The Relativistic Quantum World

A lecture series on

Relativity Theory and Quantum Mechanics

Quantum

Studium Generale Maastricht Nov 1 - Nov 29, 2023

The Relativistic Quantum World

Lecture notes, written for this course, are available: www.nikhef.nl/~i93/Teaching/
Prerequisite for the course: High school level physics \& mathematics.

Einstein's Light Box

 (after a drawing by Bohr)

Bohr and Einstein at Ehrenfest's home in Leiden

A useful tool: Thought experiments:

Consider an experiment that is not limited by our level of technology.
Assume the apparatus works so perfectly that we only test the limits of the laws of nature!

Postulates of Special Relativity

Two observers in so-called inertial frames, i.e. they move with a constant relative speed to each other, observe that:

1) The laws of physics for each observer are the same,
2) The speed of light in vacuum for each observer is the same.

"Absolute velocity" is meaningless.

The Story Sofar: Principle of Relativity

The Sun and earth move in space with a speed of $828000 \mathrm{~km} / \mathrm{h}$. We do not notice it!

The Story Sofar: Time Dilation and Lorentz Contraction

The Story Sofar: A Real Experiment

Muon particles are created at 10 km height. They have a halflifetime of $1.56 \mu \mathrm{~s}$, too short to reach the ground, but:...

Out of a million particles at 10 km , how many will reach the Earth?

Measure muon flux at 10 km height.

μ : mass $207 \mathrm{~m}_{\mathrm{e}}$ charge + or -
Rest halfilife:
$\mathrm{T}_{0}=1.56 \times 10^{-6} \mathrm{sec}$

The Story Sofar: A Real Experiment

Muon particles are created at 10 km height. They have a halflifetime of $1.56 \mu \mathrm{~s}$, too short to reach the ground, but:

- As seen from an observer on earth they live a factor 5 longer
- As seen from the muon particle the distance is a factor 5 shorter

Out of a million particles at 10 km , how many will reach the Earth?

Measure muon flux at 10 km height.
 factor
Rest halflife:

$$
T_{0}=1.56 \times 10^{-6} \mathrm{sec}
$$

Lecture 3

The Lorentz Transformation and Paradoxes

"Imagination is more important than knowledge."

- Albert Einstein

Coordinate Systems

A reference system or coordinate system is used to determine the time and position of an event.

Reference system S is linked to observer Bob at position (x, y, z) $=(0,0,0)$
An event is fully specified by giving its coordinates and time: $(\mathrm{t}, \mathrm{x}, \mathrm{y}, \mathrm{z})$

Reference system S^{\prime} is linked to observer Alice who is moving with velocity v with respect to Bob. The event has: ($t^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}$)

How are the coordinates of an event, say a lightning strike in a tree, expressed in coordinates for Bob and for Alice?

$$
(t, x, y, z) \quad \rightarrow \quad\left(t^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}\right)
$$

Events with space-time coordinates: (x, t)
More general: it is a 4-dimensional coordinate system: (x, y, z, t)

Coordinate transformation

How does Alice's trip look like in the coordinates of the reference system of Bob?

Alice as seen from Maastricht $S=$ fixed reference system in Maastricht

Alice as seen from Bob $S^{\prime}=$ fixed reference to Bob

$$
\begin{aligned}
& t_{2}^{\prime}=t_{2} \\
& 1 \mathrm{~h}=1 \mathrm{~h} \\
& x_{2}^{\prime}=x_{2}-v t \\
& 100 \mathrm{~km}=200 \mathrm{~km}- \\
& \quad 100 \mathrm{~km} / \mathrm{h} \times 1 \mathrm{~h}
\end{aligned}
$$

Bob's reference frame moves with velocity $v(100 \mathrm{~km} / \mathrm{h})$ with respect to Maastricht

Coordinate transformation

How does Alice's trip look like in the coordinates of the reference system of Bob?

Classical (Gallilei Transformation):

$$
\begin{aligned}
t^{\prime} & =t \\
x^{\prime} & =x-v t
\end{aligned}
$$

Coordinate transformation

Hendrik Anton Lorentz (1853-1928)

Dutch Physicist in Leiden

(Nobelprize 1902 with Pieter Zeeman)
To explain the Michelson-Morley experiment he assumed that bodies contracted due to intermolecular forces as they were moving through the aether.
(He believed in the existence if the aether)
Einstein derived it from the relativity principle and also saw that time has to be modified.

Let's go crazy and derive the Lorentz Transformation...

