Lecture 5: Exercises

Exercises belonging to Lecture 5

Exercise – 17: Pion Decay

Calculate the lifetime of the neutral pion π^0

The neutral pion decays mainly via: $\pi^0 \to \gamma \gamma$. Assume that the amplitude has dimensions [mass]× [velocity]. Griffiths: $\pi^0 = \frac{1}{\sqrt{2}} \left(u \bar{u} - d \bar{d} \right)$

- a) Motivate the reason that the amplitude should be proportional to the coupling constant: $\mathcal{M} \propto \alpha = e^2/4\pi$. Sketch a diagram of the decay. For dimensional reasons \mathcal{M} is of the form $\mathcal{M} = \alpha m_{\pi}$
- b) Use Fermi's golden rule for two-body decays to estimate the decay width Γ of the pion. What are S, m_A , $|\vec{p}|$? Express Γ in GeV.
- c) Use the conversion table to calculate the lifetime of the π^0 and compare it with the experimental value. What do you think?

Exercise – 18: Two-to-Two Scattering

Consider the process: $A + B \rightarrow A + B$ in the ABC theory

- a) Draw the (two) lowest-order Feynman diagrams, and calculate the amplitudes
- b) Find the differential cross-section in the CM frame, assuming $m_A=m_B=m$, $m_C=0$, in terms of the (incoming) energy E and the scattering angle θ .
- c) Assuming next that B is much heavier than A, calculate the differential cross-section in the lab frame.
- d) For case c), find the total cross-section.