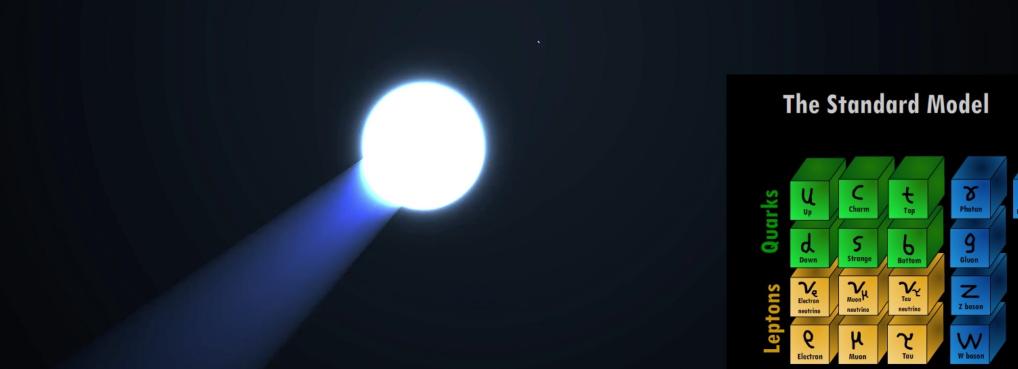


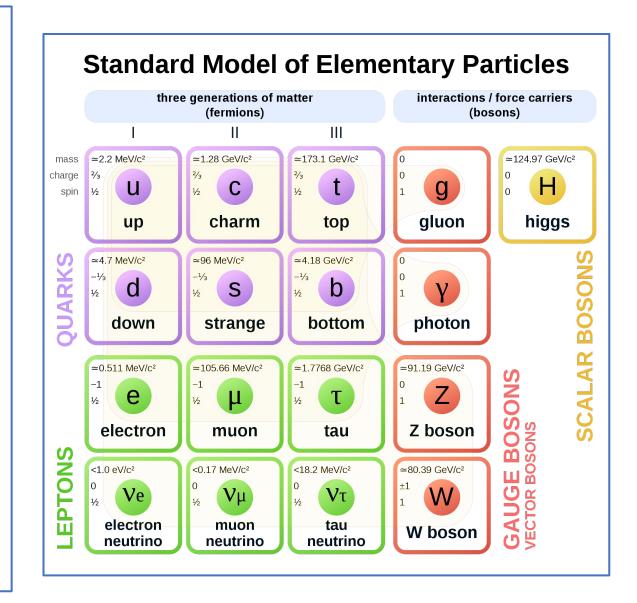
PHY3004: Nuclear and Particle Physics Marcel Merk, Jacco de Vries



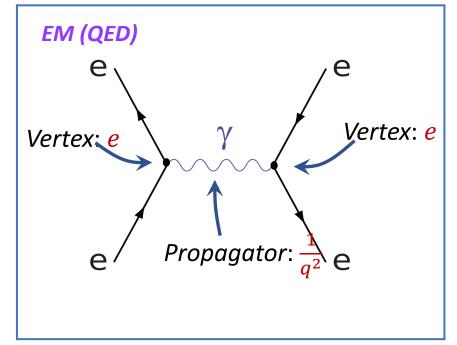
Lecture 1: "Particles"

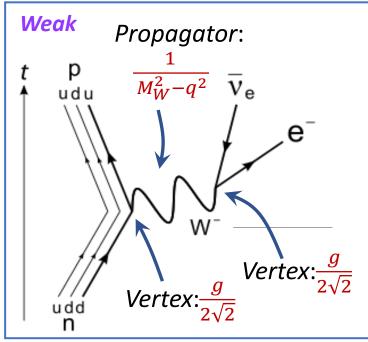
Classification of particles

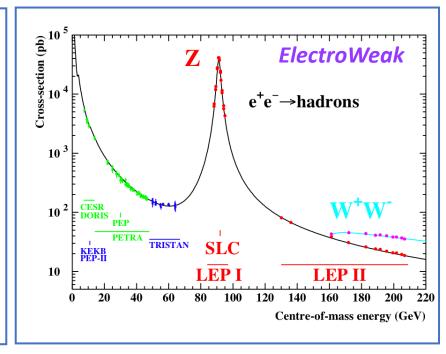
- Lepton: fundamental particle
- Hadron: consist of quarks
 - Meson: 1 quark + 1 antiquark $(\pi^+, B_S^0, ...)$
 - Baryon: 3 quarks $(p, n, \Lambda, ...)$
 - Anti-baryon: 3 anti-quarks
- Fermion: particle with half-integer spin.
 - Antisymmetric wave function: obeys Pauliexclusion principle and Pauli-Dirac statistics
 - All fundamental quarks and leptons are spin-½
 - Baryons (S=1/2, 3/2)
- Boson: particle with integer spin
 - Symmetric wave function: Bose-Einstein statistics
 - Mesons: (S=0, 1), Higgs (S=0)
 - Force carriers: γ , W, Z, g (S=1); graviton(S=2)

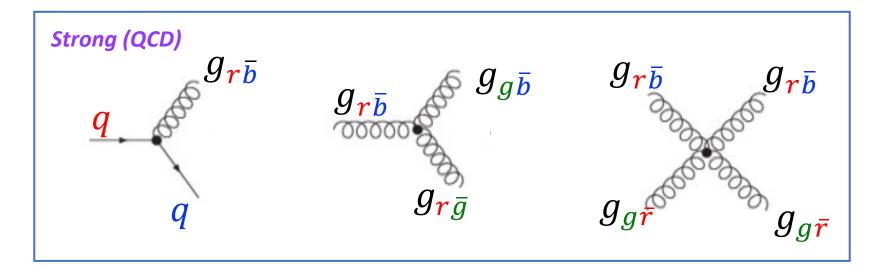


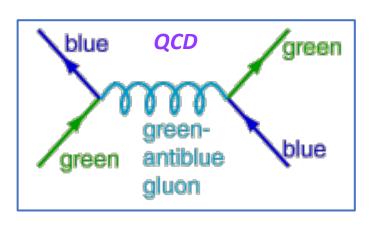
Lecture 2: "Forces"





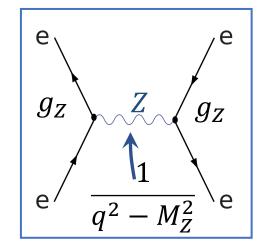


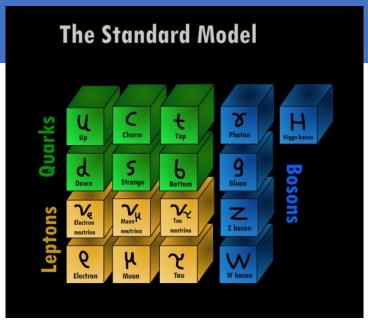


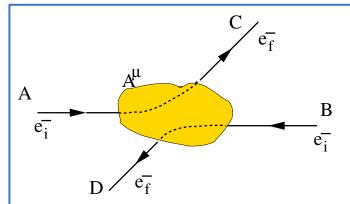


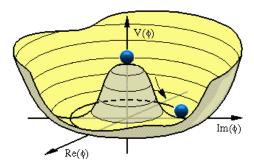
Recap: "Seeing the wood for the trees"

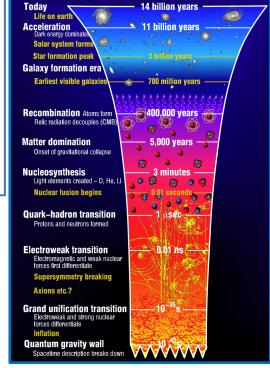
- Lecture 1: "Particles"
 - Zooming into constituents of matter
 - Skills: distinguish particle types, Spin
- Lecture 2: "Forces"
 - Exchange of quanta: EM, Weak, QCD
 - Skills: 4-vectors, Feynman diagrams
- Lecture 3: "Waves"
 - Quantum fields and gauge invariance
 - Dirac algebra, Lagrangian, co- & contra variant
- Lecture 4: "Symmetries"
 - Standard Model, Higgs, Discrete Symmetries
 - Skills: Lagrangians, Chirality & Helicity
- Lecture 5: "Scattering"
 - Cross section, decay, perturbation theory
 - Skills: Dirac-delta function, Feynman Calculus
- Lecture 6: "Detectors"
 - Energy loss mechanisms, detection technologies











Wave Equations

Contents:

- 1. Wave equations and Probability
 - a) Wave equations for spin-0 fields
 - Schrödinger (non relativistic), Klein-Gordon (relativistic)
 - b) Wave equation for spin-½ fields
 - Dirac equation (relativistic)
 - Fundamental fermions
 - c) Wave equations for spin-1 fields
 - Gauge boson fields; eg. electromagnetic field
- 2. Gauge field theory
 - a) Variational Calculus and Lagrangians
 - b) Local Gauge invariance
 - i. QED
 - ii. Yang-Mills Theory (Weak, Strong)

Griffiths chapter 7

If you are unfamiliar with the math, just focus on the concepts.

The math requires some practice, but is less tricky then it may look.

→ Also, check the recorded videos.

