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Lecture 1: “Particles”

Classification of particles

* Lepton: fundamental particle

* Hadron: consist of quarks
 Meson: 1 quark + 1 antiquark (7 *,B?, ...)
* Baryon: 3 quarks (p ,n, A, ...)
* Anti-baryon: 3 anti-quarks

* Fermion: particle with half-integer spin.

e Antisymmetric wave function: obeys Pauli-
exclusion principle and Pauli-Dirac statistics

* All fundamental quarks and leptons are spin-%
* Baryons (S=1/;, 3/5)

* Boson: particle with integer spin
* Symmetric wave function: Bose-Einstein statistics
* Mesons: (5=0, 1), (S=0)
* Force carriers: y, W, Z, g (S=1); graviton(S=2)

Griffiths chapter 1

Standard Model of Elementary Particles
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Lecture 2: “Forces”
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Recap: “Seeing the wood for the trees”

e Lecture 1: “Particles”
e Zooming into constituents of matter
 Skills: distinguish particle types, Spin
e Lecture 2: “Forces”

* Exchange of quanta: EM, Weak, QCD
 Skills: 4-vectors, Feynman diagrams

e Lecture 3: “Waves”
 Quantum fields and gauge invariance
e Dirac algebra, Lagrangian, co- & contra variant

e Lecture 4: “Symmetries”
e Standard Model, Higgs, Discrete Symmetries
 Skills: Lagrangians, Chirality & Helicity

e Lecture 5: “Scattering”
* Cross section, decay, perturbation theory
 Skills: Dirac-delta function, Feynman Calculus

e Lecture 6: “Detectors”

* Energy loss mechanisms, detection technologies

The Standard Model

14 hillion years
3

> 11 hillfon years .
.’ & H
" 3hilfion years

Earliest visible galaxies' 700 miIUnn years

Recombination Atoms form \——&
Relic radiation decouples (CMB) ‘;m S

Matter domination
Onset of gravitational collapse

Nucleosynthesis 3 minutes
Light elements created - D, He, Li

Nuclear fusion begins 0.01 seconds

Quark-hadron transition
Protons and neutrons formed

Electroweak
Electromagnetic and weak nu
forces first differentiate

Supersymmetry breaking

Axions etc.?

Grand unification transition
Electroweak and strong nuclear

Quantum gravity wall =
Spacetime description breaks down



Wave Equations

Contents:

1. Wave equations and Probability Griffiths chapter 7
a) Wave equations for spin-0 fields

* Schrodinger (non relativistic), Klein-Gordon (relativistic)
b) Wave equation for spin-% fields

If you are unfamiliar with the math,
just focus on the concepts.

* Dirac equation (relativistic) The math requires some practice,
* Fundamental fermions but is less tricky then it may look.
c) Wave equations for spin-1 fields =>» Also, check the recorded videos.

* Gauge boson fields; eg. electromagnetic field

2. Gauge field theory Griffiths chapter 10
a) Variational Calculus and Lagrangians
b) Local Gauge invariance
i QED
ii. Yang-Mills Theory (Weak, Strong)

* Required Quantum Mechanics knowledge:
e Angular momentum and spin: study Griffiths sections 4.2 ,4.3, In particular Pauli Matrices



Griffiths §7.1 — §7.3

Part 1
Wave Equations and Probability

1a) Spin-0
(think pions etc)



Schrodinger Equation and Probability

* Quantization of classical non-relativistic theory:
-2
* Take E' = zp_ and substitute energy and momentum by operators that operate on :

i%(tlp) - ita—l/t) i+ ltaa—lf— lta—l/} i

p = mv m
E=1fpmv? E-E= lh— ;. popP=—ihV <[E t] = —ih , [x,p] = —ih)
e Result is Schrédinger’s equatlon ih— 0 - = ——|721/) > % = \721/)

i(pxX— Et )/R \with the kinematic reIatlon E = pZ/Zm

oY/ot = —iEy and V%Y = p?yYP/2m

* Plane wave solutions: i = Ne

* Multiply both sides Schrodinger by y¥* and add its complex conjugate /‘ 7.7
1/)*%1/; — ¢* (i) |721/) Recognize “continuity” equation: ’/\\/ \/\/
dp
—+V-7=0 *H\ op 7
Yo =1 (o) Ay at » Fra,
at Law of conserved currents, with: W\
+ 5 \ /
2 ) =~ [ (i —yiw)] | / 1
ot 2m j= oy = 7y) =
P — _

)}
*Use: V- (YT —YV*) = Y72 — Y2y * Interpret: probability waves!



