PHY3004: Nuclear and Particle Physics Marcel Merk, Jacco de Vries

The Standard Model

Recap: "Seeing the wood for the trees"

- Lecture 1: "Particles"
- Zooming into constituents of matter
- Skills: distinguish particle types, Spin
- Lecture 2: "Forces"
- Exchange of quanta: EM, Weak, QCD
- Skills: 4-vectors, Feynman diagrams
- Lecture 3: "Waves"

- Quantum fields and gauge invariance
- Dirac algebra, Lagrangian, co- \& contra variant
- Lecture 4: "Symmetries"
- Standard Model, Higgs, Discrete Symmetries
- Skills: Lagrangians, Chirality \& Helicity
- Lecture 5: "Scattering"

Lecture 1: "Particles"

Classification of particles

- Lepton: fundamental particle
- Hadron: consist of quarks
- Meson: 1 quark +1 antiquark ($\left.\pi^{+}, B_{S}^{0}, \ldots\right)$
- Baryon: 3 quarks (p, n, Λ, \ldots)
- Anti-baryon: 3 anti-quarks
- Fermion: particle with half-integer spin.
- Antisymmetric wave function: obeys Pauliexclusion principle and Pauli-Dirac statistics
- All fundamental quarks and leptons are spin- $1 / 2$
- Baryons ($\mathrm{S}=1 / 2,3 / 2$)
- Boson: particle with integer spin
- Symmetric wave function: Bose-Einstein statistics
- Mesons: $(S=0,1)$, Higgs ($S=0$)
- Force carriers: $\gamma, W, Z, g(\mathrm{~S}=1)$; graviton(S=2)

Standard Model of Elementary Particles

green

Lecture 3: "Waves" - wave equations

Probability interpretation (Continuity equation)

Quantum Mechanics: $\quad E \rightarrow \hat{E}=i \hbar \frac{\partial}{\partial t} \quad ; \quad p \rightarrow \hat{p}=-i \hbar \vec{\nabla}$

$$
\frac{\partial \rho}{\partial t}+\vec{\nabla} \cdot \vec{\jmath}=0
$$

Non-relativistic spin 0:

Schrödinger:

$$
E=\frac{\vec{p}^{2}}{2 m}
$$

$$
i \hbar \frac{\partial}{\partial t} \psi=-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi
$$

$$
\rho \equiv \psi^{*} \psi=|N|^{2}
$$

$$
\psi=N e^{i(\vec{p} \vec{x}-E t)}
$$

Klein-Gordon:
Relativistic spin 0 :
$-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \phi=-\nabla^{2} \phi+\frac{m^{2} c^{2}}{\hbar^{2}} \phi$
$E^{2}=p^{2} c^{2}+m^{2} c^{4}$

$$
\partial_{\mu} \partial^{\mu} \phi+m^{2} \phi=0 \quad \phi=N e^{i(\vec{p} \vec{x}-E t)} \xrightarrow{\mid} \vec{J}=2|N|^{2} \vec{p} \quad j^{\mu}=2|N|^{2} p^{\mu}
$$

Relativistic spin- $1 / 2$:

Dirac:

$H=(\vec{\alpha} \cdot \vec{p}+\beta m)$

$$
i \frac{\partial}{\partial t} \psi=(-i \vec{\alpha} \cdot \vec{\nabla}+\beta m) \psi
$$

$$
\psi=u(p) e^{i(\vec{p} \vec{x}-E t)}
$$

$$
j^{\mu}=\bar{\psi} \gamma^{\mu} \psi
$$

Fundamental quarks and leptons

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0 \gamma^{\mu}=(\beta, \beta \vec{\alpha})
$$

$$
u(p)=\left(\begin{array}{l}
. \\
. \\
.
\end{array} \stackrel{\vdots}{\square} j^{0}=\bar{\psi} \gamma^{0} \psi=\psi^{\dagger} \psi=\sum_{i=1}^{4}\left|\psi_{i}\right|^{2}\right.
$$

Relativistic spin-1:

