The Relativistic Quantum World

A lecture series on Relativity Theory and Quantum Mechanics

and the second se

Marcel Merk

HCb

CERN Prévessin

CMS

ATL.

LIC

University of Maastricht, Sept 16 – Oct 14, 2020

The Relativistic Quantum World

Relativity	<u>Sept 16:</u> Lecture 1: The Principle of Relativity and the Speed of Light Lecture 2: Time Dilation and Lorentz Contraction
	<u>Sept 23:</u> Lecture 3: The Lorentz Transformation and Paradoxes Lecture 4: General Relativity and Gravitational Waves
Quantum Mechanics	<u>Sept 30:</u> Lecture 5: The Early Quantum Theory Lecture 6: Feynman's Double Slit Experiment
	<u>Oct 7:</u> Lecture 7: The Delayed Choice and Schrodinger's Cat Lecture 8: Quantum Reality and the EPR Paradox
Standard Model	<u>Oct 14:</u> Lecture 9: The Standard Model and Antimatter Lecture 10: The Large Hadron Collider

Lecture notes, written for this course, are available: <u>www.nikhef.nl/~i93/Teaching/</u> Prerequisite for the course: High school level mathematics.

Lecture 10

The Large Hadron Collider

Hunting the Higgs at the LHC

Pieke Dassen: art

Hunting the Higgs at the LHC

CERN: *the LHC Large Hadron Colldir*

ISSE

FRANC

CMS

LHCb-

LHC 27 km

100

CERN Prévessin

ATLAS

SPS_7 km

CERN Mevrin

ALIC

The LHC

Beam energy equal to that of a TGV at full speed.

CERN: the LHC

CERN: *The LHC*

Tunnel of 27 km, 100 meter deep underground

The Atlas Experiment

The Atlas Experiment

The Atlas Experiment

Largest photo camera in the world

- 45m x 25 m
- 2500 physicists

80 MegaPixel camera: 40.000.000 pic's per second

The Atlas Experiment under construction

The Atlas Experiment under constructio

The Atlas muon detector

Atlas: side-view

Discovery of Higgs boson

Discovery of Higgs boson

November 20, 2009

Collisions of Particles

All possibilities of Nature will be produced

All possibilities of Nature will be produced

Collecting data and testing the theory

 $Higgs \rightarrow \gamma \gamma ?$

CMS Experiment at the LHC, CERN Data recorded: 2012-May-13 20:08:14.621490 GMT Run/Event: 194108 / 564224000

HIGGS->

Atlas:

Announcement Higgs discovery

Nobel prize in Physics 2013

Francois Englert

Peter Higgs

The Standard Model

"The formula"

"Elementary quanta of Nature"

2

The 'Higgs' field ϕ

Higgs Field / and Particle //

- Higgs field is uniform, hard to see
- Higgs boson particle is "wave" of the field
- Mass results from interaction of matter particles with the Higgs field

• Compare:

- A photon is a quantum of electromagnetic field
- Water wave

July 4, 2012: The Vacuum

Muon, μ Spin $\frac{1}{2}$ Charge -1 Lifetime 2.2 μ s Mass 106 MeV

μ

1937

Tau, τ Spin ½ Charge –1 Lifetime 290 fs Mass 1777 MeV

1975

Hence...

Antimatter research at the LHC

b

 V_{τ}

S

d

Ve

Why do particles come in three generations?

Antiquarks

Antimatter research at the LHC

Why do particles come in three generations?

How did antimatter disappear in the Big Bang?

What's the story with the asymmetrie between matter and antimatter?

Back to the LHC

LHC: from Atlas to the LHCb experiment

23 sep 2010 Run 79646

Quarks

U C

ds

b

19:49:24 Event 143858637

Compare millions of particle and antiparticle decays... ...and look at differences between matter and antimatter!

B-meson particles: Asymmetry between matter and antimatter

B ($\overline{b}d$) particle decays to K⁺($\overline{s}u$) and $\pi^-(\overline{u}d)$ particle anti-B (bd̄) particle decays to $K^{-}(s\overline{u})$ and $\pi^{+}(ud\overline{d})$ particle

- But left and right not the same decay rate!
- Only happens in rare decays in which quarks of all 3 generations are involved.
- Exactly as predicted in the Standard Model!

B-meson particles: Asymmetry between matter and antimatter

• The laws of nature for matter en anti-matter turn out to be clearly not 100% mirror-symmetric !

Are we ready now?

How did antimatter disappear in the Big Bang?

Standard Model explanation not enough!

BIG BANG SCAL

Present Day Acceleration

Big Bang

Inflation

Recent developments: New forces or particles?

Expansion

Precision test of the Standard Model Quarks **B-mesons:** particles with a b-quark С up top Forces S photon Z bosot Higgs boson e electron electron neutrino muon neutrino ons

Enter Penguins

John Ellis loses a game of darts...

Penguins in the Big Bang theory...

 $BR(t-wb) = \frac{\Gamma(t-wb)}{\Gamma(t-wb)}$ t-Wb _ 1 Ves /2 | Ves |2 + | Ves |2 + | Ves |2 ~ (0. 9945)2 (0.0074)* (0.044)* (0.7745)* = 97.827. but F.C.N.C ... 4.5.6 taze t- Kc t-You t + Zn Galas ULAM = - Sn G23 - C12 = 53 5,30 ...

55

Penguins & Lepton Universality?

Are the three generations of particles truly identical?