Relativistic: Klein-Gordon equation

* Quantization of relativistic theory Note: p, - —ihd, = —ih(d/dt,d/0x,0/dy,d/0z)
: . . ., O N -
e Start with E? = p?c? + m*c* and substitute again E — lfl—t and p - —ihV operates on ¢
: : : 1 92 m2c
* Resultis Klein-Gordon equation: ———— ¢ = = —V2¢p + = — ¢ Usenow: h=c=1

i(pxX—Et)/h

e Plane wave solutions: ¢p = Ne with relativistic relation E4 = p% + m?

e Use the covariant notation: o — (

0 — 0 = .
Py —\7) ; 6 = (a,V) (Exercise 5)
) 0,0* = aaz 72 (as usually take c = h = 1)

H=FE?—p?=m
Pub P p’ =Eandx’ =t

* Klein-Gordon in four-vector notation: d,,0* ¢ + m¢p =0
. —. I’l’ . - >
* Plane wave solutions: ¢ = Ne i(puxt) (Remember this is: ¢ = Ne~{(Et=PD)

* Time and space coordinates are now treated fully symmetric

* This is needed in a relativistic theory where time and space for different observes are linear
combinations of each other



Klein-Gordon conserved currents

* Similar to the Schrodinger case multiply both sides by —i¢™ from left and
add the expression to its complex conjugate

. g% 62(]5 . g% H H “ : ) .
—i¢ (_ _) = —i¢ (_\72¢ +m2¢) Again recognize “continuity” equation,

at? the law of conserved currents:
ip (2L = ip(-V2¢* +m2¢") %1F.5=0 = oyt=0
otz ) s TV = W=
+ With now:
. i“ = (p,)) =il¢p*(0*¢p) — p(0¥¢™)]
0 .[ ,.00 1) e = ] p,]
(05— 05) =7 [i(¢°7p — #7g"))
- 9 _ - =7 ~ It gives for plane waves: ¢ = Ne~i(Pux")
p =2|N|°E
* The quadratic equation E? = p? + m? leads t0| J=2IN*p
. ) iU — 2., U
double solutions: E* = «++ = E = + - Or In 4-vector: ] 2IN1"p

* Positive and negative energy solutions
* Negative solutions imply negative probability density p !!!
* This bothered Dirac and therefore he looked for an equation linear in E and p ...



Antiparticles

* Feynman-Stuckelberg interpretation
* Charge current of an electron with momentum p and energy E
j*(—e) = —2e|N|*p* = —2e|N|*(E,p)
e Charge current of a positron
j*(+e) = +2e|N|*p* = —2e|N|*(—E, —p)
The positron current with energy —E and momentum —p is the
same as the electron current with E and p

et -

E<O E>0

* The negative energy particle solutions going backward in time describe the

positive-energy antiparticle solutions.

* The wave function ¢ = Ne~ixup” stays invariant for negative energy and going backwards in
time

* Consider eg. e "{(-E)(=0) — o—iEt

e A positron is an electron travelling backwards in time



Wave Equations

Contents:

1. Wave equations and Probability Griffiths chapter 7 and PP1 chapter 1

a) Wave equations for spin-0 fields

* Schrodinger (non relativistic), Klein-Gordon (relativistic)
b) Wave equation for spin-% fields

* Dirac equation (relativistic)

* Fundamental fermions
c) Wave equations for spin-1 fields

* Gauge boson fields; eg. electromagnetic field

2. Gauge field theory Griffiths chapter 10 and PP1 chapter 1

a) Variational Calculus and Lagrangians
b) Local Gauge invariance

i QED

ii. Yang-Mills Theory (Weak, Strong)

* Required Quantum Mechanics knowledge:
e Angular momentum and spin: study Griffiths sections 4.2 ,4.3, In particular Pauli Matrices



Griffiths §7.1 — §7.3

Part 1
Wave Equations and Probability

1b) Spin-%
(fundamental leptons and quarks)



Dirac Equation

Instead of E? = p?c? + m?c*
* Dirac did not like naegative probabilities and looked for a wave equation of
linear form E' = i—v = HY = (?) , but relativistic correct.

*Try: H = (a-p + fm) where @ - p = a1py + azp, + asp, ;ooa? B?
» We know that: H?y = E%y = (p? + m?)y
* Write it out: H? = (3, a;p; + Bm)(X; a;p; + pm)

= (X aiapipj + X aifpim + X; Baypym + fZm?)

= (2 aipf + 2(“1‘“1' + aja;)pip; + Z(“iﬁ + fa;)pym + ﬁ2m2>

il ] \i>i : | ]
* This works out if: Y Y Y

_ 22 B — 2
°(X%=(Z%=C¥32,=ﬁ2=1 P =0 m
* aq, a5, a3, [ anti-commute: ie.: aja, = —a,aq etc

» Anti-commutator: {a;, a]-} =26;;;{a;,B}=0; p* =1
 Using definition: {4, B} = AB + BA:




Dirac’s idea

{ai,aj}: 2511,{6(1,,8}: O; IBZ =1

* Clearly a; and 5 cannot be numbers. Let them be matrices!

* In that case they operate on a wave function that is a column vector
The simplest case that allows the requirements are 4x4 matrices. Ey = Hy = (@5 + fm)y
Dirac’s equation becomes:

Remember:

E _8
% JR—
Yot

(2

0 (¥

9 = ot \ Y3
p— —iV W,

0 .
ca= (2

O 0

* Note that @ and [ are hermitian: a

a; and BT = [ (Since Hamiltonian has real E eigenvalues.)

