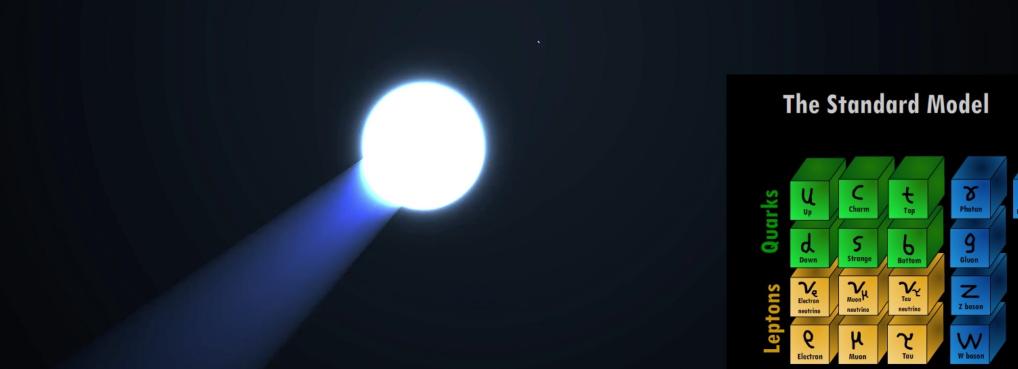
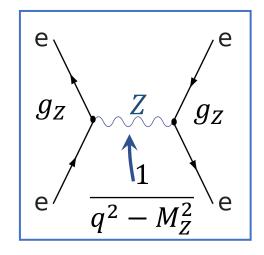


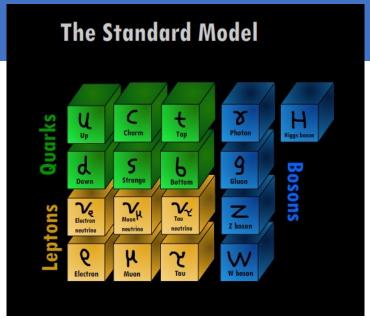
PHY3004: Nuclear and Particle Physics Marcel Merk, Jacco de Vries

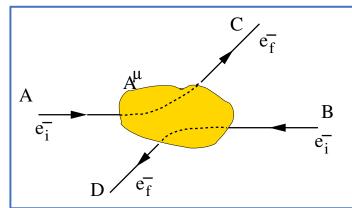


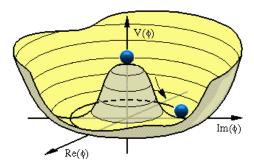
Recap: "Seeing the wood for the trees"

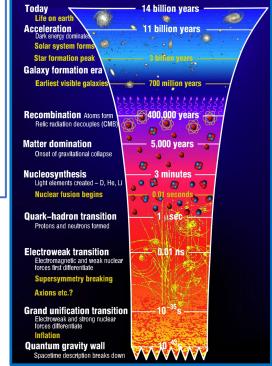
- Lecture 1: "Particles"
 - Zooming into constituents of matter
 - Skills: distinguish particle types, Spin
- Lecture 2: "Forces"
 - Exchange of quanta: EM, Weak, QCD
 - Skills: 4-vectors, Feynman diagrams
- Lecture 3: "Waves"
 - Quantum fields and gauge invariance
 - Skills: Dirac algebra, co- & contra variant
- Lecture 4: "Symmetries"
 - Standard Model, Higgs, Discrete Symmetries
 - Skills: Lagrangians, Chirality & Helicity
- Lecture 5: "Scattering"
 - Cross section, decay, perturbation theory
 - Skills: Dirac-delta function, Feynman Calculus
- Lecture 6: "Detectors"
 - Energy loss mechanisms, detection technologies
 - Skills: which technologies measure what?







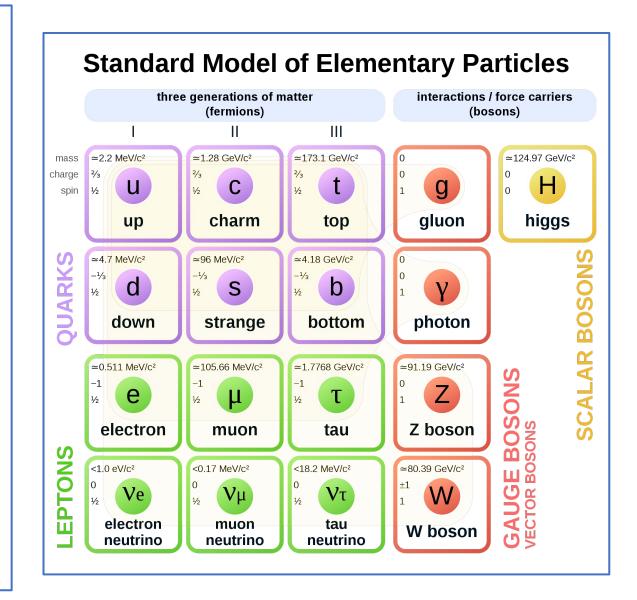




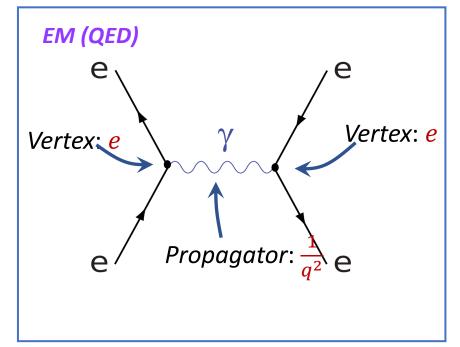
Lecture 1: "Particles"