Fundamental
force carriers

Proca:

$$
\partial_{\mu} \partial^{\mu} A^{v}+m^{2} A^{v}=j^{v}
$$

$\mathrm{EM}: A^{\mu}=\gamma \rightarrow m=0$
QCD: $A^{\mu}=g \rightarrow m=0$
Weak: $A^{\mu}=W, Z \rightarrow m \neq 0$

EM: Maxwell equations
for \vec{E} and \vec{B} fields

Lecture 3: "Waves" - gauge invariance

$$
S=\int d^{4} x \mathcal{L}(\phi(x), \partial \phi(x))
$$

Lagrangians: \quad Spin 0 Scalar field: $\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \phi\right)-\frac{1}{2} m^{2} \phi^{2}$
$\delta S=0$
Spin $1 / 2$ Dirac fermion $\mathcal{L}=i \bar{\psi} \gamma_{\mu} \partial^{\mu} \psi-m \bar{\psi} \psi$
Spin 1 gauge boson (photon) : $\mathcal{L}=-\frac{1}{4}\left(\partial^{\mu} A^{\nu}-\partial^{v} A^{\mu}\right)\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right)-j^{\mu} A_{\mu}$
Euler Lagrange lead to the wave equations: $\quad \frac{\partial \mathcal{L}}{\partial \phi(x)}=\partial_{\mu} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi(x)\right)}$
(stationary action in field theory)

All forces result from requiring a symmetry principle: Lagrangian should stay invariant under transformations

1) $Q E D=U(1)$ symmetry

$$
\mathcal{L}=i \bar{\psi} \gamma_{\mu} \partial^{\mu} \psi-m \bar{\psi} \psi \quad \mathcal{L}=i \bar{\psi} \gamma_{\mu} D^{\mu} \psi-m \bar{\psi} \psi
$$

$$
\psi(x) \rightarrow \psi^{\prime}(x)=\mathrm{e}^{i q \alpha(x)} \psi(x)
$$

$$
A^{\mu}(x) \rightarrow A^{\prime \mu}(x)=A^{\mu}(x)-\partial^{\mu} \alpha(x)
$$

$\rightarrow 1$ E.M. photon field: $A^{\mu}(x)$
2) Weak $=\operatorname{SU}(2)$ symmetry $\psi=\binom{\psi_{u}}{\psi_{d}}$

Covariant derivative: $\quad \partial^{\mu} \rightarrow D^{\mu} \equiv \partial^{\mu}+i q A^{\mu}$

$$
\mathcal{L}=i \bar{\psi} \gamma_{\mu} \partial^{\mu} \psi-m \bar{\psi} \psi-\underbrace{q \bar{\psi} \gamma_{\mu} \psi A^{\mu}}_{\text {"free" }}
$$

$$
\psi(x) \rightarrow \psi^{\prime}(x)=\exp \left(\frac{i}{2} g \vec{\tau} \cdot \vec{\alpha}(x)\right)\binom{\psi_{u}}{\psi_{d}}
$$

$\rightarrow 3$ weak fields: $W^{\mu+}(x), W^{\mu^{-}}(x), Z^{\mu}(x)$
3) $\mathrm{QCD}=\operatorname{SU}(3)$ symmetry $\psi=\left(\begin{array}{l}\psi_{r} \\ \psi_{g} \\ \psi_{b}\end{array}\right)$ $\psi(x) \rightarrow \psi^{\prime}(x)=\exp \left(\frac{i}{2} g_{s} \vec{\lambda} \cdot \vec{\alpha}(x)\right)$
$\Rightarrow 8$ colored gluon fields: $g^{\mu}(x)$$\left(\begin{array}{l}\psi_{r} \\ \psi_{g} \\ \psi_{b}\end{array}\right)$