Start with classical Galilei Transformation:

$$
\begin{aligned}
x^{\prime} & =x-v t \\
x & =x^{\prime}+v t^{\prime}
\end{aligned}
$$

Let's try relativity by including a factor f :

$$
\begin{aligned}
x^{\prime} & =f(x-v t) \\
x & =f\left(x^{\prime}+v t^{\prime}\right)
\end{aligned}
$$

For light: $x=c t$ and $x^{\prime}=c t^{\prime}$

Start with classical Galilei Transformation:

$$
\begin{aligned}
x^{\prime} & =x-v t \\
x & =x^{\prime}+v t^{\prime}
\end{aligned}
$$

Let's try relativity by including a factor f :

$$
\begin{aligned}
x^{\prime} & =f(x-v t) \\
x & =f\left(x^{\prime}+v t^{\prime}\right)
\end{aligned}
$$

For light: $x=c t$ and $x^{\prime}=c t^{\prime}$, so:

$$
\begin{aligned}
c t^{\prime} & =f(c t-v t) \\
c t & =f\left(c t^{\prime}+v t^{\prime}\right)
\end{aligned}
$$

Then: $\quad t^{\prime}=f\left(\frac{c-v}{c}\right) t$

$$
t=f\left(\frac{c+v}{c}\right) t^{\prime}
$$

Substitute first into second:

$$
t=f\left(\frac{c+v}{c}\right) f\left(\frac{c-v}{c}\right) t
$$

Divide by $t: \quad 1=\left(\frac{c+v}{c}\right)\left(\frac{c-v}{c}\right) f^{2}=\left(\frac{c^{2}-v^{2}}{c^{2}}\right) f^{2}$
It follows then that: $f^{2}=\frac{c^{2}}{c^{2}-v^{2}}=\frac{1}{1-v^{2} / c^{2}}$

So that we find:

$$
f=\frac{1}{\sqrt{1-v^{2} / c^{2}}}=\gamma
$$

Therefor we have derived the Lorentz transformation:

$$
x^{\prime}=\gamma(x-v t)
$$

Similarly we find the Lorentz transformation for time:
(see lecture notes)

$$
t^{\prime}=\gamma\left(t-\frac{v}{c^{2}} x\right)
$$

whereas the Galilei

$$
t^{\prime}=t
$$

translation was:

Start with classical Galilei Transfc

$$
\begin{gathered}
x^{\prime}=x-v t \\
x=x^{\prime}+v t^{\prime}
\end{gathered}
$$

Let's try relativity by including a

$$
\begin{aligned}
x^{\prime} & =f(x-v t) \\
x & =f\left(x^{\prime}+v t^{\prime}\right)
\end{aligned}
$$

For light: $x=c t$ and $x^{\prime}=c t^{\prime}$, sc

$$
\begin{aligned}
c t^{\prime} & =f(c t-v t) \\
c t & =f\left(c t^{\prime}+v t^{\prime}\right)
\end{aligned}
$$

Then: $\quad t^{\prime}=f\left(\frac{c-v}{c}\right) t$

$$
t=f\left(\frac{c+v}{c}\right) t^{\prime}
$$

Substitute first into second:

$$
t=f\left(\frac{c+v}{c}\right) f\left(\frac{c-v}{c}\right)
$$

"Mr. Osborne, may I be excused? My brain is full."

$$
\begin{aligned}
& \left.\frac{+v}{c}\right)\left(\frac{c-v}{c}\right) f^{2}=\left(\frac{c^{2}-v^{2}}{c^{2}}\right) f^{2} \\
& =2=\frac{c^{2}}{c^{2}-v^{2}}=\frac{1}{1-v^{2} / c^{2}} \\
& f=\frac{1}{\sqrt{1-v^{2} / c^{2}}}=\gamma
\end{aligned}
$$

ived the

$$
x^{\prime}=\gamma(x-v t)
$$

Jrentz
e:

$$
t^{\prime}=\gamma\left(t-\frac{v}{c^{2}} x\right)
$$

$$
t^{\prime}=t
$$

Mathematics isn't too hard...

