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Lecture 1: “Particles”
Classification of particles

• Lepton: fundamental particle
• Hadron: consist of quarks
• Meson: 1 quark + 1 antiquark (𝜋!,𝐵"#, …)
• Baryon: 3 quarks (𝑝 ,𝑛 , Λ, …)
• Anti-baryon: 3 anti-quarks

• Fermion: particle with half-integer spin.
• Antisymmetric wave function: obeys Pauli-

exclusion principle and Pauli-Dirac statistics
• All fundamental quarks and leptons are spin-½
• Baryons (S= ⁄$ %, ⁄& %) 

• Boson: particle with integer spin
• Symmetric wave function: Bose-Einstein statistics
• Mesons: (S=0, 1), Higgs (S=0)
• Force carriers: 𝛾, 𝑊, 𝑍, 𝑔 (S=1); graviton(S=2)

Griffiths chapter 1



Lecture 2: “Forces”

Vertex: 𝑒Vertex: 𝑒

Propagator: $
'!

Weak interaction
• Original idea, Fermi: 4-point ‘contact’ interaction (1933) 

• Short range, so not a bad idea at low energies 
• However, force = exchange of particle: ‘intermediate vector boson’

�22

- W is (electrically) charged! 
- (q2 = ‘energy’ of W) 
- if q2 > Mw2 —> effect visible 
- note: if MW large —> force small

- GF ~ 10-5 (~ g2/MW2) 
- compare to ! ~ 10-2
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Lecture 3: “Waves” – wave equations

Quantum Mechanics: 𝐸 → 6𝐸 = 𝑖ℏ +
+,

;       𝑝 → 𝑝̂ = −𝑖ℏ𝛻

𝐸 =
𝑝⃗%

2𝑚

𝐸% = 𝑝%𝑐% +𝑚%𝑐- −
1
𝑐%

𝜕%

𝜕𝑡%
𝜙 = −𝛻%𝜙 +

𝑚%𝑐%

ℏ%
𝜙

𝜕.𝜕.𝜙 +𝑚%𝜙 = 0

𝑖ℏ
𝜕
𝜕𝑡 𝜓 = −

ℏ%

2𝑚𝛻%𝜓

Non-relativistic spin 0: Schrödinger:

𝜕𝜌
𝜕𝑡 + 𝛻 ⋅ 𝚥 = 0

𝜌 ≡ 𝜓∗𝜓 = 𝑁 "

𝚥 ≡ #ℏ
"%

𝜓𝛻𝜓∗ − 𝜓∗𝛻𝜓 = & !

%
𝑝⃗

Relativistic spin 0:

Relativistic spin- ½: 

𝐻 = 𝛼⃗ ⋅ 𝑝⃗ + 𝛽𝑚 𝑖
𝜕
𝜕𝑡 𝜓 = −𝑖 𝛼⃗ ⋅ 𝛻 + 𝛽𝑚 𝜓

𝑖𝛾.𝜕. −𝑚 𝜓 = 0

Klein-Gordon:

Dirac:

𝑗' = 2 𝑁 "𝑝'𝜌 = 2 𝑁 "𝐸
𝚥 = 2 𝑁 "𝑝⃗

𝜓 = 𝑁𝑒/ 1⃗2⃗*3,

𝑗( = 3𝜓𝛾(𝜓 = 𝜓)𝜓 = 5
#*+

,

𝜓# "

Probability interpretation
(Continuity equation)

𝜙 = 𝑁𝑒/ 1⃗2⃗*3,

𝜓 = 𝑢(𝑝)𝑒/ 1⃗2⃗*3,

𝑢 𝑝 =

.

.

.

.

𝑗' = 3𝜓𝛾'𝜓

Relativistic spin-1: Proca:

𝜕.𝜕.𝐴4 +𝑚%𝐴4 = 𝑗4
Fundamental
force carriers

Fundamental
quarks and leptons

Example: pions

EM: Maxwell equations 
for 𝐸 and 𝐵 fields

EM: 𝐴# = 𝛾à𝑚 = 0
QCD: 𝐴# = 𝑔à𝑚 = 0
Weak: 𝐴# = 𝑊,𝑍à𝑚 ≠ 0

𝜌, 𝚥 = 𝑗' = 𝑖 𝜙∗ 𝜕'𝜙 − 𝜙 𝜕'𝜙∗

𝛾# ≡ 𝛽, 𝛽𝛼⃗



Lecture 3: “Waves” – gauge invariance
Lagrangians: Spin 0 Scalar field (“pion”):         ℒ = $

%
𝜕.𝜙 𝜕.𝜙 − $

%
𝑚%𝜙%

Spin ½ Dirac fermion:                   ℒ = 𝑖 0𝜓𝛾.𝜕.𝜓 −𝑚 0𝜓𝜓

Spin 1 gauge boson (“photon”) : ℒ = − $
-
𝜕.𝐴4 − 𝜕4𝐴. 𝜕.𝐴4 − 𝜕4𝐴. − 𝑗.𝐴.

𝜕ℒ
𝜕𝜙 𝑥

= 𝜕.
𝜕ℒ

𝜕 𝜕.𝜙 𝑥
Euler Lagrange lead to the wave equations: 

All forces result from requiring a symmetry principle: Lagrangian should stay invariant

𝜓 𝑥 → 𝜓5 𝑥 = e/'6 2 𝜓 𝑥
𝐴. 𝑥 → 𝐴5. 𝑥 = 𝐴. 𝑥 − 𝜕.𝛼 𝑥

1) QED = U(1) symmetry ℒ = 𝑖 0𝜓𝛾.𝜕.𝜓 −𝑚 0𝜓𝜓 ℒ = 𝑖 0𝜓𝛾. 𝐷.𝜓 −𝑚 0𝜓𝜓

𝜕. → 𝐷. ≡ 𝜕. + 𝑖𝑞𝐴.

ℒ = 𝑖 0𝜓𝛾. 𝜕.𝜓 −𝑚 0𝜓𝜓 − 𝑞 0𝜓𝛾.𝜓𝐴.
Covariant derivative:

“free” (T) “interaction” (V)

2) Weak = SU(2) symmetry 𝜓 = 𝜓7
𝜓8

3) QCD = SU(3) symmetry 𝜓 =
𝜓9
𝜓(
𝜓:

𝜓 𝑥 → 𝜓5 𝑥 = exp /
%
𝑔𝜏 ⋅ 𝛼⃗ 𝑥 𝜓7

𝜓8
𝜓 𝑥 → 𝜓5 𝑥 = exp /

%
𝑔"𝜆 ⋅ 𝛼⃗ 𝑥

𝜓9
𝜓(
𝜓:

è 1 E.M. photon field: 𝐴. 𝑥

è 3 weak  fields: 𝑊.! 𝑥 , 𝑊.* 𝑥 , 𝑍. 𝑥 è 8   colored gluon fields: 𝑔. 𝑥

Think: ℒ = 𝑇 − 𝑉



Recap: “Seeing the wood for the trees”
• Lecture 1: “Particles”
• Zooming into constituents of matter
• Skills: distinguish particle types, Spin

• Lecture 2: “Forces”
• Exchange of quanta: EM, Weak, QCD
• Skills: 4-vectors, Feynman diagrams

• Lecture 3: “Waves”
• Quantum fields and gauge invariance
• Dirac algebra, Lagrangian, co- & contra variant

• Lecture 4: “Symmetries”
• Standard Model, Higgs, Discrete Symmetries
• Skills: Lagrangians, Chirality & Helicity

• Lecture 5: “Scattering”
• Cross section, decay, perturbation theory
• Skills: Dirac-delta function, Feynman Calculus

• Lecture 6: “Detectors”
• Energy loss mechanisms, detection technologies

38 LECTURE 2. PERTURBATION THEORY AND FERMI’S GOLDEN RULE

You may wonder why we need to consider a finite time interval T . The reason is that
when we assume that the initial state is an eigenstate of the free Hamiltonian with fixed
momentum (or energy), we have lost track of where a particle is in both space and

time. A moving wave packet would see the static potential during a finite time, but the
plane waves do not. Just like we will need to normalize the wave functions on a finite
volume, we will need to normalize the potential to a finite time. A proper treatment is
rather lengthy and relies on the use of wave packets. (See e.g. the book by K.Gottfried,
“Quantum Mechanics” (1966), Volume 1, sections 12, 56.) In the end, we can write
transition probabilities in terms of plane waves, provided that we normalize to T and
V . We discuss the normalization in more detail below.

2.3 Relativistic scattering

Fermi’s golden rule allows us to compute the scattering rate of non-relativistic particles
on a static potential. In scattering experiments at high energies we need to deal with two
scattering particles, rather than single particles scattering on a source. As an example,
consider two spin-less electrons scatter in their mutual electromagnetic field, as depicted
in Fig. 2.3.
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Figure 2.3: Scattering of two electrons in an electromagnetic potential.

Such scattering processes can be described by the exchange of virtual particles, Yukawa’s
force carriers. Even without understanding the details of the interaction, we can readily
identify one place where it should di↵er from the discussion above: the result must
somehow encode four-momentum conservation and not just energy conservation.

Our master formula for the di↵erential cross-section, Eq. (2.8) is essentially a gener-
alization to problems with more than one particle in the initial or final state. We
cannot derive the expressions for a scattering cross section at high energies without
going through the machinery of quantum field theory. (This is not entirely true: see
Thomson, chapter 3 and section 5.1.) Instead, we will sketch the main results, then work
through the electrodynamics of spin-less particles as an example in the next lectures.

𝑔/𝑔/
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Lecture 4: “Symmetries”

• Gauge Symmetries: Standard Model
• Symmetry Breaking: Higgs Mechanism
• Discrete Symmetries Griffiths chapter 4

Griffiths 10.7-9, PP1 Lect 11

Griffiths 9.7, PP1 Lect 9



Symmetry and non-observables
T.D.Lee:  “The root to all symmetry principles lies in the assumption that it is 

impossible to observe certain basic quantities; the non-observables”
There are four main types of symmetry:
• Permutation symmetry: 

Bose-Einstein and Fermi-Dirac Statistics
• Continuous space-time symmetries: 

translation, rotation, velocity, acceleration,…
• Discrete symmetries: 

space inversion, time reversal, charge conjugation,…
• Unitary symmetries: gauge invariances: 

U1(charge), SU2(isospin), SU3(color),…

Þ If a quantity is fundamentally non-observable it is related to an exact symmetry
Þ If it could in principle be observed by an improved measurement; the symmetry is said to be broken

Noether Theorem: symmetry conservation law



Symmetry and non-observables
Non-observables Symmetry Transformations Conservation Laws or Selection Rule

Difference between identical particles Permutation B.-E. or F.-D. statistics

Absolute spatial position Space translation:  𝑟 → 𝑟 + Δ momentum

Absolute time Time translation:  𝑡 → 𝑡 + τ energy

Absolute spatial direction Rotation: 𝑟 → 𝑟′ angular momentum

Absolute velocity Lorentz transformation generators of the Lorentz group

Absolute right (or left) 𝑟 → −𝑟 parity

Absolute sign of electric charge 𝑒 → −𝑒 charge conjugation

Relative phase between states of 
different charge Q

𝜓 → 𝑒#-.𝜓 charge

Relative phase between states of 
different baryon number B

𝜓 → 𝑒#-&𝜓 baryon number

Relative phase between states of 
different lepton number L

𝜓 → 𝑒#-/𝜓 lepton number

Difference between different coherent 
mixture of p and n states

𝑝
𝑛 → 𝑈

𝑝
𝑛

isospin



Symmetry and non-observables: example

• Simple example: potential energy 𝑉 between two charged particles:

Absolute position is a non-observable:
The interaction is independent on the choice 
of the origin 0.

Symmetry: 
V is invariant under arbitrary 
space translations:

Consequently: Total momentum is conserved:

V = V (�r1 � �r2)

00’

�r1

�d

~r01

~r02 ~r2

~r2 ! ~r2 + ~d~r1 ! ~r1 + ~d

d

dt
(~p1 + ~p2)| {z }

~ptot

= ~F1 + ~F2 = �
⇣
~r1 + ~r2

⌘
V = 0



Lecture 4: “Symmetries”

Part 1 
Gauge Symmetries in
The Standard Model

Griffiths 9.7, PP1 Lect 9



Standard Model 
• The Lagrangian of the Standard Model includes electromagnetic, weak and strong 

interactions according to the gauge field principle

• Construction of the Lagrangian: ℒ = ℒ1233 − ℒ45632786495 = ℒ:4278 − 𝑔𝐽;𝐴;
• With 𝑔 a coupling constant, 𝐽. a  current ( 0𝜓Ο/𝜓) and 𝐴. a force field
A. Local 𝑈 1 gauge invariance: symmetry under complex phase rotations
• Conserved quantum number: (hyper-) charge

• Lagrangian: ℒ = 0𝜓 𝑖𝛾.𝐷. −𝑚 𝜓 = 0𝜓 𝑖𝛾.𝜕. −𝑚 𝜓 − 𝑞 0𝜓𝛾.𝜓
;$%
&

𝐴.

B. Local 𝑆𝑈 2 gauge invariance: symmetry under transformations in isospin doublet space.
• Conserved quantum number: weak isospin

• Lagrangian:  ℒ = Ψ̂ 𝑖𝛾.𝐷. −𝑚 Ψ = Ψ̂ 𝑖𝛾.𝜕. −𝑚 Ψ− (
%
Ψ̂𝛾.𝜏Ψ𝑏.

;"'()
&

C. Local 𝑆𝑈 3 gauge invariance: symmetry under transformations in colour triplet space
• Conserved quantum number: color

• Lagrangian: ℒ = Φ̂ 𝑖𝛾.𝐷. −𝑚 Φ = Φ̂ 𝑖𝛾.𝜕. −𝑚 Φ− (*
%
Φ̂𝛾.𝜆Φ
;⃗+,-
&

𝑐.

Note Spinor: 𝜓 =

𝜓0
𝜓1
𝜓2
𝜓3

Note doublet spinors: Ψ = 𝜓4
𝜓5

Note triplet spinors: Φ =
𝜓6
𝜓7
𝜓8

  

with 𝜓4, 𝜓5  spinors

𝜓6 , 𝜓7, 𝜓8 spinors

Griffiths §10.3, §10.4, §10.5

𝜕' → 𝐷' ≡ 𝜕' + 𝑖𝑞𝐴'

𝐼𝜕' → 𝐷' = 𝐼𝜕' + 𝑖𝑔𝐵' ;

𝐼𝜕' → 𝐷' = 𝐼𝜕' + 𝑖𝑔9𝐶'

𝐵# =
1
2
𝜏 ⋅ 𝑏# =

1
2
𝜏.𝑏#. =

1
2

𝑏/ 𝑏0 − 𝑖𝑏1
𝑏0 + 𝑖𝑏1 −𝑏/

𝐶' are 3x3 matrices àgluon fields



Standard Model 
• The Lagrangian of the Standard Model includes electromagnetic, weak and strong 

interactions according to the gauge field principle

• Construction of the Lagrangian: ℒ = ℒ1233 − ℒ45632786495 = ℒ:4278 − 𝑔𝐽;𝐴;
• With 𝑔 a coupling constant, 𝐽. a  current ( 0𝜓Ο/𝜓) and 𝐴. a force field
A. Local 𝑈 1 gauge invariance: symmetry under complex phase rotations
• Conserved quantum number: (hyper-) charge

• Lagrangian: ℒ = 0𝜓 𝑖𝛾.𝐷. −𝑚 𝜓 = 0𝜓 𝑖𝛾.𝜕. −𝑚 𝜓 − 𝑞 0𝜓𝛾.𝜓
;$%
&

𝐴.

B. Local 𝑆𝑈 2 gauge invariance: symmetry under transformations in isospin doublet space.
• Conserved quantum number: weak isospin

• Lagrangian:  ℒ = Ψ̂ 𝑖𝛾.𝐷. −𝑚 Ψ = Ψ̂ 𝑖𝛾.𝜕. −𝑚 Ψ− (
%
Ψ̂𝛾.𝜏Ψ𝑏.

;"'()
&

C. Local 𝑆𝑈 3 gauge invariance: symmetry under transformations in colour triplet space
• Conserved quantum number: color

• Lagrangian: ℒ = Φ̂ 𝑖𝛾.𝐷. −𝑚 Φ = Φ̂ 𝑖𝛾.𝜕. −𝑚 Φ− (*
%
Φ̂𝛾.𝜆Φ
;⃗+,-
&

𝑐.

Standard Model symmetry

ℒ = $𝜓 𝑖𝛾O𝐷O −𝑚 𝜓 = $𝜓 𝑖𝛾O𝜕O −𝑚 𝜓 − 𝑞𝐽PQ
O 𝐴O −

𝑔
2
𝐽ORSTU ⋅ 𝑏O −

𝑔V
2
𝐽OWXY ⋅ 𝑐O

Standard Model Lagrangian:

Implements U(1), SU(2) and SU(3) symmetries simultaneous:

𝑆𝑈 3 Z[\[]×𝑆𝑈 2 ^×𝑈 1 _

Requiring the Lagrangian to be invariant (symmetry) implies that the 
EM, Weak and Strong force fields must exist and the interactions 
respectively  conserve charge, weak isospin, and color.