Griffiths chapter 10

- Required Quantum Mechanics knowledge:
 - Angular momentum and spin: study Griffiths sections 4.2, 4.3, In particular Pauli Matrices

Part 1
Wave Equations and Probability

1a) Spin-0(think pions etc)

Schrödinger Equation and Probability

 $i\frac{\partial}{\partial t}(t\psi) - it\frac{\partial\psi}{\partial t} = i\psi + it\frac{\partial\psi}{\partial t} - it\frac{\partial\psi}{\partial t} = i\psi$

Quantization of classical non-relativistic theory:

• Take $E = \frac{\vec{p}^2}{2m}$ and substitute energy and momentum by operators that operate on ψ :

Take
$$E=\frac{1}{2m}$$
 and substitute energy and momentum by operators that operate on ψ . $E=\frac{1}{2}mv^2$ $E\to \hat{E}=i\hbar\frac{\partial}{\partial t}$; $p\to \hat{p}=-i\hbar\vec{\nabla}$ $([E,t]=-i\hbar$, $[x,p]=-i\hbar)$ • Result is Schrödinger's equation: $i\hbar\frac{\partial}{\partial t}\psi=-\frac{\hbar^2}{2m}\nabla^2\psi$ \Rightarrow $\frac{\partial}{\partial t}\psi=\frac{i\hbar}{2m}\nabla^2\psi$

- Plane wave solutions: $\psi = Ne^{i(\vec{p}\vec{x}-Et)/\hbar}$ with the kinematic relation $E = p^2/2m$

• Multiply both sides Schrödinger by ψ^* and add its complex conjugate \uparrow

$$\psi^* \frac{\partial}{\partial t} \psi = \psi^* \left(\frac{i\hbar}{2m} \right) \nabla^2 \psi$$

$$\psi \frac{\partial}{\partial t} \psi^* = \psi \left(\frac{-i\hbar}{2m} \right) \nabla^2 \psi^*$$

$$+ \frac{\partial}{\partial t} \left(\psi^* \psi \right) = -\vec{\nabla} \cdot \left[\frac{i\hbar}{2m} \left(\psi \vec{\nabla} \psi^* - \psi \vec{\nabla} \psi \right) \right]$$

Use: $\vec{\nabla} \cdot (\psi^ \vec{\nabla} \psi - \psi \vec{\nabla} \psi^*) = \psi^* \nabla^2 \psi - \psi \nabla^2 \psi^*$

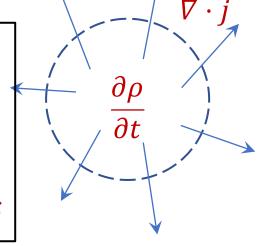
Recognize "continuity" equation:

$$\frac{\partial \boldsymbol{\rho}}{\partial t} + \vec{\nabla} \cdot \vec{\boldsymbol{J}} = 0$$

Law of conserved currents, with:

$$\rho \equiv \psi^* \psi = |N|^2$$

$$\vec{J} \equiv \frac{i\hbar}{2m} (\psi \vec{\nabla} \psi^* - \psi^* \vec{\nabla} \psi) = \frac{|N|^2}{m} \vec{p}$$



Interpret: probability waves!

Relativistic: Klein-Gordon equation

Quantization of relativistic theory

Note:
$$p_{\mu} \rightarrow -i\hbar\partial_{\mu} = -i\hbar(\partial/\partial t, \partial/\partial x, \partial/\partial y, \partial/\partial z)$$

- Start with $E^2=p^2c^2+m^2c^4$ and substitute again $E\to i\hbar\frac{\partial}{\partial t}$ and $\vec{p}\to -i\hbar\vec{\nabla}$ operates on ϕ Result is Klein-Gordon equation: $-\frac{1}{c^2}\frac{\partial^2}{\partial t^2}\phi=-\nabla^2\phi+\frac{m^2c^2}{\hbar^2}\phi$ Use now: $\hbar=c=1$
- Plane wave solutions: $\phi = Ne^{i(\vec{p}\vec{x}-Et)/\hbar}$ with relativistic relation $E^2 = \vec{p}^2 + m^2$
- Use the covariant notation:

$$p_{\mu}p^{\mu} = E^2 - \vec{p}^2 = m^2$$

- Klein-Gordon in four-vector notation: $\partial_{\mu}\partial^{\mu}\phi + m^2\phi = 0$
- Plane wave solutions: $\phi = Ne^{-i(p_{\mu}x^{\mu})}$ (Remember this is: $\phi = Ne^{-i(Et - \vec{p}\vec{x})}$)
- Time and space coordinates are now treated fully symmetric
 - This is needed in a relativistic theory where time and space for different observes are linear combinations of each other

Klein-Gordon conserved currents

• Similar to the Schrödinger case multiply both sides by $-i\phi^*$ from left and add the expression to its complex conjugate

$$-i\phi^* \left(-\frac{\partial^2 \phi}{\partial t^2} \right) = -i\phi^* (-\nabla^2 \phi + m^2 \phi)$$

$$i\phi \left(-\frac{\partial^2 \phi^*}{\partial t^2} \right) = i\phi (-\nabla^2 \phi^* + m^2 \phi^*)$$

$$+ \frac{\partial}{\partial t} i \left(\phi^* \frac{\partial \phi}{\partial t} - \phi \frac{\partial \phi^*}{\partial t} \right) = \vec{\nabla} \cdot \left[i \left(\phi^* \vec{\nabla} \phi - \phi \vec{\nabla} \phi^* \right) \right]$$

- The quadratic equation $E^2 = p^2 + m^2$ leads to double solutions: $E^2 = \cdots \Rightarrow E = \pm \cdots$
 - Positive and negative energy solutions
 - Negative solutions imply *negative probability* density ho !!!
 - This bothered Dirac and therefore he looked for an equation *linear* in E and p ...

Again recognize "continuity" equation, the law of conserved currents:

$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot \vec{j} = 0 \quad \Rightarrow \quad \partial_{\mu} j^{\mu} = 0$$

With now:

$$j^{\mu} = (\rho, \vec{j}) = i[\phi^*(\partial^{\mu}\phi) - \phi(\partial^{\mu}\phi^*)]$$

It gives for plane waves: $\phi = Ne^{-i(p_{\mu}x^{\mu})}$

$$\rho = 2|N|^2 E$$

$$\vec{j} = 2|N|^2 \vec{p}$$

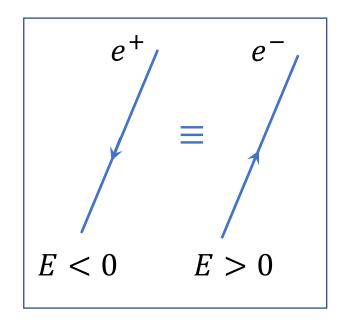
Or in 4-vector: $j^{\mu} = 2|N|^2 p^{\mu}$

Antiparticles

- Feynman-Stückelberg interpretation
 - Charge current of an electron with momentum \vec{p} and energy E $j^{\mu}(-e) = -2e|N|^2p^{\mu} = -2e|N|^2(E,\vec{p})$
 - Charge current of a positron

$$j^{\mu}(+e) = +2e|N|^2p^{\mu} = -2e|N|^2(-E, -\vec{p})$$

The positron current with energy -E and momentum $-\vec{p}$ is the same as the electron current with E and \vec{p}



- The negative energy *particle* solutions going backward in time describe the positive-energy *antiparticle* solutions.
 - The wave function $\phi = Ne^{-ix_{\mu}p^{\mu}}$ stays invariant for negative energy and going backwards in time
 - Consider eg. $e^{-i(-E)(-t)} = e^{-iEt}$
- A positron is an electron travelling backwards in time

Wave Equations

Contents:

- 1. Wave equations and Probability
 - a) Wave equations for spin-0 fields
 - Schrödinger (non relativistic), Klein-Gordon (relativistic)
 - b) Wave equation for spin-½ fields
 - Dirac equation (relativistic)
 - Fundamental fermions
 - c) Wave equations for spin-1 fields
 - Gauge boson fields; eg. electromagnetic field
- 2. Gauge field theory
 - a) Variational Calculus and Lagrangians
 - b) Local Gauge invariance
 - i. QED
 - ii. Yang-Mills Theory (Weak, Strong)

Griffiths chapter 7 and PP1 chapter 1

Griffiths chapter 10 and PP1 chapter 1

- Required Quantum Mechanics knowledge:
 - Angular momentum and spin: study Griffiths sections 4.2, 4.3, In particular Pauli Matrices

Part 1
Wave Equations and Probability

1b) Spin-½
(fundamental leptons and quarks)

Dirac Equation

Instead of
$$E^2 = p^2 c^2 + m^2 c^4$$

- Dirac did not like negative probabilities and looked for a wave equation of linear form $E=i\frac{\partial}{\partial t}\psi=H\psi=(?)$, but relativistic correct.
- Try: $H=(\vec{\alpha}\cdot\vec{p}+\beta m)$ where $\vec{\alpha}\cdot\vec{p}=\alpha_1p_x+\alpha_2p_y+\alpha_3p_z$; $\vec{\alpha}?$ $\beta?$
- We know that: $H^2 \psi = E^2 \psi = (\vec{p}^2 + m^2) \psi$
- Write it out: $H^{2} = (\sum_{i} \alpha_{i} p_{i} + \beta m) (\sum_{j} \alpha_{j} p_{j} + \beta m)$ $= (\sum_{i,j} \alpha_{i} \alpha_{j} p_{i} p_{j} + \sum_{i} \alpha_{i} \beta p_{i} m + \sum_{j} \beta \alpha_{j} p_{j} m + \beta^{2} m^{2})$ $= (\sum_{i} \alpha_{i}^{2} p_{i}^{2} + \sum_{i>j} (\alpha_{i} \alpha_{j} + \alpha_{j} \alpha_{i}) p_{i} p_{j} + \sum_{i} (\alpha_{i} \beta + \beta \alpha_{i}) p_{i} m + \beta^{2} m^{2})$
- This works out if:
 - $\alpha_1^2 = \alpha_2^2 = \alpha_3^2 = \beta^2 = 1$ = \vec{p}^2
 - $\alpha_1, \alpha_2, \alpha_3, \beta$ anti-commute: ie.: $\alpha_1 \alpha_2 = -\alpha_2 \alpha_1$ etc
- Anti-commutator: $\{\alpha_i, \alpha_j\} = 2\delta_{ij}$; $\{\alpha_i, \beta_i\} = 0$; $\beta^2 = 1$
 - Using definition: $\{A, B\} = AB + BA$:

Dirac's idea

$$\{\alpha_i, \alpha_j\} = 2\delta_{ij}$$
; $\{\alpha_i, \beta\} = 0$; $\beta^2 = 1$

- Clearly α_i and β cannot be numbers. Let them be matrices!
 - In that case they operate on a wave function that is a column vector
 - The simplest case that allows the requirements are 4x4 matrices.

$$E\psi = H\psi = (\vec{\alpha}\vec{p} + \beta m)\psi$$

• Dirac's equation becomes:

Remember:
$$E \to i \frac{\partial}{\partial t} \qquad \vec{p} \to -i \vec{\nabla}$$

$$i\frac{\partial}{\partial t} \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \\ \psi_4 \end{pmatrix} = \begin{bmatrix} -i\begin{pmatrix} \vdots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \end{pmatrix} \cdot \overrightarrow{\nabla_i} & + \begin{pmatrix} \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \end{pmatrix} \cdot m \end{bmatrix} \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \\ \psi_4 \end{pmatrix}$$

- It is possible making use of the Pauli spin matrices
 - $\alpha_i = \begin{pmatrix} 0 & \sigma_i \\ \sigma_i & 0 \end{pmatrix}$ and $\beta = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ with $\sigma_1 = \sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$; $\sigma_2 = \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$; $\sigma_3 = \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
 - Note that α and β are hermitian: $\alpha_i^{\dagger} = \alpha_i$ and $\beta^{\dagger} = \beta$ (Since Hamiltonian has real E eigenvalues.)
- Remember: $\{\sigma_i,\sigma_j\}=\sigma_i\sigma_j+\sigma_j\sigma_i=2\delta_{ij}\,\mathbb{1}$ and $\sigma_1^2=\sigma_2^2=\sigma_3^2=\mathbb{1}$
- Unfortunately we also need: $\sigma_i \beta + \beta \sigma_i = 0$ \rightarrow We need 4x4 matrices!

Dirac's idea

- Clearly α_i and β cannot be numbers. Let them be matrices!
 - In that case they operate on a wave function that is a column vector
 - The simplest case that allows the requirements are 4x4 matrices.
 - Dirac's equation becomes:

Remember:
$$E \to i \frac{\partial}{\partial t} \qquad p \to -i \vec{\nabla}$$

- This is a very complicated equation!
 - What does it mean that the wave function ψ is now a 1-by-4 column vector?
 - ψ is **not** a 4-vector, since the indices do not represent kinematic variables, but matrix indices!
 - ψ is a called a spinor.

Covariant form of Dirac's equation

• Dirac equation:
$$H = E = (\vec{\alpha} \cdot \vec{p} + \beta m) \Rightarrow i \frac{\vec{\sigma}}{\partial t} \psi = (-i \vec{\alpha} \cdot \vec{\nabla} + \beta m) \psi$$

• Multiply Dirac's eq. from the left by β ; then it becomes:

•
$$\left(i\beta\frac{\partial}{\partial t}\psi + i\beta\vec{\alpha}\cdot\vec{\nabla} - m\right)\psi = 0$$
 (Remember $\beta^2 = 1$)

- Introduce now the Dirac γ -matrices: $\gamma^{\mu} \equiv (\beta, \beta \vec{\alpha})$ (vector of four 4x4matrices!)
 - Covariant form of Dirac eq:

$$\partial_0 = \frac{\partial}{\partial t}$$
, $\partial_1 = \frac{\partial}{\partial x}$, $\partial_2 = \frac{\partial}{\partial y}$, $\partial_3 = \frac{\partial}{\partial z}$

$$(i\gamma^{\mu}\partial_{\mu}-m)\psi=0$$

Note (see def covariant derivative): $A^{\mu}\partial_{\mu} = A^{0}\frac{\partial}{\partial t} + \vec{A} \cdot \vec{\nabla}$

- Realise that Dirac's equation is a set of 4 coupled differential equations.
 - Remember that ψ has 4 components!
- Requirements on $\vec{\alpha}$, β can be summarized as: $\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu}$ (check it)

Dirac Gamma Matrices

- There is some freedom to implement: $\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu}$ in 4x4 matrices.
 - We will use the Dirac-Pauli representation

$$\gamma^0 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \qquad \gamma^1 = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix}$$

$$\gamma^1 = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix}$$

$$\gamma^2 = \begin{pmatrix} 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & i & 0 & 0 \\ -i & 0 & 0 & 0 \end{pmatrix} \qquad \gamma^3 = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

Note the indices: (confusing!)

 $\mu, \nu = 0,1,2,3$ are the **Lorentz indices in space-time**:

Dirac matrix indices: 1,2,3,4 Have to do with the row and column indices of the matrix (and spinors)

Or:
$$\gamma^0 = \beta = \begin{pmatrix} \mathbb{1}_2 & 0 \\ 0 & -\mathbb{1}_2 \end{pmatrix}$$
 and $\gamma^k = \beta \alpha_k = \begin{pmatrix} 0 & \sigma_k \\ -\sigma_k & 0 \end{pmatrix}$ with Pauli matrices σ_k

$$\sigma_1 = \sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
; $\sigma_2 = \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$; $\sigma_3 = \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

 Note: although the gamma indices are Lorentz-indices ("space-time"), the gamma-matrices are not 4-vectors! (They are simply constants.)

Exercises: Dirac Algebra

• Dirac algebra:

- Write the explicit form of the γ -matrices
- Show that : $\{\gamma^{\mu}, \gamma^{\nu}\} \equiv \gamma^{\mu} \gamma^{\nu} + \gamma^{\nu} \gamma^{\mu} = 2g^{\mu\nu}$
- Show that : $(\gamma^0)^2 = \mathbb{1}_4$; $(\gamma^1)^2 = (\gamma^2)^2 = (\gamma^3)^2 = -\mathbb{1}_4$
- Use anti-commutation rules of α and β to show that: $\gamma^{\mu\dagger} = \gamma^0 \gamma^\mu \gamma^0$
- Define $\gamma^5=i\gamma^0\gamma^1\gamma^2\gamma^3$ and show: $\gamma^{5^\dagger}=\gamma^5$; $(\gamma^5)^2=\mathbb{1}_4$; $\{\gamma^5,\gamma^\mu\}=0$