Lorentz transformation:

$$
\begin{aligned}
t^{\prime} & =\frac{t-\frac{v}{c^{2}} x}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \\
x^{\prime} & =\frac{x-v t}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
\end{aligned}
$$

With new variables:

$$
\begin{array}{ll}
\beta=\frac{v}{c} & \begin{array}{l}
\text { Fraction of } \\
\text { lightspeed }
\end{array} \\
\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} & \begin{array}{l}
\text { Relativistic } \\
\text { factor }
\end{array}
\end{array}
$$

Daily life experience: speed much lower than lightspeed:

$$
\begin{aligned}
& v \ll c, \beta \ll 1 \\
& \gamma \approx 1
\end{aligned}
$$

$$
\begin{aligned}
c t^{\prime} & =\gamma(c t-\beta x) \\
x^{\prime} & =\gamma(x-\beta c t)
\end{aligned}
$$

$$
\begin{aligned}
& t^{\prime} \approx t \\
& x^{\prime} \approx x-v t \\
& \text { (Galilei) }
\end{aligned}
$$

Lorentz transformation:

$$
\begin{aligned}
t^{\prime} & =\frac{t-\frac{v}{c^{2}} x}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \\
x^{\prime} & =\frac{x-v t}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
\end{aligned}
$$

With new variables:

$$
\begin{array}{ll}
\beta=\frac{v}{c} & \begin{array}{l}
\text { Fraction of } \\
\text { lightspeed }
\end{array} \\
\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} & \begin{array}{l}
\text { Relativistic } \\
\text { factor }
\end{array}
\end{array}
$$

Daily life experience: speed much lower than lightspeed:

$$
\begin{aligned}
& v \ll c, \beta \ll 1 \\
& \gamma \approx 1
\end{aligned}
$$

$$
\begin{aligned}
c t^{\prime} & =\gamma(c t-\beta x) \\
x^{\prime} & =\gamma(x-\beta c t)
\end{aligned}
$$

(Einstein)

$$
t^{\prime} \approx t
$$

$$
x^{\prime} \approx x-v t
$$

(Galilei)

Paradoxes Case 1: Sherlock \& Watson

A murder scene is being investigated.
Alice enters a room and from the doorstep shoots Bob, who dies. (Thought experiment!)

Sherlock (S) stands at the doorstep (next to Alice) and observes the events.
Alice shoots at $t=t_{A}$ from position $x=x_{A}$
Bob dies at $t=t_{B}$ at position $x=X_{B}$
Watson (S^{\prime}) passes by on a fast train and sees the same scene. He sees:

- Alice shoots at $\mathrm{t}^{\prime}=\mathrm{t}_{\mathrm{A}}{ }^{\prime}$ from position $\mathrm{x}^{\prime}=\mathrm{x}_{\mathrm{A}}{ }^{\prime}$
- Bob dies at $\mathrm{t}^{\prime}=\mathrm{t}_{\mathrm{B}}{ }^{\prime}$ at position $\mathrm{x}^{\prime}=\mathrm{x}_{\mathrm{B}}{ }^{\prime}$

Paradoxes Case 1: Sherlock \& Watson

A murder scene is being investigated.
Alice enters a room and from the doorstep shoots Bob, who dies. (Thought experiment!)

Sherlock (S) stands at the doorstep (next to Alice) and observes the events.
Alice shoots at $t=t_{A}$ from position $x=x_{A}$ Bob dies at $t=t_{B}$ at position $x=x_{B}$

Watson (S^{\prime}) passes by on a fast train and sees the same scene. He sees:

- Alice shoots at $\mathrm{t}^{\prime}=\mathrm{t}_{\mathrm{A}}{ }^{\prime}$ from position $\mathrm{x}^{\prime}=\mathrm{x}_{\mathrm{A}}{ }^{\prime}$
- Bob dies at $\mathrm{t}^{\prime}=\mathrm{t}_{\mathrm{B}}{ }^{\prime}$ at position $\mathrm{x}^{\prime}=\mathrm{x}_{\mathrm{B}}{ }^{\prime}$

Sherlock: Alice shoots at Bob from x_{A} at time t_{A} Bob dies on position \boldsymbol{x}_{B} and time \boldsymbol{t}_{B}

Causality

Sherlock: Alice shoots at Bob from x_{A} at time t_{A}
Bob dies on position x_{B} and time t_{B}

What does Watson see at $\boldsymbol{v}=\mathbf{0 . 6} \boldsymbol{c}$?

$$
\beta=0.6 \quad, \gamma=\frac{1}{\sqrt{1-0.6^{2}}}=1.25
$$

$$
\begin{aligned}
c t^{\prime} & =\gamma(c t-\beta x) \\
x^{\prime} & =\gamma(x-\beta c t)
\end{aligned}
$$

To make the calculation easy let's take

$$
\begin{aligned}
x_{A} & =0 \text { and } t_{A}=0: \\
c t_{A}^{\prime} & =0 \\
x_{A}^{\prime} & =0 \\
c t_{B}^{\prime} & =1.25\left(c t_{B}-0.6 x_{B}\right) \\
x_{B}^{\prime} & =1.25\left(x_{B}-0.6 c t_{B}\right)
\end{aligned}
$$

If distance $\boldsymbol{x}_{\boldsymbol{B}}>\boldsymbol{c t _ { B }} / \mathbf{0 . 6}$ then $\boldsymbol{c t _ { B }}{ }^{\text {}}<\mathbf{0}$: Bob dies before Alice shoots the gun!