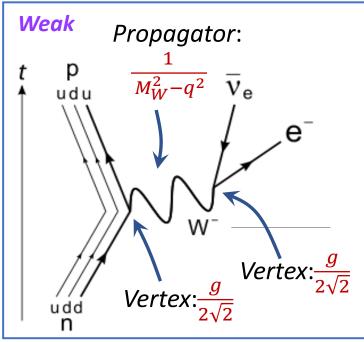
Classification of particles

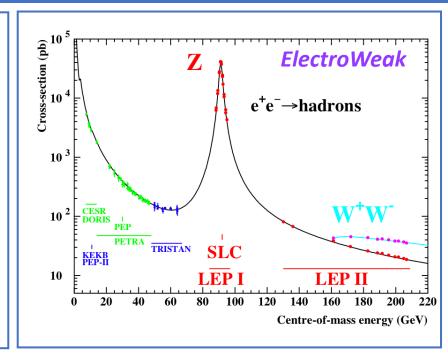
- Lepton: fundamental particle
- Hadron: consist of quarks
 - Meson: 1 quark + 1 antiquark $(\pi^+, B_S^0, ...)$
 - Baryon: 3 quarks $(p, n, \Lambda, ...)$
 - Anti-baryon: 3 anti-quarks
- Fermion: particle with half-integer spin.
 - Antisymmetric wave function: obeys Pauliexclusion principle and Pauli-Dirac statistics
 - All fundamental quarks and leptons are spin-½
 - Baryons (S=1/2, 3/2)
- Boson: particle with integer spin
 - Symmetric wave function: Bose-Einstein statistics
 - Mesons: (S=0, 1), Higgs (S=0)
 - Force carriers: γ , W, Z, g (S=1); graviton(S=2)

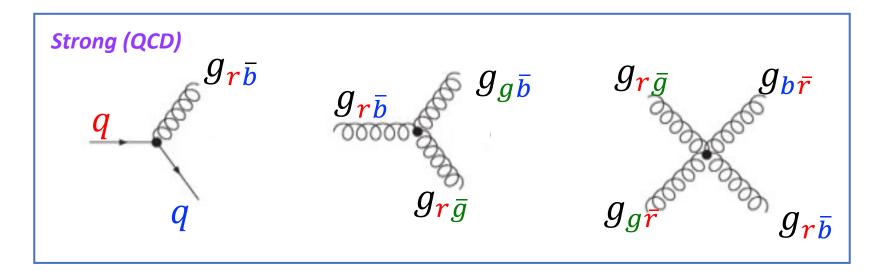


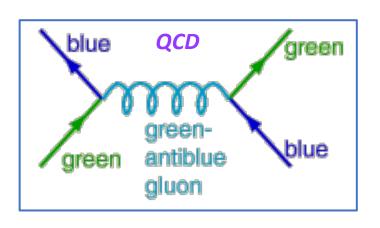
Lecture 2: "Forces"











Lecture 3: "Waves" – wave equations

Probability interpretation (Continuity equation)

$$E \to \hat{E} = i\hbar \frac{\partial}{\partial t}$$

Quantum Mechanics:
$$E \to \hat{E} = i\hbar \frac{\partial}{\partial t}$$
 ; $p \to \hat{p} = -i\hbar \vec{\nabla}$

$$\frac{\partial \boldsymbol{\rho}}{\partial t} + \vec{\nabla} \cdot \vec{\boldsymbol{j}} = 0$$

Non-relativistic spin 0:

$$E = \frac{\vec{p}^2}{2m}$$

Schrödinger:

$$i\hbar\frac{\partial}{\partial t}\psi=-\frac{\hbar^2}{2m}\nabla^2\psi$$

$$\psi = Ne^{i(\vec{p}\vec{x} - Et)} -$$

$$\rho \equiv \psi^* \psi = |N|^2$$

$$\vec{J} \equiv \frac{i\hbar}{2m} \left(\psi \vec{\nabla} \psi^* - \psi^* \vec{\nabla} \psi \right) = \frac{|N|^2}{m} \vec{p}$$

Relativistic spin 0:

$$E^2 = p^2 c^2 + m^2 c^4$$

Example: pions

Klein-Gordon:

$$-\frac{1}{c^2}\frac{\partial^2}{\partial t^2}\phi = -\nabla^2\phi + \frac{m^2c^2}{\hbar^2}\phi$$

$$\partial_{\mu}\partial^{\mu}\phi + m^2\phi = 0$$

$$j^{\mu}(\rho,\vec{j}) = i[\phi^*(\partial^{\mu}\phi) - \phi(\partial^{\mu}\phi^*)]$$

$$\phi = Ne^{i(\vec{p}\vec{x} - Et)} \qquad \rho = 2|N|^2 E \\ \vec{j} = 2|N|^2 \vec{p} \qquad j^{\mu} = 2|N|^2 p^{\mu}$$

Relativistic spin- ½:

$$H = (\vec{\alpha} \cdot \vec{p} + \beta m)$$

Fundamental quarks and leptons

Dirac:
$$\gamma^{\mu} \equiv (\beta, \beta \vec{\alpha})$$

$$i\frac{\partial}{\partial t}\psi = (-i\vec{\alpha}\cdot\vec{\nabla} + \beta m)\psi$$

$$(i\gamma^{\mu}\partial_{\mu}-m)\psi=0$$

$$\psi = u(p)e^{i(\vec{p}\vec{x} - Et)}$$

$$u(p) = \begin{pmatrix} \cdot \\ \cdot \\ \cdot \end{pmatrix}$$

$$j^{\mu} = \bar{\psi} \gamma^{\mu} \psi$$

$$j^0 = \bar{\psi}\gamma^0\psi = \psi^\dagger\psi = \sum_{i=1}^4 |\psi_i|^2$$

Relativistic spin-1:

Fundamental force carriers

Proca:

$$\partial_{\mu}\partial^{\mu}A^{\nu} + m^2A^{\nu} = j^{\nu}$$

EM:
$$A^{\mu} = \gamma \rightarrow m = 0$$

QCD:
$$A^{\mu} = g \rightarrow m = 0$$

Weak:
$$A^{\mu} = W$$
, $Z \rightarrow m \neq 0$

EM: Maxwell equations for \vec{E} and \vec{B} fields

Lecture 3: "Waves" – gauge invariance

Lagrangians:

Spin 0 Scalar field:
$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi) (\partial^{\mu} \phi) - \frac{1}{2} m^2 \phi^2$$

Spin ½ Dirac fermion $\mathcal{L} = i \bar{\psi} \gamma_{\mu} \partial^{\mu} \psi - m \bar{\psi} \psi$

Spin 1 gauge boson (photon) :
$$\mathcal{L} = -\frac{1}{4} (\partial^{\mu} A^{\nu} - \partial^{\nu} A^{\mu}) (\partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu}) - j^{\mu} A_{\mu}$$

Euler Lagrange lead to the wave equations:

$$\frac{\partial \mathcal{L}}{\partial \phi(x)} = \partial_{\mu} \frac{\partial \mathcal{L}}{\partial \left(\partial_{\mu} \phi(x)\right)}$$

(stationary action in field theory)

 $S = \int d^4x \, \mathcal{L}(\phi(x), \partial \phi(x))$

 $\delta S = 0$

All forces result from requiring a symmetry principle: Lagrangian should stay invariant under transformations

1)
$$QED = U(1)$$
 symmetry

$$\psi(x) \rightarrow \psi'(x) = e^{iq\alpha(x)}\psi(x)$$

$$A^{\mu}(x) \rightarrow A^{\prime \mu}(x) = A^{\mu}(x) - \partial^{\mu}\alpha(x)$$

$$\rightarrow$$
 1 E.M. photon field: $A^{\mu}(x)$

$$\mathcal{L} = i\bar{\psi}\gamma_{\mu}\partial^{\mu}\psi - m\bar{\psi}\psi \longrightarrow \mathcal{L} = i\bar{\psi}\gamma_{\mu}D^{\mu}\psi - m\bar{\psi}\psi$$

Covariant derivative: $\partial^{\mu} \rightarrow D^{\mu} \equiv \partial^{\mu} + iqA^{\mu}$

$$\mathcal{L} = i\bar{\psi}\gamma_{\mu}\partial^{\mu}\psi - m\bar{\psi}\psi - q\bar{\psi}\gamma_{\mu}\psi A^{\mu}$$
 Think: $\mathcal{L} = T - V$ "interaction" ψ_{r}

Think:
$$\mathcal{L} = T - V$$

2) Weak = SU(2) symmetry
$$\psi = \begin{pmatrix} \psi_u \\ \psi_d \end{pmatrix}$$

$$\psi(x) \rightarrow \psi'(x) = \exp\left(\frac{i}{2}g\vec{\tau} \cdot \vec{\alpha}(x)\right) \begin{pmatrix} \psi_u \\ \psi_d \end{pmatrix}$$

$$\Rightarrow \text{ 3 weak fields: } W^{\mu+}(x), W^{\mu-}(x), Z^{\mu}(x)$$

"free" "interaction"
$$\psi_r$$

3) QCD = SU(3) symmetry $\psi = \begin{pmatrix} \psi_r \\ \psi_g \\ \psi_b \end{pmatrix}$
 $\psi(x) \rightarrow \psi'(x) = \exp\left(\frac{i}{2}g_s\vec{\lambda} \cdot \vec{\alpha}(x)\right) \begin{pmatrix} \psi_r \\ \psi_g \\ \psi_b \end{pmatrix}$
 \Rightarrow 8 colored gluon fields: $g^{\mu}(x)$

Lecture 4: "Symmetries" – Standard Model – $SU(3)_C \times SU(2)_L \times U(1)_Y$

- The Lagrangian of the Standard Model includes electromagnetic, weak and strong interactions according to the gauge field principle
- Construction of the Lagrangian: $\mathcal{L} = \mathcal{L}_{\text{free}} \mathcal{L}_{\text{interaction}} = \mathcal{L}_{\text{Dirac}} gJ^{\mu}A_{\mu}$
 - With g a coupling constant, J^{μ} a current $(\bar{\psi} O_i \psi)$ and A_{μ} a force field
 - A. Local U(1) gauge invariance: symmetry under complex phase rotations
 - Conserved quantum number: (hyper-) charge $(\partial_{\mu} \to D_{\mu} \equiv \partial_{\mu} + iqA_{\mu})$
 - Lagrangian: $\mathcal{L} = \bar{\psi}(i\gamma^{\mu}D_{\mu} m)\psi = \bar{\psi}(i\gamma^{\mu}\partial_{\mu} m)\psi q\bar{\psi}\gamma^{\mu}\psi A_{\mu}$

 $SU2 \times U1$: Hypercharge = Y; Charge = Q; $Q = T_3 + \frac{1}{2}Y$

Note Spinor:
$$\psi = egin{pmatrix} \psi_lpha \ \psi_eta \ \psi_\gamma \ \psi_\delta \end{pmatrix}$$

- Local SU(2) gauge invariance: symmetry under transformations in isospin doublet space.
 - Conserved quantum number: weak isospin T (LH) $(I\partial_u \to D_u = I\partial_u + igB_u)$
 - Lagrangian: $\mathcal{L} = \overline{\Psi}(i\gamma^{\mu}D_{\mu} m)\Psi = \overline{\Psi}(i\gamma^{\mu}\partial_{\mu} m)\Psi \frac{g}{2}\overline{\Psi}\gamma^{\mu}\vec{\tau}\Psi\vec{b}_{\mu}$ $B_{\mu} = \frac{1}{2}\vec{\tau} \cdot \vec{b}_{\mu} = \frac{1}{2}\tau_{1}^{a}b_{\mu}^{a} = \frac{1}{2}\begin{pmatrix} b_{3} & b_{1} - ib_{2} \\ b_{1} + ib_{2} & -b_{2} \end{pmatrix}$