Griffiths §10.3, §10.4, §10.5



Electromagnetism and Weak force

• U(1) gauge transformations require that the laws of physics (i.e. the Lagrangian) is 
invariant under:

𝜓 𝑥 → 𝜓E 𝑥 = eFGH I 𝜓 𝑥

𝐴; 𝑥 → 𝐴E; 𝑥 = 𝐴; 𝑥 − 𝜕;𝛼 𝑥

• SU(2) gauge transformations require that the laws of physics (i.e. the Lagrangian) is 
invariant under:

Ψ 𝑥 → Ψ` 𝑥 = eab
!
"c⋅d e Ψ 𝑥

• This leads to the interaction: ℒfgh = −𝐽O𝐴O with  𝐽O = 𝑞 $𝜓𝛾O𝜓

• This leads to the interaction: ℒfgh = −𝐽O𝑏O with  𝐽O =
b
i
>Ψ 𝛾O𝜏 Ψ Note: 𝐽O = 𝐽Oj, 𝐽Oi, 𝐽Ok

With doublets Ψ = :"
:#

and lΨ = 𝜓4 , 𝜓5

Electromagnetic field 
gauge transformation

𝜏 = 𝜏+, 𝜏", 𝜏; are the Pauli matrices: 𝜏+ =
0 1
1 0 , 𝜏" =

0 −𝑖
𝑖 0 , 𝜏; =

1 0
0 −1

132 Lecture 11. Electroweak Theory

and the interaction term in the Lagrangian becomes:

−i
(

eJµ
EM · Aµ +

e

cos θw sin θw
Jµ

NC · Zµ

)

in terms of the physical fields Aµ and Zµ.

11.3 The Mass of the W and Z bosons

In the electroweak model as introduced here, the gauge fields must be massless, since ex-
plicit mass terms (∼ φµφµ) are not gauge invariant. In the Standard Model the mass of
all particles are generated in the mechanism of spontaneous symmetry breaking, intro-
ducing the Higgs particle (see later lectures.) Here we just give an empirical argument
to predict the mass of the W and Z particles.

1. Mass terms are of the following form:

M2
φ = 〈φ |H|φ〉 for any field φ

2. From the comparison with the Fermi 4-point interaction we find:

GF√
2

=
g2

8M2
W

⇒ M2
W =

√
2g2

8GF
=

√
2

8GF

e2

sin2 θ

Thus, we get the following predictions:

MW =

√
√
√
√

√
2

8GF

e

sin θw
= 81 GeV

MZ = MW (gz/g) = MW /cos θ = 91 GeV

11.4 The Coupling Constants for Z → f f̄

For the neutral Z-current interaction we have in general:

−igZ Jµ
NC Zµ = −i

g

cos θw

(

Jµ
3 − sin2 θwJµ

EM

)

Zµ

= −i
g

cos θw
ψ̄fγ

µ
[
1

2

(

1 − γ5
)

T3 − sin2 θwQ
]

︸ ︷︷ ︸

1
2(Cf

V −Cf
Aγ5)

ψf · Zµ

which we can represent with the following vertex:

Z0

f

f
−i

g

cos θw
γµ 1

2

(

Cf
V − Cf

Aγ
5
)

𝐴;

Weak Isospin: 𝑇/ =
$
%
𝜏/

𝑞
𝜕' → 𝐷' ≡ 𝜕' + 𝑖𝑞𝐴'

𝐼𝜕' → 𝐷' = 𝐼𝜕' + 𝑖𝑔𝐵' ; 𝐵# =
1
2
𝜏 ⋅ 𝑏# =

1
2
𝜏.𝑏#. =

1
2

𝑏/ 𝑏0 − 𝑖𝑏1
𝑏0 + 𝑖𝑏1 −𝑏/

𝐽;



The weak force
• The weak interaction includes charged (𝐽Oj and 𝐽Oi) and neutral (𝐽Ok) currents

• It turns out the following charge current fields are realized in Nature:
• 𝑊.± ≡

$
%
𝑏.$ ∓ 𝑖𝑏.% and 𝑍. = 𝑏.& (see exercise)

• The charged current becomes
• 𝐽.± =

$
%
Ψ̂𝛾.𝜏±Ψ with   𝜏± = $

%
𝜏$ ± 𝑖𝜏%

• The neutral current is:
• 𝐽.& =

$
%
Ψ̂𝛾.𝜏&Ψ

𝜏< = 0 1
0 0 𝜏= = 0 0

1 0

Charge raising interaction:

Charge lowering interaction:

𝐽'< =
𝑔
2 2

𝜈̅ 𝛾' 𝑒

9.2. THE CHARGED CURRENT 147

As you will show in exercise 9.2 we can rewrite the charged current Lagrangian as

LCC = �g W+

µ
J+µ

� g W�
µ

J�µ (9.24)

with

Jµ,± =
1
p

2
 L �µ ⌧±  L (9.25)

and ⌧± = 1

2
(⌧1 ± i⌧2), or in our representation

⌧+ =

✓
0 1
0 0

◆
and ⌧� =

✓
0 0
1 0

◆
. (9.26)

The leptonic currents can then be written as

J+µ =
1
p

2
⌫L �µ eL and J�µ =

1
p

2
eL �µ ⌫L (9.27)

or written out with the left-handed projection operators:

J+µ =
1
p

2
⌫

1

2

�
1 + �5

�
�µ

1

2

�
1� �5

�
e (9.28)

and similar for J�µ. Verify for yourself that
�
1 + �5

�
�µ

�
1� �5

�
= 2�µ

�
1� �5

�
(9.29)

such that we can rewrite the leptonic charge raising current as

J+µ =
1

2
p

2
⌫ �µ

�
1� �5

�
e (9.30)

and the leptonic charge lowering current as

J�µ =
1

2
p

2
e �µ

�
1� �5

�
⌫ . (9.31)

Remembering that a vector interaction has an operator �µ in the current and an axial
vector interaction a term �µ�5, we recognize in the charged weak interaction the famous
“V-A” interaction. The story for the quark doublet is identical. Drawn as diagrams,
the charged currents then look as follows:

Charge raising: W+

e�

⌫e

W+

d

u

Charge lowering: W�

e�

⌫e

W�

d

u
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LCC = �g W+

µ
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µ
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with

Jµ,± =
1
p

2
 L �µ ⌧±  L (9.25)

and ⌧± = 1

2
(⌧1 ± i⌧2), or in our representation

⌧+ =

✓
0 1
0 0

◆
and ⌧� =

✓
0 0
1 0

◆
. (9.26)

The leptonic currents can then be written as

J+µ =
1
p

2
⌫L �µ eL and J�µ =

1
p

2
eL �µ ⌫L (9.27)

or written out with the left-handed projection operators:

J+µ =
1
p

2
⌫

1

2

�
1 + �5

�
�µ

1

2

�
1� �5

�
e (9.28)

and similar for J�µ. Verify for yourself that
�
1 + �5

�
�µ

�
1� �5

�
= 2�µ

�
1� �5

�
(9.29)

such that we can rewrite the leptonic charge raising current as

J+µ =
1

2
p

2
⌫ �µ

�
1� �5

�
e (9.30)

and the leptonic charge lowering current as

J�µ =
1

2
p

2
e �µ

�
1� �5

�
⌫ . (9.31)

Remembering that a vector interaction has an operator �µ in the current and an axial
vector interaction a term �µ�5, we recognize in the charged weak interaction the famous
“V-A” interaction. The story for the quark doublet is identical. Drawn as diagrams,
the charged currents then look as follows:

Charge raising: W+

e�

⌫e

W+

d

u

Charge lowering: W�

e�

⌫e

W�

d

u
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𝑔
2 2

l𝑑 𝛾' 𝑢
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and the interaction term in the Lagrangian becomes:

−i
(

eJµ
EM · Aµ +

e

cos θw sin θw
Jµ

NC · Zµ

)

in terms of the physical fields Aµ and Zµ.

11.3 The Mass of the W and Z bosons

In the electroweak model as introduced here, the gauge fields must be massless, since ex-
plicit mass terms (∼ φµφµ) are not gauge invariant. In the Standard Model the mass of
all particles are generated in the mechanism of spontaneous symmetry breaking, intro-
ducing the Higgs particle (see later lectures.) Here we just give an empirical argument
to predict the mass of the W and Z particles.

1. Mass terms are of the following form:

M2
φ = 〈φ |H|φ〉 for any field φ

2. From the comparison with the Fermi 4-point interaction we find:

GF√
2

=
g2

8M2
W

⇒ M2
W =

√
2g2

8GF
=

√
2

8GF

e2

sin2 θ

Thus, we get the following predictions:

MW =

√
√
√
√

√
2

8GF

e

sin θw
= 81 GeV

MZ = MW (gz/g) = MW /cos θ = 91 GeV

11.4 The Coupling Constants for Z → f f̄

For the neutral Z-current interaction we have in general:

−igZ Jµ
NC Zµ = −i

g

cos θw

(

Jµ
3 − sin2 θwJµ

EM

)

Zµ

= −i
g

cos θw
ψ̄fγ

µ
[
1

2

(

1 − γ5
)

T3 − sin2 θwQ
]

︸ ︷︷ ︸

1
2(Cf

V −Cf
Aγ5)

ψf · Zµ

which we can represent with the following vertex:

Z0

f

f
−i

g

cos θw
γµ 1

2

(

Cf
V − Cf

Aγ
5
)

𝑔
2 2

𝑔
2 2

𝑔
2 2

𝑔
2 2

𝑔>

𝜏; = 1 0
0 −1
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Remember:

Ψ = 𝜓2
𝜓3
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Exercise – 18 : Charge Current

• Show that the definition 𝑊f± =
1!"∓g1!#

h
leads to the charged current: 

ℒ = −𝑊fi𝐽f
$ −𝑊fj𝐽f

j with 𝐽fi = 2
h
&Ψ𝛾f𝜏iΨ and 𝐽fj = 2

h
&Ψ𝛾f𝜏jΨ



Electroweak unification
• A strange phenomenon for the neutral current
• The 𝑆𝑈 2 gauge field 𝑏Ok and and the 𝑈 1 gauge field 𝐴O are not physical
• The physical fields are:                                                                    (“mixing”)

• The electromagnetic and weak interaction are linear combinations of the 𝑈 1 and 
𝑆𝑈 2 symmetries – why??
• We speak of a unified electroweak force

• The 𝑈 1 symmetry is related to the quantity ”hypercharge” 𝑌 instead of “charge” 𝑄
• The charge of a particle is given by the relation: 𝑄 = 𝑇k +

j
i𝑌

• The Standard Model of interactions implements the symmetry:

• Mystery 1: How do gauge bosons and fermions acquire a mass
• Mystery 2: The weak interaction is only left-handed  

𝛾; = 𝐴; cos 𝜃M + 𝑏;N sin 𝜃M
𝑍; = −𝐴; sin 𝜃M + 𝑏;N cos 𝜃M

𝑆𝑈 3 !"#"$×𝑆𝑈 2 %×𝑈 1 &

Griffiths §9.5 and §9.7



Electroweak Quantum Numbers
For weak isospin some people write 𝑇k while others write 𝐼k With : 𝑄 = 𝑇N +

O
0
𝑌

Or     : 𝑄 = 𝐼N +
O
0
𝑌



Lecture 4: ”Symmetries”

Part 2 
Electroweak Symmetry Breaking

The Higgs Mechanism

Griffiths 10.7 – 10.9



Symmetry breaking

• Massive particles are forbidden in the SM Lagrangian
• A hypothetical mass term in the Lagrangian for the photon is not gauge 

invariant under 𝐴O → 𝐴O′:

• The same holds (harder to show) for the weak mediators 𝑊,𝑍
• However they are massive
• è SU(2)xU(1) symmetry is broken

• We will give an example how mass terms can be generated without 
destroying the symmetry of the Lagrangian

𝑚i𝐴O𝐴O → 𝑚i 𝐴O +
1
𝑒
𝜕O𝛼 𝐴O +

1
𝑒
𝜕O𝛼 ≠ 𝑚i𝐴O𝐴O

Griffiths §10.7



The idea of symmetry breaking with a new field 𝜙

• Add a new field 𝜙 to the Lagrangian
• Chose a scalar field (𝑆 = 0)
• Include a potential 𝑉 𝜙 : ℒ = 𝑇 − 𝑉

ℒ =
1
2
𝜕O𝜙

i
− 𝑉 𝜙 =

1
2
𝜕O𝜙

i
−
1
2
𝜇i𝜙i −

1
4
𝜆𝜙s

Massive Klein-Gordon
term (Spin 0, mass =𝜇)

Interaction 
term

• Start with a (new) scalar field !:  (Klein-Gordon), with a potential:  

Simple example

�60

For a real scalar field for example:

Lscalar =
1

2
(@µ�) (@

µ
�)�

1

2
m

2
�
2
! Euler-Lagrange ! (@µ@

µ +m
2)� = 0| {z }

Klein-Gordon equation

In electroweak theory, kinematics of fermions, i.e. spin-1/2 particles is described by:

Lfermion = i ̄�µ@
µ
 �m ̄ ! Euler-Lagrange ! (i�µ@

µ
�m) = 0| {z }

Dirac equation

In general, the Lagrangian for a real scalar particle (�) is given by:

L = (@µ�)
2

| {z }
kinetic term

+ C|{z}
constant

+ ↵�|{z}
?

+ ��
2

|{z}
mass term

+ ��
3

|{z}
3-point int.

+ ��
4

|{z}
4-point int.

+ ... (1)

We can interpret the particle spectrum of the theory when studying the Lagrangian under
small perturbations. In expression (1), the constant (potential) term is for most purposes
of no importance as it does not appear in the equation of motion, the term linear in the
field has no direct interpretation (and should not be present as we will explain later), the
quadratic term in the fields represents the mass of the field/particle and higher order terms
describe interaction terms.

1.3 Simple example of symmetry breaking

To describe the main idea of symmetry breaking we start with a simple model for a real
scalar field � (or a theory to which we add a new field �), with a specific potential term:

L =
1

2
(@µ�)

2
� V(�)

=
1

2
(@µ�)

2
�

1

2
µ
2
�
2
�

1

4
��

4 (2)

Note that L is symmetric under � ! �� and that � is positive to ensure an absolute
minimum in the Lagrangian. We can investigate in some detail the two possibilities for the
sign of µ2: positive or negative.

1.3.1 µ
2
> 0: Free particle with additional interactions

)φV(

φ

To investigate the particle spectrum we look at the Lagrangian for
small perturbations around the minimum (vacuum). The vacuum
is at � = 0 and is symmetric in �. Using expression (1) we see that
the Lagrangian describes a free particle with mass µ that has an
additional four-point self-interaction:

L =
1

2
(@µ�)

2
�

1

2
µ
2
�
2

| {z }
free particle, mass µ

�
1

4
��

4

| {z }
interaction
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• Note: Lagrangian is symmetric 

under ! —> -!

• The vacuum (lowest energy state) has 𝜙 = 0
• This means no-field in the vacuum.  

• The Lagrangian describes a new particle with 𝑆 = 0 and 𝑚 = 𝜇

Case A)

Griffiths §10.8

𝜙 =

𝜕#𝜙
1 ≡ 𝜕#𝜙 𝜕#𝜙

𝑉 =
1
2
𝜇1𝜙1 +

1
4
𝜆𝜙6



The idea of symmetry breaking with a new field 𝜙

• Add a new field 𝜙 to the Lagrangian
• Chose a scalar field (𝑆 = 0)
• Include a potential 𝑉 𝜙 : ℒ = 𝑇 − 𝑉

ℒ =
1
2
𝜕O𝜙

i
− 𝑉 𝜙 =

1
2
𝜕O𝜙

i
−
1
2
𝜇i𝜙i −

1
4
𝜆𝜙s

Massive Klein-Gordon
term (Spin 0, mass =𝜇)

Interaction 
term

𝜙

• Start with a (new) scalar field !:  (Klein-Gordon), with a potential:  
 
 
 
 
 
                                Imaginary mass? —> makes no sense! 
                                

Simple example
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To investigate the particle spectrum we look at the Lagrangian for
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is at � = 0 and is symmetric in �. Using expression (1) we see that
the Lagrangian describes a free particle with mass µ that has an
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1.3.2 µ
2
< 0: Introducing a particle with imaginary mass ?

φ

)φV( v

η

The situation with µ
2
< 0 looks strange since at first glance it

would appear to describe a particle � with an imaginary mass.
However, if we take a closer look at the potential, we see that it
does not make sense to interpret the particle spectrum using the
field � since perturbation theory around � = 0 will not converge
(not a stable minimum) as the vacuum is located at:

�0 =

r
�
µ2

�
= v or µ

2 = ��v
2 (3)

As before, to investigate the particle spectrum in the theory, we have to look at small
perturbations around this minimum. To do this it is more natural to introduce a field ⌘

(simply a shift of the � field) that is centered at the vacuum: ⌘ = �� v.