—_— -

(

It is possible making use of the Pauli spin matrices

)andﬁ=(g _O]l)with 01=0x=(
T _

i =

Remember: {al-,aj} = 0;0; + 0j0; = 20;; 1

Unfortunately we also need:

. N
AT G I
) Vi + ( oo > m Vs

o B

1 o)i=o=(; g)in=a=(; 5

and of=o0f=0%=1

oif + fo; =0 =>» We need 4x4 matrices!



Dirac’s idea

* Clearly a; and 5 cannot be numbers. Let them be matrices!
* In that case they operate on a wave function that is a column vector

* The simplest case that allows the requirements are 4x4 matrices.

 Dirac’s equation becomes: U,
Remember: ia— Y2
E . d |—7> at l/)S
- [— - —
‘e PO Y

* This is a very complicated equation!

* What does it mean that the wave function ¥ is now a 1-by-4 column vector?

(

)

7

|

-

je+)

)

Uy
V2

V4

* 1 is not a 4-vector, since the indices do not represent kinematic variables, but matrix indices!

* 1 is a called a spinor.



Covariant form of Dirac’s equation

* Diracequation:H =E =(a-p+pfm) = i%l[) =(—-ia- \7+,Bm)1/1

* Multiply Dirac’s eq. from the left by 5; then it becomes:
o (iﬁ%l/)+i,8c?-\7—m)¢=0 (Remember % = 1)

0 1,2 .3

4 YorYoY

* Introduce now the Dirac y-matrices: y* = (B, Ba) (vector of four 4x4matrices!)
e Covariant form of Dirac eq:

Note (see def covariant derivative):

9 9 9 9 v H — — N
00 =75;,01=5-,0;=5,05 =5 (l)/ aﬂ m)l/) =0 A“6M=A°%+A-V

e Realise that Dirac’s equation is a set of 4 coupled differential equations.
* Remember that ¥ has 4 components!

* Requirements on & , B can be summarized as: {y*,yv} = 2g*¥V  (check it)



Dirac Gamma Matrices

* There is some freedom to implement: {y#,y"} = 2g*V in 4x4 matrices.
* We will use the Dirac-Pauli representation

1 0 0 0 0 0 0 1 Notefth.e ir:dices:
yo _ 01 0 0 yl _ 0 0 1 0 (confusing!)
0 0 -1 O _01 _01 8 8 u,v =0,1,2,3 are the
00 0 -1 Lorentz indices in space-time:
00 O — 0 01 0 Dirac matrix indices: 1,2,3,4
2_( 0 0 1 0 3 0 0O 0 -1 _
Yy = 0 0 0 Yy = 1 0 0 0 Have to do with the row and
. l B column indices of the matrix
-t 0 0 0 0 1.0 0 (and spinors)
Or: y°" == and y" = fay; = with Pauli matrices oy,
0 -1, —0, O

n=0=(] o)in=0=( J)im=a=( 2)

* Note: although the gamma indices are Lorentz-indices (“space-time”),
the gamma-matrices are not 4-vectors! (They are simply constants.)



Exercises: Dirac Algebra

 Dirac algebra:
* Write the explicit form of the y-matrices
Show that : {y#,y'} = y*y¥ + yVyH* = 2g*¥
Show that: (¥)* =1, ; (¥1)* = (¥*)* = (¥*)* = -1,
e Use anti-commutation rules of @ and S to show that: y“T = yoy“yo

- Define y5 = iy®y'y2%y® and show: y5' =% ; (¥5)2 =1, ; {y5,y*} = 0



Exercise: Solutions of free Dirac equation See Griffiths for a

derivation of the solutions

a) Show that the following plane waves are solutions to Dirac’s equation

1 0

l/) — 0 ei(ﬁ-f—Et) . l/) — _ ! ei(ﬁ.f—Et)

1 pz/(E +m) » P2 (px - pr)/(E + m)
(px + ipy)/(E +m) —p,/(E+m) Before KG:
(p = Ne_i(pﬂx”)
p./(E —m) (px — ipy)/(E —m)

Ps = (Px + ipy)/ (E —m) el@A-E) .y — —p,/(E —m) pl(B-%—Et)
1 0
0 1

b) Write the Dirac equation for particle in rest (choose p = 0) and show that ¥, and y, are positive
energy solutions: E = + ‘\/ﬁz + mzl whereas Y3 and 1, are negative energy solutions: E =

_ ‘\/ﬁz +m2‘.

c) Consider the helicity operator & - }_9) = OxPx t OyPy + 0Pz and show that i, corresponds to
positive helicity solution and Y, to negative helicity. Similarly for Y3 and y,.




Spin and Helicity — hint for exercise c)

* For a given momentum p there still is a two-fold degeneracy with the same energy:
what differentiates solutions 1 from y,? =»It is spin!!

* Define the spin operator for Dirac spinors: > = (% 9) , Where & are the three 2x2

o

Pauli spin matrices
* Define helicity A as spin “up”/”down” wrt dlrectlon of motion of the particle
A—lf-A=1(5_.ﬁ O) (a +o,p, + 0 )

 Split off the Energy and momentum part of Dirac’s equation: (iy“(?ﬂ — m)t/) =0

6 5)e- (5 -G Dmli)-o

* Exercise: Try solutions ¥, and 1), to see they are helicity eigenstates with
A=4+1/2and 1 =-1/2

* Dirac wanted to solve negative energies and he found spin-»%2 fermions!