The situation was not possible to begin with!
Light-speed

Nothing can travel faster than the speed of light, also not the bullet of gun!

The requirement: $x_{B}>C t_{B} / 0.6$ implies a bullet speed of : $v=x_{B} / t_{B}>c / 0.6=1.67 c$! Faster than speed of light!

Travelling faster than light would imply you go back in time.

Causality is not affected by the relativity theory!

Alice runs towards a barn with $v=0.8 c(\gamma=1.66)$.
She carries a 5 m long ladder. Bob stands next to 4 m deep barn. Will the ladder fit inside?

Bob: sure, no problem!
He sees a $\mathrm{L} / \gamma=3 \mathrm{~m}$ long ladder

Alice: no way!
She sees a $\mathrm{L} / \gamma=2.4 \mathrm{~m}$ deep barn

Paradox 2: A ladder in a barn?

Paradox 3: The Twin Paradox

Meet identical twins: Jane and Julie

Julie travels to a star with $v=99.5 \%$ of $c(\gamma=10)$ and returns to Jane on earth after one year travel. Jane has aged 10 years, Julie only 1 year.

Jane understands this. Due to Julie's high speed time went slower by a factor of 10 and therefore Jane has aged more than Julie.

But Julie argues: the only thing that matters is our relative speed!

From her spaceship time goes slower on earth! She claims Jane should be younger!
Who is right?
Answer: special relativity holds for constant relative velocities.
When Julie turns around she slows down, turns and accelerates back. At that point time on earth progresses fast for her, so that Jane is right in the end.

Paradox 3: The Twin Paradox

1971: A real experiment!

Joseph Hafele \& Richard Keating tested it with 3 atomic cesium clocks.

- One clock in a plane westward around the earth (against earth rotation)
- One clock in a plane eastward around the earth (with earth rotation)
- One clock stayed behind in the lab.

SO IF YOU GO AT THE SPEED OF LIGHT, YOU GAIN MORE TIME, BECAUSE IT DOESNT TAKE AS LONG TO GET THERE. OF COURSE. THE THEORY OF RELATIVITY ONLY WORKS IF YOU'RE GOING WEST. ?

Galilei and Einstein Transformation law

Galileo Galilei (1564-1642)

With which speed do Alice and the ball hit by Bob approach each other? Intuitive law (daily experience): $30 \mathrm{~m} / \mathrm{s}+10 \mathrm{~m} / \mathrm{s}=40 \mathrm{~m} / \mathrm{s}$

Galilei formula: $\quad w^{\prime}=w+v=30+10=40 \mathrm{~m} / \mathrm{s}$

$$
\frac{\text { Einstein formula: }}{\text { (see lecture 3) }} \quad \begin{aligned}
\mathrm{w}^{\prime} & =\frac{\mathrm{w}+\mathrm{v}}{1+\frac{\mathrm{VW}}{\mathrm{c}^{2}}}=\frac{30+10}{1+\frac{30 \times 10}{9 \times 10^{16}}}= \\
& =39.999999999999997 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Derive the laws for adding speed

Galilei Transformation:

$$
\begin{aligned}
x^{\prime} & =x+v t \\
t^{\prime} & =t
\end{aligned}
$$

Lorentz Transformation:

$$
\begin{aligned}
x^{\prime} & =\gamma(x+v t) \\
t^{\prime} & =\gamma\left(t+\frac{v}{c^{2}} x\right)
\end{aligned}
$$

Derive the laws for adding speed

Galilei Transformation:

$$
\begin{aligned}
x^{\prime} & =x+v t \\
t^{\prime} & =t
\end{aligned}
$$

Lorentz Transformation:

$$
\begin{aligned}
x^{\prime} & =\gamma(x+v t) \\
t^{\prime} & =\gamma\left(t+\frac{v}{c^{2}} x\right)
\end{aligned}
$$

Re-write the laws: $x^{\prime}=\gamma x+\gamma v t$

$$
t^{\prime}=\gamma t+\gamma \frac{v}{c^{2}} x
$$

Substitute in frame S: $x=w t$ to find: $x^{\prime}=\gamma w t+\gamma v t$

$$
t^{\prime}=\gamma t+\gamma \frac{v w}{c^{2}} t
$$

Invert the equation for $t^{\prime}: \quad t=\frac{1}{\gamma}\left(\frac{1}{1+\frac{v w}{c^{2}}}\right) t^{\prime}$
Put into the expression for $x^{\prime}: \quad x^{\prime}=\gamma(v+w) \frac{1}{\gamma}\left(\frac{1}{1+\frac{v w}{c^{2}}}\right) t^{\prime}$
Which should be: $x^{\prime}=w^{\prime} t^{\prime}$, therefor: $\quad w^{\prime}=\frac{w+v}{1+\frac{v w}{c^{2}}}$