Rewriting the Lagrangian in terms of ⌘

Expressing the Lagrangian in terms of the shifted field ⌘ is done by replacing � by ⌘+ v in
the original Lagrangian from equation (2):

Kinetic term: Lkin(⌘) =
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(@µ(⌘ + v)@µ(⌘ + v))

=
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where we used µ
2 = ��v

2 from equation (3). Although the Lagrangian is still symmetric
in �, the perturbations around the minimum are not symmetric in ⌘, i.e. V(�⌘) 6= V(⌘).
Neglecting the irrelevant 1
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�v

4 constant term and neglecting terms or order ⌘2 we have as
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From section 1.2 we see that this describes the kinematics for a massive scalar particle:
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2
m

2

⌘ = �v
2
! m⌘ =

p

2�v2
⇣
=

p
�2µ2

⌘
Note: m⌘ > 0.
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The situation with µ
2
< 0 looks strange since at first glance it

would appear to describe a particle � with an imaginary mass.
However, if we take a closer look at the potential, we see that it
does not make sense to interpret the particle spectrum using the
field � since perturbation theory around � = 0 will not converge
(not a stable minimum) as the vacuum is located at:

�0 =
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= v or µ

2 = ��v
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As before, to investigate the particle spectrum in the theory, we have to look at small
perturbations around this minimum. To do this it is more natural to introduce a field ⌘

(simply a shift of the � field) that is centered at the vacuum: ⌘ = �� v.

Rewriting the Lagrangian in terms of ⌘
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=
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where we used µ
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2 from equation (3). Although the Lagrangian is still symmetric
in �, the perturbations around the minimum are not symmetric in ⌘, i.e. V(�⌘) 6= V(⌘).
Neglecting the irrelevant 1
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4 constant term and neglecting terms or order ⌘2 we have as
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From section 1.2 we see that this describes the kinematics for a massive scalar particle:
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! m⌘ =
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2�v2
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=
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Note: m⌘ > 0.
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𝑣

Case B)

• The particle has imaginary mass? 𝜇h < 0

• The Lagrangian has a minimum for 𝜙l = − f#

m
≡ 𝑣 or 𝜇h = −𝜆𝑣h

• The lowest energy (vacuum) includes a field with value 𝑣

Griffiths §10.8

Just do: ?@
?A
= 0

𝜙 =

𝜕#𝜙
1 ≡ 𝜕#𝜙 𝜕#𝜙

𝑉 =
1
2
𝜇1𝜙1 +

1
4
𝜆𝜙6



Exercise – 19 : Symmetry breaking

ℒ =
1
2
𝜕O𝜙

i − 𝑉 𝜙 =
1
2
𝜕O𝜙

i −
1
2
𝜇i𝜙i −

1
4
𝜆𝜙s

𝜙

• Start with a (new) scalar field !:  (Klein-Gordon), with a potential:  
 
 
 
 
 
                                Imaginary mass? —> makes no sense! 
                                

Simple example

�61

For a real scalar field for example:

Lscalar =
1

2
(@µ�) (@

µ
�)�

1

2
m

2
�
2
! Euler-Lagrange ! (@µ@

µ +m
2)� = 0| {z }

Klein-Gordon equation

In electroweak theory, kinematics of fermions, i.e. spin-1/2 particles is described by:

Lfermion = i ̄�µ@
µ
 �m ̄ ! Euler-Lagrange ! (i�µ@

µ
�m) = 0| {z }

Dirac equation

In general, the Lagrangian for a real scalar particle (�) is given by:

L = (@µ�)
2

| {z }
kinetic term

+ C|{z}
constant

+ ↵�|{z}
?

+ ��
2

|{z}
mass term

+ ��
3

|{z}
3-point int.

+ ��
4

|{z}
4-point int.

+ ... (1)

We can interpret the particle spectrum of the theory when studying the Lagrangian under
small perturbations. In expression (1), the constant (potential) term is for most purposes
of no importance as it does not appear in the equation of motion, the term linear in the
field has no direct interpretation (and should not be present as we will explain later), the
quadratic term in the fields represents the mass of the field/particle and higher order terms
describe interaction terms.

1.3 Simple example of symmetry breaking

To describe the main idea of symmetry breaking we start with a simple model for a real
scalar field � (or a theory to which we add a new field �), with a specific potential term:

L =
1

2
(@µ�)

2
� V(�)

=
1

2
(@µ�)

2
�

1

2
µ
2
�
2
�

1

4
��

4 (2)

Note that L is symmetric under � ! �� and that � is positive to ensure an absolute
minimum in the Lagrangian. We can investigate in some detail the two possibilities for the
sign of µ2: positive or negative.

1.3.1 µ
2
> 0: Free particle with additional interactions

)φV(

φ

To investigate the particle spectrum we look at the Lagrangian for
small perturbations around the minimum (vacuum). The vacuum
is at � = 0 and is symmetric in �. Using expression (1) we see that
the Lagrangian describes a free particle with mass µ that has an
additional four-point self-interaction:

L =
1

2
(@µ�)

2
�

1

2
µ
2
�
2

| {z }
free particle, mass µ

�
1

4
��

4

| {z }
interaction
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1.3.2 µ
2
< 0: Introducing a particle with imaginary mass ?

φ

)φV( v

η

The situation with µ
2
< 0 looks strange since at first glance it

would appear to describe a particle � with an imaginary mass.
However, if we take a closer look at the potential, we see that it
does not make sense to interpret the particle spectrum using the
field � since perturbation theory around � = 0 will not converge
(not a stable minimum) as the vacuum is located at:

�0 =

r
�
µ2

�
= v or µ

2 = ��v
2 (3)

As before, to investigate the particle spectrum in the theory, we have to look at small
perturbations around this minimum. To do this it is more natural to introduce a field ⌘

(simply a shift of the � field) that is centered at the vacuum: ⌘ = �� v.

Rewriting the Lagrangian in terms of ⌘

Expressing the Lagrangian in terms of the shifted field ⌘ is done by replacing � by ⌘+ v in
the original Lagrangian from equation (2):

Kinetic term: Lkin(⌘) =
1

2
(@µ(⌘ + v)@µ(⌘ + v))

=
1

2
(@µ⌘)(@

µ
⌘) , since @µv = 0.

Potential term: V(⌘) = +
1

2
µ
2(⌘ + v)2 +

1

4
�(⌘ + v)4

= �v
2
⌘
2 + �v⌘

3 +
1

4
�⌘

4
�

1

4
�v

4,

where we used µ
2 = ��v

2 from equation (3). Although the Lagrangian is still symmetric
in �, the perturbations around the minimum are not symmetric in ⌘, i.e. V(�⌘) 6= V(⌘).
Neglecting the irrelevant 1

4
�v

4 constant term and neglecting terms or order ⌘2 we have as
Lagrangian:

Full Lagrangian: L(⌘) =
1

2
(@µ⌘)(@

µ
⌘)� �v

2
⌘
2
� �v⌘

3
�

1

4
�⌘

4
�

1

4
�v

4

=
1

2
(@µ⌘)(@

µ
⌘)� �v

2
⌘
2

From section 1.2 we see that this describes the kinematics for a massive scalar particle:

1

2
m

2

⌘ = �v
2
! m⌘ =

p

2�v2
⇣
=

p
�2µ2

⌘
Note: m⌘ > 0.
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1.3.2 µ
2
< 0: Introducing a particle with imaginary mass ?

φ

)φV( v

η

The situation with µ
2
< 0 looks strange since at first glance it

would appear to describe a particle � with an imaginary mass.
However, if we take a closer look at the potential, we see that it
does not make sense to interpret the particle spectrum using the
field � since perturbation theory around � = 0 will not converge
(not a stable minimum) as the vacuum is located at:

�0 =

r
�
µ2

�
= v or µ

2 = ��v
2 (3)

As before, to investigate the particle spectrum in the theory, we have to look at small
perturbations around this minimum. To do this it is more natural to introduce a field ⌘

(simply a shift of the � field) that is centered at the vacuum: ⌘ = �� v.

Rewriting the Lagrangian in terms of ⌘

Expressing the Lagrangian in terms of the shifted field ⌘ is done by replacing � by ⌘+ v in
the original Lagrangian from equation (2):

Kinetic term: Lkin(⌘) =
1

2
(@µ(⌘ + v)@µ(⌘ + v))

=
1

2
(@µ⌘)(@

µ
⌘) , since @µv = 0.

Potential term: V(⌘) = +
1

2
µ
2(⌘ + v)2 +

1

4
�(⌘ + v)4

= �v
2
⌘
2 + �v⌘

3 +
1

4
�⌘

4
�

1

4
�v

4,

where we used µ
2 = ��v

2 from equation (3). Although the Lagrangian is still symmetric
in �, the perturbations around the minimum are not symmetric in ⌘, i.e. V(�⌘) 6= V(⌘).
Neglecting the irrelevant 1

4
�v

4 constant term and neglecting terms or order ⌘2 we have as
Lagrangian:

Full Lagrangian: L(⌘) =
1

2
(@µ⌘)(@

µ
⌘)� �v

2
⌘
2
� �v⌘

3
�

1

4
�⌘

4
�

1

4
�v

4

=
1

2
(@µ⌘)(@

µ
⌘)� �v

2
⌘
2

From section 1.2 we see that this describes the kinematics for a massive scalar particle:

1

2
m

2

⌘ = �v
2
! m⌘ =

p

2�v2
⇣
=

p
�2µ2

⌘
Note: m⌘ > 0.
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𝑣

Case B)

• Redefine coordinates: 𝜂 ≡ 𝜙 − 𝑣
• Exercise: re-write the Lagrangian in 𝜂 and 𝑣 to show:

• Ignore the constant term j
s
𝜆𝑣s and neglect higher order 𝜂k:

• This describes a new scalar field 𝜂 with a mass j
i
𝑚t
i = 𝜆𝑣i ⇒ 𝑚t = 2𝜆𝑣i (= −2𝜇i) 

• Price to pay: Lagrangian is no longer symmetric under 𝜂 → −𝜂 in the new field.

ℒ 𝜂 =
1
2 𝜕;𝜂 𝜕;𝜂 − 𝜆𝑣0𝜂0 − 𝜆𝑣𝜂N −

1
4𝜆𝜂

V −
1
4𝜆𝑣

V

ℒ 𝜂 =
1
2 𝜕;𝜂 𝜕;𝜂 − 𝜆𝑣0𝜂0

Griffiths §10.8

( 𝜂 is the “shifted” field )

mass

Remember Klein-Gordon:

ℒ =
1
2
(𝜕#𝜙)(𝜕#𝜙) −

1
2
𝑚1𝜙

𝑉 =
1
2
𝜇1𝜙1 +

1
4
𝜆𝜙6



The idea of symmetry breaking with a new field 𝜙

ℒ =
1
2
𝜕O𝜙

i − 𝑉 𝜙 =
1
2
𝜕O𝜙

i −
1
2
𝜇i𝜙i −

1
4
𝜆𝜙s

𝜙

• Start with a (new) scalar field !:  (Klein-Gordon), with a potential:  
 
 
 
 
 
                                Imaginary mass? —> makes no sense! 
                                

Simple example

�61

For a real scalar field for example:

Lscalar =
1

2
(@µ�) (@

µ
�)�

1

2
m

2
�
2
! Euler-Lagrange ! (@µ@

µ +m
2)� = 0| {z }

Klein-Gordon equation

In electroweak theory, kinematics of fermions, i.e. spin-1/2 particles is described by:

Lfermion = i ̄�µ@
µ
 �m ̄ ! Euler-Lagrange ! (i�µ@

µ
�m) = 0| {z }

Dirac equation

In general, the Lagrangian for a real scalar particle (�) is given by:

L = (@µ�)
2

| {z }
kinetic term

+ C|{z}
constant

+ ↵�|{z}
?

+ ��
2

|{z}
mass term

+ ��
3

|{z}
3-point int.

+ ��
4

|{z}
4-point int.

+ ... (1)

We can interpret the particle spectrum of the theory when studying the Lagrangian under
small perturbations. In expression (1), the constant (potential) term is for most purposes
of no importance as it does not appear in the equation of motion, the term linear in the
field has no direct interpretation (and should not be present as we will explain later), the
quadratic term in the fields represents the mass of the field/particle and higher order terms
describe interaction terms.

1.3 Simple example of symmetry breaking

To describe the main idea of symmetry breaking we start with a simple model for a real
scalar field � (or a theory to which we add a new field �), with a specific potential term:

L =
1

2
(@µ�)

2
� V(�)

=
1

2
(@µ�)

2
�

1

2
µ
2
�
2
�

1

4
��

4 (2)

Note that L is symmetric under � ! �� and that � is positive to ensure an absolute
minimum in the Lagrangian. We can investigate in some detail the two possibilities for the
sign of µ2: positive or negative.

1.3.1 µ
2
> 0: Free particle with additional interactions

)φV(

φ

To investigate the particle spectrum we look at the Lagrangian for
small perturbations around the minimum (vacuum). The vacuum
is at � = 0 and is symmetric in �. Using expression (1) we see that
the Lagrangian describes a free particle with mass µ that has an
additional four-point self-interaction:

L =
1

2
(@µ�)

2
�

1

2
µ
2
�
2

| {z }
free particle, mass µ

�
1

4
��

4

| {z }
interaction
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1.3.2 µ
2
< 0: Introducing a particle with imaginary mass ?

φ

)φV( v

η

The situation with µ
2
< 0 looks strange since at first glance it

would appear to describe a particle � with an imaginary mass.
However, if we take a closer look at the potential, we see that it
does not make sense to interpret the particle spectrum using the
field � since perturbation theory around � = 0 will not converge
(not a stable minimum) as the vacuum is located at:

�0 =

r
�
µ2

�
= v or µ

2 = ��v
2 (3)

As before, to investigate the particle spectrum in the theory, we have to look at small
perturbations around this minimum. To do this it is more natural to introduce a field ⌘

(simply a shift of the � field) that is centered at the vacuum: ⌘ = �� v.

Rewriting the Lagrangian in terms of ⌘

Expressing the Lagrangian in terms of the shifted field ⌘ is done by replacing � by ⌘+ v in
the original Lagrangian from equation (2):

Kinetic term: Lkin(⌘) =
1

2
(@µ(⌘ + v)@µ(⌘ + v))

=
1

2
(@µ⌘)(@

µ
⌘) , since @µv = 0.

Potential term: V(⌘) = +
1

2
µ
2(⌘ + v)2 +

1

4
�(⌘ + v)4

= �v
2
⌘
2 + �v⌘

3 +
1

4
�⌘

4
�

1

4
�v

4,

where we used µ
2 = ��v

2 from equation (3). Although the Lagrangian is still symmetric
in �, the perturbations around the minimum are not symmetric in ⌘, i.e. V(�⌘) 6= V(⌘).
Neglecting the irrelevant 1

4
�v

4 constant term and neglecting terms or order ⌘2 we have as
Lagrangian:

Full Lagrangian: L(⌘) =
1

2
(@µ⌘)(@

µ
⌘)� �v

2
⌘
2
� �v⌘

3
�

1

4
�⌘

4
�
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4
�v

4

=
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2
(@µ⌘)(@

µ
⌘)� �v

2
⌘
2

From section 1.2 we see that this describes the kinematics for a massive scalar particle:
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⌘ = �v
2
! m⌘ =

p

2�v2
⇣
=

p
�2µ2

⌘
Note: m⌘ > 0.
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The situation with µ
2
< 0 looks strange since at first glance it

would appear to describe a particle � with an imaginary mass.
However, if we take a closer look at the potential, we see that it
does not make sense to interpret the particle spectrum using the
field � since perturbation theory around � = 0 will not converge
(not a stable minimum) as the vacuum is located at:
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= v or µ
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2 (3)

As before, to investigate the particle spectrum in the theory, we have to look at small
perturbations around this minimum. To do this it is more natural to introduce a field ⌘

(simply a shift of the � field) that is centered at the vacuum: ⌘ = �� v.

Rewriting the Lagrangian in terms of ⌘

Expressing the Lagrangian in terms of the shifted field ⌘ is done by replacing � by ⌘+ v in
the original Lagrangian from equation (2):

Kinetic term: Lkin(⌘) =
1

2
(@µ(⌘ + v)@µ(⌘ + v))

=
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2
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where we used µ
2 = ��v

2 from equation (3). Although the Lagrangian is still symmetric
in �, the perturbations around the minimum are not symmetric in ⌘, i.e. V(�⌘) 6= V(⌘).
Neglecting the irrelevant 1
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4 constant term and neglecting terms or order ⌘2 we have as
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From section 1.2 we see that this describes the kinematics for a massive scalar particle:
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! m⌘ =
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=
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Note: m⌘ > 0.
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𝑣

Case B) 

• Redefine coordinates: 𝜂 ≡ 𝜙 − 𝑣
• Exercise re-write the Lagrangian in 𝜙 and 𝑣 to show:

• Ignore the constant term j
s
𝜆𝑣s and neglect higher order 𝜂k:

• This describes a new scalar field 𝜂 with a mass j
i
𝑚t
i = 𝜆𝑣i ⇒ 𝑚t = 2𝜆𝑣i (= −2𝜇i) 

• Price to pay: Lagrangian is no longer symmetric under 𝜂 → −𝜂 in the new field.