Lecture 4: "Symmetries" - Standard Model

- The Lagrangian of the Standard Model includes electromagnetic, weak and strong interactions according to the gauge field principle
- Construction of the Lagrangian: $\mathcal{L}=\mathcal{L}_{\text {free }}-\mathcal{L}_{\text {interaction }}=\mathcal{L}_{\text {Dirac }}-g J^{\mu} A_{\mu}$
- With g a coupling constant, J^{μ} a current $\left(\bar{\psi} \mathrm{O}_{i} \psi\right)$ and A_{μ} a force field
A. Local $U(1)$ gauge invariance: symmetry under complex phase rotations
- Conserved quantum number: (hyper-) charge
- Lagrangian: $\mathcal{L}=\bar{\psi}\left(i \gamma^{\mu} D_{\mu}-m\right) \psi=\bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi-q \bar{\psi} \gamma^{\mu} \psi A_{\mu} \quad\left(\partial_{\mu} \rightarrow D_{\mu} \equiv \partial_{\mu}+i q A_{\mu}\right)$

$$
\Psi_{E M}^{\mu}
$$

B. Local $S U(2)$ gauge invariance: symmetry under transformations in isospin doublet space.

- Conserved quantum number: weak isospin
- Lagrangian: $\mathcal{L}=\bar{\Psi}\left(i \gamma^{\mu} D_{\mu}-m\right) \Psi=\bar{\Psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \Psi-\frac{g}{2} \bar{\Psi} \gamma^{\mu} \vec{\tau} \Psi \vec{b}_{\mu} \quad\left(I \partial_{\mu} \rightarrow D_{\mu}=I \partial_{\mu}+i g B_{\mu}\right)$

$$
B_{\mu}=\frac{1}{2} \vec{\tau} \cdot \vec{b}_{\mu}=\frac{1}{2} \tau_{1}^{a} b_{\mu}^{a}=\frac{1}{2}\left(\begin{array}{cc}
b_{3} & b_{1}-i b_{2} \\
b_{1}+i b_{2} & -b_{3}
\end{array}\right) \quad \underbrace{\mu}_{\text {Weak }}
$$

C. Local $S U(3)$ gauge invariance: symmetry under transformations in colour triplet space

- Conserved quantum number: color
- Lagrangian: $\mathcal{L}=\bar{\Phi}\left(i \gamma^{\mu} D_{\mu}-m\right) \Phi=\bar{\Phi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \Phi-\frac{g_{s}}{2} \bar{\Phi} \gamma^{\mu} \vec{\lambda} \Phi \vec{c}_{\mu} \quad\left(I \partial_{\mu} \rightarrow D_{\mu}=I \partial_{\mu}+i g_{s} C_{\mu}\right)$ C_{μ} are 3×3 matrices \rightarrow gluon fields

Lecture 4: "Symmetries" - Standard Model

$$
\mathcal{L}=\bar{\psi}\left(i \gamma^{\mu} D_{\mu}-m\right) \psi=\bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi-q J_{E M}^{\mu} A_{\mu}-\frac{g}{2} J_{\text {Weak }}^{\mu} \vec{b}_{\mu}-\frac{g_{s}}{2} J_{Q C D}^{\mu} \vec{c}_{\mu}
$$

$\operatorname{QED} \cup(1) \mathcal{L}_{\mathrm{int}}=-J_{\mu} A^{\mu}$ with $J_{\mu}=q \bar{\psi} \gamma_{\mu} \psi$

Electromagnetic interaction

Weak SU(2) : $\mathcal{L}_{\text {int }}=-\vec{J}_{\mu} \vec{b}^{\mu}$ with $\vec{J}_{\mu}=\frac{g}{2} \bar{\Psi} \gamma_{\mu} \vec{\tau} \Psi$

$$
\begin{array}{cll}
W_{\mu}^{ \pm} \equiv \frac{1}{\sqrt{2}}\left(b_{\mu}^{1} \mp i b_{\mu}^{2}\right) & J_{\mu}^{ \pm}=\frac{1}{\sqrt{2}} \bar{\Psi} \gamma_{\mu} \tau^{ \pm} \Psi & \text { with } \tau^{ \pm}=\frac{1}{2}\left(\tau_{1} \pm i \tau_{2}\right) \\
Z_{\mu} \sim b_{\mu}^{3} & J_{\mu}^{3}=\frac{1}{2} \bar{\Psi} \gamma_{\mu} \tau^{3} \Psi & \text { with } \tau^{ \pm}=\frac{1}{2}\left(\tau_{1} \pm i \tau_{2}\right)
\end{array}
$$