Derive the laws for adding speed

Galilei Transformation:

$$
\begin{aligned}
x^{\prime} & =x+v t \\
t^{\prime} & =t
\end{aligned}
$$

In the frame of S we have:

$$
x=w t
$$

Then it follows:

$$
\begin{aligned}
& x=w t^{\prime} \\
& x^{\prime}-v t=w t^{\prime} \\
& x^{\prime}-v t^{\prime}=w t^{\prime} \\
& x^{\prime}=(v+w) t^{\prime}
\end{aligned}
$$

Therefore in S^{\prime} :

$$
w^{\prime}=w+v
$$

Lorentz Transformation:
$x^{\prime}=\gamma(x+v t)$
$t^{\prime}=\gamma\left(t+\frac{v}{c^{2}} x\right)$

Re-write the laws: $x^{\prime}=\gamma x+\gamma v t$

$$
t^{\prime}=\gamma t+\gamma \frac{v}{c^{2}} x
$$

Substitute in frame S: $x=w t$ to find: $x^{\prime}=\gamma w t+\gamma v t$

$$
t^{\prime}=\gamma t+\gamma \frac{v w}{c^{2}} t
$$

Invert the equation for $t^{\prime}: \quad t=\frac{1}{\gamma}\left(\frac{1}{1+\frac{v W}{c^{2}}}\right) t^{\prime}$
Put into the expression for $x^{\prime}: \quad x^{\prime}=\gamma(v+w) \frac{1}{\gamma}\left(\frac{1}{1+\frac{v w}{c^{2}}}\right) t^{\prime}$
Which should be: $x^{\prime}=w^{\prime} t^{\prime}$, therefor:

$$
w^{\prime}=\frac{w+v}{1+\frac{v w}{c^{2}}}
$$

Without relativity theory GPS technology would make mistakes of the order of $10 \mathrm{~km} /$ day !

Bob in a rocket passes a star with 0.8 c Alice in a rocket passes a star with 0.6 c In opposite directions.
What is their relative speed?

$$
w^{\prime}=\frac{0.8 c+0.6 c}{1+(0.8 \times 0.6)}=0.95 c
$$

Very different than $w^{\prime}=0.8 \mathrm{c}+0.6 \mathrm{c}=1.4 \mathrm{c}$!!

How about Alice seeing light coming from Bob?

Astronaut with flashlight

Astronaut
flying in
spaceship

How fast does the light go for Alice?
\rightarrow Just put $w=c$ into Einstein's formula:

$$
w^{\prime}=\frac{c+v}{1+\frac{c v}{c^{2}}}=\frac{c+v}{1+\frac{v}{c}}=\frac{c+v}{\frac{1}{c}(c+v)}=\frac{1}{\frac{1}{c}}=c
$$

The speed of light is always the same for each observer!

Consider a box with length L and mass M floating in deep space.

A photon is emitted from the left wall and a bit later absorbed in the right wall.

Center of Mass of box + photon must stay unchanged.

Action $=-$ Reaction: photon momentum is
$\mathrm{Mv}=\mathrm{E} / \mathrm{c}$
$t=L / c$
$\Delta x=v t$
$M \Delta x=m L$
$E L / c^{2}=m L$
$\mathrm{E}=\mathrm{mc}^{2}$
Equivalence of mass and energy!

$\mathrm{E}=\mathrm{mc}^{2}$: see lecture notes

Consider a box with len deep space.

A photon is emitted fror absorbed in the right wi Center of Mass of box +

1: photon momentum is momentum
hoton
jox has moved
love: box
hoton C.O.M.
ive equations
nass and energy!

Conclusions Special Relativity

Simple principle:

- Laws of physics of inertial frames are the same.
- Speed of light is the same for all observers.

Big Consequences:

Space and time are seen differently for different observers.

- Alice's time is a mixture of Bob's time and space and vice versa.
- Alice's space is a mixture of Bob's time and space and vice versa.

$$
\begin{aligned}
c t^{\prime} & =\gamma(c t-\beta x) \\
x^{\prime} & =\gamma(x-\beta c t)
\end{aligned}
$$

- Time dilation and Lorentz contraction
- Energy and mass are equivalent

General Relativity: inertial mass = gravitational mass