Note doublet spinors: $\Psi_L = \begin{pmatrix} \psi_u \\ \psi_L \end{pmatrix}$

- C. Local SU(3) gauge invariance: symmetry under transformations in colour triplet space
 - Conserved quantum number: color $(I\partial_u \to D_u = I\partial_u + ig_sC_u)$

• Lagrangian: $\mathcal{L} = \overline{\Phi} (i \gamma^{\mu} D_{\mu} - m) \Phi = \overline{\Phi} (i \gamma^{\mu} \partial_{\mu} - m) \Phi - \frac{g_s}{2} \overline{\Phi} \gamma^{\mu} \vec{\lambda} \Phi \vec{c}_{\mu}$

 C_{μ} are 3x3 matrices \rightarrow gluon fields

Note triplet spinors: $\Phi =$

Lecture 4: "Symmetries" – Standard Model – $SU(3)_C \times SU(2)_L \times U(1)_Y$

$$\mathcal{L} = \bar{\psi} (i \gamma^{\mu} D_{\mu} - m) \psi = \bar{\psi} (i \gamma^{\mu} \partial_{\mu} - m) \psi - q J_{EM}^{\mu} A_{\mu} - \frac{g}{2} \vec{J}_{\text{Weak}}^{\mu} \vec{b}_{\mu} - \frac{g_s}{2} \vec{J}_{QCD}^{\mu} \vec{c}_{\mu}$$

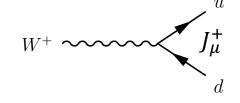
QED U(1)
$$\mathcal{L}_{\mathrm{int}} = -J_{\mu}A^{\mu}$$
 with $J_{\mu} = q \bar{\psi} \gamma_{\mu} \psi$

 $A^{\mu} \longrightarrow J^{Q}_{\mu} \longrightarrow J^{Q}_{\mu}$

Electromagnetic interaction

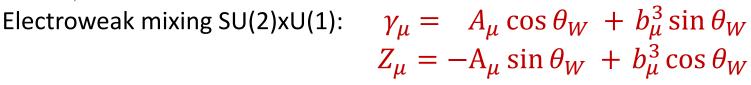
Weak SU(2):
$$\mathcal{L}_{int} = -\vec{J}_{\mu}\vec{b}^{\mu}$$
 with $\vec{J}_{\mu} = \frac{g}{2} \ \overline{\Psi} \ \gamma_{\mu} \vec{\tau} \ \Psi$

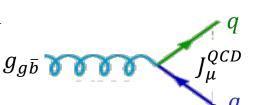
$$W_{\mu}^{\pm} \equiv \frac{1}{\sqrt{2}} \left(b_{\mu}^1 \mp i b_{\mu}^2 \right) \qquad J_{\mu}^{\pm} = \frac{1}{\sqrt{2}} \overline{\Psi} \gamma_{\mu} \tau^{\pm} \Psi \qquad \text{with} \quad \tau^{\pm} = \frac{1}{2} (\tau_1 \pm i \tau_2) \qquad W^+ \sim \sim J_{\mu}^+$$



$$Z_{\mu} \sim b_{\mu}^3$$

$$J_{\mu}^{3} = \frac{1}{2} \overline{\Psi} \gamma_{\mu} \tau^{3} \Psi$$
 with $\tau^{\pm} = \frac{1}{2} (\tau_{1} \pm i \tau_{2})$





Strong interaction

 $SU(3)_{color} \times SU(2)_L \times U(1)_V$ Standard Model:

Lecture 4: Electroweak Quantum Numbers

For weak isospin some people write T_3 while others write I_3

Weak isospin some people write
$$T_3$$
 while others write I_3

Generation

 $C_1 = I_3 + \frac{1}{2}Y$

Or $C_2 = I_3 + \frac{1}{2}Y$
 $C_3 = I_3 + \frac{1}{2}Y$

Or $C_4 = I_3 + \frac{1}{2}Y$
 $C_5 = I_5 + \frac{1}{2}Y$

Leptons
$$C_6 = I_5 + \frac{1}{2}Y$$

Leptons
$$C_7 = I_5 + \frac{1}{2}Y$$
 $C_7 = I_7 + \frac{1}{2}Y$
 $C_7 = I_7 + \frac{1}{2}Y$

Symmetry breaking with a *real* field ϕ

- Explicit mass terms violate the symmetry: $m^2 A_{\mu} A^{\mu} \rightarrow m^2 \left(A_{\mu} + \frac{1}{e} \partial_{\mu} \alpha \right) \left(A^{\mu} + \frac{1}{e} \partial^{\mu} \alpha \right) \neq m^2 A_{\mu} A^{\mu}$
- Add a new field to the Lagrangian:

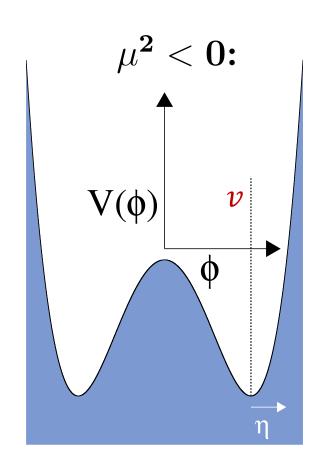
$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi)^{2} - V(\phi) = \frac{1}{2} (\partial_{\mu} \phi)^{2} - \frac{1}{2} \mu^{2} \phi^{2} - \frac{1}{4} \lambda \phi^{4}$$

