The Relativistic Quantum World

A lecture series on

Relativity Theory and Quantum Mechanics

Quantum

Studium Generale Maastricht Nov 1 - Nov 29, 2023

The Relativistic Quantum World

Lecture notes, written for this course, are available: www.nikhef.nl/~i93/Teaching/
Prerequisite for the course: High school level physics \& mathematics.

Lecture 2

Time Dilation and Lorentz Contraction

"I have no special talent. I am only passionately curious."

- Albert Einstein

Coordinate Systems

A reference system or coordinate system is used to determine the time and position of an event.

Reference system S is linked to observer Bob at position (x, y, z) $=(0,0,0)$
An event (batter hits the ball) is fully specified by giving its coordinates in time and space: $(\mathrm{t}, \mathrm{x}, \mathrm{y}, \mathrm{z}$)

Reference system S^{\prime} is linked to observer Alice who moves with velocity " v " with respect to S of Bob.

How are the coordinates of the event of Bob (batter hits the ball) expressed in coordinates for Alice ($t^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}$) (running outfielder) ?

How is the trajectory of the ball for Alice related to that for Bob?

Isaac Newton (1689)

Galileo Galilei (1636)
velocity = distance / time , but are distance and time the same for Bob and Alice?

"Classical" law of adding velocities assumes
time is universal for all observers.

Let us first look at the concept of "simultaneity" in the eyes of Einstein.

Simultaneity of moving observers ("Gedankenexperiment")

Bob sees two lightning strokes at the same time. $A C=B C=10 \mathrm{~km}$.
At the time of the lightning strike Alice passes Bob at position D. Also: $A D=B D=10 \mathrm{~km}$.

Alice sees the same events from the speeding train.

By the time the light has travelled 10 km , Alice moved a bit towards B and the light of B reaches her before A.

Since also for Alice, the speed of light from $A D$ is the same as that of $B D$ she will conclude that strike B happened before strike A.

Bob says two lightnings are simultaneous, Alice claims they are not. Who is right?

In case Bob and Alice travelling in empty space: who is moving and who is not?
Simultaneity of events depends on the speed of the observer!

Alternative Illustration

Alternative Illustration

View from inside

View from outside

SO IF YOU GO AT THE SPEED OF LIGHT, YOU GAIN MORE TIME. BECAUSE IT DOESNT TAKE AS LONG TO GET THERE. OF COURSE, THE THEORY OF RELATIVITY ONLY WORKS IF YOU'RE GOING WEST.

Relativity of Length ("Gedankenexperiment")

Alice: measure the length of the train by setting simultaneously two tick marks at the track at position F (front) and R (rear)

Since Alice and Bob don't agree on the simultaneity of making the tick marks they will observe a different length. Alice will claim Bob puts tick mark at Front too early and rear too late such that he sees a shorter train: Lorentz contraction.

Relativity of Length ("Gedankenexperiment")

Alice: measure the length of the train by setting simultaneously two tick marks at the track at position F (front) and R (rear)

Since Alice and Bob don't agree on the simultaneity of making the tick marks they will observe a different length. Alice will claim Bob puts tick mark at Front too early and rear too late such that he sees a shorter train: Lorentz contraction.

Lorentz Contaction \& Relativity

Red train passenger experiences with his fingertips a contracted green train car:

Green train passenger experiences with his fingertips a contracted red train car:

Lorentz Contaction \& Relativity

Light-clock: 300 million ticks per second.

Perfect clock on a Relativistic Train

S: Alice in the train:

S^{\prime} : Bob at the station:

Bob sees that the ticks of Alice's clock slow down!
Bob concludes that time runs slower for Alice than for himself:
Time Dilation!!!

$$
\Delta t^{\prime}=\frac{1}{\sqrt{1-\left(v^{2} / c^{2}\right)}} \cdot \Delta t \equiv \gamma \cdot \Delta t
$$

Time Dilation

S: Alice on the train: $\quad \underline{S^{\prime}: B o b}$ at the station:

$$
\Delta t^{\prime}=\frac{1}{\sqrt{1-\left(v^{2} / c^{2}\right)}} \cdot \Delta t \equiv \gamma \cdot \Delta t
$$

For "low" ($\boldsymbol{v} \ll \boldsymbol{c}$) relative speeds: no effect, time stays the same. This we know from every day life.

For "high" ($\boldsymbol{v} \rightarrow \boldsymbol{c}$) relative speeds: large effect, time runs very slow! This we have never really seen in every day life.

$$
\Delta t^{\prime}=\frac{1}{\sqrt{1-\left(v^{2} / c^{2}\right)}} \cdot \Delta t \equiv \gamma \cdot \Delta t
$$

Example:

$$
\begin{aligned}
& \text { Rocket goes at } \\
& \mathrm{v}=0.8 \mathrm{c}=4 / 5 \mathrm{c}: \gamma=\frac{1}{\sqrt{1-\left(\frac{4}{5}\right)^{2}}}=\frac{1}{\sqrt{\frac{9}{25}}}=\frac{5}{3}
\end{aligned}
$$

Lorentz Contraction (Gedankenexperiment)

Alice boards a super spaceship with her clock and travels with $v=0.8 c$ to a distant star ($L=8$ light-years).

From earth, Bob calculates that the trip takes about 10 years, since: $L=v t \rightarrow t=L / v \rightarrow t=8 / 0.8=10$ Bob calculates that since Alice's clock runs slower, for her the trip takes 6 years, since $\gamma=1 / \vee\left(1-0.8^{2}\right)=5 / 3$ and

$$
\mathrm{L}=\mathrm{vt}=\mathrm{v} \gamma \mathrm{t}^{\prime} \quad \rightarrow \mathrm{t}^{\prime}=\mathrm{t} / \gamma=6
$$

Since:

1) Alice and Bob agree on the velocity v
2) Alice and Bob agree on the number of clock ticks
3) For Alice a clock tick does not change, so the trip takes indeed 6 years
Alice observes: $\underline{L^{\prime}=v t^{\prime}=0.8 \times 6=4.8 \text { light-years ! }}$
Lorentz contraction: $L^{\prime}=L / \gamma$

$L^{\prime}=L / \gamma=L \cdot\left(\sqrt{1-v^{2} / c^{2}}\right)$

Lorentz Contraction and time dilation

This is called: Lorentz contraction: $L^{\prime}=L / \gamma . \quad$ Distances shrink at high velocities!

This is called: Lorentz contraction: $L^{\prime}=L / \gamma$. Distances shrink at high velocities!

Colliding Lead Nuclei "Pancakes" at the LHC

Different perspectives of the universe

particle

Muon particles revisited

Time dilation:

$$
\Delta t^{\prime}=\gamma \Delta t
$$

Lorentz contraction:
$L^{\prime}=L / \gamma$
with the relativistic factor:

$$
\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

Two definitions:
Time in rest frame = "eigen-time" or "proper-time"
Length in rest frame = "proper length"

Causality...

Travelling to the future...

