The Relativistic Quantum World

A lecture series on

Relativity Theory and Quantum Mechanics

Quantum

Studium Generale Maastricht Nov 1 - Nov 29, 2023

Who am I

Email: marcel.merk@nikhef.nl

```
CV: 1976-1982 : High-school St. Maartenscollege, Maastricht
    1982 - 1987 : Study Physics at Radboud University, Nijmegen
    1987-1991 : PhD study in Nijmegen and CERN
    1991-1994 : Postdoc Carnegie Mellon University, Pittsburgh
    1994-1997 : Postdoc Nikhef, Amsterdam
    1997-2000 : Fellow Royal Dutch Academy at Utrecht
    2000 - today: Researcher at Nikhef, Amsterdam
    2 0 0 5 \text { - today: Endowed Professor at the VU, Amsterdam}
    2020 - today: Professor at the University of Maastricht
    2023 - today: Member Kon. Holl. Maatschappij Wetenschappen
```


Website: www.nikhef.nl/~i93

Research:
 - Why a matter-vs-antimatter asymmetry in nature? - The Large Hadron Collider at CERN.

Relativity and Quantum Mechanics

"There is nothing new to be discovered in physics now. All that remains is more precise measurements." - Lord Kelvin on Physics in 1900

However, there were two unsolved issues:

1. The existence of the mysterious aether
2. The stability of the atom
\rightarrow Relativity Theory
\rightarrow Quantum Mechanics

Albert Einstein

Niels Bohr

Werner Heisenberg

Erwin Schrödinger

Paul Dirac

Relativity and Quantum Mechanics

Einstein's Light Box

 (after a drawing by Bohr)

Bohr and Einstein at Ehrenfest's home in Leiden

A useful tool: Thought experiments:

Consider an experiment that is not limited by our level of technology.
Assume the apparatus works so perfectly that we only test the limits of the laws of nature!

Lecture 1
 The Principle of Relativity and the Speed of Light

"If you can't explain it simply you don't understand it well enough" - Albert Einstein
"Everything should be made as simple as possible, but not simpler" - Albert Einstein

Albert Einstein (1879-1955)

"Annus Mirabilis" 1905:

- Special theory of relativity
- Fundamental change interpreting space and time
- Equivalence of mass and energy: $E=m c^{2}$
- The photo electric effect \rightarrow Nobel prize 1921
- Quantum Mechanics: light consists of photon-quanta
- Brownian Motion
- Demonstration of existence of atoms

Although these studies were motivated by curiosity, they eventually had a large impact on society: computing and communication technology, health-care technology, navigation, military, ...

What is the speed of light? " $300000 \mathrm{~km} / \mathrm{s} "$	
Relative to what?	"to the vacuum" ?

Einstein: "The speed of light in vacuum is always the same." $c \approx 300000 \mathrm{~km} / \mathrm{s}$

Galilei Transformation law

With which speed do Alice and the ball hit by Bob approach each other?
Intuitive law (daily experience): $30 \mathrm{~m} / \mathrm{s}+10 \mathrm{~m} / \mathrm{s}=40 \mathrm{~m} / \mathrm{s}$
More formal: Observer S (Bob) observes the ball with relative velocity: W Observer S^{\prime} (Alice) observes the ball with relative velocity: W^{\prime} The velocity of S^{\prime} with respect to S is: V

$$
w^{\prime}=w+v
$$

This is the Galileian law for adding velocities.

Galilei Transformation law

With which speed do Alice and the light sent by Bob approach each other? Intuitive law: $300000 \mathrm{~km} / \mathrm{s}+100000 \mathrm{~km} / \mathrm{s}=400000 \mathrm{~km} / \mathrm{s}$???

More formal: Observer S (Bob) observes the light with relative velocity: W
Observer S' (Alice) observes the light with relative velocity: W' The velocity of S^{\prime} with respect to S is: V

$$
w^{\prime}=w+v
$$

This is the Galileian law for adding velocities.

Alice, Bob and Real Speed

Alice cycles with $v=20 \mathrm{~km} / \mathrm{h}$
The boat moves with $w=10 \mathrm{~km} / \mathrm{h}$
Bob sees $20 \mathrm{~km} / \mathrm{h}+10 \mathrm{~km} / \mathrm{h}=30 \mathrm{~km} / \mathrm{h}$
\rightarrow What is now the "real" speed??

Alice' cabin has no window and she wants to determine whether the boat moves by doing an experiment.
 Can she find out she's moving $30 \mathrm{~km} / \mathrm{h}$?

Astronauts in the ISS do not notice that they move with $29000 \mathrm{~km} / \mathrm{h}$!

Absolute velocity does not exist!!!

> Inertial frames: Observers that move with a constant relative velocity

Postulates of Special Relativity

Two observers in so-called Inertial frames, i.e. they move with a constant relative speed to each other, observe that:

1) The laws of physics for each observer are the same,
2) The speed of light in vacuum for each observer is the same.