See Griffiths for a derivation of the solutions

a) Show that the following plane waves are solutions to Dirac's equation

$$\psi_1 = \begin{pmatrix} 1 \\ 0 \\ p_Z/(E+m) \\ (p_x+ip_y)/(E+m) \end{pmatrix} e^{i(\vec{p}\cdot\vec{x}-Et)} \;\; ; \; \psi_2 = \begin{pmatrix} 0 \\ 1 \\ (p_x-ip_y)/(E+m) \\ -p_Z/(E+m) \end{pmatrix} e^{i(\vec{p}\cdot\vec{x}-Et)} \quad ; \; \psi_2 = \begin{pmatrix} 0 \\ (p_x-ip_y)/(E+m) \\ -p_Z/(E+m) \end{pmatrix} e^{i(\vec{p}\cdot\vec{x}-Et)} \quad ; \; \psi_3 = \begin{pmatrix} 0 \\ (p_x-ip_y)/(E+m) \\ -p_Z/(E+m) \end{pmatrix} e^{i(\vec{p}\cdot\vec{x}-Et)} \quad ; \; \psi_4 = \begin{pmatrix} 0 \\ (p_x-ip_y)/(E+m) \\ -p_Z/(E+m) \end{pmatrix} e^{i(\vec{p}\cdot\vec{x}-Et)} \quad ; \; \psi_4 = \begin{pmatrix} 0 \\ (p_x-ip_y)/(E+m) \\ -p_Z/(E+m) \end{pmatrix} e^{i(\vec{p}\cdot\vec{x}-Et)} \quad ; \; \psi_4 = \begin{pmatrix} 0 \\ (p_x-ip_y)/(E+m) \\ -p_Z/(E+m) \end{pmatrix} e^{i(\vec{p}\cdot\vec{x}-Et)} \quad ; \; \psi_4 = \begin{pmatrix} 0 \\ (p_x-ip_y)/(E+m) \\ -p_Z/(E+m) \end{pmatrix} e^{i(\vec{p}\cdot\vec{x}-Et)} \quad ; \; \psi_4 = \begin{pmatrix} 0 \\ (p_x-ip_y)/(E+m) \\ -p_Z/(E+m) \end{pmatrix} e^{i(\vec{p}\cdot\vec{x}-Et)} \quad ; \; \psi_4 = \begin{pmatrix} 0 \\ (p_x-ip_y)/(E+m) \\ -p_Z/(E+m) \end{pmatrix} e^{i(\vec{p}\cdot\vec{x}-Et)} \quad ; \; \psi_4 = \begin{pmatrix} 0 \\ (p_x-ip_y)/(E+m) \\ -p_Z/(E+m) \end{pmatrix} e^{i(\vec{p}\cdot\vec{x}-Et)} \quad ; \; \psi_4 = \begin{pmatrix} 0 \\ (p_x-ip_y)/(E+m) \\ -p_Z/(E+m) \end{pmatrix} e^{i(\vec{p}\cdot\vec{x}-Et)} \quad ; \; \psi_4 = \begin{pmatrix} 0 \\ (p_x-ip_y)/(E+m) \\ -p_Z/(E+m) \end{pmatrix} e^{i(\vec{p}\cdot\vec{x}-Et)} \quad ; \; \psi_4 = \begin{pmatrix} 0 \\ (p_x-ip_y)/(E+m) \\ -p_Z/(E+m) \end{pmatrix} e^{i(\vec{p}\cdot\vec{x}-Et)} \quad ; \; \psi_4 = \begin{pmatrix} 0 \\ (p_x-ip_y)/(E+m) \\ -p_Z/(E+m) \end{pmatrix} e^{i(\vec{p}\cdot\vec{x}-Et)} \quad ; \; \psi_4 = \begin{pmatrix} 0 \\ (p_x-ip_y)/(E+m) \\ -p_Z/(E+m) \end{pmatrix} e^{i(\vec{p}\cdot\vec{x}-Et)} \quad ; \; \psi_4 = \begin{pmatrix} 0 \\ (p_x-ip_y)/(E+m) \\ -p_Z/(E+m) \end{pmatrix} e^{i(\vec{p}\cdot\vec{x}-Et)} \quad ; \; \psi_4 = \begin{pmatrix} 0 \\ (p_x-ip_y)/(E+m) \\ -p_Z/(E+m) \end{pmatrix} e^{i(\vec{p}\cdot\vec{x}-Et)} \quad ; \; \psi_4 = \begin{pmatrix} 0 \\ (p_x-ip_y)/(E+m) \\ -p_Z/(E+m) \end{pmatrix} e^{i(\vec{p}\cdot\vec{x}-Et)} \quad ; \; \psi_4 = \begin{pmatrix} 0 \\ (p_x-ip_y)/(E+m) \\ -p_Z/(E+m) \end{pmatrix} e^{i(\vec{p}\cdot\vec{x}-Et)} \quad ; \; \psi_4 = \begin{pmatrix} 0 \\ (p_x-ip_y)/(E+m) \\ -p_Z/(E+m) \end{pmatrix} e^{i(\vec{p}\cdot\vec{x}-Et)} \quad ; \; \psi_4 = \begin{pmatrix} 0 \\ (p_x-ip_y)/(E+m) \\ -p_Z/(E+m) \end{pmatrix} e^{i(\vec{p}\cdot\vec{x}-Et)} \quad ; \; \psi_4 = \begin{pmatrix} 0 \\ (p_x-ip_y)/(E+m) \\ -p_Z/(E+m) \end{pmatrix} e^{i(\vec{p}\cdot\vec{x}-Et)} \quad ; \; \psi_4 = \begin{pmatrix} 0 \\ (p_x-ip_y)/(E+m) \\ -p_Z/(E+m) \end{pmatrix} e^{i(\vec{p}\cdot\vec{x}-Et)} \quad ; \; \psi_4 = \begin{pmatrix} 0 \\ (p_x-ip_y)/(E+m) \\ -p_Z/(E+m) \end{pmatrix} e^{i(\vec{p}\cdot\vec{x}-Et)} \quad ; \; \psi_4 = \begin{pmatrix} 0 \\ (p_x-ip_y)/(E+m) \\ -p_Z/(E+m) \end{pmatrix} e^{i(\vec{p}\cdot\vec{x}-Et)} \quad ; \; \psi_4 = \begin{pmatrix} 0 \\ (p_x-ip_y)/(E+m) \\ -p_Z/(E+m) \end{pmatrix} e^{i(\vec{p}\cdot\vec{x}-Et)} \quad ; \; \psi_4 = \begin{pmatrix} 0 \\ (p_x-ip_y)/(E+m) \\ -p_Z/(E+m) \end{pmatrix} e^{i(\vec{p}\cdot\vec{x}-Et)} \quad ; \; \psi_4 = \begin{pmatrix} 0 \\ (p_x-ip_y)/(E+m) \\ -p_Z/(E+m) \end{pmatrix} e^{i(\vec{p}\cdot\vec{x}-Et)} \quad ; \; \psi_4 =$$

$$\phi = Ne^{-\iota(p)}$$

$$\psi_{3} = \begin{pmatrix} p_{z}/(E-m) \\ (p_{x}+ip_{y})/(E-m) \\ 1 \\ 0 \end{pmatrix} e^{i(\vec{p}\cdot\vec{x}-Et)} \quad ; \psi_{4} = \begin{pmatrix} (p_{x}-ip_{y})/(E-m) \\ -p_{z}/(E-m) \\ 0 \\ 1 \end{pmatrix} e^{i(\vec{p}\cdot\vec{x}-Et)}$$

- Write the Dirac equation for particle in rest (choose $\vec{p}=0$) and show that ψ_1 and ψ_2 are positive energy solutions: $E=+\left|\sqrt{\vec{p}^2+m^2}\right|$ whereas ψ_3 and ψ_4 are negative energy solutions: E= $-\left|\sqrt{\vec{p}^2+m^2}\right|.$
- c) Consider the helicity operator $\vec{\sigma} \cdot \vec{p} = \sigma_x p_x + \sigma_y p_y + \sigma_z p_z$ and show that ψ_1 corresponds to positive helicity solution and ψ_2 to negative helicity. Similarly for ψ_3 and ψ_4 .

Spin and Helicity – hint for exercise c)

- For a given momentum p there still is a *two-fold degeneracy* with the same energy: what differentiates solutions ψ_1 from ψ_2 ? \rightarrow It is spin!!
- Define the spin operator for Dirac spinors: $\vec{\Sigma} = \begin{pmatrix} \vec{\sigma} & 0 \\ 0 & \vec{\sigma} \end{pmatrix}$, where $\vec{\sigma}$ are the three 2x2 Pauli spin matrices
- Define helicity λ as spin "up"/"down" wrt direction of motion of the particle

$$\lambda = \frac{1}{2} \vec{\Sigma} \cdot \hat{p} \equiv \frac{1}{2} \begin{pmatrix} \vec{\sigma} \cdot \hat{p} & 0 \\ 0 & \vec{\sigma} \cdot \hat{p} \end{pmatrix} = \frac{1}{2|p|} \left(\sigma_x p_x + \sigma_y p_y + \sigma_z p_z \right)$$

• Split off the Energy and momentum part of Dirac's equation: $(i\gamma^{\mu}\partial_{\mu}-m)\psi=0$

$$\begin{bmatrix} \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix} E - \begin{pmatrix} 0 & \sigma_i \\ -\sigma_i & 0 \end{pmatrix} p^i - \begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix} m \end{bmatrix} \begin{pmatrix} \psi_A \\ \psi_B \end{pmatrix} = 0$$

- Exercise: Try solutions ψ_1 and ψ_2 to see they are *helicity eigenstates* with $\lambda=+1/2$ and $\lambda=-1/2$
- Dirac wanted to solve negative energies and he found spin-½ fermions!

Antiparticles: positive and negative energy solutions

• Dirac spinor solutions
$$\psi_i(x^\mu) = \psi_i(t,\vec{x}) = u_i(E,\vec{p})e^{i(\vec{p}\vec{x}-Et)} = u_i(p^\mu)e^{-ip_\mu x^\mu}$$
 with $i=1,2,3,4$

• Since we work with antiparticles, instead of *negative energy particles* travelling backwards instead in time, antiparticle solutions can be defined

$$u_{3}(-E, -\vec{p})e^{i((-\vec{p})\vec{x} - (-E)t)} = v_{2}(E, \vec{p})e^{-i(\vec{p}\vec{x} - Et)} = v_{2}(p^{\mu})e^{ip_{\mu}x^{\mu}}$$
$$u_{4}(-E, -\vec{p})e^{i((-\vec{p})\vec{x} - (-E)t)} = v_{1}(E, \vec{p})e^{-i(\vec{p}\vec{x} - Et)} = v_{1}(p^{\mu})e^{ip_{\mu}x^{\mu}}$$

• Where now the energy of the antiparticle solutions v_1 and v_2 is positive: E>0

• Explicit:
$$u_4 = \begin{pmatrix} (p_x - ip_y)/(E-m) \\ -p_z/(E-m) \\ 0 \\ 1 \end{pmatrix}$$
 and $u_3 = \begin{pmatrix} p_z/(E-m) \\ (p_x + ip_y)/(E-m) \\ 1 \\ 0 \end{pmatrix}$ becomes...

Antiparticles: positive and negative energy solutions

- Dirac spinor solutions $\psi_i(x^\mu) = \psi_i(t,\vec{x}) = u_i(E,\vec{p})e^{i(\vec{p}\vec{x}-Et)} = u_i(p^\mu)e^{-ip_\mu x^\mu}$ with i=1,2,3,4
- Since we work with antiparticles, instead of *negative energy particles* travelling backwards instead in time, *antiparticle solutions* can be defined

$$u_{3}(-E, -\vec{p})e^{i((-\vec{p})\vec{x} - (-E)t)} = v_{2}(E, \vec{p})e^{-i(\vec{p}\vec{x} - Et)} = v_{2}(p^{\mu})e^{ip_{\mu}x^{\mu}}$$
$$u_{4}(-E, -\vec{p})e^{i((-\vec{p})\vec{x} - (-E)t)} = v_{1}(E, \vec{p})e^{-i(\vec{p}\vec{x} - Et)} = v_{1}(p^{\mu})e^{ip_{\mu}x^{\mu}}$$

• Where now the energy of the antiparticle solutions v_1 and v_2 is positive: E > 0

• Explicit:
$$v_1 = \begin{pmatrix} (p_x - ip_y)/(E+m) \\ -p_z/(E+m) \\ 0 \\ 1 \end{pmatrix}$$
 and $v_2 = \begin{pmatrix} p_z/(E+m) \\ (p_x + ip_y)/(E+m) \\ 1 \\ 0 \end{pmatrix}$

• Where \vec{E} and \vec{p} are now the energy and momentum of the antiparticle

Adjoint spinors

Dirac: $(i\gamma^{\mu}\partial_{\mu}-m)\psi=0$

- Adjoint spinors
 - Solutions of the Dirac equation are called spinors
 - Current density and continuity equation require adjoints instead of complex conjugates

