{2}+m g h \quad\left(E_{k i n}=E_{p o t}\right) \\
& =m c^{2}\left(1+g h / c^{2}\right) \quad \Rightarrow \quad E^{\prime}=h f^{\prime}
\end{aligned}
$$

The Harvard Tower Experiment

Harvard Tower Experiment (Pound-Rebka) at Jefferson lab in Harvard (1960):
Measure red-shift of photons in earth gravitational field.

Gravitational Time Dilation

The photon loses energy as it climbs the gravitational field.

Longer wavelength

Lower
frequency

\rightarrow Time ticks faster at higher altitude.

Accelerating Rocket

From special relativity we know that space contracts at high velocity
Velocity :
0
$<$
v_{1}
$<$
v_{2}
$<$
v_{3}

Space is seen to shrink further and further with increasing velocity!

$$
1 / \gamma=\sqrt{1-\frac{v^{2}}{c^{2}}}
$$

Free falling object and Einstein's Equivalence Principle

Free falling object and Einstein's Equivalence Principle

Free falling object and Einstein's Equivalence Principle

Space-Time curvature

Space contracts near mass and dilates away from it.

An apple falls into the gravitational field and time runs slower and slower:

$$
t^{\prime}=\gamma \cdot t
$$

$$
=\frac{1}{\sqrt{1-2 \frac{G M_{\oplus}}{R c^{2}}}} \cdot t
$$

Time slows near mass and speeds up away from it.

Mass causes curvature in space-time

Relativity and GPS

Time Dilation Effects on Earth

Two effects:

- Time speeds up at the satellite in comparison to earth surface due to gravity
- Time slows down at the satellite due to high velocity compared to person on earth

Clocks in satellite and on earth de-synchronize with ~ 40 msec per day!

Stars and Black Holes

Stars and Black Holes

Gravitational time slowdown near a star with mass M:

$$
\Delta t^{\prime}=\Delta t \sqrt{1-\frac{2 G M}{R c^{2}}}
$$

Schwartzschild radius: $R_{S}=\frac{2 G M}{c^{2}}$

$$
\Delta t^{\prime}=\Delta t \sqrt{1-\frac{R_{S}}{R}}
$$

Stars and Black Holes

Gravitational time slowdown near a star with mass M:

$$
\Delta t^{\prime}=\Delta t \sqrt{1-\frac{2 G M}{R c^{2}}}
$$

Schwartzschild radius: $R_{S}=\frac{2 G M}{c^{2}}$

$$
\Delta t^{\prime}=\Delta t \sqrt{1-\frac{R_{S}}{R}}
$$

Time stand-still:

If $R=R_{\mathrm{s}}$ then $\Delta t=0$

(Time stands still at the horizon of a black-hole)

Example our sun: $\quad G=6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{kg} \mathrm{s}^{2}$

$$
M_{\text {sun }}=2 \times 10^{30} \mathrm{~kg}
$$

(Newton's gravitation constant)
$\rightarrow R_{S}=3 \mathrm{~km}$ for a black hole

Stars and Black Holes

Gravitational time slowdown near a star with mass M:

$$
\Delta t^{\prime}=\Delta t \sqrt{1-\frac{2 G M}{R c^{2}}}
$$

Schwartzschild radius: $R_{S}=\frac{2 G M}{c^{2}}$

$$
\Delta t^{\prime}=\Delta t \sqrt{1-\frac{R_{S}}{R}}
$$

Time stand-still:

If $R=R_{\mathrm{s}}$ then $\Delta t=0$

(Time stands still at the horizon of a black-hole)