ℒ 𝜂 =
1
2 𝜕;𝜂 𝜕;𝜂 − 𝜆𝑣0𝜂0 − 𝜆𝑣𝜂N −

1
4𝜆𝜂

V −
1
4𝜆𝑣

V

ℒ 𝜂 =
1
2 𝜕;𝜂 𝜕;𝜂 − 𝜆𝑣0𝜂0

Conclusion: 
• The symmetry of the Lagrangian by adding a 

symmetric potential 𝜙 has not been destroyed
• The vacuum is no longer in a symmetric position

è The physical case includes a complex field 𝜙

Griffiths §10.8

𝑉 =
1
2
𝜇1𝜙1 +

1
4
𝜆𝜙6



• Now do the same for a complex scalar field ! =  
 
 
 
 

Breaking global symmetry

�65

Executive summary on µ
2
< 0 scenario

At first glance, adding a V (�) term as in equation (2) to the Lagrangian implies adding
a particle with imaginary mass with a four-point self-interaction. However, when examin-
ing the particle spectrum using perturbations around the vacuum, we see that it actually
describes a massive scalar particle (real, positive mass) with three- and four-point self-
interactions. Although the Lagrangian retains its original symmetry (symmetric in �), the
vacuum is not symmetric in the field ⌘: spontaneous symmetry breaking. Note that we
have added a single degree of freedom to the theory: a scalar particle.

1.4 Breaking a global symmetry

In an existing theory we are free to introduce an additional complex scalar field: � =
1p
2
(�1 + i�2) (two degrees of freedom):

L = (@µ�)
⇤(@µ

�)� V(�) , with V(�) = µ
2(�⇤

�) + �(�⇤
�)2

Note that the Lagrangian is invariant under a U(1) global symmetry, i.e. under �0
! e

i↵
�

since �
0⇤
�
0
! �

⇤
�e

�i↵
e
+i↵ = �

⇤
�.

The Lagrangian in terms of �1 and �2 is given by:

L(�1,�2) =
1

2
(@µ�1)

2 +
1

2
(@µ�2)

2
�

1

2
µ
2(�2

1
+ �

2

2
)�

1

4
�(�2

1
+ �

2

2
)
2

There are again two distinct cases: µ
2
> 0 and µ

2
< 0. As in the previous section, we

investigate the particle spectrum by studying the Lagrangian under small perturbations
around the vacuum.

1.4.1 µ
2
> 0

V(  )Φ

φ
2

φ
1

This situation simply describes two massive scalar par-
ticles, each with a mass µ with additional interactions:

L(�1,�2) =
1

2
(@µ�1)

2
�

1

2
µ
2
�
2

1

| {z }
particle �1, mass µ

+
1

2
(@µ�2)

2
�

1

2
µ
2
�
2

2

| {z }
particle �2, mass µ

+ interaction terms
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Executive summary on µ
2
< 0 scenario

At first glance, adding a V (�) term as in equation (2) to the Lagrangian implies adding
a particle with imaginary mass with a four-point self-interaction. However, when examin-
ing the particle spectrum using perturbations around the vacuum, we see that it actually
describes a massive scalar particle (real, positive mass) with three- and four-point self-
interactions. Although the Lagrangian retains its original symmetry (symmetric in �), the
vacuum is not symmetric in the field ⌘: spontaneous symmetry breaking. Note that we
have added a single degree of freedom to the theory: a scalar particle.
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There are again two distinct cases: µ
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investigate the particle spectrum by studying the Lagrangian under small perturbations
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For a real scalar field for example:

Lscalar =
1

2
(@µ�) (@

µ
�)�

1

2
m

2
�
2
! Euler-Lagrange ! (@µ@

µ +m
2)� = 0| {z }

Klein-Gordon equation

In electroweak theory, kinematics of fermions, i.e. spin-1/2 particles is described by:

Lfermion = i ̄�µ@
µ
 �m ̄ ! Euler-Lagrange ! (i�µ@

µ
�m) = 0| {z }

Dirac equation

In general, the Lagrangian for a real scalar particle (�) is given by:

L = (@µ�)
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| {z }
kinetic term

+ C|{z}
constant

+ ↵�|{z}
?

+ ��
2

|{z}
mass term

+ ��
3

|{z}
3-point int.

+ ��
4

|{z}
4-point int.

+ ... (1)

We can interpret the particle spectrum of the theory when studying the Lagrangian under
small perturbations. In expression (1), the constant (potential) term is for most purposes
of no importance as it does not appear in the equation of motion, the term linear in the
field has no direct interpretation (and should not be present as we will explain later), the
quadratic term in the fields represents the mass of the field/particle and higher order terms
describe interaction terms.

1.3 Simple example of symmetry breaking

To describe the main idea of symmetry breaking we start with a simple model for a real
scalar field � (or a theory to which we add a new field �), with a specific potential term:

L =
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(@µ�)

2
� V(�)

=
1
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(@µ�)

2
�

1

2
µ
2
�
2
�

1

4
��

4 (2)

Note that L is symmetric under � ! �� and that � is positive to ensure an absolute
minimum in the Lagrangian. We can investigate in some detail the two possibilities for the
sign of µ2: positive or negative.

1.3.1 µ
2
> 0: Free particle with additional interactions

)φV(

φ

To investigate the particle spectrum we look at the Lagrangian for
small perturbations around the minimum (vacuum). The vacuum
is at � = 0 and is symmetric in �. Using expression (1) we see that
the Lagrangian describes a free particle with mass µ that has an
additional four-point self-interaction:

L =
1

2
(@µ�)

2
�

1

2
µ
2
�
2

| {z }
free particle, mass µ

�
1

4
��

4

| {z }
interaction
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At first glance, adding a V (�) term as in equation (2) to the Lagrangian implies adding
a particle with imaginary mass with a four-point self-interaction. However, when examin-
ing the particle spectrum using perturbations around the vacuum, we see that it actually
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interactions. Although the Lagrangian retains its original symmetry (symmetric in �), the
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Symmetry breaking with a complex field 𝜙
• Introduce a complex scalar field: 𝜙 = O

0
𝜙O + 𝑖𝜙0

• The Lagrangian term is:    ℒ = 𝜕;𝜙
∗ 𝜕;𝜙 − 𝑉 𝜙 ,  with 𝑉 𝜙 = 𝜇0 𝜙∗𝜙 + 𝜆 𝜙∗𝜙 0

• Lagrangian:      

ℒ 𝜙O, 𝜙0 = O
0
𝜕;𝜙O

0 + O
0
𝜕;𝜙0

0

− O
0
𝜇0 𝜙O0 + 𝜙00 − O

V
𝜆 𝜙O0 + 𝜙00 0

Case A) 

• Lagrangian:      

ℒ 𝜙O, 𝜙0 = O
0
𝜕;𝜙O

0 − O
0
𝜇0 𝜙O0 + O

0
𝜕;𝜙0

0 − O
0
𝜇0 𝜙00

+ interaction terms

Particle 𝜙$, mass 𝜇 Particle 𝜙%, mass 𝜇
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11.4.2 µ2 < 0

V(  )Φ

φ2

v−
φ1

ξ
η

When µ2 < 0 there is not a single vacuum located at
„

0
0

«
, but an infinite number of vacua that satisfy:

q
�2

1
+ �2

2
=

r
�µ2

�
= v

From the infinite number we choose �0 as �1 = v and
�2 = 0. To see what particles are present in this model,
the behaviour of the Lagrangian is studied under small
oscillations around the vacuum.

Looking at the symmetry we would use a ↵ei�. When
looking at perturbations around this minimum it is nat-
ural to define the shifted fields ⌘ and ⇠, with: ⌘ = �1�v
and ⇠ = �2, which means that the (perturbations around
the) vacuum are described by (see section 11.5.2):

�0 =
1
p

2
(⌘ + v + i⇠)

η

ξφ2

φ1
[2] [1]

circle of vacua

Using �2 = �⇤� = 1

2
[(v + ⌘)2 + ⇠2] and µ2 = ��v2 we can rewrite the Lagrangian in

terms of the shifted fields.

Kinetic term: Lkin(⌘, ⇠) =
1

2
@µ(⌘ + v � i⇠)@µ(⌘ + v + i⇠)

=
1

2
(@µ⌘)2 +

1

2
(@µ⇠)

2 , since @µv = 0.

Potential term: V(⌘, ⇠) = µ2�2 + ��4

= �
1

2
�v2[(v + ⌘)2 + ⇠2] +

1

4
�[(v + ⌘)2 + ⇠2]2

= �
1

4
�v4 + �v2⌘2 + �v⌘3 +

1

4
�⌘4 +

1

4
�⇠4 + �v⌘⇠2 +

1

2
�⌘2⇠2

Neglecting the constant and higher order terms, the full Lagrangian can be written as:

L(⌘, ⇠) =
1

2
(@µ⌘)2

� (�v2)⌘2

| {z }
massive scalar particle ⌘

+
1

2
(@µ⇠)

2 + 0 · ⇠2

| {z }
massless scalar particle ⇠

+ higher order terms

We can identify this as a massive ⌘ particle and a massless ⇠ particle:

m⌘ =
p

2�v2 =
p
�2µ2 > 0 and m⇠ = 0

• Now do the same for a complex scalar field ! =  
 
 
 
 

• We now have a whole circle of 
vacua to choose from:

Breaking global symmetry
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At first glance, adding a V (�) term as in equation (2) to the Lagrangian implies adding
a particle with imaginary mass with a four-point self-interaction. However, when examin-
ing the particle spectrum using perturbations around the vacuum, we see that it actually
describes a massive scalar particle (real, positive mass) with three- and four-point self-
interactions. Although the Lagrangian retains its original symmetry (symmetric in �), the
vacuum is not symmetric in the field ⌘: spontaneous symmetry breaking. Note that we
have added a single degree of freedom to the theory: a scalar particle.
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�) + �(�⇤
�)2

Note that the Lagrangian is invariant under a U(1) global symmetry, i.e. under �0
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There are again two distinct cases: µ
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> 0 and µ
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< 0. As in the previous section, we

investigate the particle spectrum by studying the Lagrangian under small perturbations
around the vacuum.
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This situation simply describes two massive scalar par-
ticles, each with a mass µ with additional interactions:
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At first glance, adding a V (�) term as in equation (2) to the Lagrangian implies adding
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1.3.2 µ
2
< 0: Introducing a particle with imaginary mass ?

φ

)φV( v

η

The situation with µ
2
< 0 looks strange since at first glance it

would appear to describe a particle � with an imaginary mass.
However, if we take a closer look at the potential, we see that it
does not make sense to interpret the particle spectrum using the
field � since perturbation theory around � = 0 will not converge
(not a stable minimum) as the vacuum is located at:

�0 =

r
�
µ2

�
= v or µ

2 = ��v
2 (3)

As before, to investigate the particle spectrum in the theory, we have to look at small
perturbations around this minimum. To do this it is more natural to introduce a field ⌘

(simply a shift of the � field) that is centered at the vacuum: ⌘ = �� v.

Rewriting the Lagrangian in terms of ⌘

Expressing the Lagrangian in terms of the shifted field ⌘ is done by replacing � by ⌘+ v in
the original Lagrangian from equation (2):

Kinetic term: Lkin(⌘) =
1

2
(@µ(⌘ + v)@µ(⌘ + v))

=
1

2
(@µ⌘)(@

µ
⌘) , since @µv = 0.

Potential term: V(⌘) = +
1

2
µ
2(⌘ + v)2 +

1

4
�(⌘ + v)4

= �v
2
⌘
2 + �v⌘

3 +
1

4
�⌘

4
�

1

4
�v

4,

where we used µ
2 = ��v

2 from equation (3). Although the Lagrangian is still symmetric
in �, the perturbations around the minimum are not symmetric in ⌘, i.e. V(�⌘) 6= V(⌘).
Neglecting the irrelevant 1

4
�v

4 constant term and neglecting terms or order ⌘2 we have as
Lagrangian:

Full Lagrangian: L(⌘) =
1

2
(@µ⌘)(@

µ
⌘)� �v

2
⌘
2
� �v⌘

3
�

1

4
�⌘

4
�

1

4
�v

4

=
1

2
(@µ⌘)(@

µ
⌘)� �v

2
⌘
2

From section 1.2 we see that this describes the kinematics for a massive scalar particle:

1

2
m

2

⌘ = �v
2
! m⌘ =

p

2�v2
⇣
=

p
�2µ2

⌘
Note: m⌘ > 0.
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1.4.2 µ
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ξ
η

When µ
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< 0 there is not a single vacuum located at
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◆
, but an infinite number of vacua that satisfy:
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= v

From the infinite number we choose �0 as �1 = v and
�2 = 0. To see what particles are present in this model,
the behaviour of the Lagrangian is studied under small
oscillations around the vacuum.

Looking at the symmetry we would use a ↵e
i�. When

looking at perturbations around this minimum it is nat-
ural to define the shifted fields ⌘ and ⇠, with: ⌘ = �1�v

and ⇠ = �2, which means that the (perturbations around
the) vacuum are described by (see section 1.5.2):

�0 =
1
p
2
(⌘ + v + i⇠)

η

ξφ2

φ1
[2] [1]

circle of vacua

Using �
2 = �

⇤
� = 1

2
[(v + ⌘)2 + ⇠

2] and µ
2 = ��v

2 we can rewrite the Lagrangian in terms
of the shifted fields.

Kinetic term: Lkin(⌘, ⇠) =
1

2
@µ(⌘ + v � i⇠)@µ(⌘ + v + i⇠)

=
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2
(@µ⌘)

2 +
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2
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2 , since @µv = 0.
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4 + �v
2
⌘
2 + �v⌘

3 +
1

4
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4 +
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2 +

1

2
�⌘
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⇠
2

Neglecting the constant and higher order terms, the full Lagrangian can be written as:

L(⌘, ⇠) =
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2
(@µ⌘)
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� (�v2)⌘2

| {z }
massive scalar particle ⌘

+
1

2
(@µ⇠)

2 + 0 · ⇠2

| {z }
massless scalar particle ⇠

+ higher order terms

We can identify this as a massive ⌘ particle and a massless ⇠ particle:

m⌘ =
p

2�v2 =
p
�2µ2 > 0 and m⇠ = 0

Unlike the ⌘-field, describing radial excitations, there is no ’force’ acting on oscillations
along the ⇠-field. This is a direct consequence of the U(1) symmetry of the Lagrangian and
the massless particle ⇠ is the so-called Goldstone boson.
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Unlike the ⌘-field, describing radial excitations, there is no ’force’ acting on oscillations
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the massless particle ⇠ is the so-called Goldstone boson.
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Neglecting the constant and higher order terms, the full Lagrangian can be written as:

L(⌘, ⇠) =
1

2
(@µ⌘)

2
� (�v2)⌘2

| {z }
massive scalar particle ⌘

+
1

2
(@µ⇠)

2 + 0 · ⇠2

| {z }
massless scalar particle ⇠

+ higher order terms

We can identify this as a massive ⌘ particle and a massless ⇠ particle:

m⌘ =
p

2�v2 =
p
�2µ2 > 0 and m⇠ = 0

Unlike the ⌘-field, describing radial excitations, there is no ’force’ acting on oscillations
along the ⇠-field. This is a direct consequence of the U(1) symmetry of the Lagrangian and
the massless particle ⇠ is the so-called Goldstone boson.
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• We now have a whole circle 
of vacua to chose from:

𝜙O0 + 𝜙00 =
[;B

\
= 𝑣

• Symmetry breaking: chose [1]: 𝜙v =
j
i 𝑣 + 𝜂 + 𝑖𝜉

Griffiths §10.9

𝜇i < 0



Symmetry breaking with a complex field 𝜙

• Redefine coordinates: 𝜂 = 𝜙j − 𝑣 , 𝜉 = 𝜙i ,       𝜙v =
j
i 𝑣 + 𝜂 + 𝑖𝜉

• Exercise: rewrite the Lagrangian ignoring constant terms and higher order terms:

Case B) 
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11.4.2 µ2 < 0

V(  )Φ

φ2

v−
φ1

ξ
η

When µ2 < 0 there is not a single vacuum located at
„

0
0

«
, but an infinite number of vacua that satisfy:

q
�2

1
+ �2

2
=

r
�µ2

�
= v

From the infinite number we choose �0 as �1 = v and
�2 = 0. To see what particles are present in this model,
the behaviour of the Lagrangian is studied under small
oscillations around the vacuum.

Looking at the symmetry we would use a ↵ei�. When
looking at perturbations around this minimum it is nat-
ural to define the shifted fields ⌘ and ⇠, with: ⌘ = �1�v
and ⇠ = �2, which means that the (perturbations around
the) vacuum are described by (see section 11.5.2):

�0 =
1
p

2
(⌘ + v + i⇠)

η

ξφ2

φ1
[2] [1]

circle of vacua

Using �2 = �⇤� = 1

2
[(v + ⌘)2 + ⇠2] and µ2 = ��v2 we can rewrite the Lagrangian in

terms of the shifted fields.