The quantum penguin test

Lepton Universality?

Measure the processes:

A new fundamental force in nature?

Three experiments observe a small hint:
→ A new line in the fundamental theory?!
→ More investigations are in progress!

How did antimatter disappear in the Big Bang?

New step in understanding of the Big Bang?

"After the discovery of 'antimatter' and 'dark matter', we have just confirmed the existence of 'doesn't matter', which does not have any influence on the Universe whatsoever."

Astronomy

?

?

Particle-Physics

<u>Current status:</u> With LHC in search of a fundamental theory for particles in the Big Bang.

Higgs particle en field Matter – antimatter asymmetry Is there another force of nature? Are 3 copies of particles a natural necessity?

Towards the future: "Circles and Triangles" Particle-colliders: physics of the Big Bang...

(1)

Gravitation-detectors: listening to the Big Bang...

The Relativistic Quantum World

CERN Prévessin

In conclusion:

CMS

- Relativity and quantum mechanics give us a counterintuitive view of nature.
- The relativistic quantum world is the environment of fundamental particles under high energy conditions.
 It is all about fundamental physics of the Big Bang.

LIC

Thank you for joining these lectures!

X-tra slides

Unsolved Puzzles

Trying to understand Big Bang Are there more particles or forces?

Big Bang

Present Day Acceleration

Big Bang

Inflation

Expansion

time

Higgs field appeared during Big Bang

1) How did antimatter disappear in the Big Bang?

Standard Model cannot explain it

2) Higgs mystery: Vacuum stability

Higgs Potential

Zoom out very far:

Can vacuum "tunnel away"?

Our universe in Standard Model:

2) Higgs mystery: Vacuum stability

Is the vacuum actually stable?^{d Model:}

3) Why is the Higgs particle so light?

Higgs gives quantum mechanically mass to:

- Matter Particles, W and Z force particles
- Also to itself \rightarrow Higgs should be *very massive*!

The existence of supersymmetric particles would explain the relatively low mass of the Higgs boson.

Personal Research Focus

Why are there three generations of particles and where is the antimatter? Does the Higgs particle/field perhaps play an even more fundamental role?

Applications

Elementary particle physics: why?

Questions that occupied humanity for 2000 years:

- > What are the building blocks of matter ?
- > Which forces interact between these particles ?

Demokritos atom

Newton forces

Maxwell

electromagnetism

Einstein various...

- Might lead to surprises,
 - Sometimes even useful...
 - But by definition unpredictable

"Continuous applied research to candles would have never resulted in the invention of electric light."

- Might lead to surprises,
 - Sometimes even useful...
 - But by definition unpredictable

"Quantum mechanics and research on atoms of crucial importance for transistors."

- Might lead to surprises,
 - Sometimes even useful...
 - But by definition unpredictable

mathematischen deze fliesstrichen Gleichungen in Vallichung mathematischen deze fliesstrichen Gleichung in Vertrichung B. and the anti-antimeter and the set of the se

\$ 15. 2 - to Buyers How the Tick Timber for der grandstamptel. Auguste - timpersty.

then you grigen, dans des tritig healeningen den Ingente "magnessty

Sif 2 ++ } = 0 } (42-)

R = g Tro Tra. (920) her and der harberen on der Gerafin vor der andere Prijen has dem erstenden Ficher vor und der gerafen for prijen has hen 1921 der Glachenger (2) signere der ert 2. der eine Zurah detterben Rahe Tunkton der g^{an} und ¹20 (224), 224), Bauer auf gemeindet

SH = TATAS - 29 TASTA =- T, T, S, +2 T, S(y "T, A)

$\mathfrak{K}_{p}^{-*}\mathcal{T}_{r,n}^{A}) = \frac{1}{2} S \Big[\mathfrak{J}_{n}^{n} \mathfrak{J}_{n}^{A} \Big(\frac{2\mathfrak{g}_{nd}}{2\mathfrak{x}_{n}} + \frac{2\mathfrak{g}_{nd}}{2\mathfrak{x}_{n}} - \frac{2\mathfrak{g}_{n}}{2\mathfrak{x}_{n}} \Big) \Big]$ un die annden Klammen lavorgehenden

. tale

hunterhous and a torgenaken and gelies an alunador denote (da dec Be

and have a set a first many strend the strend Type of you (y " Type) lake up they mode a set that any property history glade - I a strend to a set a strend to a strend to a set a strend to a

"Without relativitytheory GPS is wrong by ~ 10 km/day!"

- Fundamental research
 - Leads to useful spin-off
 - Medical applications
 - Internet
 - Training of researchers in our society (Philips, ASML, etc, etc)

WW

- People are curious
- Part of humanity
 - What is the use of art? religion?

• Expensive ?

- Total cost LHC: 6 billion
- Cost for NL: 50 million / year

To compare, see budget Ministery of OCW:

Cern	31 miljoen	
ESA	32 miljoen	
Genomics	36 miljoen	
Kon. Bibliotheek	45 miljoen	
TNO	192 miljoen	
Stichting AAP	10 miljoen	
Monumentenzorg	70 miljoen	
Film	20 miljoen	
Archeologie	10 miljoen	(Top-sports: 28 million)

CERN: *the member states*

Member States (Dates of Accession)

The "God Particle"?

Leon Lederman's book:

"The God Particle: If the universe Is the Answer, What Is the Question?" (The publisher did not like the titel "The *goddamn* particle:...")