Antiparticles: positive and negative energy solutions

e Dirac spinor solutions  1;(x*) = ;(t, %) = u;(E, p)e'P*ED = y,(p*)e~Pux"
withi = 1,2,3,4

* Since we work with antiparticles, instead of negative energy particles
travelling backwards instead in time, antiparticle solutions can be defined

us(—E, _ﬁ)ei((—ﬁ)f—(—E)t) = v, (E, B)e {P*—ED = _(ph)ePux’
u,(—E, _ﬁ)ei((—ﬁ)f—(—E)t) = v, (E,B)e"{PE-FO) = 1 (ph)eiPux"

* Where now the energy of the antiparticle solutions v; and v, is positive: E > 0

(px o ipy)/(E - m) pz/(E - m)
* Explicit: u, = —Pz/(g —m) and Uz = (Px + ip)’)l/(E = ™M) | hecomes..

1 0



Antiparticles: positive and negative energy solutions

e Dirac spinor solutions  1;(x*) = ;(t, %) = u;(E, p)e'P*ED = y,(p*)e~Pux"
withi = 1,2,3,4

* Since we work with antiparticles, instead of negative energy particles
travelling backwards instead in time, antiparticle solutions can be defined

us(—E, _ﬁ)ei((—ﬁ)f—(—E)t) = v, (E, B)e {P*—ED = _(ph)ePux’
u,(—E, _ﬁ)ei((—ﬁ)f—(—E)t) = v, (E,B)e"{PE-FO) = 1 (ph)eiPux"

* Where now the energy of the antiparticle solutions v; and v, is positive: E > 0

(px — ipy)/(E +m) p./(E +m)
* Explicit: v; = —p,/(E +m) and v, = (px +ipy)/(E +m)
0 1
1 0

* Where E and p are now the energy and momentum of the antiparticle



Adjoint spinors

* Adjoint spinors

Dirac: (iy“@u - m)l/J =0

* Solutions of the Dirac equation are called spinors

* Current density and continuity equation require adjoints instead of complex conjugates
Remember: (AB)T = BTAT

-—myp =0

(=v*) —mypT =0

* The minus sign in (—y*) disturbs the
Lorentz invariant form: ¥ is not physical

e Restore covariance by multiplying second
equation from the right by y° and define:

N Y = I,DT}/O

r=r=(s 1)



Adjoint spinors

* Adjoint spinors

Dirac: (iy“@u - m)l/J =0

* Solutions of the Dirac equation are called spinors

* Current density and continuity equation require adjoints instead of complex conjugates
Remember: (AB)T = BTAT

+i2y

k=1,2,3

i)fﬁ —myp =0

oyt |
DT:—i ——y0y0 i o Oyk) —myty® =0

k=1,2,3

* The minus sign in (—y*) disturbs the
Lorentz invariant form: ¥ is not physical

e Restore covariance by multiplying second
equation from the right by y° and define:

N Y = I,DT}/O

r=r=(s 1)



Adjoint spinors
Dirac: (iy#9, —m)yYy =0
* Adjoint spinors ( Y Ou )l/)

* Solutions of the Dirac equation are called spinors

* Current density and continuity equation require adjoints instead of complex conjugates
Remember: (AB)T = BTAT

D : iyog—ltp + i z yk% —my =0 * The minus sign in (—yk) disturbs the
k=123 Lorentz invariant form: I/JJr is not physical
pt: a_lljyo _; Z 0_117 VK =0 . Restore covariance I_oy muItipOIying sec.ond
' ot ey oxk equation from_the right by y* and define:
i T i Al Wi s il 0 P =yPTy?° .o
lrbl ]/0=,8=<02 _]12)

* Dirac spinor: Y = 52 , adjoint Dirac spinor: ¥ = (Y, Y5, Y3, P4)
3

Yy
» Dirac equation: iy, —mi =0 ; adjoint Dirac equation: id,py* + myp =0



Dirac Current density and conserved current

* Apply a similar trick as before for Schrodinger and Klein-Gordon case:
* Multiply adjoint Dirac eq from right by 1 and multiply Dirac eq. from left by ¥

(io9y* +myp) =0 Define the 4-vec current:

P (v —mp) =0 j* =Py

B 3 Satisfies the continuity equation:
Y V'u(aul/)) + (auw_) yHp =0 [ N dj* =0

0, (YyHy) =0

=)

—/:+|7-7=0

* Probability: Zero-th component of the curren’iz
p=J" =y =y™y =z|¢i|2 (b =9Ty° and y* = 1)
i=1

* This always gives a positive probability, which was the motivation of Dirac.



Dirac in summary

* Dirac was looking for an explanation for positive and negative energy
solutions by linearising Klein-Gordon equation
* He found that his solutions described spin-Y particles

* He predicted, based on symmetry, that for each particle there should exist an
antiparticle (the negative energy solution).