Remember:
$$(AB)^{\dagger} = B^{\dagger}A^{\dagger}$$

$$D: i\gamma^{0} \frac{\partial \psi}{\partial t} + i \sum_{k=1,2,3} \gamma^{k} \frac{\partial \psi}{\partial x^{k}} - m\psi = 0$$
• The minus sign in $(-\gamma^{k})$ disturbs the Lorentz invariant form: ψ^{\dagger} is not physi
• Restore covariance by multiplying sector equation from the right by γ^{0} and define the contraction of the property of of

$$D^{\dagger}$$
: $-i \quad \frac{\partial \psi^{\dagger}}{\partial t} \gamma^0 - i \sum_{k=1,2,3}$

$$\frac{\partial \psi^{\dagger}}{\partial x^{k}} (-\gamma^{k}) - m\psi^{\dagger} = 0$$

$$\gamma^{0\dagger} = \gamma^0$$
 ; $\gamma^{k\dagger} = -\gamma^k$; $-\gamma^k \gamma^0 = \gamma^0 \gamma^k$

• The minus sign in
$$\left(-\gamma^k\right)$$
 disturbs the Lorentz invariant form: ψ^\dagger is not physical

 Restore covariance by multiplying second equation from the right by γ^0 and define:

$$\overline{\psi} = \psi^{\dagger} \gamma^{0}$$

$$\gamma^{0} = \beta = \begin{pmatrix} \mathbb{1}_{2} & 0 \\ 0 & -\mathbb{1}_{2} \end{pmatrix}$$

Adjoint spinors

Dirac: $(i\gamma^{\mu}\partial_{\mu}-m)\psi=0$

- Adjoint spinors
 - Solutions of the Dirac equation are called spinors
 - Current density and continuity equation require adjoints instead of complex conjugates

Remember:
$$(AB)^{\dagger} = B^{\dagger}A^{\dagger}$$

$$D: i\gamma^{0} \frac{\partial \psi}{\partial t} + i \sum_{k=1,2,3} \gamma^{k} \frac{\partial \psi}{\partial x^{k}} - m\psi = 0$$
• The minus sign in $\left(-\gamma^{k}\right)$ disturbs the Lorentz invariant form: ψ^{\dagger} is not physical equation from the right by γ^{0} and define:
$$\frac{\partial \psi^{\dagger}}{\partial t} \gamma^{0} \gamma^{0} - i \sum_{k=1,2,3} \frac{\partial \psi^{\dagger}}{\partial x^{k}} (\gamma^{0} \gamma^{k}) - m\psi^{\dagger} \gamma^{0} = 0$$
• Restore covariance by multiplying second equation from the right by γ^{0} and define:
$$\frac{\gamma^{0} + \gamma^{0}}{\gamma^{0} + \gamma^{0}} = \gamma^{0} \cdot \gamma^{k} \gamma^{0} = \gamma^{0} \gamma^{k}$$

$$\frac{1}{\sqrt{2}} \psi^{0} = \gamma^{0} \cdot \gamma^{0} = \gamma^{0} \gamma^{0}$$

$$\gamma^{0} = \beta = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

• The minus sign in
$$\left(-\gamma^k\right)$$
 disturbs the Lorentz invariant form: ψ^\dagger is not physical

$$D^{\dagger}:-i \quad \frac{\partial \psi^{\dagger}}{\partial t} \gamma^{0} \gamma^{0} - i \sum_{k=1,2,3}$$

$$\frac{\partial \psi^{\dagger}}{\partial x^k} (\gamma^0 \gamma^k) - m \psi^{\dagger} \gamma^0 = 0$$

$$\gamma^{0\dagger} = \gamma^0$$
 ; $\gamma^{k\dagger} = -\gamma^k$; $-\gamma^k \gamma^0 = \gamma^0 \gamma^k$

$$\overline{\psi} = \psi^{\dagger} \gamma^{0}$$

$$\gamma^{0} = \beta = \begin{pmatrix} \mathbb{1}_{2} & 0 \\ 0 & -\mathbb{1}_{2} \end{pmatrix}$$

Adjoint spinors

Dirac: $(i\gamma^{\mu}\partial_{\mu}-m)\psi=0$

- Adjoint spinors
 - Solutions of the Dirac equation are called spinors
 - Current density and continuity equation require adjoints instead of complex conjugates

Remember:
$$(AB)^{\dagger} = B^{\dagger}A^{\dagger}$$

$$D: i\gamma^0 \frac{\partial \psi}{\partial t} + i \sum_{k=1,2,3} \gamma^k \frac{\partial \psi}{\partial x^k} - m\psi = 0$$

• The minus sign in
$$\left(-\gamma^k\right)$$
 disturbs the Lorentz invariant form: ψ^\dagger is not physical

$$D^{\dagger}$$
: $-i$ $\frac{\partial \overline{\psi}}{\partial t} \gamma^0 - i \sum_{k=1,2,3} \frac{\partial \overline{\psi}}{\partial x^k} \gamma^k - m \overline{\psi} = 0$

 Restore covariance by multiplying second equation from the right by γ^0 and define:

$$\gamma^{0\dagger} = \gamma^0$$
 ; $\gamma^{k\dagger} = -\gamma^k$; $-\gamma^k \gamma^0 = \gamma^0 \gamma^k$

$$ar{\psi} = \psi^{\dagger} \gamma^{0}$$

$$\gamma^{0} = \beta = \begin{pmatrix} \mathbb{1}_{2} & 0 \\ 0 & -\mathbb{1}_{2} \end{pmatrix}$$

• Dirac equation: $i\gamma^\mu\partial_\mu\psi-m\psi=0$; adjoint Dirac equation: $i\partial_\mu\bar\psi\gamma^\mu+m\bar\psi=0$

Dirac Current density and conserved current

- Apply a similar trick as before for Schrödinger and Klein-Gordon case:
 - Multiply adjoint Dirac eq from right by ψ and multiply Dirac eq. from left by $ar{\psi}$

Probability: Zero-th component of the current:

$$\rho = j^0 = \bar{\psi} \gamma^0 \psi = \psi^{\dagger} \psi = \sum_{i=1}^4 |\psi_i|^2 \qquad (\bar{\psi} = \psi^{\dagger} \gamma^0 \text{ and } \gamma^{0^2} = 1)$$

• This always gives a positive probability, which was the motivation of Dirac.

Dirac in summary

- Dirac was looking for an explanation for positive and negative energy solutions by linearising Klein-Gordon equation
 - He found that his solutions described spin-½ particles
 - He predicted, based on symmetry, that for each particle there should exist an antiparticle (the negative energy solution).
- We had relativistic fields:
 - Spin-0: Klein-Gordon: e.g. pion particles
 - Spin-1/2: Dirac : e.g. quarks and leptons
 - How about forces? Spin=1

Wave Equations

Contents:

- 1. Wave equations and Probability
 - a) Wave equations for spin-0 fields
 - Schrödinger (non relativistic), Klein-Gordon (relativistic)
 - b) Wave equation for spin-½ fields
 - Dirac equation (relativistic)
 - Fundamental fermions
 - c) Wave equations for spin-1 fields
 - Gauge boson fields; eg. electromagnetic field
- 2. Gauge field theory
 - a) Variational Calculus and Lagrangians
 - b) Local Gauge invariance
 - i. QED
 - ii. Yang-Mills Theory (Weak, Strong)

Griffiths chapter 7 and PP1 chapter 1

Griffiths chapter 10 and PP1 chapter 1

- Required Quantum Mechanics knowledge:
 - Angular momentum and spin: study Griffiths sections 4.2, 4.3, In particular Pauli Matrices

Part 1 Wave Equations and Probability

1c) Spin-1

The Electromagnetic Field

• Maxwell equations describe electric and magnetic fields induced by charges and currents: (used Heavyside-Lorentz units: c = 1, $\epsilon_0 = 1$, $\mu_0 = 1$)

1. Gauss' law:
$$\vec{\nabla} \cdot \vec{E} = \rho$$

2. No magnetic charges:
$$\vec{\nabla} \cdot \vec{B} = 0$$

3. Faraday's law of induction:
$$\vec{\nabla} \times \vec{E} + \frac{\partial \vec{B}}{\partial t} = 0$$

4. Modified Ampère's law:
$$\vec{\nabla} \times \vec{B} - \frac{\partial \vec{E}}{\partial t} = \vec{J}$$

From 1. and 4. derive continuity

$$\vec{\nabla} \cdot \vec{j} = -\frac{\partial \rho}{\partial t}$$

→ charge conservation

This was the motivation for

Maxwell to modify Ampère's law

• Define a Lorentz covariant 4-vector field $A^{\mu} = (V, \vec{A})$ as follows:

$$\vec{B} = \vec{\nabla} \times \vec{A}$$
 (then automatically 2. follows)

$$\vec{E} = -rac{\partial \vec{A}}{\partial t} - \vec{\nabla} V$$
 with $V = A^0$ (then automatically 3. follows)

a) Show Maxwell equations can be summarized in covariant form:

$$\partial_{\mu}\partial^{\mu}A^{\nu} - \partial^{\nu}\partial_{\mu}A^{\mu} = j^{\nu}$$
 (Derive expressions for ρ and \vec{j} and use: $\vec{\nabla} \times (\vec{\nabla} \times \vec{A}) = -\nabla^2 \vec{A} + \vec{\nabla}(\vec{\nabla} \cdot \vec{A})$

The Antisymmetric tensor $F^{\mu\nu}$

• Maxwell's equation $\partial_{\mu}\partial^{\mu}A^{\nu} - \partial^{\nu}\partial_{\mu}A^{\mu} = j^{\nu}$ can be further shortened by introducing the antisymmetric tensor: $F^{\mu\nu} \equiv \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}$:

$$F^{\mu\nu} = \begin{pmatrix} 0 & -E_{\chi} & -E_{y} & -E_{z} \\ E_{\chi} & 0 & -B_{z} & B_{y} \\ E_{y} & B_{z} & 0 & -B_{\chi} \\ E_{z} & -B_{y} & B_{\chi} & 0 \end{pmatrix}$$