Massive Klein-Gordon Interaction term (Spin 0, mass = μ) term

The Lagrangian has a minimum for $\phi_0 = \sqrt{-\frac{\mu^2}{\lambda}} = v$ or $\mu^2 = -\lambda v^2$

Conclusion:

- The symmetry of the Lagrangian by adding a symmetric potential ϕ has not been destroyed
- The vacuum is no longer in a symmetric position



- Introduce a complex scalar field: $\phi = \frac{1}{\sqrt{2}}(\phi_1 + i\phi_2)$
- The Lagrangian term is: $\mathcal{L} = (\partial_{\mu}\phi)^*(\partial^{\mu}\phi) V(\phi)$, with $V(\phi) = \mu^2(\phi^*\phi) + \lambda (\phi^*\phi)^2$
- Lagrangian:

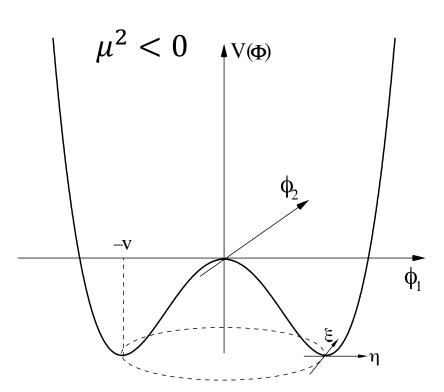
$$\mathcal{L}(\phi_1, \phi_2) = \frac{1}{2} \left(\partial_{\mu} \phi_1 \right)^2 + \frac{1}{2} \left(\partial_{\mu} \phi_2 \right)^2$$
$$-\frac{1}{2} \mu^2 (\phi_1^2 + \phi_2^2) - \frac{1}{4} \lambda (\phi_1^2 + \phi_2^2)^2$$

Conclusion:

- The symmetry of the Lagrangian by adding a symmetric potential ϕ has not been destroyed
- The vacuum is no longer in a symmetric position

The real case includes a complex (isospin doublet) field ϕ

- ϕ degrees of freedom lead to mass terms for the W^+, W^-, Z^0
- ϕ can also couple to fermions \rightarrow particle masses



• Symmetry breaking:

$$\phi_0 = \frac{1}{\sqrt{2}}(\nu + \eta + i\xi)$$

Lecture 5: "Scattering" - non-Rel. 1) Scattering in external potential

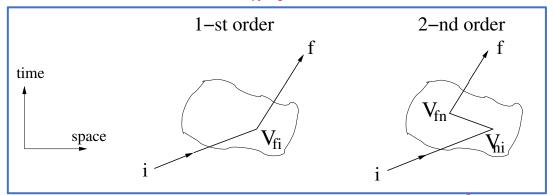
Perturbation theory

1) V(x,t) is fixed

Solve wave equation Iteratively...

$$i\frac{\partial \psi}{\partial t} = \left(H_0 + V(\vec{x}, t)\right)\psi$$

...use plane waves $\psi = \sum_{n=0}^{\infty} a_n(t) \phi_n(\vec{x}) e^{-iE_n t}$

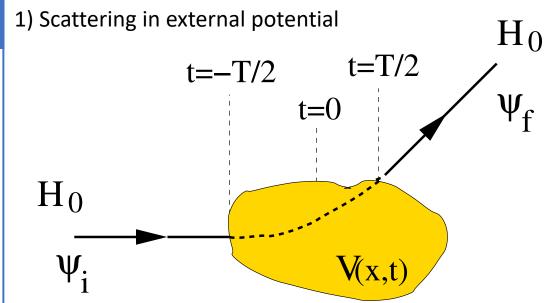


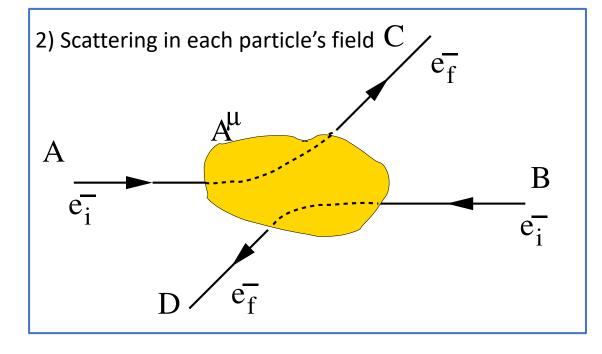
$$\sigma = N/\mathcal{L} \qquad d\sigma = \frac{W_{fi}}{\text{flux}} d\Phi \qquad W_{fi} \equiv \lim_{T \to \infty} \frac{\left| T_{fi} \right|^2}{T}$$

$$T_{fi} = -i \int d^4x \, \psi_f^*(x) V(x) \psi_i(x) = -2\pi V_{fi} \delta \left(E_f - E_i \right)$$
Energy conservation

2) Determine *V* from *A* field scattering particles (Solve Maxwell equation)

Relativistic: $V_{fi} \rightarrow \mathcal{M}$ "matrix element"





Lecture 5: "Scattering" – non-Relativistic

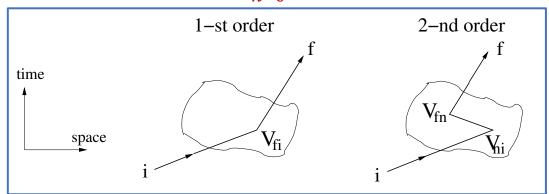
Perturbation theory

1) V(x, t) is fixed

Solve wave equation Iteratively...