Electroweak mixing $\operatorname{SU}(2) \mathrm{xU}(1): \quad \gamma_{\mu}=A_{\mu} \cos \theta_{W}+b_{\mu}^{3} \sin \theta_{W}$

$$
Z_{\mu}=-\mathrm{A}_{\mu} \sin \theta_{W}+b_{\mu}^{3} \cos \theta_{W}
$$

Standard Model: $\quad S U(3)_{\text {color }} \times S U(2)_{L} \times U(1)_{Y}$

Lecture 4: Electroweak Quantum Numbers

For weak isospin some people write T_{3} while others write I_{3}
With: $Q=T_{3}+\frac{1}{2} Y$
Generation

	I	II	III	I_{3}	Y	Q
Leptons	$\begin{gathered} \binom{v_{e}}{e}_{\mathrm{L}} \\ \mathrm{e}_{\mathrm{R}} \end{gathered}$	$\begin{gathered} \binom{v_{\mu}}{\mu}_{L} \\ \mu_{\mathrm{R}} \end{gathered}$	$\begin{gathered} \binom{v_{\tau}}{\tau}_{\mathrm{L}} \\ \tau_{\mathrm{R}} \end{gathered}$	+1/2	-1	0
				$-1 / 2$	-1	-1
				0	-2	-1
Quarks	$\binom{u}{d}_{L}$	$\binom{\mathrm{c}}{\mathrm{~s}}_{\mathrm{L}}$	$\binom{\mathrm{t}}{\mathrm{~b}}_{\mathrm{L}}$	+1/2	+1/3	+2/3
				-1/2	+1/3	-1/3
		c_{R}	t_{R}	0	+4/3	+2/3
	d_{R}	s_{R}	b_{R}	0	-2/3	-1/3

Symmetry breaking with a real field ϕ

- Explicit mass terms violate the symmetry: $m^{2} A_{\mu} A^{\mu} \rightarrow m^{2}\left(A_{\mu}+\frac{1}{e} \partial_{\mu} \alpha\right)\left(A^{\mu}+\frac{1}{e} \partial^{\mu} \alpha\right) \neq m^{2} A_{\mu} A^{\mu}$
- Add a new field to the Lagrangian:

$$
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-V(\phi)=\underbrace{\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-\frac{1}{2} \mu^{2} \phi^{2}} \underbrace{-\frac{1}{4} \lambda \phi^{4}}
$$

Massive Klein-Gordon Interaction term (Spin 0, mass $=\mu$) term

The Lagrangian has a minimum for $\phi_{0}=\sqrt{-\frac{\mu^{2}}{\lambda}}=v$ or $\mu^{2}=-\lambda v^{2}$

Conclusion:

- The symmetry of the Lagrangian by adding a symmetric potential ϕ has not been destroyed

- The vacuum is no longer in a symmetric position
- Introduce a complex scalar field: $\phi=\frac{1}{\sqrt{2}}\left(\phi_{1}+i \phi_{2}\right)$
- The Lagrangian term is: $\mathcal{L}=\left(\partial_{\mu} \phi\right)^{*}\left(\partial^{\mu} \phi\right)-V(\phi)$, with $V(\phi)=\mu^{2}\left(\phi^{*} \phi\right)+\lambda\left(\phi^{*} \phi\right)^{2}$
- Lagrangian:

$$
\begin{aligned}
\mathcal{L}\left(\phi_{1}, \phi_{2}\right)=\frac{1}{2}\left(\partial_{\mu} \phi_{1}\right)^{2}+ & \frac{1}{2}\left(\partial_{\mu} \phi_{2}\right)^{2} \\
& -\frac{1}{2} \mu^{2}\left(\phi_{1}^{2}+\phi_{2}^{2}\right)-\frac{1}{4} \lambda\left(\phi_{1}^{2}+\phi_{2}^{2}\right)^{2}
\end{aligned}
$$

Conclusion:

- The symmetry of the Lagrangian by adding a symmetric potential ϕ has not been destroyed
- The vacuum is no longer in a symmetric position

The real case includes a complex (isospin doublet) field ϕ - ϕ degrees of freedom lead to mass terms for the W^{+}, W^{-}, Z^{0} - ϕ can also couple to fermions \rightarrow particle masses

- Symmetry breaking:

$$
\phi_{0}=\frac{1}{\sqrt{2}}(v+\eta+i \xi)
$$

Lecture 5 : "Scattering" - non-Rel.