Kinetic term: Lkin(⌘, ⇠) =
1

2
@µ(⌘ + v � i⇠)@µ(⌘ + v + i⇠)

=
1

2
(@µ⌘)2 +

1

2
(@µ⇠)

2 , since @µv = 0.

Potential term: V(⌘, ⇠) = µ2�2 + ��4

= �
1

2
�v2[(v + ⌘)2 + ⇠2] +

1

4
�[(v + ⌘)2 + ⇠2]2

= �
1

4
�v4 + �v2⌘2 + �v⌘3 +

1

4
�⌘4 +

1

4
�⇠4 + �v⌘⇠2 +

1

2
�⌘2⇠2

Neglecting the constant and higher order terms, the full Lagrangian can be written as:

L(⌘, ⇠) =
1

2
(@µ⌘)2

� (�v2)⌘2

| {z }
massive scalar particle ⌘

+
1

2
(@µ⇠)

2 + 0 · ⇠2

| {z }
massless scalar particle ⇠

+ higher order terms

We can identify this as a massive ⌘ particle and a massless ⇠ particle:

m⌘ =
p

2�v2 =
p
�2µ2 > 0 and m⇠ = 0

• Now do the same for a complex scalar field ! =  
 
 
 
 

• We now have a whole circle of 
vacua to choose from:

Breaking global symmetry

�66

Executive summary on µ
2
< 0 scenario

At first glance, adding a V (�) term as in equation (2) to the Lagrangian implies adding
a particle with imaginary mass with a four-point self-interaction. However, when examin-
ing the particle spectrum using perturbations around the vacuum, we see that it actually
describes a massive scalar particle (real, positive mass) with three- and four-point self-
interactions. Although the Lagrangian retains its original symmetry (symmetric in �), the
vacuum is not symmetric in the field ⌘: spontaneous symmetry breaking. Note that we
have added a single degree of freedom to the theory: a scalar particle.

1.4 Breaking a global symmetry

In an existing theory we are free to introduce an additional complex scalar field: � =
1p
2
(�1 + i�2) (two degrees of freedom):

L = (@µ�)
⇤(@µ

�)� V(�) , with V(�) = µ
2(�⇤

�) + �(�⇤
�)2

Note that the Lagrangian is invariant under a U(1) global symmetry, i.e. under �0
! e

i↵
�

since �
0⇤
�
0
! �

⇤
�e

�i↵
e
+i↵ = �

⇤
�.

The Lagrangian in terms of �1 and �2 is given by:

L(�1,�2) =
1

2
(@µ�1)

2 +
1

2
(@µ�2)

2
�

1

2
µ
2(�2

1
+ �

2

2
)�

1

4
�(�2

1
+ �

2

2
)
2

There are again two distinct cases: µ
2
> 0 and µ

2
< 0. As in the previous section, we

investigate the particle spectrum by studying the Lagrangian under small perturbations
around the vacuum.

1.4.1 µ
2
> 0

V(  )Φ

φ
2

φ
1

This situation simply describes two massive scalar par-
ticles, each with a mass µ with additional interactions:

L(�1,�2) =
1

2
(@µ�1)

2
�

1

2
µ
2
�
2

1

| {z }
particle �1, mass µ

+
1

2
(@µ�2)

2
�

1

2
µ
2
�
2

2

| {z }
particle �2, mass µ

+ interaction terms
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particle �2, mass µ
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ing the particle spectrum using perturbations around the vacuum, we see that it actually
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interactions. Although the Lagrangian retains its original symmetry (symmetric in �), the
vacuum is not symmetric in the field ⌘: spontaneous symmetry breaking. Note that we
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There are again two distinct cases: µ
2
> 0 and µ

2
< 0. As in the previous section, we

investigate the particle spectrum by studying the Lagrangian under small perturbations
around the vacuum.

1.4.1 µ
2
> 0

V(  )Φ

φ
2

φ
1

This situation simply describes two massive scalar par-
ticles, each with a mass µ with additional interactions:

L(�1,�2) =
1

2
(@µ�1)

2
�

1

2
µ
2
�
2

1

| {z }
particle �1, mass µ

+
1

2
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2
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2
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| {z }
particle �2, mass µ

+ interaction terms
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1.3.2 µ
2
< 0: Introducing a particle with imaginary mass ?

φ

)φV( v

η

The situation with µ
2
< 0 looks strange since at first glance it

would appear to describe a particle � with an imaginary mass.
However, if we take a closer look at the potential, we see that it
does not make sense to interpret the particle spectrum using the
field � since perturbation theory around � = 0 will not converge
(not a stable minimum) as the vacuum is located at:

�0 =

r
�
µ2

�
= v or µ

2 = ��v
2 (3)

As before, to investigate the particle spectrum in the theory, we have to look at small
perturbations around this minimum. To do this it is more natural to introduce a field ⌘

(simply a shift of the � field) that is centered at the vacuum: ⌘ = �� v.

Rewriting the Lagrangian in terms of ⌘

Expressing the Lagrangian in terms of the shifted field ⌘ is done by replacing � by ⌘+ v in
the original Lagrangian from equation (2):

Kinetic term: Lkin(⌘) =
1

2
(@µ(⌘ + v)@µ(⌘ + v))

=
1

2
(@µ⌘)(@

µ
⌘) , since @µv = 0.

Potential term: V(⌘) = +
1

2
µ
2(⌘ + v)2 +

1

4
�(⌘ + v)4

= �v
2
⌘
2 + �v⌘

3 +
1

4
�⌘

4
�

1

4
�v

4,

where we used µ
2 = ��v

2 from equation (3). Although the Lagrangian is still symmetric
in �, the perturbations around the minimum are not symmetric in ⌘, i.e. V(�⌘) 6= V(⌘).
Neglecting the irrelevant 1

4
�v

4 constant term and neglecting terms or order ⌘2 we have as
Lagrangian:

Full Lagrangian: L(⌘) =
1

2
(@µ⌘)(@

µ
⌘)� �v

2
⌘
2
� �v⌘

3
�

1

4
�⌘

4
�

1

4
�v

4

=
1

2
(@µ⌘)(@

µ
⌘)� �v

2
⌘
2

From section 1.2 we see that this describes the kinematics for a massive scalar particle:

1

2
m

2

⌘ = �v
2
! m⌘ =

p

2�v2
⇣
=

p
�2µ2

⌘
Note: m⌘ > 0.
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1.4.2 µ
2
< 0

V(  )Φ

φ
2

v−

φ
1

ξ
η

When µ
2
< 0 there is not a single vacuum located at

✓
0
0

◆
, but an infinite number of vacua that satisfy:

q
�
2

1
+ �

2

2
=

r
�µ2

�
= v

From the infinite number we choose �0 as �1 = v and
�2 = 0. To see what particles are present in this model,
the behaviour of the Lagrangian is studied under small
oscillations around the vacuum.

Looking at the symmetry we would use a ↵e
i�. When

looking at perturbations around this minimum it is nat-
ural to define the shifted fields ⌘ and ⇠, with: ⌘ = �1�v

and ⇠ = �2, which means that the (perturbations around
the) vacuum are described by (see section 1.5.2):

�0 =
1
p
2
(⌘ + v + i⇠)

η

ξφ2

φ1
[2] [1]

circle of vacua

Using �
2 = �

⇤
� = 1

2
[(v + ⌘)2 + ⇠

2] and µ
2 = ��v

2 we can rewrite the Lagrangian in terms
of the shifted fields.

Kinetic term: Lkin(⌘, ⇠) =
1

2
@µ(⌘ + v � i⇠)@µ(⌘ + v + i⇠)

=
1

2
(@µ⌘)

2 +
1

2
(@µ⇠)

2 , since @µv = 0.

Potential term: V(⌘, ⇠) = µ
2
�
2 + ��

4

= �
1

2
�v

2[(v + ⌘)2 + ⇠
2] +

1

4
�[(v + ⌘)2 + ⇠

2]2

= �
1

4
�v

4 + �v
2
⌘
2 + �v⌘

3 +
1

4
�⌘

4 +
1

4
�⇠

4 + �v⌘⇠
2 +

1

2
�⌘

2
⇠
2

Neglecting the constant and higher order terms, the full Lagrangian can be written as:

L(⌘, ⇠) =
1

2
(@µ⌘)

2
� (�v2)⌘2

| {z }
massive scalar particle ⌘

+
1

2
(@µ⇠)

2 + 0 · ⇠2

| {z }
massless scalar particle ⇠

+ higher order terms

We can identify this as a massive ⌘ particle and a massless ⇠ particle:

m⌘ =
p

2�v2 =
p
�2µ2 > 0 and m⇠ = 0

Unlike the ⌘-field, describing radial excitations, there is no ’force’ acting on oscillations
along the ⇠-field. This is a direct consequence of the U(1) symmetry of the Lagrangian and
the massless particle ⇠ is the so-called Goldstone boson.
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Neglecting the constant and higher order terms, the full Lagrangian can be written as:
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We can identify this as a massive ⌘ particle and a massless ⇠ particle:

m⌘ =
p

2�v2 =
p
�2µ2 > 0 and m⇠ = 0

Unlike the ⌘-field, describing radial excitations, there is no ’force’ acting on oscillations
along the ⇠-field. This is a direct consequence of the U(1) symmetry of the Lagrangian and
the massless particle ⇠ is the so-called Goldstone boson.
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the behaviour of the Lagrangian is studied under small
oscillations around the vacuum.

Looking at the symmetry we would use a ↵e
i�. When

looking at perturbations around this minimum it is nat-
ural to define the shifted fields ⌘ and ⇠, with: ⌘ = �1�v
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• Symmetry breaking: chose [1]: 𝜙v =
j
i 𝑣 + 𝜂 + 𝑖𝜉

ℒ = O
0
𝜕;𝜂

0 − 𝜆𝑣0 𝜂0 +    O
0
𝜕;𝜉

0 − 0 ⋅ 𝜉0 + higher order terms  

massive scalar particle 𝜇 massless scalar particle 𝜉

• The Lagrangian is still symmetric
• The vacuum is no longer 

symmetric
• We have a massive scalar and a 

massless scalar
• The latter is called a 

Goldstone boson.
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Symmetry breaking with a complex field 𝜙

• Redefine coordinates: 𝜂 = 𝜙j − 𝑣 , 𝜉 = 𝜙i ,       𝜙v =
j
i 𝑣 + 𝜂 + 𝑖𝜉

• Exercise: rewrite the Lagrangian ignoring constant terms and higher order terms:

Case B) 

• Now do the same for a complex scalar field ! =  
 
 
 
 

• We now have a whole circle of 
vacua to choose from:

Breaking global symmetry

�66

Executive summary on µ
2
< 0 scenario

At first glance, adding a V (�) term as in equation (2) to the Lagrangian implies adding
a particle with imaginary mass with a four-point self-interaction. However, when examin-
ing the particle spectrum using perturbations around the vacuum, we see that it actually
describes a massive scalar particle (real, positive mass) with three- and four-point self-
interactions. Although the Lagrangian retains its original symmetry (symmetric in �), the
vacuum is not symmetric in the field ⌘: spontaneous symmetry breaking. Note that we
have added a single degree of freedom to the theory: a scalar particle.

1.4 Breaking a global symmetry

In an existing theory we are free to introduce an additional complex scalar field: � =
1p
2
(�1 + i�2) (two degrees of freedom):

L = (@µ�)
⇤(@µ

�)� V(�) , with V(�) = µ
2(�⇤

�) + �(�⇤
�)2

Note that the Lagrangian is invariant under a U(1) global symmetry, i.e. under �0
! e

i↵
�

since �
0⇤
�
0
! �

⇤
�e

�i↵
e
+i↵ = �

⇤
�.

The Lagrangian in terms of �1 and �2 is given by:

L(�1,�2) =
1

2
(@µ�1)

2 +
1

2
(@µ�2)

2
�

1

2
µ
2(�2

1
+ �

2

2
)�

1

4
�(�2

1
+ �

2

2
)
2

There are again two distinct cases: µ
2
> 0 and µ

2
< 0. As in the previous section, we

investigate the particle spectrum by studying the Lagrangian under small perturbations
around the vacuum.

1.4.1 µ
2
> 0

V(  )Φ

φ
2

φ
1

This situation simply describes two massive scalar par-
ticles, each with a mass µ with additional interactions:

L(�1,�2) =
1

2
(@µ�1)

2
�

1

2
µ
2
�
2

1

| {z }
particle �1, mass µ

+
1

2
(@µ�2)

2
�

1

2
µ
2
�
2

2

| {z }
particle �2, mass µ

+ interaction terms

8

Executive summary on µ
2
< 0 scenario

At first glance, adding a V (�) term as in equation (2) to the Lagrangian implies adding
a particle with imaginary mass with a four-point self-interaction. However, when examin-
ing the particle spectrum using perturbations around the vacuum, we see that it actually
describes a massive scalar particle (real, positive mass) with three- and four-point self-
interactions. Although the Lagrangian retains its original symmetry (symmetric in �), the
vacuum is not symmetric in the field ⌘: spontaneous symmetry breaking. Note that we
have added a single degree of freedom to the theory: a scalar particle.

1.4 Breaking a global symmetry

In an existing theory we are free to introduce an additional complex scalar field: � =
1p
2
(�1 + i�2) (two degrees of freedom):

L = (@µ�)
⇤(@µ

�)� V(�) , with V(�) = µ
2(�⇤

�) + �(�⇤
�)2

Note that the Lagrangian is invariant under a U(1) global symmetry, i.e. under �0
! e

i↵
�

since �
0⇤
�
0
! �

⇤
�e

�i↵
e
+i↵ = �

⇤
�.

The Lagrangian in terms of �1 and �2 is given by:

L(�1,�2) =
1

2
(@µ�1)

2 +
1

2
(@µ�2)

2
�

1

2
µ
2(�2

1
+ �

2

2
)�

1

4
�(�2

1
+ �

2

2
)
2

There are again two distinct cases: µ
2
> 0 and µ

2
< 0. As in the previous section, we

investigate the particle spectrum by studying the Lagrangian under small perturbations
around the vacuum.

1.4.1 µ
2
> 0

V(  )Φ

φ
2

φ
1

This situation simply describes two massive scalar par-
ticles, each with a mass µ with additional interactions:

L(�1,�2) =
1

2
(@µ�1)

2
�

1

2
µ
2
�
2

1

| {z }
particle �1, mass µ

+
1

2
(@µ�2)

2
�

1

2
µ
2
�
2

2

| {z }
particle �2, mass µ

+ interaction terms

8

Executive summary on µ
2
< 0 scenario

At first glance, adding a V (�) term as in equation (2) to the Lagrangian implies adding
a particle with imaginary mass with a four-point self-interaction. However, when examin-
ing the particle spectrum using perturbations around the vacuum, we see that it actually
describes a massive scalar particle (real, positive mass) with three- and four-point self-
interactions. Although the Lagrangian retains its original symmetry (symmetric in �), the
vacuum is not symmetric in the field ⌘: spontaneous symmetry breaking. Note that we
have added a single degree of freedom to the theory: a scalar particle.

1.4 Breaking a global symmetry

In an existing theory we are free to introduce an additional complex scalar field: � =
1p
2
(�1 + i�2) (two degrees of freedom):

L = (@µ�)
⇤(@µ

�)� V(�) , with V(�) = µ
2(�⇤

�) + �(�⇤
�)2

Note that the Lagrangian is invariant under a U(1) global symmetry, i.e. under �0
! e

i↵
�

since �
0⇤
�
0
! �

⇤
�e

�i↵
e
+i↵ = �

⇤
�.

The Lagrangian in terms of �1 and �2 is given by:

L(�1,�2) =
1

2
(@µ�1)

2 +
1

2
(@µ�2)

2
�

1

2
µ
2(�2

1
+ �

2

2
)�

1

4
�(�2

1
+ �

2

2
)
2

There are again two distinct cases: µ
2
> 0 and µ

2
< 0. As in the previous section, we

investigate the particle spectrum by studying the Lagrangian under small perturbations
around the vacuum.
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This situation simply describes two massive scalar par-
ticles, each with a mass µ with additional interactions:
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1
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+ interaction terms
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1.3.2 µ
2
< 0: Introducing a particle with imaginary mass ?

φ

)φV( v

η

The situation with µ
2
< 0 looks strange since at first glance it

would appear to describe a particle � with an imaginary mass.
However, if we take a closer look at the potential, we see that it
does not make sense to interpret the particle spectrum using the
field � since perturbation theory around � = 0 will not converge
(not a stable minimum) as the vacuum is located at:

�0 =

r
�
µ2

�
= v or µ

2 = ��v
2 (3)

As before, to investigate the particle spectrum in the theory, we have to look at small
perturbations around this minimum. To do this it is more natural to introduce a field ⌘

(simply a shift of the � field) that is centered at the vacuum: ⌘ = �� v.