Example our earth: $G=6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{kg} \mathrm{s}^{2} \quad$ (Newton's gravitation constant)

$$
M_{\text {earth }}=6 \times 10^{24} \mathrm{~kg}
$$

$$
\Rightarrow R_{S}=9 \mathrm{~mm} \text { for a black hole }
$$

Stars and Black Holes

Gravitational time slowdown near a star with mass M:

$$
\Delta t^{\prime}=\Delta t \sqrt{1-\frac{2 G M}{R c^{2}}}
$$

Schwartzschild radius: $R_{S}=\frac{2 G M}{c^{2}}$

$$
\Delta t^{\prime}=\Delta t \sqrt{1-\frac{R_{S}}{R}}
$$

Time stand-still:

$$
\text { If } R=R_{\mathrm{s}} \text { then } \Delta t=0
$$

(Time stands still at the horizon of a black-hole)

Example our earth: $G=6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{kg} \mathrm{s}^{2} \quad$ (Newton's gravitation constant)

$$
M_{\text {earth }}=6 \times 10^{24} \mathrm{~kg}
$$

$$
\rightarrow R_{S}=9 \mathrm{~mm} \text { for a black hole }
$$

Purely curved space-time!

What is a black hole?

What happens when two black holes meet?

Intermezzo: Electric vs Gravitational Fields

Electric field of positive and negative charged particle:

Gravitational field of the earth:

Einstein spent most of his life looking for a unified theory of electromagnetism and general relativity.

Electromagnetic waves:

Caused by accelerating electric particles (electrons) eg.: radio-emission

Maxwell equations:

Gravitational Waves:

Caused by moving masses.
Requires very heavy masses \rightarrow black holes.
(Einstein thought these couldn't be observed)

Electromagnetic and Gravitational Waves

Electromagnetic wave:

Changing electric and magnetic field propagating through space.
Caused by moving (accelerating!) electric charges.

Gravitational wave:
Changing space-time field.
Caused by moving (accelerating!) masses.

Remember the interferometer!

Current Facilities

First detection of gravitational waves: GW150914

"Chirp" of colliding black holes at 1.3 billion lightyears distance

Consistent signals seen in Washington and Louisiana

(GW150914)

Two massive colliding/merging black holes:

Distance: 1.3 billion lightyears
B.H. $1=36 \times$ mass of the sun
B.H. $2=29 \times$ mass of the sun

New BH: 62 solar masses
$\rightarrow 3$ solar masses of energy ($\mathrm{E}=\mathrm{mc}^{2}$) radiated into space

Relative change of space (strain) 0.00000000000000000001\%

Rotation speed increasing to half the light speed!

More energy was emitted in gravitational waves than all the visible (EM) energy of all stars in the universe!

Numerical Relativity Simulation for GW150914

-0.76s

Rainer Weiss

Barry C. Barish

Kip S. Thorne
"For decisive contributions to the LIGO detector and the observation of gravitational waves"

Ultrahigh Vacuüm

Largest vacuüm vessel in Europe: Pressure ~ 10^{-10} mbar

Seismic Damping Table

Evolution of Stars

Neutron Star

Gravitational Waves and ...

Gamma flash 1.7 sec later...

Possible Future Facility...

Einstein Telescope

ET Pathfinder in Maastricht

Nikhef, RWTH Aachen, UCL Louvain, Hasselt, Ghent, Antwerp, VUB Brussels, ULB Brussels, Liege, Radboud University Nijmegen, TU Eindhoven and Hamburg

ET Pathfinder

Fundamental Black hole physics

Looking into the Big Bang

Next week: Quantum Mechanics

Quantum mechanics developed by Bohr and Heisenberg leads to "absurd" thought experiments of Feynman and Wheeler. Einstein and Schrödinger did not like it.

Even today people are debating its interpretation....

Extra Slides

Einstein Quotes

- "Imagination is more important than knowledge"
- "Education is what remains after one has forgotten what one has learned at school."
- "I fear the day that technology will surpass our human interaction. The world will have a generation of idiots."
- "A person who never made a mistake never tried anything new."

For the discovery that black hole formation is a robust prediction of the general theory of relativity.

$1 / 4$: Reinhard Genzel $1 / 4$: Andrea Ghez

For the discovery of a supermassive compact object at the centre of our galaxy.

Supermassive Black Hole in the center of our Galaxy