Perturbation theory

1) $V(x, t)$ is fixed

Solve wave equation $i \frac{\partial \psi}{\partial t}=\left(H_{0}+V(\vec{x}, t)\right) \psi$ Iteratively...

1) Scattering in external potential

2) Scattering in each particle's field C
$\sigma=N / \mathcal{L} \quad \mathrm{d} \sigma=\frac{W_{f i}}{\text { flux }} \mathrm{d} \Phi \quad W_{f i} \equiv \lim _{T \rightarrow \infty} \frac{\left|T_{f i}\right|^{2}}{T}$

$$
T_{f i}=-i \int \mathrm{~d}^{4} x \psi_{f}^{*}(x) V(x) \psi_{i}(x)=-2 \pi V_{f i} \delta\left(E_{f}-E_{i}\right)
$$

2) Determine V from A field scattering particles (Solve Maxwell equation)

Relativistic: $V_{f i} \rightarrow \mathcal{M}$ "matrix element"

Lecture 5 : "Scattering" - non-Relativistic

Perturbation theory
 1) $V(x, t)$ is fixed

Solve wave equation Iteratively...
...use plane waves $\psi=\sum_{n=0}^{\infty} a_{n}(t) \phi_{n}(\vec{x}) e^{-i E_{n} t}$

$\sigma=N / \mathcal{L} \quad \mathrm{d} \sigma=\frac{W_{f i}}{\text { flux }} \mathrm{d} \Phi \quad W_{f i} \equiv \lim _{T \rightarrow \infty} \frac{\left|T_{f i}\right|^{2}}{T}$

$$
T_{f i}=-i \int \mathrm{~d}^{4} x \psi_{f}^{*}(x) V(x) \psi_{i}(x)=-2 \pi V_{f i} \delta\left(E_{f}-E_{i}\right)
$$

2) Determine V from A field scattering particles (Solve Maxwell equation)

Relativistic: $V_{f i} \boldsymbol{\rightarrow} \mathcal{M}$ "matrix element"

Several plane waves

2) Scattering in each particle's field C

Lecture 5 : "Scattering" - Relativistic

Cross section:

$\sigma=\frac{S}{4 \sqrt{\left(p_{1} \cdot p_{2}\right)^{2}-\left(m_{1} m_{2}\right)^{2}}} \int|\mathcal{M}|^{2}(2 \pi)^{4} \delta^{4}\left(p_{1}+p_{2}-p_{3} \ldots-p_{n}\right) \times \prod_{j=3}^{n} \frac{1}{2 E_{j}} \frac{d^{3} \vec{p}_{j}}{(2 \pi)^{3}}$
Eg: "2-to-2" scattering:
$\overrightarrow{\mathrm{A}} p_{1} \underset{\text { Before }}{\longrightarrow} p_{2}$ B
$\sigma=\frac{S}{64 \pi^{2}\left(E_{1}+E_{2}\right)\left|\vec{p}_{1}\right|} \int|\mathcal{M}|^{2}(2 \pi)^{4} \delta^{4}\left(p_{1}+p_{2}-p_{3}-p_{4}\right) \frac{d^{3} \vec{p}_{3}}{E_{3}} \frac{d^{3} \vec{p}_{4}}{E_{4}}$

$$
\frac{d \sigma}{d \Omega}=\left(\frac{1}{8 \pi}\right)^{2} \frac{S|\mathcal{M}|^{2}}{\left(E_{1}+E_{2}\right)^{2}} \frac{\left|\vec{p}_{f}\right|}{\left|\vec{p}_{i}\right|}
$$

How to determine \mathcal{M} ? \rightarrow Feynman rules (depend on actual theory/interaction):

Feynman rules (ABC theory):

1. Diagram: see sketch
2. Labels: see sketch
3. Two vertices: $(-i g)^{2}=-g^{2}$
4. Propagators: one internal line: $\frac{i}{q^{2}-m_{C}^{2}}$