- Show that Maxwell's equations become: $\partial_{\mu}F^{\mu\nu}=j^{\nu}$
- Hint: derive the expressions for charge $(q=j^0)$ and current $(\vec{I}=\vec{\jmath}\,)$ separately. Use the identity: $\vec{\nabla} \times (\vec{\nabla} \times \vec{A}) = -\nabla^2 \vec{A} + \vec{\nabla} (\vec{\nabla} \cdot \vec{A})$. Remember the definitions: $A_{\mu} = (A_0, -\vec{A}) \; ; \; \partial_{\mu} = \left(\frac{\partial}{\partial t}, \vec{\nabla}\right) \; ; \; g^{\mu\nu} = g_{\mu\nu} = \mathrm{diag}(1, -1, -1, -1)$

Wave Equations

Contents:

- 1. Wave equations and Probability
 - a) Wave equations for spin-0 fields
 - Schrödinger (non relativistic), Klein-Gordon (relativistic)
 - b) Wave equation for spin-½ fields
 - Dirac equation (relativistic)
 - Fundamental fermions
 - c) Wave equations for spin-1 fields
 - Gauge boson fields; eg. electromagnetic field
- 2. Gauge field theory
 - a) Variational Calculus and Lagrangians
 - b) Local Gauge invariance
 - i. QED
 - ii. Yang-Mills Theory (Weak, Strong)

Griffiths chapter 7 and PP1 chapter 1

Griffiths chapter 10 and PP1 chapter 1

- Required Quantum Mechanics knowledge:
 - Angular momentum and spin: study Griffiths sections 4.2, 4.3, In particular Pauli Matrices

Part 2 Gauge Theory

2a) Variational Calculus and Lagrangians

Lagrange Formalism in field theory

- Relativistic Field theory: fields replace the generalized coordinates
 - Also time and space will be treated symmetric
 - Replace $L(q,\dot{q})$ for classical particles by a Lagrange density $\mathcal{L}\left(\phi(x^{\mu}),\partial_{\mu}\phi(x^{\mu})\right)$ in terms of *fields* and *gradients* such that $L\equiv\int d^3x\mathcal{L}\left(\phi,\partial_{\mu}\phi\right)$
- Principle of least actions becomes:

$$S = \int_{t_1}^{t_2} d^4x \, \mathcal{L}\left(\phi(x^\mu), \partial_\mu \phi(x^\mu)\right) \quad \text{and again} \quad \delta S = 0 \qquad S = \int_{t_1}^{t_2} dt \, L(q, \dot{q}) \Rightarrow \delta S = 0$$

$$t_1, t_2 \text{ are endpoints of the path}$$

Classical was:

$$S = \int_{t_1}^{t_2} dt \ L(q, \dot{q}) \Rightarrow \delta S = 0$$

- Euler Lagrange Equations of motion becomes:
 - Classical was:

$$\frac{\partial L}{\partial q_i} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right)$$

$$\frac{\partial \mathcal{L}}{\partial \phi(x^{\mu})} = \partial_{\mu} \frac{\partial \mathcal{L}}{\partial \left(\partial_{\mu} \phi(x^{\mu})\right)}$$

Lagrange Formalism in field theory

- Relativistic Field theory: fields replace the generalized coordinates
 - Also time and space will be treated symmetric
 - Replace $L(q,\dot{q})$ for classical particles by a Lagrange density $\mathcal{L}\left(\phi(x^{\mu}),\partial_{\mu}\phi(x^{\mu})\right)$ in terms of *fields* and *gradients* such that $L\equiv\int d^3x\mathcal{L}\left(\phi,\partial_{\mu}\phi\right)$
- Principle of least actions becomes:

$$S = \int_{t_1}^{t_2} d^4x \, \mathcal{L}\left(\phi(x^\mu), \partial_\mu \phi(x^\mu)\right) \quad \text{and again} \quad \delta S = 0 \qquad S = \int_{t_1}^{t_2} dt \, L(q, \dot{q}) \Rightarrow \delta S = 0$$

$$t_1, t_2 \text{ are endpoints of the path}$$

Classical was:

$$S = \int_{t_1}^{t_2} dt \ L(q, \dot{q}) \Rightarrow \delta S = 0$$

- Euler Lagrange Equations of motion becomes:
 - Classical was:

$$\frac{\partial L}{\partial q_i} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right)$$

$$\frac{\partial \mathcal{L}}{\partial \phi} = \partial_{\mu} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)}$$

Exercise: Lagrangians and wave equations

- Scalar Field (spin 0 "pion")
 - a) Show that the Euler-Lagrange equations for $\mathcal{L}=\frac{1}{2}\big(\partial_{\mu}\phi\big)(\partial^{\mu}\phi)-\frac{1}{2}m^2\phi^2$ results in the Klein-Gordon equation: $\partial_{\mu}\partial^{\mu}\phi+m^2\phi=0$
- Dirac Field (spin ½ Fermion)
 - b) Show that the Euler-Lagrange equations for $\mathcal{L}=i\bar{\psi}\gamma_{\mu}\partial^{\mu}\psi-m\bar{\psi}\psi$ results in the Dirac equation: $(i\gamma^{\mu}\partial_{\mu}-m)\psi=0$
- Electromagnetic field (spin 1 photon)
 - c) Show that $\mathcal{L} = -\frac{1}{4} (\partial^{\mu} A^{\nu} \partial^{\nu} A^{\mu}) (\partial_{\mu} A_{\nu} \partial_{\nu} A_{\mu}) j^{\mu} A_{\mu}$ results in Maxwell's equations: $\partial_{\mu} \partial^{\mu} A^{\nu} \partial^{\nu} \partial_{\mu} A^{\mu} = j^{\nu}$

These Lagrangians are the fundamental objects in quantum field theory Descriptions of interactions follow from symmetry principles on these objects.

Wave Equations

Contents:

- 1. Wave equations and Probability
 - a) Wave equations for spin-0 fields
 - Schrödinger (non relativistic), Klein-Gordon (relativistic)
 - b) Wave equation for spin-1/2 fields
 - Dirac equation (relativistic)
 - Fundamental fermions
 - c) Wave equations for spin-1 fields
 - Gauge boson fields; eg. electromagnetic field
- 2. Gauge field theory
 - a) Variational Calculus and Lagrangians
 - b) Local Gauge invariance
 - i. QED
 - ii. Yang-Mills Theory (Weak, Strong)

Griffiths chapter 7 and PP1 chapter 1

Griffiths chapter 10 and PP1 chapter 1

- Required Quantum Mechanics knowledge:
 - Angular momentum and spin: study Griffiths sections 4.2, 4.3, In particular Pauli Matrices

Part 2
Gauge Theory

2b) Local Gauge Invariance
i) QED

- global gauge invariance: the phase of the wave function is not observable: Changing the wave function $\psi(x) \to \psi'(x) = e^{i\alpha}\psi(x)$ should not change the Lagrangian for an electron $e^{-i\alpha}\overline{\psi}e^{i\alpha}\psi=\overline{\psi}\psi$

 - Look at Dirac Lagrangian: $\mathcal{L} = i \overline{\psi} \gamma^{\mu} \partial_{\mu} \psi m \overline{\psi} \psi$ It should not change for $\psi \to \psi'$ and $\overline{\psi} \to \overline{\psi'} = \psi'^{\dagger} \gamma^{0}$; $\overline{\psi'} = e^{-i\alpha} \overline{\psi} \twoheadrightarrow \text{OK. } \mathcal{L}' = \mathcal{L}$
- *local* gauge invariance: invariance under changing phases in space and time
 - An electron wave function can have a different phases at different places and times
 - $\psi(x) \to \psi'(x) = e^{i\alpha(x)}\psi(x)$ and $\bar{\psi}(x) \to \bar{\psi}'(x) = e^{-i\alpha(x)}\bar{\psi}(x)$
 - Check this for the Dirac Lagrangian

Check this for the Dirac Lagrangian

Problem in the term:
$$\partial_{\mu}\psi(x) \rightarrow \partial_{\mu}\psi'(x) = e^{i\alpha(x)}\left(\partial_{\mu}\psi(x) + i\partial_{\mu}\alpha(x)\psi(x)\right)$$

Hence: $\mathcal{L} \to \mathcal{L}' + i\partial_{\mu}\alpha(x) \bar{\psi}(x) \gamma^{\mu} \psi(x)$

Note: $x \equiv x^{\mu}$

It seems that the Lagrangian will change, but this is not allowed!