Rewriting the Lagrangian in terms of ⌘

Expressing the Lagrangian in terms of the shifted field ⌘ is done by replacing � by ⌘+ v in
the original Lagrangian from equation (2):

Kinetic term: Lkin(⌘) =
1

2
(@µ(⌘ + v)@µ(⌘ + v))

=
1

2
(@µ⌘)(@

µ
⌘) , since @µv = 0.

Potential term: V(⌘) = +
1

2
µ
2(⌘ + v)2 +

1

4
�(⌘ + v)4

= �v
2
⌘
2 + �v⌘

3 +
1

4
�⌘

4
�

1

4
�v

4,

where we used µ
2 = ��v

2 from equation (3). Although the Lagrangian is still symmetric
in �, the perturbations around the minimum are not symmetric in ⌘, i.e. V(�⌘) 6= V(⌘).
Neglecting the irrelevant 1

4
�v

4 constant term and neglecting terms or order ⌘2 we have as
Lagrangian:

Full Lagrangian: L(⌘) =
1

2
(@µ⌘)(@

µ
⌘)� �v

2
⌘
2
� �v⌘

3
�

1

4
�⌘

4
�

1

4
�v

4

=
1

2
(@µ⌘)(@

µ
⌘)� �v

2
⌘
2

From section 1.2 we see that this describes the kinematics for a massive scalar particle:

1

2
m

2

⌘ = �v
2
! m⌘ =

p

2�v2
⇣
=

p
�2µ2

⌘
Note: m⌘ > 0.
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1.4.2 µ
2
< 0

V(  )Φ

φ
2

v−

φ
1

ξ
η

When µ
2
< 0 there is not a single vacuum located at

✓
0
0

◆
, but an infinite number of vacua that satisfy:

q
�
2

1
+ �

2

2
=

r
�µ2

�
= v

From the infinite number we choose �0 as �1 = v and
�2 = 0. To see what particles are present in this model,
the behaviour of the Lagrangian is studied under small
oscillations around the vacuum.

Looking at the symmetry we would use a ↵e
i�. When

looking at perturbations around this minimum it is nat-
ural to define the shifted fields ⌘ and ⇠, with: ⌘ = �1�v

and ⇠ = �2, which means that the (perturbations around
the) vacuum are described by (see section 1.5.2):

�0 =
1
p
2
(⌘ + v + i⇠)

η

ξφ2

φ1
[2] [1]

circle of vacua

Using �
2 = �

⇤
� = 1

2
[(v + ⌘)2 + ⇠

2] and µ
2 = ��v

2 we can rewrite the Lagrangian in terms
of the shifted fields.

Kinetic term: Lkin(⌘, ⇠) =
1

2
@µ(⌘ + v � i⇠)@µ(⌘ + v + i⇠)

=
1

2
(@µ⌘)

2 +
1

2
(@µ⇠)

2 , since @µv = 0.

Potential term: V(⌘, ⇠) = µ
2
�
2 + ��

4

= �
1

2
�v

2[(v + ⌘)2 + ⇠
2] +

1

4
�[(v + ⌘)2 + ⇠

2]2

= �
1

4
�v

4 + �v
2
⌘
2 + �v⌘

3 +
1

4
�⌘

4 +
1

4
�⇠

4 + �v⌘⇠
2 +

1

2
�⌘

2
⇠
2

Neglecting the constant and higher order terms, the full Lagrangian can be written as:

L(⌘, ⇠) =
1

2
(@µ⌘)

2
� (�v2)⌘2

| {z }
massive scalar particle ⌘

+
1

2
(@µ⇠)

2 + 0 · ⇠2

| {z }
massless scalar particle ⇠

+ higher order terms

We can identify this as a massive ⌘ particle and a massless ⇠ particle:

m⌘ =
p

2�v2 =
p
�2µ2 > 0 and m⇠ = 0

Unlike the ⌘-field, describing radial excitations, there is no ’force’ acting on oscillations
along the ⇠-field. This is a direct consequence of the U(1) symmetry of the Lagrangian and
the massless particle ⇠ is the so-called Goldstone boson.
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We can identify this as a massive ⌘ particle and a massless ⇠ particle:
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p
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p
�2µ2 > 0 and m⇠ = 0

Unlike the ⌘-field, describing radial excitations, there is no ’force’ acting on oscillations
along the ⇠-field. This is a direct consequence of the U(1) symmetry of the Lagrangian and
the massless particle ⇠ is the so-called Goldstone boson.
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• Symmetry breaking: chose [1]: 𝜙v =
j
i 𝑣 + 𝜂 + 𝑖𝜉

ℒ = O
0
𝜕;𝜂

0 − 𝜆𝑣0 𝜂0 +    O
0
𝜕;𝜉

0 − 0 ⋅ 𝜉0 + higher order terms  

massive scalar particle 𝜇 massless scalar particle 𝜉

• The Lagrangian is still symmetric
• The vacuum is no longer 

symmetric
• We have a massive scalar and a 

massless scalar
• The latter is called a 

Goldstone boson.
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Higgs Mechanism
• The Higgs mechanism breaks the symmetry of the (electro-)weak interaction
• Works along the lines as described in previous slides; introduce a complex SU(2) doublet 
• Details beyond the scope these lectures, idea as follows:

• Electroweak Lagrangian:
• Where the covariant derivatives: 

U(1):                                                                 and SU(2):

• Higgs field is weak isospin doublet:                                               ;

• With the potential: 𝑉 𝜙 = 𝜇i 𝜙w𝜙 + 𝜆 𝜙w𝜙
i

where:  𝜇i < 0

ℒ = K𝜓 𝑖𝛾;𝐷; −𝑚 𝜓 + 𝐷;𝜙
] 𝐷;𝜙 − 𝑉 𝜙

𝜓 𝑥 → 𝜓E 𝑥 = eFH I 𝜓 𝑥

𝐴; 𝑥 → 𝐴E; 𝑥 = 𝐴; 𝑥 −
1
𝑞 𝜕

;𝛼 𝑥

⇒ 𝐷. = 𝜕. + 𝑖𝑞𝐴.

𝜓 𝑥 → 𝜓E 𝑥 = 𝐺 𝑥 𝜓 𝑥

with 𝐺 𝑥 = exp F
0
𝜏 ⋅ 𝛼⃗ 𝑥

𝐵;E = 𝐺𝐵;𝐺[O +
F
^

𝜕;𝐺 𝐺[O

⇒ 𝐷;= 𝐼𝜕; + 𝑖𝑔𝐵;

𝜙 =
𝜙_

𝜙`
=

1
2
𝜙O + 𝑖𝜙0
𝜙N + 𝑖𝜙V

𝜙` =
1
2
0
𝑣
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Higgs Mechanism : Early Universe phenomenology

Massive particles

vev≠ 0

Massless particles

• Electroweak Symmetry breaking happened in the 
early universe after 10xjj seconds
• The Higgs choses a preferred direction in weak isospin space
• One massive Higgs scalar field remains – due to field 

excitations around 𝑣; the earlier 𝜂 term
• Three massless Goldstone bosons appear, but they are re-

written as massterms for the gauge fields of the broken 
symmetry. (𝑊,𝑍 “eat” the Goldstone bosons)
• The 𝑊<,𝑊=, 𝑍( bosons acquire mass.

• The photon remains massless
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Higgs Mechanism : Early Universe phenomenology

Massive particles

vev≠ 0

• Electroweak Symmetry breaking happened in the 
early universe after 10xjj seconds
• The Higgs choses a preferred direction in weak isospin space
• One massive Higgs scalar field remains – due to field 

excitations around 𝑣; the earlier 𝜂 term
• Three massless Goldstone bosons appear, but they are re-

written as massterms for the gauge fields of the broken 
symmetry. (𝑊,𝑍 “eat” the Goldstone bosons)
• The 𝑊<,𝑊=, 𝑍( bosons acquire mass.

• The photon remains massless

• Higgs and fermions:
• The SM allows to couple the Higgs field to fermion isospin 

doublets:
• The vacuum expectation value of the Higgs gives rise the fermion 

masses
• Mass term: 𝑚C = 𝑌C ⋅

+
"
𝑣 where 𝑌C is a particle constant. 

• For the top quark: 𝑌7 = 1 ?!
• The Higgs and the 𝑊 boson do not agree on the ”generation” 

eigenstates, see lecture 2.
• The Higgs couplings give rise to the 𝐶𝐾𝑀 elements ⇒ 𝐶𝑃𝑉 !
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13.3.3 Review Higgs boson couplings to fermions and gauge
bosons

A summary of the Higgs boson couplings to fermions and gauge bosons.

h
�(h! ff̄) = Nc

8⇡v2 m2

f
mh

p
1� x , with x =

4m
2
f

m
2
h

h �(h! V V ) = g
2

64⇡M
2
W

m3

h
SV V (1� x + 3

4
x2)
p

1� x

, with x =
4M

2
V

m
2
h

and SWW,ZZ = 1, 1

2
.

The decay of the Higgs boson to two o↵-shell gauge bosons is given by:

h
�(h! V V ⇤) =

3M
4
V

32⇡2v4 mh �
0
V
R(x) , with

�
0
W

= 1, �
0
Z

= 7

12
�

10

9
sin2 ✓W + 40

27
sin4 ✓W , with

R(x) = 3(1�8x+20x
2
)p

4x�1
acos

�
3x�1

2x3/2

�
�

1�x

2x
(2� 13x + 47x2)

�
3

2
(1� 6x + 4x2) ln(x)

Since the coupling of the Higgs boson to gauge bosons is so much larger than that to
fermions, the Higgs boson decays to o↵-shell gauge bosons even though MV ⇤ + MV <
2MV . The increase in coupling ’wins’ from the Breit-Wigner suppression. For example:
at mh= 140 GeV, the h! WW ⇤ is already larger than h! bb̄.

h
γ

γ

h
γ

γ

�(h! ��) = ↵
2

256⇡3v2 m3

h

���4

3

P
f
N (f)

c e2

f
� 7

���
2

, where ef is the fermion’s electromagnetic charge.
Note: - WW contribution ⇡ 5 times top contribution

- Some computation also gives h! �Z

h
�(h! gluons) =

↵2

s

72⇡3v2
m3

h


1 +

✓
95

4
�

7Nf

6

◆
↵s

⇡
+ ...

�2

Note: - The QCD higher order terms are large.
- Reading the diagram from right to left you see the dominant

production mechanism of the Higgs boson at the LHC.
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Exercise – 20 : Mass of the proton 

Besides giving mass to the weak vector bosons, it was briefly flashed that the 
same Higgs mechanism is responsible for giving mass to the fermion masses in 
the Standard Model, through ad-hoc Yukawa couplings. The mass of a 'naked' 
quark can be estimated through models of soft QCD, where it enters as a 
parameter for e.g. the binding energy of a meson. For up and down, they are 
found to be roughly 2 resp. 5 MeV/c .
a) What fraction of the proton mass is due to the Higgs mass of the 

constituent quarks? 
b) Can you find out where the other part of the proton mass comes from?



• See also:
• https://en.wikipedia.org/wiki/Mathematical_formulation_of_the_Standard_Model



Beyond SM: Vacuum Stability and Dark Matter



Lecture 4: ”Symmetries”

Part 3 
Discrete Symmetries

Griffiths chapter 4



Discrete Symmetries 

• Is nature invariant if we look at it through a mirror?

• Let’s go back to some more basic symmetries. 
• Question: is nature invariant if I look at it through a mirror?

Parity
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Discrete C, P, T Symmetries

• Parity, P: unobservable: (absolute handedness)
• Reflects a system through the origin.  

Converts right-handed to left-handed.
• 𝒙 → −𝒙 , 𝒑 → −𝒑 (vectors) but  𝑳 = 𝒙 × 𝒑 (axial vectors)

• Charge Conjugation, C: unobservable: (absolute charge)
• Turns internal charges to opposite sign.
• 𝒆# → 𝒆$ , 𝑲$ → 𝑲#

• Time Reversal, T: unobservable: (direction of time)
• Changes direction of motion of particles
• 𝒕 → −𝒕

• CPT Theorem:
• All interactions are invariant under combined C, P and T operation
• A particle is an antiparticle travelling backward in time
• Implies e.g. particle and anti-particle have equal masses and lifetimes

+ -

6



Parity: Helicity and Chirality
• Parity image
• 𝐿 = 𝑟×𝑝⃗ → −𝑟×−𝑝⃗ = 𝐿
• Same for spin 𝑆

• Helicity: spin projection on momentum
• 𝜆 = 𝜎⃗ ⋅ 𝑝⃗ → 𝜎⃗ ⋅ −𝑝⃗ = −𝜆
• The mirror of left-handed = right-

handed

• Chirality:
• If you, as observer overtake the 

electron, it changes from left handed to 
right-handed

• How is it for a neutrino – zero mass?
• You cannot overtake it.
• Chirality is the helicity in the relativistic 

limit:  𝑚 → 0 ; 𝑣 → 𝑐

• Parity: flips spatial coordinates:  
- vector: P(v) = -v 

• Cross-product: a = v x w.   P(a) = (-v x -w) = -a 
- axial vector: P(a) = -a 
—> angular momentum, B-field, … 

• Scalar: P(s) = s 

• Pseudoscalar: p = u . (v x w) —> P(p) = -p 

• Wave function: P!(x,t) = !(-x,t)

Parity
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• Parity is violated in the weak interaction. (actually, maximally!) 
• Let’s choose the z-axis along the direction of motion,  

and define ‘helicity’ as spin Sz projection onto this z-axis: 
h = ms / s = { +1, -1} 

• However, this quantity is not Lorentz-invariant:  
we can ‘overtake’ the particle with a fast moving Lorentz boost, 
while the spin stays the same —> this flips the helicity.

Helicity
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Exercise  – 21 : Helicity vs Chirality 

a) Write out the chirality operator 𝛾2 in the Dirac-Pauli representation. 

b) The helicity operator is defined as 𝜆 = j
iΣ ⋅ 𝑝̂ .   Show that helicity operator 

and the chirality operator have the same effect on a spinor solution, i.e. 

in the relativistic  limit where 𝐸 ≫ 𝑚
c) Show explicitly that for a Dirac spinor:

-𝜓𝛾3𝜓 = 𝜓%𝛾3𝜓% + 𝜓4𝛾3𝜓4 making use of 𝜓 = 𝜓% + 𝜓4 and the  

projection operators: 𝜓% =
5
6
1 − 𝛾2 and 𝜓4 =

5
6
1 + 𝛾2

d) Explain why the weak interaction is called left-handed. 

𝛾b𝜓 = 𝛾b
𝜒(c)

𝜎⃗ ⋅ 𝑝⃗
𝐸 + 𝑚𝜒(c)

≈ 𝜆
𝜒 c

𝜎⃗ ⋅ 𝑝⃗
𝐸 + 𝑚𝜒(c)

= 𝜆𝜓

Wolfgang Pauli

“I cannot believe God is a weak left-hander.”

with: 𝜒(O) = 1
0 ; 𝜒(0) = 0

1



The weak interaction of particles is “left-handed”
• Look at the weak pion decay: 𝜋x → 𝜇x𝜈̅O in the pion:

• 𝜋[ → 𝜇[𝜈̅ ∶ muon spin was found right handed: anti-neutrino is also right handed (R.H.)

• Parity turns right-handed chirality into left-handed chirality. 

• Weak interaction maximally violates parity: 
—> only couples to left-handed particles  
       (or right-handed antiparticles)! 

• Then how can we explain the decay to a right-handed muon? 
- muon and anti-neutrino must have same helicity  
- anti-neutrino is right-handed, so muon must be as well  
  —> but weak force only couples to left-handed particles?