$$i\frac{\partial \psi}{\partial t} = \left(H_0 + V(\vec{x}, t)\right)\psi$$

...use plane waves $\psi = \sum_{n=0}^{\infty} a_n(t)\phi_n(\vec{x})e^{-iE_nt}$

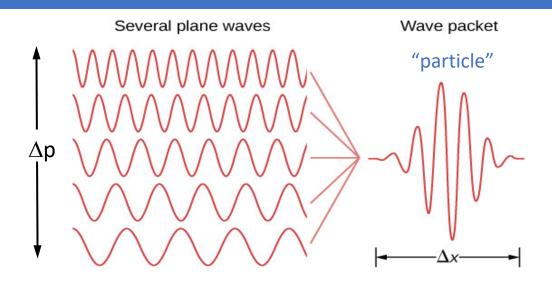


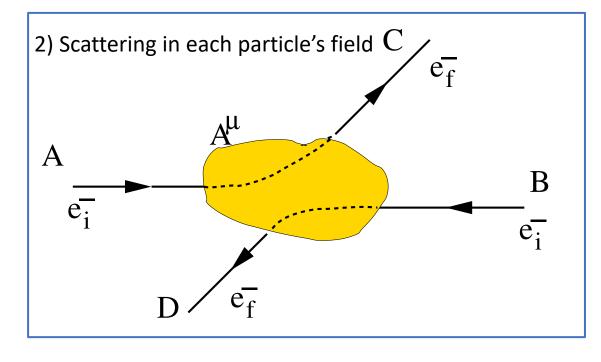
$$\sigma = N/\mathcal{L} \qquad d\sigma = \frac{W_{fi}}{\text{flux}} d\Phi \qquad W_{fi} \equiv \lim_{T \to \infty} \frac{\left|T_{fi}\right|^2}{T}$$

$$T_{fi} = -i \int d^4x \, \psi_f^*(x) V(x) \psi_i(x) = -2\pi V_{fi} \delta \left(E_f - E_i\right)$$
Energy conservation

2) Determine *V* from *A* field scattering particles (Solve Maxwell equation)

Relativistic: $V_{fi} \rightarrow \mathcal{M}$ "matrix element"





Lecture 5: "Scattering" - Relativistic

$$d\sigma = \frac{W_{fi}}{\text{flux}} d\Phi \quad \Rightarrow \quad \sigma = \frac{1}{\text{flux}} \int W_{fi} d\Phi$$

$$\sigma = \frac{S}{4\sqrt{(p_1 \cdot p_2)^2 - (m_1 m_2)^2}} \int |\mathcal{M}|^2 \ (2\pi)^4 \delta^4(p_1 + p_2 - p_3 \dots - p_n) \times \prod_{j=3}^n \frac{1}{2E_j} \frac{d^3 \vec{p}_j}{(2\pi)^3}$$

$$Eg: \text{``2-to-2'' scattering:} \qquad A p_1$$

$$Before \qquad p_2 \quad B$$

$$\sigma = \frac{S}{64\pi^2 (E_1 + E_2)|\vec{p}_1|} \int |\mathcal{M}|^2 \ (2\pi)^4 \delta^4(p_1 + p_2 - p_3 - p_4) \ \frac{d^3 \vec{p}_3}{E_3} \frac{d^3 \vec{p}_4}{E_4} \qquad \frac{d\sigma}{d\Omega} = \left(\frac{1}{8\pi}\right)^2 \frac{S|\mathcal{M}|^2}{(E_1 + E_2)^2} \frac{|\vec{p}_f|}{|\vec{p}_i|}$$

How to determine \mathcal{M} ? \rightarrow Feynman rules (depend on actual theory/interaction):

Feynman rules (ABC theory):

- 1. Diagram: see sketch
- Labels: see sketch
- Two vertices: $(-ig)^2 = -g^2$
- Propagators: one internal line: $\frac{\iota}{a^2 m_c^2}$ \rightarrow Master level education
- Conservation of \vec{E} , \vec{p} twice: $(2\pi)^4 \delta^4(p_1 p_3 q)$ and $(2\pi)^4 \delta^4(p_2 + q p_4)$
- Integrate: one integral: $1/(2\pi)^4 d^4q$

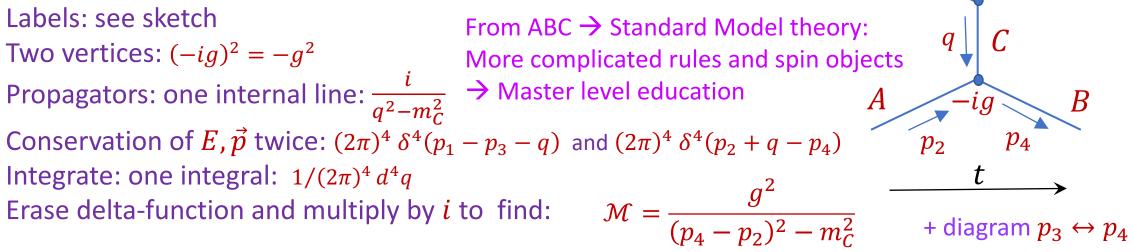
Example diagram:

$$A + A \rightarrow B + B$$

From ABC → Standard Model theory:

More complicated rules and spin objects

$$\mathcal{M} = \frac{g^2}{(p_4 - p_2)^2 - m_0^2}$$



$A + A \rightarrow B + B$ Scattering: $d\sigma/d\Omega$

• Look at the matrix element and assume that $m_A = m_B = m$ and $m_C = 0$ (eg. a photon): $\mathcal{M} = \frac{g^2}{(n_2 - n_2)^2} + \frac{g^2}{(n_4 - n_2)^2}$

$$(p_4 - p_2)^2 - m_C^2 = p_4^2 + p_2^2 - 2p_2 \cdot p_4$$

$$= m_4^2 + m_2^2 - 2p_2 \cdot p_4$$

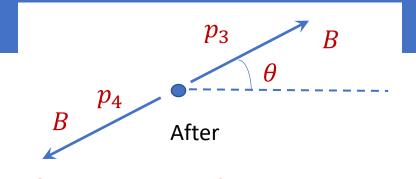
$$= 2m^2 - 2E_2E_4 + 2(\vec{p}_2 \cdot \vec{p}_4)$$

$$= 2m^2 - 2\left(\sqrt{m^2 + \vec{p}^2}\right)\left(\sqrt{m^2 + \vec{p}^2}\right) + 2\vec{p}^2\cos\theta$$

$$= -2\vec{p}^2(1 - \cos\theta)$$

$$\mathcal{M} = \frac{g^2}{-2\vec{p}^2(1-\cos\theta)} + \frac{g^2}{-2\vec{p}^2(1+\cos\theta)} = -\frac{g^2}{2\vec{p}^2\sin^2\theta}$$

 $(p_3 - p_2)^2 - m_C^2 = -2\vec{p}^2(1 + \cos\theta)$



Note $p_i \equiv p_i^\mu$ and that for 4-vectors: $p_i \cdot p_j = p_{i\mu} \ p_j^\mu = E_i E_j - \vec{p}_i \cdot \vec{p}_j$ and that $p^2 = p_\mu p^\mu = E^2 - \vec{p}^2 = m^2$ (Invariant mass)

• Plug in: (S = 1/2) $\frac{d\sigma}{d\Omega} = \left(\frac{1}{8\pi}\right)^2 \frac{S|\mathcal{M}|^2}{(E_1 + E_2)^2} \frac{|\vec{p}_f|}{|\vec{p}_i|}$ $\frac{d\sigma}{d\Omega} = \frac{1}{2} \left(\frac{g^2}{16\pi E \vec{p}^2 \sin^2 \theta}\right)^2$

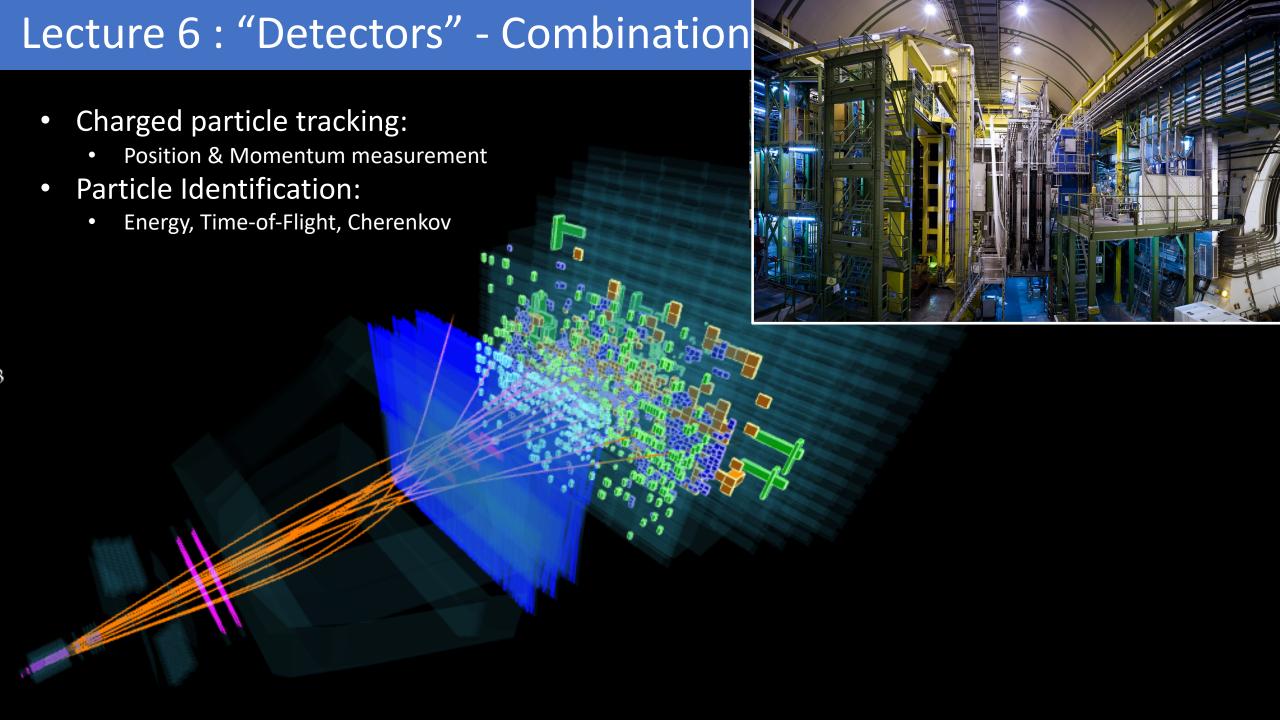
Lecture 5 : Towards Experimental

- Consider beam of particles on a target
 - Luminosity \mathcal{L} is number of particles per unit time, per unit area.
 - Number of particles passing through area $d\sigma$: $dN = \mathcal{L} d\sigma$
 - Number of particles scattering into solid angle $d\Omega : dN = \mathcal{L} d\sigma = \mathcal{L} D(\theta) d\Omega$
 - By counting one can measure the differential cross section: $\frac{d\sigma}{d\Omega} = D(\theta) = \frac{dN}{\mathcal{L} d\Omega}$
- Alternatively the total cross section: $N = \mathcal{L} \sigma$

These aspects are needed when you Compare theory with experiments.