From ABC \rightarrow Standard Model theory:
More complicated rules and spin objects
\rightarrow Master level education
5. Conservation of E, \vec{p} twice: $(2 \pi)^{4} \delta^{4}\left(p_{1}-p_{3}-q\right)$ and $(2 \pi)^{4} \delta^{4}\left(p_{2}+q-p_{4}\right)$
6. Integrate: one integral: $1 /(2 \pi)^{4} d^{4} q$
7. Erase delta-function and multiply by i to find:

$$
\mathcal{M}=\frac{g^{2}}{\left(p_{4}-p_{2}\right)^{2}-m_{C}^{2}}
$$

xample diagram:

$$
A+A \rightarrow B+B
$$

Lecture 5 : "Scattering" - Relativistic

$$
\mathrm{d} \sigma=\frac{W_{f i}}{\text { flux }} \mathrm{d} \Phi \Rightarrow \sigma=\frac{1}{\text { flux }} \int W_{f i} d \Phi
$$

$$
\begin{aligned}
& \sigma=\frac{S}{64 \pi^{2}\left(E_{1}+E_{2}\right)\left|\vec{p}_{1}\right|} \int|\mathcal{M}|^{2}(2 \pi)^{4} \delta^{4}\left(p_{1}+p_{2}-p_{3}-p_{4}\right) \frac{d^{3} \vec{p}_{3}}{E_{3}} \frac{d^{3} \vec{p}_{4}}{E_{4}} \quad \frac{d \sigma}{d \Omega}=\left(\frac{1}{8 \pi}\right)^{2} \frac{S|\mathcal{M}|^{2}}{\left(E_{1}+E_{2}\right)^{2}} \frac{\left|\vec{p}_{f}\right|}{\left|\vec{p}_{i}\right|}
\end{aligned}
$$

How to determine \mathcal{M} ? \rightarrow Feynman rules (depend on actual theory/interaction):

Feynman rules (ABC theory):

1. Diagram: see sketch
2. Labels: see sketch
3. Two vertices: $(-i g)^{2}=-g^{2}$
4. Propagators: one internal line: $\frac{i}{q^{2}-m_{C}^{2}}$

$$
\begin{aligned}
& \text { Example diagram: } \\
& \qquad A+A \rightarrow B+B
\end{aligned}
$$

From ABC \rightarrow Standard Model theory: More complicated rules and spin objects \rightarrow Master level education
5. Conservation of E, \vec{p} twice: $(2 \pi)^{4} \delta^{4}\left(p_{1}-p_{3}-q\right)$ and $(2 \pi)^{4} \delta^{4}\left(p_{2}+q-p_{4}\right)$
6. Integrate: one integral: $1 /(2 \pi)^{4} d^{4} q$
7. Erase delta-function and multiply by i to find:

$$
\mathcal{M}=\frac{g^{2}}{\left(p_{4}-p_{2}\right)^{2}-m_{C}^{2}}
$$

$\vec{A} \quad p_{1} \quad \stackrel{\text { Before }}{\longleftrightarrow} p_{2} \quad A$

- Look at the matrix element and assume that $m_{A}=m_{B}=m$ and $m_{C}=0\left(\right.$ eg. a photon): $\mathcal{M}=\frac{g^{2}}{\left(p_{3}-p_{2}\right)^{2}}+\frac{g^{2}}{\left(p_{4}-p_{2}\right)^{2}}$

$$
\begin{aligned}
\left(p_{4}-p_{2}\right)^{2}-m_{C}^{2} & =p_{4}^{2}+p_{2}^{2}-2 p_{2} \cdot p_{4} \\
& =m_{4}^{2}+m_{2}^{2}-2 p_{2} \cdot p_{4} \\
& =2 m^{2}-2 E_{2} E_{4}+2\left(\vec{p}_{2} \cdot \vec{p}_{4}\right) \\
& =2 m^{2}-2\left(\sqrt{m^{2}+\vec{p}^{2}}\right)(\sqrt{m} \\
& =-2 \vec{p}^{2}(1-\cos \theta)
\end{aligned}
$$

$$
\left(p_{3}-p_{2}\right)^{2}-m_{C}^{2}=-2 \vec{p}^{2}(1+\cos \theta)
$$

$$
\mathcal{M}=\frac{g^{2}}{-2 \vec{p}^{2}(1-\cos \theta)}+\frac{g^{2}}{-2 \vec{p}^{2}(1+\cos \theta)}=-\frac{g^{2}}{2 \vec{p}^{2} \sin ^{2} \theta}
$$