A thought experiment:
Bob measures the speed of light rays.
\rightarrow What does he find? $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ Alice also measures the speed of the same light rays.
\rightarrow What does she find? $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$

$$
3 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

Galilei and Einstein Transformation law

Bob
 Batter

Alice
Running outfielder

Galileo Galilei (1564-1642)

With which speed do Alice and the ball hit by Bob approach each other? Intuitive law (daily experience): $30 \mathrm{~m} / \mathrm{s}+10 \mathrm{~m} / \mathrm{s}=40 \mathrm{~m} / \mathrm{s}$

Galilei formula: $\quad w^{\prime}=w+v=30+10=40 \mathrm{~m} / \mathrm{s}$

$$
\frac{\text { Einstein formula: }}{\text { (see lecture 3) }} \quad \begin{aligned}
\mathrm{w}^{\prime} & =\frac{\mathrm{w}+\mathrm{v}}{1+\frac{\mathrm{VW}}{\mathrm{c}^{2}}}=\frac{30+10}{1+\frac{30 \times 10}{9 \times 10^{16}}}= \\
& =39.999999999999997 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

With which speed do Alice and the light sent by Bob approach each other? Intuitive law: $300000 \mathrm{~km} / \mathrm{s}+100000 \mathrm{~km} / \mathrm{s}=400000 \mathrm{~km} / \mathrm{s}$

Galilei formula: $\quad w^{\prime}=w+v=3 \times 10^{8}+1 \times 10^{8}=4 \times 10^{8} \mathrm{~m} / \mathrm{s}$

$$
=400000 \mathrm{~km} / \mathrm{s}
$$

$\begin{gathered}\text { Einstein formula: } \\ \text { (see lecture 3) }\end{gathered} w^{\prime}=\frac{w+v}{1+\frac{\mathrm{VW}}{\mathrm{c}^{2}}}=\frac{3 \times 10^{8}+1 \times 10^{8}}{1+\frac{\left(3 \times 10^{8}\right) \times\left(1 \times 10^{8}\right)}{9 \times 10^{16}}}$

$$
=300000 \mathrm{~km} / \mathrm{s} \text { The same speed of light! }
$$

Experiments:

If it's green and it wiggles, ... it's biology,

If it stinks, ... it's chemistry,

If it doesn't work...,
... it's physics.

Measurement of the Speed of Light

Measurement of the Speed of Light in aether

Light waves were believed to be carried by the "aether".

Earth moves through the aether:

Measure light speed with interferometer along two perpendicular directions: Michelson-Morley Experiment (1887)

What do we expect to find for the travel times?

Measurement of the Speed of Light

Light waves were believed to be carried by the "aether".

Earth moves through the aether:

Measure light speed with interferometer along two perpendicular directions: Michelson-Morley Experiment (1887)

Comparison with water in a river

Swimmer crossing a river with flowing water
Light propagating through the aether wind

Expect that the time traversing 100 meter is shorter than the time for 100 meter up- and

Measurement with light: no effect, travel times are the same! downstream.

The speed of light is always constant!

The vacuum is the same for any observer

"Crossing" vs "Up-and-Down"

1. Swimming AD + DA: Time $=$ time $_{1}+$ time $_{2}=$

$$
\begin{aligned}
& =100 /(5-3)+100 /(5+3) \\
& =100 / 2+100 / 8 \\
& =50+12.5=62.5 \mathrm{~s}
\end{aligned}
$$

2. Swimming $A B+B A$: Must swim under an angle A to C to compensate the flow w Effective crossing speed $=\sqrt{5^{2}-3^{2}}=\sqrt{25-9}=\sqrt{16}=4 \mathrm{~m} / \mathrm{s}$ Time $=$ time $_{1}+$ time $_{2}=$ $=100 / 4+100 / 4$
$=25+25=50 \mathrm{~s}$

"Crossing" vs "Up-and-Down"

1. Swimming AD + DA: Time $=$ time $_{1}+$ time $_{2}=$

$$
\begin{aligned}
& =d /(v-w)+d /(v+w) \\
& =d(v+w) /\left(v^{2}-w^{2}\right)+d(v-w) /\left(v^{2}-w^{2}\right) \\
& =2 d v /\left(v^{2}\left(1-w^{2} / v^{2}\right)\right) \\
& =2 d / v \times 1 /\left(1-w^{2} / v^{2}\right)
\end{aligned}
$$

2. Swimming $A B+B A$: Must swim under an angle A to C to compensate the flow w

Effective crossing speed $=\sqrt{v^{2}-w^{2}}=v \sqrt{\left(1-w^{2} / v^{2}\right)}$
Time $=$ time $_{1}+$ time $_{2}=$

$$
\begin{aligned}
& =d / \sqrt{v^{2}-w^{2}}+d / \sqrt{v^{2}-w^{2}} \\
& =2 d /\left(v \sqrt{\left(1-w^{2} / v^{2}\right)}\right) \\
& =2 d / v \times 1 / \sqrt{\left(1-w^{2} / v^{2}\right)}
\end{aligned}
$$

The speed of light is always the same!

Translated to light, replace: $v \rightarrow c$ in aether wind w :

```
Michelson-Morley
measure:
    t}=\mp@subsup{t}{B}{
```


Back to Alice and Bob:
How can we ever measure an absolute velocity in vacuum?

When are we "standing still" with respect to the vacuum?

The only absolute reference is the speed of light and it is always $300000 \mathrm{~km} / \mathrm{s}$.

In special relativity absolute velocity has no meaning, only relative velocities do. Hence: "Theory of relativity".

"Absolute velocity" is meaningless

Completely Counterintuitive!

Cosmic microwave background radiation is light that is emitted in early universe and comes from all directions in space!

So does the dipole define an

Dipole effect of earth
movement in space visible as a sine wave. absolute Lorentz frame in the universe?

Can we measure absolute velocity by comparing to that special reference frame?

After subtraction of the dipole effect what remains is uniform radiation spectrum of 2.7 K