Parity

�49

+6>*Ö��7�^^B�E�

´Ĵ ϸേ �	 µĴƏേ :േ೘േ
�K �K

���&"@69fq>(R03/u Ȝ໲ʊᬡ లၧᄇៀ᩟ᇁ๤ᒬ࿊ၧ࿊ᬡ
�@8�u �1Hā  1F@*@gp�u ./É �Ã�Å g<1u aXAMNus!L/ul1GT*@dpu s�1u Ys\tFH1Gu �:1ru
�A,@gpu����u oÎć 5R©ų �;Y�ûǋÄ�Ǟ E�ªs�Ã�E5Y~Å �;2I@e@fpu��ʉđǍ
��Ē�Ē����)���Ē^��Ē���Ē��	��Ē
�������Ē���þ�U��=�Ē ��Ē½��
�ĂĐ��#��6���Ē4 �ĒÑæĉ��Ē$��Ē
ß���
����Ē��+������Ē�	��	Ē ��ĒUZj~��Ē�)ā:���Ē�GĒ���Ē�D�
�#
���Ē��:�����
ĒÛ�

*Ē
Jºą.�U�
��Ē��Ē�
����B��Ē3� @̀OWj&K~
�����Ē��Ē�����
���Ē���Ē������7�Ē��Ē�Ē��#
�Ē
�
���/y�bĒ Ç����Ē ���Ē
��\Ðån���2Ē���)����Ē����
��Ē����Ē	��GĒ�:Ē���Ē����)r���Ē�����Ē
.�Ē��nď	$����NĒ$��Ē����Ēõ/�	�\	B����?Ēu���Ē��<�Ē�	��+���Ēl���Ē����Ē��Ē����Ē/Eh-Zx3b30~
���Ē��B�Ē

g?ûJ��fVjĺâ�?ĺï?�Jķe;��?�àĺ
;fJU�?üJhìgôjĺ;h?ĺh�deúĸè;gã?ä:ĺ

V<ĺT�8{�
�Ē ��L�Ē ��[�HĒ��Ē
���8�
Ē�	
Ē 	
������Ē��Ē�Ē�
���o��Ē���
����®Ē �X
�L�
ĒH$��Ē
���ă�	Ē ��Ē����³¡Ē��Ē@��Û R��)�Ē ��@Ē	���#��2Ē�Ē����úp#���Ē����Ē��mq��´�Ē
��	��2Ē�����Ē
���Ē�����Ē��Ē���Ē ,���¬Ē ;� Րᬡࠇᬡ� &ąÄવĜఞ U�Ē���Ē����Ē��Ē��Ē ����?Ē ���Ē
���Ē���Ē�	�Ē
��ûp��������Ē��
�Ē���ĒD�EvĒ��ĒX$Ì<Ē�¹��[�
Ē̈ *&A=*Ēi����#
�@Ē���E�Ē�	�Ē,���Ē	��Ē�,��Ē
ANĒ�	
Ē
���Ē$��Ē�	�Ē$�����������Ē�����Ē
8��Ē.
Ē�,��������Ē��äà�
�*üĒk����G��
3Ē��Ē
���Ē���r�������Ēâ~Ē �����\������3Ē7��Ē
���Ē
���ĒD�Ē���	���$����Ē��ïĒM��Ē7H�Ē����Ē
�
��Ē���
��Ē4$��Ē7X��Ē��Ē��
¶�ù
��Ē�H��Ēo�Ē��[í�Ē
Ĉ�
��
���$���ĒÉ¢«�*Ē¿
��8�


��Ē
��Ē�	
ĒRs[W~	�������OĒ��
�2Ē���.�
�Ē�േ��Ē�����
��
Ē�	
Ē&WpFU3tja>W[~�
��E���*Ēg�Ē��
Ē
��

Ē��<
�9Ē ��Ē1�7��µ��9Ē �	
Ē$�76
���Ē��Ē������Ē ��Òý]����
�OĒ���Ē�	q~Ē����U����Ē
�	��Ē�	�Ē��������Ē��Ē��Ü�	������Ē·�Ē��������3Ē��������Ē�	�Ē�����Ē��Ē���ĒW3uj̀ &K~����3Ē
;"E&േ ʪᬡ��᧰ۙᬡÂ���Ē������Ē��Ē���Ē��#��Ē�����Ē���ĒAGK�	�����Ē
���Ē��#�Ē�	�Ē��
�Ē
	�����7�*Ē g��Ē�	��Ē��Ē1േ3K3-qb[R&7U3j>.~,)�����cĒ�	��	Ē�����²��Ē,�����PĒ���Ē�	���Ē��Ē
�	
Ē�������2Ē��Ē���Ēu���Ē��Ē
���Ē������������Ē�	����Ē�����Ē��Ē��Ý�	�����Ē�����dĒ
À��Ē��Ē:��Ē�������� Ē̄�	��Ē����Ē/y����E�Ē���<��2Ē���Ē�#�öĊĒ���ĒY�Ē�
Þ]�B����°Ē���Ē

ೖേ ¶Ĵ {ᬡ� ೗േ ਘ᫚ᬡ ᬡڅ ³Ĵ Əേ೙േ೚േଇረᅟᬡښᬡɅٹ,׳ఞ ��k�û�+û୛Ӎ ã�ĒƁ���GǞ

JĻ E�dû,ĝ��
���Ǟ�:b4¿���%�û�2�HK¶Ù,�-OkǞm&Ki1uS+û vw ćæç�÷�ġ��]u1n&OZG1	uh:1uZ<SdTQűേ̌ �7ÂᬡੑᬡYHǞ T û�
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Spin = 0 Spin = ½  Spin = ½  

• Compare to the decay: 𝜋~ → 𝜇~𝜈 and measure the spin of the muon:
• 𝜋_ → 𝜇_𝜈 ∶ anti-muon spin was found left-handed: neutrino is also left handed (L.H.)

• Since neutrino’s are ultra-relativistic (𝑚 ≈ 0): neutrino’s are always left-handed
anti-neutrino’s are always right handed

è The weak interaction maximally violates parity symmetry!

R.H. helicity R.H. helicity



Classical Mirror Worlds 
• Parity P: 𝑥⃗ → −𝑥⃗ , 𝑝⃗ → −𝑝⃗
- Mass 𝑚 𝑃 𝑚 = 𝑚 : scalar
- Force 𝐹⃗ (𝐹⃗ = 𝑑𝑝⃗/𝑑𝑡) 𝑃 𝐹⃗ = 𝑃 ⁄𝑑𝑝⃗ 𝑑𝑡 = − ⁄𝑑𝑝⃗ 𝑑𝑡 = −𝐹⃗ : vector
- Acceleration 𝑎⃗ (𝑎⃗ = ⁄𝑑%𝑥⃗ 𝑑𝑡%) 𝑃 𝑎⃗ = − ⁄𝑑%𝑥 𝑑𝑡% = −𝑎⃗ : vector
- Angular momentum 𝐿, 𝑆, 𝐽 (𝐿 = 𝑥⃗×𝑝⃗) 𝑃 𝐿 = −𝑥⃗ × −𝑝⃗ = 𝐿 : axial vector

• Parity: Newton’s law is invariant under P-operation (i.e. the same in the mirror world):

• Charge: Lorentz Force in the C-mirror world is invariant:

• Time: laws of physics are also invariant unchanged under T-reversal, since:

• QM: Consider Schrodinger’s equation (𝑡 → −𝑡) :

Complex conjugation is required to stay invariant:

𝐹⃗ = 𝑚 𝑎⃗
�

− 𝐹⃗ = −𝑚𝑎⃗ ⇔ 𝐹⃗ = 𝑚 𝑎

𝐹⃗ = 𝑞 𝐸 + 𝑣⃗×𝐵
�

𝐹⃗ = −𝑞 −𝐸 + 𝑣⃗×−𝐵

𝐹⃗ = 𝑚 𝑎⃗ = 𝑚 �"e⃗
��"

�
𝐹⃗ = 𝑚 �"e⃗

� x� " ⇔ 𝐹⃗ = 𝑚 𝑎

𝑖ℏ
𝜕𝜓
𝜕𝑡

= −
ℏi

2𝑚
𝛻i𝜓

𝜓
𝑇
𝜓∗

à Invariant!



C-, P-, T- Symmetry

• Classical Theory is invariant under C, P, T operations; i.e. they conserve 
C, P, T symmetry
• Newton mechanics, Maxwell electrodynamics.

• Suppose we watch some physical event. Can we determine 
unambiguously whether: 
• We are watching the event where all charges are reversed or not?

• We are watching the event in a mirror or not?
• Macroscopic biological asymmetries are considered accidents of evolution rather than 

fundamental asymmetry in the laws of physics.

• We are watching the event in a film running backwards or not?
• The arrow of time is due to thermodynamics: i.e. the realization of a macroscopic final 

state is statistically more probable than the initial state
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• At each crossing: 50% - 50% choice to go left or right
• After many decisions: reverse the velocity of the final state and return
• Do we end up with the initial state?

Macroscopic time reversal (T.D. Lee)
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Macroscopic time reversal (T.D. Lee)

Very unlikely!

• At each crossing: 50% - 50% choice to go left or right
• After many decisions: reverse the velocity of the final state and return
• Do we end up with the initial state?



Macroscopic time reversal



Parity Violation

“L”

driver
Gas pedal

“R”

Gas pedal driver

Before 1956 physicists were convinced that the laws of nature 
were left-right symmetric. Strange?

A “gedanken” experiment:  consider two perfectly mirror symmetric cars:

“L” and “R” are fully symmetric,
Each nut, bolt, molecule etc.
However the engine is a black box

Person “L” gets in, starts, ….. 60 km/h
Person “R” gets in, starts, ….. What happens?

What happens in case the ignition mechanism uses, say, Co60 b decay?

9



The weak interaction is left handed

• Look again at pion decay

• The combination of C and P, then, sound like a reasonable invariant  
 
 
 
 
 
 
 
 
 
 

CP

�52

L

L

R

R

R

R

• Parity turns right-handed chirality into left-handed chirality. 

• Weak interaction maximally violates parity: 
—> only couples to left-handed particles  
       (or right-handed antiparticles)! 

• Then how can we explain the decay to a right-handed muon? 
- muon and anti-neutrino must have same helicity  
- anti-neutrino is right-handed, so muon must be as well  
  —> but weak force only couples to left-handed particles?

Parity

�49
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• Both Parity 𝑃 as well as charge 
conjugation 𝐶 symmetry are 
violated
• But happens if we do both: 𝐶𝑃?



Weak Force breaks C and P, is CP really OK?

• Weak interaction breaks C and P
symmetry maximally!
• Nature is left-handed for matter and right-

handed for antimatter.

• Despite maximal violation of C and P, 
combined CP seemed conserved…

• But in 1964, Christenson, Cronin, Fitch and 
Turlay observed CP violation in decays of 
neutral kaons!

W+
e+R

nL

W+
e+L

nR

W-
e-R

nL

W-

e-L

nR

P

C



𝐾^ → 𝜋~𝜋x

Effect is tiny:
about 2/1000

Discovery of CP-Violation with Kaons
• Create a pure 𝐾^ beam (“wait” for 𝐾� to decay)
• If CP is conserved, should not see 𝐾^ → 𝜋~𝜋x

q
Expected Background: 𝐾= → 𝜋!𝜋*𝜋#

CPV Signal: 𝐾= → 𝜋!𝜋*

James Cronin Val Fitch

cos q

𝐾(

15𝐾d: Short-lived is CP even: 
𝐾O` → 𝜋_𝜋[ (fast)
𝐾e: Long-lived is CP odd: 
𝐾0` → 𝜋_𝜋[𝜋` (slow)

mass, θ
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Alternative: Charge Asymmetry in 𝐾2 decays

Thesis Vera Luth, CERN 1974

4�(�) =

����
(1 + ")

(1 � ")

����
2

Measure 𝐴 = �%x�&

�%~�& with     𝑁
~ = 𝐾v → 𝜋x𝑒~𝜈

𝑁x = 𝐾v → 𝜋~𝑒x𝜈̅
vs the 𝐾v decay time  

⟩|𝐾/ =
1
2

1

1 + 𝜀 "
1 + 𝜀 | ⟩𝐾( + 1 − 𝜀 | �𝐾(

→ 𝜋=𝑒<𝜈
→ 𝜋<𝑒=𝜈

𝐾d 𝐾e

𝐴

CP violation in 
meson mixing.

𝐾# → 𝜋*𝑒!𝜈 happens a bit 
(𝜀) more than 𝐾# → 𝜋!𝑒*𝜈̅
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Contact with Aliens !
Are they made of matter or anti-matter?

Compare the charge of the most abundantly produced electron with 
that of the electrons in your body:
If opposite: matter If equal: anti-matter

Compare 𝐾e` → 𝜋_𝑒[𝜈̅ to    𝐾e` → 𝜋[𝑒_𝜈



CP Violation & B-mesons
• Example: 𝐵7 → 𝐾8𝜋9
• Two quantum amplitudes 

(Feynman diagrams)
• Interference gives rise to CP 

violation
• Requires “strong” and “weak” 

phases

• But what if there are two phases: 
- weak phase !, that flips sign under CP 
- strong phase δ (due to bound state) which is invariant under CP 

• Now there is a difference in the amplitude!

CP violation

�56

1

Chapter 1. Introduction

of a single Feynman diagram, such as B+
æ fi0µ+‹µ. There is a weak phase associated to

the CKM element Vub (Eq. 1.1.13), but since the probability of the process is proportional
to the absolute square of Vub, this phase does not a�ect the decay rate. In order to be
sensitive to the CP -violating phase, one requires two diagrams of the same process P æ f

that will interfere, with a relative phase di�erence between the two,

A1 = |A1|e
iÏ1 ,

A2 = |A2|e
iÏ2 ,

|A|
2 = |A1 + A2|

2 = |A1|
2 + |A2|

2 + |A1||A2|(ei(Ï1≠Ï2) + ei(Ï2≠Ï1))
= |A1|

2 + |A2|
2 + 2|A1||A2| cos(�Ï), (1.2.4)

where A is an amplitude and �Ï = (Ï1 ≠ Ï2). The phase Ïi consists of the CP -conserving,
or strong phase ”i and the CP -violating, or weak phase „i: Ïi = („i + ”i). Now consider
the CP -conjugate process (i.e. „ æ ≠„ and ” æ ”),

|A|
2 = |A1 + A2|

2 = |A1|
2 + |A2|

2 + 2|A1||A2| cos(�” + �„)
|A|

2 = |A1 + A2|
2 = |A1|

2 + |A2|
2 + 2|A1||A2| cos(�” ≠ �„). (1.2.5)

Notice that without a di�erent CP -conserving phase, i.e., �” = 0, we would not be able to
observe a di�erence in decay rates between CP -conjugate processes due to the symmetric
nature of the cosine. This CP -conserving phase is due to the strong interaction.

The amount of CP violation in a process can be expressed as the asymmetry in the
decay rates,

A = �(P æ f) ≠ �(P æ f)
�(P æ f) + �(P æ f)

(1.2.6)

where �(P æ f) is the CP -conjugate process of �(P æ f).
An intuitive process where two diagrams with a relative weak phase di�erence contribute,

is a decay into a final state containing a same-flavour quark-antiquark pair. This indicates
a contribution from a loop diagram called a “penguin diagram”, as is the case in the decay
B+

æ fi0K+, see Fig. 1.4. This type of CP violation is called direct CP violation or Adir
CP

,

u u

b u

W

s

u

B

K

+

+
+

Vub
*

Vus

fi0

u u

b

u

W
s

u

B K
+ ++

t

g

Vtb ts
* V

fi0

Figure 1.4: The main (left) tree and (right) penguin diagrams of the decay B+
æ K+fi0. The

interference between the two diagrams results in an observable amount of direct CP violation.
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𝐴 = 𝐴$ + 𝐴%𝑒/>𝑒/? 𝐴̅ = 𝐴$ + 𝐴%𝑒*/>𝑒/?

𝐴̅ % = 𝐴$ % + 𝐴% % + 𝐴$𝐴% 𝑒*/>𝑒/? + 𝑒/>𝑒*/?
𝐴 % = 𝐴$ % + 𝐴% % + 𝐴$𝐴% 𝑒/>𝑒/? + 𝑒*/>𝑒*/?

𝐴 − 𝐴̅ i = 4 𝐴j𝐴i sin𝜙 sin 𝛿

1.3 B mesons 15

B0 ⇡�

K+

(a)

W

d

b

d

u

s̄

u

V ⇤
ub

Vus

B0

⇡�

K+

(b)

g

W

d

b̄

d

ū

u

s̄ū c̄ t̄

Figure 1.5: Feynman tree (a) and penguin (b) diagrams for the B
0
d
! K

+
⇡
� decay

In this thesis the focus is on the B0
(s) ! h+h0� decays (the B0

d
! ⇡+⇡�,

the B0
d
! K+⇡�, the B0

s
! ⇡+K�, the B0

s
! K+K�, the B0

s
! ⇡+⇡�

and the B0
d
! K+K�) that can be used to extract the Unitarity Triangle

angle �. In this study the contribution of the rare B0
d
! K+K� and B0

s
!

⇡+⇡� decays, which proceed in the Standard Model through exchange and
annihilation diagrams only, is not taken in account. It will become clear that
in order to extract � the B0

d
and B0

s
mixing phases are needed. These can

be obtained from the study of the B0
d
! J/ KS and B0

s
! J/ � decays

respectively.

CP violation in the B0
d
! J/ KS decay

The B0
d
! J/ KS decay is an example for CP violation in the decay into a

CP eigenstate (f = f). With the VCKM matrix elements of the correspond-
ing Feynman diagram shown in Fig. 1.6 and of the mixing diagram shown in
Fig. 1.2, the following expression can be obtained for �J/ K

0
S

,

�J/ K
0
S

=

✓
q

p

◆

Bd

AJ/ K
0
S

AJ/ K
0
S

=

✓
q

p

◆

Bd

A
J/ K0

AJ/ K0

✓
p

q

◆

K

= �

✓
V ⇤

tb
Vtd

VtbV ⇤
td

◆ ✓
VcbV ⇤

cs

V ⇤
cb
Vcs

◆ ✓
VcsV ⇤

cd

V ⇤
cs

Vcd

◆

= �e�2i� . (1.35)

It can be seen from Eq. (1.35) that by measuring �J/ K
0
S

the Unitarity
Triangle angle � is obtained. Studies of the LHCb sensitivity to the Unitarity
Triangle angle � through the B0

d
! J/ KS decay can be found in Ref. [29].