* We had relativistic fields:
* Spin-0: Klein-Gordon: e.g. pion particles
* Spin-1/2: Dirac : e.g. quarks and leptons
* How about forces? Spin=1



Wave Equations

Contents:

1. Wave equations and Probability Griffiths chapter 7 and PP1 chapter 1

a) Wave equations for spin-0 fields

* Schrodinger (non relativistic), Klein-Gordon (relativistic)
b) Wave equation for spin-% fields

* Dirac equation (relativistic)

* Fundamental fermions
c) Wave equations for spin-1 fields

* Gauge boson fields; eg. electromagnetic field

2. Gauge field theory Griffiths chapter 10 and PP1 chapter 1

a) Variational Calculus and Lagrangians
b) Local Gauge invariance

i QED

ii. Yang-Mills Theory (Weak, Strong)

* Required Quantum Mechanics knowledge:
e Angular momentum and spin: study Griffiths sections 4.2 ,4.3, In particular Pauli Matrices



Griffiths §7.1 — §7.3

Part 1
Wave Equations and Probability

1c) Spin-1



The Electromagnetic Field

* Maxwell equations describe electric and magnetic fields induced by
charges and currents: (used Heavyside-Lorentz units: c = 1,6y = 1, ug = 1)

1. Gauss’ law: V-E=p . .
N From 1. and 4. derive continuity
2. No magnetic charges: V-B=20 V.j= _g_P
= t
, . . —> - aB .
3. Faraday’s law of induction: VXE + —=0 > charge conservation
dat This was the motivation for
. ., > =  JE 4 Maxwell to modify Ampere’s law
4. Modified Ampere’s law: VXB — o = J

* Define a Lorentz covariant 4-vector field A* = (V, /T) as follows:

-

B =VXxA (then automatically 2. follows)
EF =

04 =, .
— E — VIV withV = A° (then automatically 3. follows)

a) Show Maxwell equations can be summarized in covariant form:

= -

aﬂé‘“Av — avé‘ﬂA“ — jv (Derive expressions for p and j and use: ﬁx(ﬁxj) = V24 + \7(\7 . A)



The Antisymmetric tensor F#*Y

* Maxwell’s equation d,,0* A" — 00, A* = j¥ can be further shortened by
introducing the antlsymmetrlc tensor FHV = gtAY — 0V A :

/0 —-E, -E, —EZ\
Ee 0 -B, B,

E, B, 0 —B
\E. -B, B, 0

* Show that Maxwell’s equations become: 9, F*¥ = jV

FHY =

e Hint: derive the expressions for charge (g = j¥) and current (f = J ) separately.
Use the identity: \7><(\7></T) = V24 + |7(\7 - /T) Remember the definitions:

= (Ao, —4) ; 9,= (%, \7) ; g = g, = diag(1,-1,-1,-1)



Wave Equations

Contents:

1. Wave equations and Probability Griffiths chapter 7 and PP1 chapter 1

a) Wave equations for spin-0 fields

* Schrodinger (non relativistic), Klein-Gordon (relativistic)
b) Wave equation for spin-% fields

* Dirac equation (relativistic)

* Fundamental fermions
c) Wave equations for spin-1 fields

* Gauge boson fields; eg. electromagnetic field

2. Gauge field theory Griffiths chapter 10 and PP1 chapter 1

a) Variational Calculus and Lagrangians
b) Local Gauge invariance

i QED

ii. Yang-Mills Theory (Weak, Strong)

* Required Quantum Mechanics knowledge:
e Angular momentum and spin: study Griffiths sections 4.2 ,4.3, In particular Pauli Matrices



Griffiths chapter 10

Part 2
Gauge Theory

2a) Variational Calculus and Lagrangians



Lagrange Formalism in field theory

* Relativistic Field theory: fields replace the generalized coordinates
* Also time and space will be treated symmetric

* Replace L(g, q) for classical particles by a Lagrange density L (qb(x“), aﬂqb(x“))
in terms of fields and gradients such that L = | d3xL(q5, Oucp)

* Principle of least actions becomes: Classical was:

ty
S= [, d*x L (qb(x“), é‘ud)(x“)) andagain 6S=0  S= jt dt L(q,q) =65 =0

1
t, t, are endpoints of the path

* Euler Lagrange Equations of motion becomes: oL 5 0L
* Classical was: dp(xH) H u
oL d <6L> 9 (9u9x)
dq; dt\dq;



Lagrange Formalism in field theory

* Relativistic Field theory: fields replace the generalized coordinates
* Also time and space will be treated symmetric

* Replace L(g, q) for classical particles by a Lagrange density L (qb(x“), aﬂqb(x“))
in terms of fields and gradients such that L = | d3xL(q5, Oucp)

* Principle of least actions becomes: Classical was:

ty
S= [, d*x L (qb(x“), é‘ud)(x“)) andagain 6S=0  S= jt dt L(q,q) =65 =0

1
t, t, are endpoints of the path

* Euler Lagrange Equations of motion becomes: (9L _ 5 L
* Classical was: op “a(au(/,)
L d <0L>
dq; dt\dq;



Exercise: Lagrangians and wave equations

* Scalar Field (spin O “pion”)

a) Show that the Euler-Lagrange equations for L = %(%qﬁ)(a“gb) — %mquz
results in the Klein-Gordon equation: 9,0*¢ + m?¢ = 0

* Dirac Field (spin 2 Fermion)

b) Show that the Euler-Lagrange equations for £ = iy, 0%y — mypy
results in the Dirac equation: (iy#d, —m)y = 0

 Electromagnetic field (spin 1 photon)

1 :
c) Showthat £L = — Z(G“AV — OVA“)(GMAV — OVAH) — jHA,
results in Maxwell’s equations: 9,0#AY — V9, A" = jV

These Lagrangians are the fundamental objects in quantum field theory

Descriptions of interactions follow from symmetry principles on these objects.