- Experimental particle physics:
 - Measure number of events N and the luminosity \mathcal{L} to find cross section $\sigma = N/\mathcal{L}$
 - Compare with theoretical calculation of σ (or $\frac{d\sigma}{d\Omega}$) using e.g. Standard Model

Lecture 6 : "Detectors" - Technologies



Skill: Four vectors & co- and contra-variance

Griffiths: chapter 3

- Four vector: $x^{\mu} = (x^0, x^1, x^2, x^3)$ with $x^0 = ct \Rightarrow x^0 = t$ (since $c \equiv 1$)
- We call this a *contravariant* vector and: $x^{\mu} = (x^0, \vec{x})$
- Lorentz transformation:

$$x^{\mu'} = \Lambda^{\mu}_{\nu} x^{\nu} \; ; \; \Lambda^{\mu}_{\nu} = \begin{pmatrix} \gamma & -\beta & 0 & 0 \\ -\beta & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Lorentz transformation:
$$x^{0'} = \gamma(x^0 - \beta x^1)$$

$$x^{\mu'} = \Lambda^{\mu}_{\nu} x^{\nu} ; \ \Lambda^{\mu}_{\nu} = \begin{pmatrix} \gamma & -\beta & 0 & 0 \\ -\beta & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$x^{0'} = \gamma(x^0 - \beta x^1)$$

$$x^{1'} = \gamma(x^1 - \beta x^0)$$

$$x^{2'} = x^2$$

$$x^{2'} = x^2$$

$$x^{3'} = x^3$$

$$x^{3'} = x^3$$

$$x^{3'} = x^3$$

- Lorentz transformation leaves the following invariant: $|x|^2 = x^{0^2} |\vec{x}|^2$
 - $|x|^2 = x^{0^2} |\vec{x}|^2 = (ct)^2 |\vec{x}|^2 = (ct')^2 |\vec{x}'|^2$
- Introduce *covariant* vectors $x_{\mu} = \sum_{\nu} g_{\mu\nu} x^{\nu} = g_{\mu\nu} x^{\nu}$

Note the Einstein summation convention

- Inproduct invariants: $I = a_{\mu}b^{\mu} = a \cdot b = a'_{\mu}b'^{\mu}$ for any Lorentz 4-vectors a^{μ} and b^{μ}
 - Example invariant mass: $E^2 = \vec{p}^2c^2 + m^2c^4 \Rightarrow p^\mu = (E, \vec{p}) \Rightarrow p_\mu p^\mu = E^2 \vec{p}^2 = m^2$

Skill: Four vectors & co- and contra-variance

Contravariant vector:

$$x^{\mu} = (ct, \vec{x})$$
$$p^{\mu} = (E, \vec{p})$$

But covariant derivative:

$$\partial^{\mu} = \left(\frac{1}{c} \frac{\partial}{\partial t}, -\overrightarrow{\nabla}\right)$$

Covariant vector:

$$x_{\mu} = (ct, -\vec{x})$$
$$p_{\mu} = (E, -\vec{p})$$

But covariant derivative:

$$\partial_{\mu} = \left(\frac{1}{c} \frac{\partial}{\partial t}, \overrightarrow{\nabla}\right)$$

Note that the minus sign is "opposite" to the case of the coordinate four-vectors.

• Use cases:

$$\partial_{\mu}A^{\mu} = \partial^{\mu}A_{\mu} = \frac{\partial A^{0}}{\partial t} + \frac{\partial A^{1}}{\partial x} + \frac{\partial A^{2}}{\partial y} + \frac{\partial A^{3}}{\partial z}$$

$$\partial_{\mu}\partial^{\mu}\phi = \frac{\partial^{2}\phi}{\partial t^{2}} - \frac{\partial^{2}\phi}{\partial x^{2}} - \frac{\partial^{2}\phi}{\partial y^{2}} - \frac{\partial^{2}\phi}{\partial z^{2}}$$

Skill: Dirac Gamma Matrices

- Dirac γ matrices: $\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu}$ in 4x4 matrices.
 - We will use the Dirac-Pauli representation

$$\gamma^0 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \qquad \gamma^1 = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix}$$

$$\gamma^2 = \begin{pmatrix} 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & i & 0 & 0 \\ -i & 0 & 0 & 0 \end{pmatrix} \qquad \gamma^3 = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

Note the indices: (confusing!)

 μ , $\nu = 0,1,2,3$ are the **Lorentz indices in space-time**:

Dirac matrix indices: 1,2,3,4 Have to do with the row and column indices of the matrix (and spinors)

Or:
$$\gamma^0 = \beta = \begin{pmatrix} \mathbb{1}_2 & 0 \\ 0 & -\mathbb{1}_2 \end{pmatrix}$$
 and $\gamma^k = \beta \alpha_k = \begin{pmatrix} 0 & \sigma_k \\ -\sigma_k & 0 \end{pmatrix}$ with Pauli matrices σ_k

Define also the chirality matrix: $\gamma^5 = i\gamma^0\gamma^1\gamma^2\gamma^3$

 Note: although the gamma indices are Lorentz-indices ("space-time", the gamma-matrices are not 4-vectors! (They are simply constants.)

infinite

Consider a function defined by the following prescription:

$$\delta(x) = \lim_{\Delta \to 0} \begin{cases} 1/\Delta & \text{for } |x| < \Delta/2 \\ 0 & \text{otherwise} \end{cases}$$

• For a function f(x) we have: $f(x)\delta(x) = f(0)\delta(x)$

...and therefore:
$$\int_{-\infty}^{\infty} f(x)\delta(x) dx = f(0) \int_{-\infty}^{\infty} \delta(x) dx = f(0)$$

• An important representation of the Dirac delta function is:

$$\delta(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ikx} \, \mathrm{d}k$$