CP violation in the B0
s
! J/ � decay

The Feynman diagram of B0
s
! J/ �, as shown in Fig. 1.7, resembles that of

B0
d
! J/ K0, apart from replacing the spectator quark, d! s. By measuring

“Tree”= 𝐴+ “Penguin”= 𝐴"

𝐵(/ 3𝐵( → 𝐾<𝜋= 3𝐵(/𝐵( → 𝐾=𝜋<



CP Violation is a hot topic at the LHCb experiment



CPT Violation…

CPT symmetry implies that an antiparticle is identical to 
a particle travelling backwards in time. 
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Winter 14

CKM
f i t t e r

Symmetry breaking in the early universe
• Higgs mechanism generates mass
• For the weak bosons
• For the fermions

• Higgs couplings lead to CKM couplings
• 3 generations allow for CP violation

• Can it explain the matter anti-matter asymmetry?
• So far: no!



Exercise – 22 : Symmetries 

a) What do you think is the difference between an exact and a broken 
symmetry?

b) Can you explain the name spontaneous symmetry breaking means?
c) Which symmetry is involved in the gauge theories below? Which of 

these gauge symmetries are exact? Why/Why not? 
i. U1(Q) symmetry
ii. SU2(u-d-flavour) symmetry 
iii. SU3(u-d-s-flavour) symmetry
iv. SU6(u-d-s-c-b-t) symmetry 
v. SU3(colour) symmetry
vi. SU5(Grand unified) symmetry 
vii. SuperSymmetry



Lecture 4: Discussion Topics

Discussions Topics belonging to 
Lecture 4



Topic-10: Symmetry and non-observables

• Explain the idea behind non observables
• What are the symmetries and non-observables related to:
• Electromagnetism
• Weak interaction
• Strong interaction
• C-violation
• P-Violation
• T-Violation



Topic-10: Symmetry and non-observables
T.D.Lee:  “The root to all symmetry principles lies in the assumption that it is 

impossible to observe certain basic quantities; the non-observables”
There are four main types of symmetry:
• Permutation symmetry: 

Bose-Einstein and Fermi-Dirac Statistics
• Continuous space-time symmetries: 

translation, rotation, velocity, acceleration,…
• Discrete symmetries: 

space inversion, time reversal, charge conjugation,…
• Unitary symmetries: gauge invariances: 

U1(charge), SU2(isospin), SU3(color),…

Þ If a quantity is fundamentally non-observable it is related to an exact symmetry
Þ If it could in principle be observed by an improved measurement; the symmetry is said to be broken

Noether Theorem: symmetry conservation law



Topic-10: Symmetry and non-observables
Non-observables Symmetry Transformations Conservation Laws or Selection Rule

Difference between identical particles Permutation B.-E. or F.-D. statistics

Absolute spatial position Space translation:  𝑟 → 𝑟 + Δ momentum

Absolute time Time translation:  𝑡 → 𝑡 + τ energy

Absolute spatial direction Rotation: 𝑟 → 𝑟′ angular momentum

Absolute velocity Lorentz transformation generators of the Lorentz group

Absolute right (or left) 𝑟 → −𝑟 parity

Absolute sign of electric charge 𝑒 → −𝑒 charge conjugation

Relative phase between states of 
different charge Q

𝜓 → 𝑒#-.𝜓 charge

Relative phase between states of 
different baryon number B

𝜓 → 𝑒#-&𝜓 baryon number

Relative phase between states of 
different lepton number L

𝜓 → 𝑒#-/𝜓 lepton number

Difference between different coherent 
mixture of p and n states

𝑝
𝑛 → 𝑈

𝑝
𝑛

isospin



Topic-10: Symmetry and non-observables: example

• Simple example: potential energy 𝑉 between two charged particles:

Absolute position is a non-observable:
The interaction is independent on the choice 
of the origin 0.

Symmetry: 
V is invariant under arbitrary 
space translations:

Consequently: Total momentum is conserved:

V = V (�r1 � �r2)

00’

�r1

�d

~r01

~r02 ~r2

~r2 ! ~r2 + ~d~r1 ! ~r1 + ~d

d

dt
(~p1 + ~p2)| {z }

~ptot

= ~F1 + ~F2 = �
⇣
~r1 + ~r2

⌘
V = 0



Topic-11: Broken symmetries

a) What do you think is the difference between an exact and a broken 
symmetry?

b) Can you explain the name spontaneous symmetry breaking means?
c) Which symmetry is involved in the gauge theories below? Which of 

these gauge symmetries are exact? Why/Why not? 
i. U1(Q) symmetry
ii. SU2(u-d-flavour) symmetry 
iii. SU3(u-d-s-flavour) symmetry
iv. SU6(u-d-s-c-b-t) symmetry 
v. SU3(colour) symmetry
vi. SU5(Grand unified) symmetry 
vii. SuperSymmetry



Lecture 4: Exercises

Exercises belonging to Lecture 4



Exercise – 13 : Charge Current

• Show that the definition 𝑊f± =
1!"∓g1!#

h
leads to the charged current: 

ℒ = −𝑊fi𝐽f
$ −𝑊fj𝐽f

j with 𝐽fi = 2
h
&Ψ𝛾f𝜏iΨ and 𝐽fj = 2

h
&Ψ𝛾f𝜏jΨ



Exercise – 14 : Symmetry breaking

ℒ =
1
2
𝜕O𝜙

i − 𝑉 𝜙 =
1
2
𝜕O𝜙

i −
1
2
𝜇i𝜙i −

1
4
𝜆𝜙s

𝜙

• Start with a (new) scalar field !:  (Klein-Gordon), with a potential:  
 
 
 
 
 
                                Imaginary mass? —> makes no sense! 
                                

Simple example

�61

For a real scalar field for example:

Lscalar =
1

2
(@µ�) (@

µ
�)�

1

2
m

2
�
2
! Euler-Lagrange ! (@µ@

µ +m
2)� = 0| {z }

Klein-Gordon equation

In electroweak theory, kinematics of fermions, i.e. spin-1/2 particles is described by:

Lfermion = i ̄�µ@
µ
 �m ̄ ! Euler-Lagrange ! (i�µ@

µ
�m) = 0| {z }

Dirac equation

In general, the Lagrangian for a real scalar particle (�) is given by:

L = (@µ�)
2

| {z }
kinetic term

+ C|{z}
constant

+ ↵�|{z}
?

+ ��
2

|{z}
mass term

+ ��
3

|{z}
3-point int.

+ ��
4

|{z}
4-point int.

+ ... (1)

We can interpret the particle spectrum of the theory when studying the Lagrangian under
small perturbations. In expression (1), the constant (potential) term is for most purposes
of no importance as it does not appear in the equation of motion, the term linear in the
field has no direct interpretation (and should not be present as we will explain later), the
quadratic term in the fields represents the mass of the field/particle and higher order terms
describe interaction terms.

1.3 Simple example of symmetry breaking

To describe the main idea of symmetry breaking we start with a simple model for a real
scalar field � (or a theory to which we add a new field �), with a specific potential term:

L =
1

2
(@µ�)

2
� V(�)

=
1

2
(@µ�)

2
�

1

2
µ
2
�
2
�

1

4
��

4 (2)

Note that L is symmetric under � ! �� and that � is positive to ensure an absolute
minimum in the Lagrangian. We can investigate in some detail the two possibilities for the
sign of µ2: positive or negative.

1.3.1 µ
2
> 0: Free particle with additional interactions

)φV(

φ

To investigate the particle spectrum we look at the Lagrangian for
small perturbations around the minimum (vacuum). The vacuum
is at � = 0 and is symmetric in �. Using expression (1) we see that
the Lagrangian describes a free particle with mass µ that has an
additional four-point self-interaction:

L =
1

2
(@µ�)

2
�

1

2
µ
2
�
2

| {z }
free particle, mass µ

�
1

4
��

4

| {z }
interaction

6

1.3.2 µ
2
< 0: Introducing a particle with imaginary mass ?

φ

)φV( v

η

The situation with µ
2
< 0 looks strange since at first glance it

would appear to describe a particle � with an imaginary mass.
However, if we take a closer look at the potential, we see that it
does not make sense to interpret the particle spectrum using the
field � since perturbation theory around � = 0 will not converge
(not a stable minimum) as the vacuum is located at:

�0 =

r
�
µ2

�
= v or µ

2 = ��v
2 (3)

As before, to investigate the particle spectrum in the theory, we have to look at small
perturbations around this minimum. To do this it is more natural to introduce a field ⌘

(simply a shift of the � field) that is centered at the vacuum: ⌘ = �� v.

Rewriting the Lagrangian in terms of ⌘

Expressing the Lagrangian in terms of the shifted field ⌘ is done by replacing � by ⌘+ v in
the original Lagrangian from equation (2):

Kinetic term: Lkin(⌘) =
1

2
(@µ(⌘ + v)@µ(⌘ + v))

=
1

2
(@µ⌘)(@

µ
⌘) , since @µv = 0.

Potential term: V(⌘) = +
1

2
µ
2(⌘ + v)2 +

1

4
�(⌘ + v)4

= �v
2
⌘
2 + �v⌘

3 +
1

4
�⌘

4
�

1

4
�v

4,

where we used µ
2 = ��v

2 from equation (3). Although the Lagrangian is still symmetric
in �, the perturbations around the minimum are not symmetric in ⌘, i.e. V(�⌘) 6= V(⌘).
Neglecting the irrelevant 1

4
�v

4 constant term and neglecting terms or order ⌘2 we have as
Lagrangian:

Full Lagrangian: L(⌘) =
1

2
(@µ⌘)(@

µ
⌘)� �v

2
⌘
2
� �v⌘

3
�

1

4
�⌘

4
�

1

4
�v

4

=
1

2
(@µ⌘)(@

µ
⌘)� �v

2
⌘
2

From section 1.2 we see that this describes the kinematics for a massive scalar particle:

1

2
m

2

⌘ = �v
2
! m⌘ =

p

2�v2
⇣
=

p
�2µ2

⌘
Note: m⌘ > 0.
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1.3.2 µ
2
< 0: Introducing a particle with imaginary mass ?

φ

)φV( v

η

The situation with µ
2
< 0 looks strange since at first glance it

would appear to describe a particle � with an imaginary mass.
However, if we take a closer look at the potential, we see that it
does not make sense to interpret the particle spectrum using the
field � since perturbation theory around � = 0 will not converge
(not a stable minimum) as the vacuum is located at:

�0 =

r
�
µ2

�
= v or µ

2 = ��v
2 (3)

As before, to investigate the particle spectrum in the theory, we have to look at small
perturbations around this minimum. To do this it is more natural to introduce a field ⌘

(simply a shift of the � field) that is centered at the vacuum: ⌘ = �� v.

Rewriting the Lagrangian in terms of ⌘

Expressing the Lagrangian in terms of the shifted field ⌘ is done by replacing � by ⌘+ v in
the original Lagrangian from equation (2):

Kinetic term: Lkin(⌘) =
1

2
(@µ(⌘ + v)@µ(⌘ + v))

=
1

2
(@µ⌘)(@

µ
⌘) , since @µv = 0.

Potential term: V(⌘) = +
1

2
µ
2(⌘ + v)2 +

1

4
�(⌘ + v)4

= �v
2
⌘
2 + �v⌘

3 +
1

4
�⌘

4
�

1

4
�v

4,

where we used µ
2 = ��v

2 from equation (3). Although the Lagrangian is still symmetric
in �, the perturbations around the minimum are not symmetric in ⌘, i.e. V(�⌘) 6= V(⌘).
Neglecting the irrelevant 1

4
�v

4 constant term and neglecting terms or order ⌘2 we have as
Lagrangian:

Full Lagrangian: L(⌘) =
1

2
(@µ⌘)(@

µ
⌘)� �v

2
⌘
2
� �v⌘

3
�

1

4
�⌘

4
�

1

4
�v

4

=
1

2
(@µ⌘)(@

µ
⌘)� �v

2
⌘
2

From section 1.2 we see that this describes the kinematics for a massive scalar particle:

1

2
m

2

⌘ = �v
2
! m⌘ =

p

2�v2
⇣
=

p
�2µ2

⌘
Note: m⌘ > 0.
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𝑣

Case B) 

• Redefine coordinates: 𝜂 ≡ 𝜙 − 𝑣
• Exercise: re-write the Lagrangian in 𝜂 and 𝑣 to show:

• Ignore the constant term j
s
𝜆𝑣s and neglect higher order 𝜂k:

• This describes a new scalar field 𝜂 with a mass ji𝑚t
i = 𝜆𝑣i ⇒ 𝑚t = 2𝜆𝑣i (= −2𝜇i) 

• Price to pay: Lagrangian is no longer symmetric under 𝜂 → −𝜂 in the new field.

ℒ 𝜂 =
1
2 𝜕;𝜂 𝜕;𝜂 − 𝜆𝑣0𝜂0 − 𝜆𝑣𝜂N −

1
4𝜆𝜂

V −
1
4𝜆𝑣

V

ℒ 𝜂 =
1
2 𝜕;𝜂 𝜕;𝜂 − 𝜆𝑣0𝜂0



Exercise – 15 : Mass of the proton 

Besides giving mass to the weak vector bosons, it was briefly flashed that the 
same Higgs mechanism is responsible for giving mass to the fermion masses in 
the Standard Model, through ad-hoc Yukawa couplings. The mass of a 'naked' 
quark can be estimated through models of soft QCD, where it enters as a 
parameter for e.g. the binding energy of a meson. For up and down, they are 
found to be roughly 2 resp. 5 MeV/c .
a) What fraction of the proton mass is due to the Higgs mass of the 

constituent quarks? 
b) Can you find out where the other part of the proton mass comes from?



Exercise – 16: Dirac delta function (1) 

• Consider a function defined by the following prescription:

• The integral of this function is normalized:

• For a function 𝑓 𝑥 we have: 𝑓 𝑥 𝛿 𝑥 = 𝑓 0 𝛿 𝑥

…and therefore:

• Exercise:
a) Prove that: 𝛿 𝑘𝑥 = O

f
𝛿 𝑥

b) Prove that: 𝛿 𝑔 𝑥 = ∑FgOh O
^D IE

𝛿 𝑥 − 𝑥F , where 𝑔 𝑥F = 0 are the zero-points
• Hint: make a Taylor expansion of 𝑔 around the 0-points.

44 LECTURE 2. PERTURBATION THEORY AND FERMI’S GOLDEN RULE

which after integration of one of the momenta gives (4pi

p
s! 2EA = 2mA)

d�

d⌦

����
cm

=
1

32⇡2m2

A

|pf | |M|
2 (2.55)

Exercises

Exercise 2.1 (The Dirac �-Function)

Consider a function defined by the following prescription

�(x) = lim
�!0

⇢
1/� for |x| < �/2
0 otherwise

0

surface = 1

infinite

The integral of this function is normalized
Z 1

�1
�(x) dx = 1 (2.56)

and for any (reasonable) function f(x) we have
Z 1

�1
f(x) �(x) dx = f(0). (2.57)

These last two properties define the Dirac �-function. The prescription above gives an
approximation of the �-function. We shall encounter more of those prescriptions which
all have in common that they are the limit of a sequence of functions whose properties
converge to those given here.

(a) Starting from the defining properties of the �-function, prove that

�(kx) =
1

|k|
�(x) . (2.58)

(b) Prove that

� (g (x)) =
nX

i=1

1

|g0 (xi)|
� (x� xi) , (2.59)

where the sum i runs over the 0-points of g(x), i.e.:g(xi) = 0.
Hint: make a Taylor expansion of g around the 0-points.

Exercise 2.2 (Lorentz invariance of the flux)
Prove that (ignoring transformations of the volume V ) the flux factor derived in the lab
frame in Eq. (2.49) is indeed Lorentz-invariant by proving the identity

q
(pA · pB)2

�m2

A
m2

B
= |pA|mB (2.60)

𝛿 𝑥 = lim
i→`

41/Δ for 𝑥 < Δ/2
0 otherwise

@
[k

k
𝛿 𝑥 d𝑥 = 1

!
x�

�
𝑓 𝑥 𝛿 𝑥 d𝑥 = 𝑓 0 !

x�

�
𝛿 𝑥 d𝑥 = 𝑓 0

See Griffiths Appendix A



Exercise – 16: Dirac delta function (2)

• The delta function has many forms. One of them is:

c) Make this plausible by sketching the function sini 𝛼𝑥 /(𝜋𝛼𝑥i) for two relevant 
values of 𝛼

• Remember the Fourier transform:

d) Use this to show that another (important!) representation of the Dirac delta-
function is given by: 

𝛿 𝑥 = lim
H→k

1
𝜋
sin0 𝛼𝑥
𝛼𝑥0

𝑓 𝑥 =
1
2𝜋

@
[k

k
𝑔 𝑘 𝑒FfI d𝑘

𝑔 𝑘 = @
[k

k
𝑓 𝑥 𝑒[FfI d𝑥

𝛿 𝑥 =
1
2𝜋

@
[k

k
𝑒FfI d𝑘 ç We will use this later in the lecture!