Wave Equations

Contents:

1. Wave equations and Probability Griffiths chapter 7 and PP1 chapter 1

a) Wave equations for spin-0 fields

* Schrodinger (non relativistic), Klein-Gordon (relativistic)
b) Wave equation for spin-% fields

* Dirac equation (relativistic)

* Fundamental fermions
c) Wave equations for spin-1 fields

* Gauge boson fields; eg. electromagnetic field

2. Gauge field theory Griffiths chapter 10 and PP1 chapter 1

a) Variational Calculus and Lagrangians
b) Local Gauge invariance

i QED

ii. Yang-Mills Theory (Weak, Strong)

* Required Quantum Mechanics knowledge:
e Angular momentum and spin: study Griffiths sections 4.2 ,4.3, In particular Pauli Matrices



Griffiths chapter 10

Part 2
Gauge Theory

2b) Local Gauge Invariance

i) QED



The Gauge Principle: Interactions from symmetries

* global gauge invariance: the phase of the wave function is not observable:
Changing the wave function Y(x) = Y’ (x) = e'**y(x) should not change
the Lagrangian for an electron

* Look at Dirac Lagrangian: £ = iypyHd,yp — myy

e It should not change foryy - ¢’ and Y -y =y'Ty0 ;Y = e %) D OK. L'=L

e " Pe'Y = Yy

* local gauge invariance: invariance under changing phases in space and time
* An electron wave function can have a different phases at different places and times

* P = P'(x) = PP(x) and P(x) - P'(x) = e P(x)

L~ —ia(x),f,,ia(x) 0 +id
* Check this for the Dirac Lagrangian e 0 + i0u(@w)

Hence: £ = L' + id,a(x) P(x) y* (x) trouble

Note: x = x#

* It seems that the Lagrangian will change, but this is not allowed!



Covariant Derivative

* We insist that the Lagrangian does not change and invent a “covariant” derivative:
* Replace in iyy, 0"y — myp the derivative by: d* — D¥ = o + iqAH
* Require that the vector field A* transforms together with the particle wave

P(x) - P’ (x) = e yY(x)
AH(x) - A'*(x) = A*(x) — %O“a(x)

» =>» Exercise: check that the Lagrangian ilEVMD“l/J — myp now is invariant!

 What have we done?
* We insist the electron can have a local phase factor a(x) without changing the physics

* We then must at the same time introduce a photon field A*(x), which couples to charge!
=» Gauge invariance implies interactions!

« Remember gauge transformations EM field: A# — A'* = A* 4+ 9* 1 is same photon
e Ais coupled to the phase of the wave function of the electrons

* The same principle can also be used for weak and strong interactions: implement other
symmetries



Quantum Electrodynamics (QED)

* The free Dirac Lagrangian is: Lfree = iy, 0% — my)
* Introducing electromagnetism implies: 9# - D# = oH + igA*
* Resulting in:  Lgy = iy, D*Y — myy

Lgy = iy, 0% —mpyp — qpy, A%
Ly = Leree — Lint with Lint = _],uAH and ],LL — CI?,EY,ﬂ/J

* Remember that the Dirac probability current was J,, = l/j)/”l/) such that
we now have a charge current: J, = qyy, ¢

* The system is described as free Lagrangian plus an interaction Lagrangian
of the form: “current X field” L = —/J,A*



Griffiths §10.4 - §10.5

Part 2
Gauge Theory

2b) Local Gauge Invariance
ii) Yang-Mills theories™ (Weak, Strong)

* Note: this is a more technical part: focus on the concept involved; the precise mathematics is less important for now



Yang Mills Theories

* QED is called a U(1) symmetry. It means that a 1-dimensional unitary
transformation (the phase factor e!**)) does not change the physics.
* The unitary symmetry couples to the charge quantum number

* Let us require that the weak interaction can not differentiate between
rotations in the space of “up-down”: Isospin.

* Rewrite L = ﬁ(iy“@u — m)u + cf(i)/"‘é‘u — m)d where u (isospin up) and
d (isospin down) are a doublet of spinor waves as follows:

L= @iy 19, —1mp withyp = () and 1= (1 9)

* We think of the “up” and “down” directions in weak isospin space



SU2 Gauge Invariance

Y'(x) = Genp(x) = eia(x)ll’(x)

* We require gauge invariance: y(x) » ¥'(x) = G(x)yP(x) with G(x) = exp(
* T = T4, Ty, T3 are the Pauli Matrices
* This is now a rotation in isospin space generated by 2x2 Pauli matrices!