Covariant Derivative

- We insist that the Lagrangian does not change and invent a "covariant" derivative:
 - Replace in $i\bar{\psi}\gamma_{\mu}\partial^{\mu}\psi m\bar{\psi}\psi$ the derivative by: $\partial^{\mu} \to D^{\mu} \equiv \partial^{\mu} + iqA^{\mu}$
 - Require that the vector field A^{μ} transforms together with the particle wave ψ

$$\psi(x) \to \psi'(x) = e^{i\alpha(x)}\psi(x)$$
$$A^{\mu}(x) \to A'^{\mu}(x) = A^{\mu}(x) - \frac{1}{q}\partial^{\mu}\alpha(x)$$

- \rightarrow Exercise: check that the Lagrangian $i\overline{\psi}\gamma_{\mu}D^{\mu}\psi m\overline{\psi}\psi$ now is invariant!
- What have we done?
 - We *insist* the electron can have a local phase factor $\alpha(x)$ without changing the physics
 - We then **must** at the same time introduce a photon field $A^{\mu}(x)$, which couples to charge!
 - **→** Gauge invariance implies interactions!
- Remember gauge transformations EM field: $A^{\mu} \rightarrow {A'}^{\mu} = A^{\mu} + \partial^{\mu} \lambda$ is same photon
 - λ is coupled to the phase of the wave function of the electrons
- The same principle can also be used for weak and strong interactions: implement other symmetries

Quantum Electrodynamics (QED)

- The free Dirac Lagrangian is: $\mathcal{L}_{\text{free}} = i \bar{\psi} \gamma_{\mu} \partial^{\mu} \psi m \bar{\psi} \psi$
- Introducing electromagnetism implies: $\partial^{\mu} \rightarrow D^{\mu} \equiv \partial^{\mu} + iqA^{\mu}$
- Resulting in: $\mathcal{L}_{EM} = i \bar{\psi} \gamma_{\mu} \, D^{\mu} \psi m \bar{\psi} \psi$ $\mathcal{L}_{EM} = i \bar{\psi} \gamma_{\mu} \, \partial^{\mu} \psi m \bar{\psi} \psi \, q \bar{\psi} \gamma_{\mu} A^{\mu} \psi$ $\mathcal{L}_{EM} = \mathcal{L}_{free} \mathcal{L}_{int} \, \text{ with } \, \mathcal{L}_{int} = -J_{\mu} A^{\mu} \, \text{ and } \, J_{\mu} = q \bar{\psi} \gamma_{\mu} \psi$
 - Remember that the Dirac probability current was $J_\mu=\bar\psi\gamma_\mu\psi$ such that we now have a charge current: $J_\mu=q\bar\psi\gamma_\mu\psi$
 - The system is described as free Lagrangian plus an interaction Lagrangian of the form: "current \times field" $\mathcal{L}_{int} = -J_{\mu}A^{\mu}$

Part 2 Gauge Theory

2b) Local Gauge Invariance
ii) Yang-Mills theories* (Weak, Strong)

^{*} Note: this is a more technical part: focus on the concept involved; the precise mathematics is less important for now

Yang Mills Theories

- QED is called a U(1) symmetry. It means that a 1-dimensional unitary transformation (the phase factor $e^{i\alpha(x)}$) does not change the physics.
 - The unitary symmetry couples to the charge quantum number
- Let us require that the weak interaction can not differentiate between rotations in the space of "up-down": Isospin.
- Rewrite $\mathcal{L} = \bar{u}(i\gamma^{\mu}\partial_{\mu} m)u + \bar{d}(i\gamma^{\mu}\partial_{\mu} m)d$ where u (isospin up) and d (isospin down) are a doublet of spinor waves as follows:

$$\mathcal{L} = \bar{\psi} (i\gamma^{\mu} I \partial_{\mu} - I m) \psi \quad \text{with } \psi = \begin{pmatrix} u \\ d \end{pmatrix} \text{ and } I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

• We think of the "up" and "down" directions in weak isospin space

SU2 Gauge Invariance

EM was: $\psi(x) \rightarrow \psi'(x) = G_{EM}\psi(x) = e^{i\alpha(x)}\psi(x)$

- We require gauge invariance: $\psi(x) \to \psi'(x) = G(x)\psi(x)$ with $G(x) = \exp\left(\frac{i}{2}\vec{\tau} \cdot \vec{\alpha}(x)\right)$
 - $\vec{\tau} = \tau_1, \tau_2, \tau_3$ are the Pauli Matrices
 - This is now a rotation in isospin space generated by 2x2 Pauli matrices!
- Just like QED there is the problem that the Lagrangian does not automatically stay invariant (just write it out), because: $\partial_{\mu}\psi(x) \rightarrow \partial_{\mu}\psi'(x) = G(x)\big(\partial_{\mu}\psi\big) + \big(\partial_{\mu}G\big)\psi$
- To solve this a corresponding covariant derivative must be introduced to keep the Lagrangian invariant: $I\partial_{\mu} \rightarrow D_{\mu} = I\partial_{\mu} + igB_{\mu}$ $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
 - g is the coupling constant that replaces charge q in QED and B_{μ} is now a new vector force field that replaces A_{μ} of QED.
 - The object B_{μ} is now a 2x2 matrix: $B_{\mu} = \frac{1}{2}\vec{\tau}\cdot\vec{b}_{\mu} = \frac{1}{2}\tau_1^a b_{\mu}^a = \frac{1}{2}\begin{pmatrix}b_3&b_1-ib_2\\b_1+ib_2&-b_3\end{pmatrix}$ $\vec{b}_{\mu} = (b_1,b_2,b_3)$ are now three new gauge fields
 - We need 3 instead of one, because there are three generators of 2x2 rotations
- We now get the desired behaviour if : $D_{\mu}\psi(x) \rightarrow D'_{\mu}\psi'(x) = G(x)(D_{\mu}\psi)$

Gauge transformation for B_{μ} field – (for experts)

- We get the desired behaviour if: $D_{\mu}\psi(x) \rightarrow D'_{\mu}\psi'(x) = G(x)(D_{\mu}\psi)$
- The left side of this equation is: $D'_{\mu}\psi'(x) = \left(\partial_{\mu} + igB'_{\mu}\right)\psi'$ $= G(\partial_{\mu}\psi) + (\partial_{\mu}G)\psi + igB'_{\mu}(G\psi)$
- While the right hand side is: $G(D_{\mu}\psi) = G(\partial_{\mu}\psi) + ig G B_{\mu} \psi$
- So the required transformation of the field is: $igB'_{\mu}(G\psi) = igG(B_{\mu}\psi) (\partial_{\mu}G)\psi$
- Multiply the equation by G^{-1} on the right (and omitting ψ): $B'_{\mu} = GB_{\mu}G^{-1} + \frac{i}{g}(\partial_{\mu}G)G^{-1}$
- Compare this to the case of electromagnetism where $G_{em}=e^{i\alpha(x)}$ gives:

$$A'_{\mu} = G_{em}AG_{em}^{-1} + \frac{i}{g} \left(\partial_{\mu}G_{em}\right)G_{em}^{-1} = A_{\mu} - \frac{1}{q}\partial_{\mu}\alpha$$

... which is exactly what we had before.

Interpretation: weak Interaction

- We try to describe an interaction with a symmetry between two states:
 - "up" and "down" states with invariance under SU2 rotations
- To do this requires the existence of three force fields, related to the gauge field: \vec{B}_{μ}
 - What are they?
 - They must be three massless bosons, similar to the photon, that couple to "up" and "own" states.
 - They are the W^-, Z^0, W^+ bosons.
 - How come they have a mass (unlike the photon?) → Higgs mechanism
- Again the interaction Lagrangian will be of the form "current \times field:" $\vec{J}_{\mu}\vec{b}^{\mu}$, where the current is now: $J_{\mu}=\frac{g}{2}\bar{\psi}\gamma_{\mu}\vec{\tau}\psi$ (for EM it was: $J_{\mu}=q\bar{\psi}\gamma_{\mu}\psi$)
- The "up" and "down" states are $\psi = \begin{pmatrix} u \\ d \end{pmatrix}$ and $\psi = \begin{pmatrix} v \\ e \end{pmatrix}$ and we describe the *weak* interaction.
- How about the strong interaction?

The strong interaction

- The "charge" of the strong interaction is "colour"
- The wave function of a quark has three components:

•
$$\psi = \begin{pmatrix} \psi_r \\ \psi_g \\ \psi_b \end{pmatrix}$$
 ; Require a symmetry generated by 3x3 rotations in 3-dim color space: SU(3)

- There are 8 generator matrices λ_i and as a consequence there are 8 vector fields needed to keep the Lagrangian invariant
 - There exist 8 gluons, related to:

$$\lambda_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \lambda_2 = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \lambda_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \lambda_4 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

$$\lambda_5 = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix} \qquad \lambda_6 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \qquad \lambda_7 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & -i & 0 \end{pmatrix} \qquad \lambda_8 = \frac{1}{\sqrt{3}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

The Standard Model

- The Standard Model implements *local gauge invariance* at the same time to
 - Electromagnetism (U(1) symmetry transformations) → 1 photon
 - Weak interaction (SU(2) symmetry transformations) \rightarrow 3 weak bosons
 - Strong interaction (SU(3) symmetry transformations) → 8 gluons
- The SM gauge group is $SU(3) \otimes SU(2) \otimes U(1)$

- For an exact symmetry the force particles should be massless.
 - SU(3) is exact \rightarrow massless gluons
 - $SU(2) \otimes U(1)$ is an approximate (ie "broken") symmetry.
 - It is broken in the Higgs mechanism such that there remains one massless boson (photon) and three massive particles (W^- , Z^0 , W^+).

Lecture 3: Discussion Topics

Discussions Topics belonging to Lecture 3

- Explain the difference between Lorentz indices and Dirac indices
- Is γ^{μ} a four-vector? Why (not)?
- Is $j^{\mu} = \bar{\psi} \gamma^{\mu} \psi$ a four-vector? Why (not)?

<u>Topic-8</u>: Helicity and Chirality

- Explain the difference between helicity and chirality
 - How is each one defined?
- Which of the two is Lorentz invariant?
- Which one of the two do we refer to when talking about the left or right *handedness* of a particle?