EM was: Y(x) —

 Just like QED there is the problem that the Lagrangian does not automatically
stay invariant (just write it out), because: 0, (x) » 9,9 (x) = G(x)(aulp) + (aﬂa)lp

trouble
* To solve this a corresponding covariant derivative must be introduced to keep
the Lagrangian invariant: 19, » D, =19, + igB, [ = ((1) (1))

* g is the coupling constant that replaces charge q in QED and B,, is now a new vector
force field that replaces A, of QED.

* The object B, is now a 2x2 matrix: B, = %f- : Eu %T1 b = 1 (

b, = (b1, by, b3) are now three new gauge fields

b, bl—ibz)
2\b, +ib,  —b,

 We need 3 instead of one, because there are three generators of 2x2 rotations
* We now get the desired behaviour if : D,y (x) » D'y’ (x) = G(x)(D,¥)



Gauge transformation for B, field — (for experts)

* We get the desired behaviour if:  D,p(x) > D'’ (x) = G(x)(D, )

* The left side of this equation is: D'\ Y'(x) = (GM + igBL’l)z,b’
= G(9,¢) + (9,6)y +ig B, (Gy)
While the right hand side is:  G(D,¥) = G(8,¥) + ig G B, ¢

» So the required transformation of the field is: igB;(Gy) = igG(B,y) — (9,6 )y

Multiply the equation by G~* on the right (and omitting ): B, = GB,G™! +;f (0,6)G™1

Compare this to the case of electromagnetism where G,,,, = etaX)gjves:
/ — J — 1
Ay = GemAGe + - (0uGem)Gem = Ay — 7 00

... Which is exactly what we had before.



Interpretation: weak Interaction

* We try to describe an interaction with a symmetry between two states:
e “up” and “down” states with invariance under SU2 rotations

* To do this requires the existence of three force fields, related to the gauge field: §u
 What are they?

* They must be three massless bosons, similar to the photon, that couple to “up” and “own”
states.

* Theyare the W~,Z°% W bosons.
* How come they have a mass (unlike the photon?) = Higgs mechanism

* Again the interaction Lagrangian will be of the form “current X field.” fMB“,
where the current is now: J,, = %wyﬂﬁp (forEM it was: J, = qyy, )

u vV :
* The “up” and “down” states are Y = (d ) and Y = (e ) and we describe the weak
interaction.

 How about the strong interaction?



The strong interaction

* The “charge” of the strong interaction is “colour”

* The wave function of a quark has three components:

Y

« Y =| Yy | ; Require a symmetry generated by 3x3 rotations in 3-dim color space: SU(3)

Y

* There are 8 generator matrices A; and as a consequence there are 8 vector fields needed
to keep the Lagrangian invariant

* There exist 8 gluons, related to:

0 0 0 —i 0 1 0 0 0
AM=1|1 0 Az=<i 0 0) /13=<O -1 O> A =10
0 0 0 0 O 0 0 O 1

(0 —i) 0 0 0 0 0 0 1
As=[0 0 /16=<o 0 1) =0 0 —i|] Adsg=—%
i 0 01 0 0 —i 0 V3

C OO OO
S oo O OO



The Standard Model

* The Standard Model implements local gauge invariance at the same time to
* Electromagnetism (U(1) symmetry transformations) = 1 photon
* Weak interaction (SU(2) symmetry transformations) = 3 weak bosons
 Strong interaction (SU(3) symmetry transformations) = 8 gluons

* The SM gauge group is SU(3) @ SU(2) ® U(1)

* For an exact symmetry the force particles should be massless.
« SU(3) isexact = massless gluons
* SU(2) ® U(1) is an approximate (ie “broken”) symmetry.

* It is broken in the Higgs mechanism such that there remains one massless boson (photon) and three
massive particles (W-, 2%, W*).



Lecture 3: Discussion Topics

Discussions Topics belonging to
Lecture 3



Topic-7: Lorentz and Dirac indices

* Explain the difference between Lorentz indices and Dirac indices
* |s y* a four-vector? Why (not)?

* Is j# = Yy "y a four-vector? Why (not)?



Topic-8: Helicity and Chirality

* Explain the difference between helicity and chirality
 How is each one defined?

* Which of the two is Lorentz invariant?

* Which one of the two do we refer to when talking about the left or
right handedness of a particle?



Topic-8: Helicity vs Chirality — background information

d)

0,,1,,2,,3

Write out the chirality operator ¥ in the Dirac-Pauli representation. ¥* =ir’v'v%

The helicity operator is defined as 1 = %f P . Show that helicity operator
and the chirality operator have the same effect on a spinor solution, i.e.

xS ¥ ) 0

5,/ — /5 the 1, (1) — .4 (2) —

Yy =y o P (s) ~Al o- p (s) /h/) with: (O) » X (1)
E + m? A

in the relativistic limit where £ > m

Show explicitly that for a Dirac spinor: Wolfgang Pauli
Yy*Y = Y, y*; + Yry*r making use of Y = ¥, + Yy and the
projection operators: y; = %(1 — )Y and P = %(1 + )Y

Explain why the weak interaction is called left-handed.

“I cannot believe God is a weak left-hander.”




Topic-9: Maxwell’s equation

Maxwell’s equations can be described relativistically with the 4-vector field A¥.

Show how you get E and B fields from A#

Explain the concept of gauge invariance.

Is the A field physical or not?

* The photon is a spin-1 quantum, but why can it not have a spin-0 component?



Topic-9: The photon field and gauge invariance

 Field A* is just introduced as a mathematical tool
* Gauge freedom: you are free to choose any A* as long as E and B fields dog’/‘c1 change:

AP = A'H = AF + 0H) ., . 0
A-T2

e Choose the Lorentz gauge condition: OHA“ =0

 Maxwell equation in Lorentz gauge becomes:
0,0*AY —dVo,A* =j¥ = 0,0MAY =)
* Very similar to Klein-Gordon equation d,0*¢ + m?¢ = 0

* But now 4-equations = 4 polarizations states of the photon field??

» Photon field solutions: A#(x) = NeH(p)e~Pv*’

* A gauge transformation implies: e* — &'# = g¥ + ap*
* Different polarization vectors which differ by multiple of p# describe same photon

* Only 3 degrees of freedom remain = 3 polarization states: spin: -1,0, 1 = choose €° =

* Mass of the photon is zero:
* Thusptp,=0->¢ekp, > €-p=0
* Now only two transverse polarization states remain: Chose p = (0,0,p) = &' = (1,0,0) and &% = (0,1,0)



Lecture 3: Exercises

Exercises belonging to Lecture 3



Exercise — 9: Dirac Algebra

 Dirac algebra:
* Write the explicit form of the y-matrices
Show that : {y#,y'} = y*y¥ + yVyH* = 2g*¥
Show that: (¥)* =1, ; (¥1)* = (¥*)* = (¥*)* = -1,
e Use anti-commutation rules of @ and S to show that: y“T = yoy“yo

- Define y5 = iy®y'y2%y® and show: y5' =% ; (¥5)2 =1, ; {y5,y*} = 0



Exercise — 10: Solutions of free Dirac equation kil

derivation of the solutions

a) Show that the following plane waves are solutions to Dirac’s equation

1 0
0 o 1 o
b=l pEem | €T = (o — i) B +m) | €T
(Px + ipy)/(E +m) —p,/(E+m) Before KG:
¢ = Ne‘i(pux”)
p./(E —m) (px — ipy)/(E —m)
Ps = (px T ipy)/(E —m) el@A-E) .y — —p,/(E —m) pl(B-%—Et)
1 0
0 1

b) Write the Dirac equation for particle in rest (choose p = 0) and show that ¥, and y, are positive

energy solutions: E = + ‘\/ﬁz + mzl whereas Y3 and 1, are negative energy solutions: E
= — |\/ﬁ2 -+ m2|.

c) Optional: Consider the helicity operator & - }_5 = OxPx t OyPy t 02Dz and show that i,
corresponds to positive helicity solution and 1, to negative helicity. Similarly for 15 and ,.




Spin and Helicity — hint for exercise 10c)

* For a given momentum p there still is a two-fold degeneracy: what differentiates
solutions Y from ,?

* Define the spin operator for Dirac spinors: > = (% 9) , Where & are the three 2x2

o

Pauli spin matrices
* Define helicity A as spin “up”/”down” wrt dlrectlon of motion of the particle
A—lf-A=1(5_.ﬁ O) (a +o,p, + 0 )

 Split off the Energy and momentum part of Dirac’s equation: (iy“(?ﬂ — m)t/) =0

6 5)e- (5 -G Dmli)-o

* Exercise: Try solutions ¥, and 1), to see they are helicity eigenstates with
A=4+1/2and 1 =-1/2

* Dirac wanted to solve negative energies and he found spin-»%2 fermions!



Exercise — 11 : Lagrangians and wave equations

e Scalar Field (spin 0 “pion”)

a) Show that the Euler-Lagrange equations for L = %(%qﬁ)(a“gb) — %mquz
results in the Klein-Gordon equation

* Dirac Field (spin 2 Fermion)

b) Show that the Euler-Lagrange equations for £ = iy, 0%y — mypy
results in the Dirac equation

* Electromagnetic field (spin 1 photon)

1 :
c) Showthat £L = — Z(G“AV — OVA“)(GMAV — OVAH) — jHA,
results in Maxwell’s equations

These Lagrangians are the fundamental objects in quantum field theory

Descriptions of interactions follow from symmetry principles on these objects.



Exercise — 12 : Covariant Derivative

* We insist that the Lagrangian does not change and invent a “covariant”
derivative:

* Replace in iy, 0P — myy the derivative by: 0# — D# = 9H + iqA¥
* Require that the vector field A* transforms together with the particle wave Y

PY(x) > P’ (x) = ey (x)
AH(x) » A" (x) = A*(x) — 0*a(x)

« =» Exercise: check that the Lagrangian now is invariant!