Topic-8: Helicity vs Chirality – background information

- a) Write out the chirality operator γ^5 in the Dirac-Pauli representation. $\gamma^5 = i\gamma^0\gamma^1\gamma^2\gamma^3$
- b) The helicity operator is defined as $\lambda = \frac{1}{2}\vec{\Sigma} \cdot \hat{p}$. Show that helicity operator and the chirality operator have the same effect on a spinor solution, i.e.

$$\gamma^{5}\psi = \gamma^{5} \begin{pmatrix} \chi^{(s)} \\ \frac{\vec{\sigma} \cdot \vec{p}}{E + m} \chi^{(s)} \end{pmatrix} \approx \lambda \begin{pmatrix} \chi^{(s)} \\ \frac{\vec{\sigma} \cdot \vec{p}}{E + m} \chi^{(s)} \end{pmatrix} = \lambda \psi \qquad \text{with: } \chi^{(1)} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}; \chi^{(2)} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

in the relativistic limit where $E \gg m$

c) Show explicitly that for a Dirac spinor:

$$\bar{\psi}\gamma^{\mu}\psi=\overline{\psi_L}\gamma^{\mu}\psi_L+\overline{\psi_R}\gamma^{\mu}\psi_R$$
 making use of $\psi=\psi_L+\psi_R$ and the projection operators: $\psi_L=\frac{1}{2}(1-\gamma^5)\psi$ and $\psi_R=\frac{1}{2}(1+\gamma^5)\psi$

d) Explain why the weak interaction is called left-handed.

"I cannot believe God is a weak left-hander."

Wolfgang Pauli

<u>Topic-9</u>: Maxwell's equation

- Maxwell's equations can be described relativistically with the 4-vector field A^{μ} .
- Show how you get E and B fields from A^{μ}
- Explain the concept of gauge invariance.
- Is the A^{μ} field physical or not?
- The photon is a spin-1 quantum, but why can it not have a spin-0 component?

Topic-9: The photon field and gauge invariance

- Field A^{μ} is just introduced as a mathematical tool
 - Gauge freedom: you are free to choose any A^{μ} as long as \vec{E} and \vec{B} fields don't change:

$$A^{\mu} \to A'^{\mu} = A^{\mu} + \partial^{\mu}\lambda$$

$$V \to V' = V + \frac{\partial \lambda}{\partial t}$$

$$\vec{A} \to \vec{A'} = \vec{A} - \vec{\nabla}\lambda$$

- Choose the Lorentz gauge condition: $\partial_{\mu}A^{\mu} = 0$
- Maxwell equation in Lorentz gauge becomes:

$$\partial_{\mu}\partial^{\mu}A^{\nu} - \partial^{\nu}\partial_{\mu}A^{\mu} = j^{\nu} \quad \Rightarrow \quad \partial_{\mu}\partial^{\mu}A^{\nu} = j^{\nu}$$

- Very similar to Klein-Gordon equation $\partial_{\mu}\partial^{\mu}\phi + m^2\phi = 0$
 - But now 4-equations → 4 polarizations states of the photon field??
- Photon field solutions: $A^{\mu}(x) = N \varepsilon^{\mu}(p) e^{-ip_{\nu}x^{\nu}}$
 - A gauge transformation implies: $\varepsilon^{\mu} \rightarrow \varepsilon'^{\mu} = \varepsilon^{\mu} + ap^{\mu}$
 - Different polarization vectors which differ by multiple of p^{μ} describe same photon
 - Only 3 degrees of freedom remain \rightarrow 3 polarization states: spin: -1, 0, 1 \rightarrow choose $\varepsilon^0 = 0$
- Mass of the photon is zero:
 - Thus $p^{\mu}p_{\mu} = 0 \rightarrow \varepsilon^{\mu}p_{\mu} \rightarrow \vec{\varepsilon} \cdot \vec{p} = 0$
 - Now only two transverse polarization states remain: Chose $\vec{p} = (0,0,p) \rightarrow \vec{\epsilon}^1 = (1,0,0)$ and $\vec{\epsilon}^2 = (0,1,0)$

Lecture 3: Exercises

Exercises belonging to Lecture 3

Exercise – 9: Dirac Algebra

• Dirac algebra:

- Write the explicit form of the γ -matrices
- Show that : $\{\gamma^{\mu}, \gamma^{\nu}\} \equiv \gamma^{\mu} \gamma^{\nu} + \gamma^{\nu} \gamma^{\mu} = 2g^{\mu\nu}$
- Show that : $(\gamma^0)^2 = \mathbb{1}_4$; $(\gamma^1)^2 = (\gamma^2)^2 = (\gamma^3)^2 = -\mathbb{1}_4$
- Use anti-commutation rules of α and β to show that: $\gamma^{\mu\dagger} = \gamma^0 \gamma^\mu \gamma^0$
- Define $\gamma^5=i\gamma^0\gamma^1\gamma^2\gamma^3$ and show: $\gamma^{5\dagger}=\gamma^5$; $(\gamma^5)^2=\mathbb{1}_4$; $\{\gamma^5,\gamma^\mu\}=0$

a) Show that the following plane waves are solutions to Dirac's equation

$$\psi_1 = \begin{pmatrix} 1 & 0 \\ p_z/(E+m) \\ (p_x+ip_y)/(E+m) \end{pmatrix} e^{i(\vec{p}\cdot\vec{x}-Et)} \;\; ; \; \psi_2 = \begin{pmatrix} 0 \\ 1 \\ (p_x-ip_y)/(E+m) \\ -p_z/(E+m) \end{pmatrix} e^{i(\vec{p}\cdot\vec{x}-Et)} \quad \text{Before KG:} \quad \phi = Ne^{-i(p_x+ip_y)}$$

 $\phi = Ne^{-i(p_{\mu}x^{\mu})}$

$$\psi_{3} = \begin{pmatrix} p_{z}/(E-m) \\ (p_{x}+ip_{y})/(E-m) \\ 1 \\ 0 \end{pmatrix} e^{i(\vec{p}\cdot\vec{x}-Et)} \quad ; \psi_{4} = \begin{pmatrix} (p_{x}-ip_{y})/(E-m) \\ -p_{z}/(E-m) \\ 0 \\ 1 \end{pmatrix} e^{i(\vec{p}\cdot\vec{x}-Et)}$$

- b) Write the Dirac equation for particle in rest (choose $\vec{p}=0$) and show that ψ_1 and ψ_2 are positive energy solutions: $E=+\left|\sqrt{\vec{p}^2+m^2}\right|$ whereas ψ_3 and ψ_4 are negative energy solutions: E $=-\left|\sqrt{\vec{p}^2+m^2}\right|.$
- <u>Optional:</u> Consider the *helicity* operator $\vec{\sigma}\cdot\vec{p}=\sigma_x p_x+\sigma_y p_y+\sigma_z p_z$ and show that ψ_1 corresponds to positive helicity solution and ψ_2 to negative helicity. Similarly for ψ_3 and ψ_4 .

Spin and Helicity – hint for exercise 10c)

- For a given momentum p there still is a *two-fold degeneracy*: what differentiates solutions ψ_1 from ψ_2 ?
- Define the spin operator for Dirac spinors: $\vec{\Sigma} = \begin{pmatrix} \vec{\sigma} & 0 \\ 0 & \vec{\sigma} \end{pmatrix}$, where $\vec{\sigma}$ are the three 2x2 Pauli spin matrices
- Define helicity λ as spin "up"/"down" wrt direction of motion of the particle

$$\lambda = \frac{1}{2} \vec{\Sigma} \cdot \hat{p} \equiv \frac{1}{2} \begin{pmatrix} \vec{\sigma} \cdot \hat{p} & 0 \\ 0 & \vec{\sigma} \cdot \hat{p} \end{pmatrix} = \frac{1}{2|p|} \left(\sigma_x p_x + \sigma_y p_y + \sigma_z p_z \right)$$

• Split off the Energy and momentum part of Dirac's equation: $(i\gamma^{\mu}\partial_{\mu}-m)\psi=0$

$$\begin{bmatrix} \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix} E - \begin{pmatrix} 0 & \sigma_i \\ -\sigma_i & 0 \end{pmatrix} p^i - \begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix} m \end{bmatrix} \begin{pmatrix} \psi_A \\ \psi_B \end{pmatrix} = 0$$

- Exercise: Try solutions ψ_1 and ψ_2 to see they are *helicity eigenstates* with $\lambda=+1/2$ and $\lambda=-1/2$
- Dirac wanted to solve negative energies and he found spin-½ fermions!

Exercise – 11: Lagrangians and wave equations

- Scalar Field (spin 0 "pion")
 - a) Show that the Euler-Lagrange equations for $\mathcal{L}=\frac{1}{2}\big(\partial_{\mu}\phi\big)(\partial^{\mu}\phi)-\frac{1}{2}m^2\phi^2$ results in the Klein-Gordon equation
- Dirac Field (spin ½ Fermion)
 - b) Show that the Euler-Lagrange equations for $\mathcal{L}=i\bar{\psi}\gamma_{\mu}\partial^{\mu}\psi-m\bar{\psi}\psi$ results in the Dirac equation
- Electromagnetic field (spin 1 photon)
 - c) Show that $\mathcal{L} = -\frac{1}{4}(\partial^{\mu}A^{\nu} \partial^{\nu}A^{\mu})(\partial_{\mu}A_{\nu} \partial_{\nu}A_{\mu}) j^{\mu}A_{\mu}$ results in Maxwell's equations

These Lagrangians are the fundamental objects in quantum field theory Descriptions of interactions follow from symmetry principles on these objects.

Exercise – 12 : Covariant Derivative

- We insist that the Lagrangian does not change and invent a "covariant" derivative:
 - Replace in $i\bar{\psi}\gamma_{\mu}\partial^{\mu}\psi m\bar{\psi}\psi$ the derivative by: $\partial^{\mu} \to D^{\mu} \equiv \partial^{\mu} + iqA^{\mu}$
 - Require that the vector field A^{μ} transforms together with the particle wave ψ

$$\psi(x) \to \psi'(x) = e^{iq\alpha(x)}\psi(x)$$
$$A^{\mu}(x) \to A'^{\mu}(x) = A^{\mu}(x) - \partial^{\mu}\alpha(x)$$

Exercise: check that the Lagrangian now is invariant!