Note that for 4-vectors:

$$
p_{i} \cdot p_{j}=p_{i_{\mu}} p_{j}^{\mu}=E_{i} E_{j}-\vec{p}_{i} \cdot \vec{p}_{j}
$$

$$
\text { and that } p^{2}=p_{\mu} p^{\mu}=E^{2}-\vec{p}^{2}=m^{2}
$$

- Plug in: $(S=1 / 2)$

$$
\begin{aligned}
\frac{d \sigma}{d \Omega} & =\left(\frac{1}{8 \pi}\right)^{2} \frac{S|\mathcal{N}|^{2}}{\left(E_{1}+E_{2}\right)^{2}} \frac{\left|\vec{p}_{f}\right|}{\left|\vec{p}_{i}\right|} \\
\frac{d \sigma}{d \Omega} & =\frac{1}{2}\left(\frac{g^{2}}{16 \pi E \vec{p}^{2} \sin ^{2} \theta}\right)^{2}
\end{aligned}
$$

$$
=2 m^{2}-2\left(\sqrt{m^{2}+\vec{p}^{2}}\right)\left(\sqrt{m^{2}+\vec{p}^{2}}\right)+2 \vec{p}^{2} \cos \theta \quad \text { (Invariant mass) }
$$

Lecture 5 : Towards Experimental

- Consider beam of particles on a target
- Luminosity \mathcal{L} is number of particles per unit time, per unit area.
- Number of particles passing through area $\mathrm{d} \sigma: d N=\mathcal{L} \mathrm{d} \sigma$
- Number of particles scattering into solid angle $\mathrm{d} \Omega: d N=\mathcal{L} \mathrm{d} \sigma=\mathcal{L} D(\theta) \mathrm{d} \Omega$
- By counting one can measure the differential cross section: $\frac{\mathrm{d} \sigma}{\mathrm{d} \Omega}=D(\theta)=\frac{\mathrm{d} N}{\mathcal{L} \mathrm{~d} \Omega}$
- Alternatively the total cross section: $N=\mathcal{L} \sigma$

These aspects are needed when you Compare theory with experiments.

- Experimental particle physics:
$d \theta$
- Measure number of events N and the luminosity \mathcal{L} to find cross section $\sigma=N / \mathcal{L}$
- Compare with theoretical calculation of σ (or $\frac{d \sigma}{d \Omega}$) using e.g. Standard Model

Lecture 6 : "Detectors" - Technologies

Lecture 6 : "Detectors" - Combination

- Charged particle tracking:
- Position \& Momentum measurement
- Particle Identification:
- Energy, Time-of-Flight, Cherenkov

Skill: Four vectors \& co- and contra-variance

- Four vector: $x^{\mu}=\left(x^{0}, x^{1}, x^{2}, x^{3}\right)$ with $x^{0}=c t \Rightarrow x^{0}=t$ (since $c \equiv 1$)
- We call this a contravariant vector and: $x^{\mu}=\left(x^{0}, \vec{x}\right)$
- Lorentz transformation:

$$
x^{\mu^{\prime}}=\Lambda_{v}^{\mu} x^{v} ; \Lambda_{v}^{\mu}=\left(\begin{array}{cccc}
\gamma & -\beta & 0 & 0 \\
-\beta & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad \begin{aligned}
& x^{0^{\prime}}=\gamma\left(x^{0}-\beta x^{1}\right) \\
& x^{1^{\prime}}=\gamma\left(x^{1}-\beta x^{0}\right) \\
& x^{2^{\prime}}=x^{2} \\
& x^{3^{\prime}}=x^{3}
\end{aligned} \quad g_{\mu \nu}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

- Lorentz transformation leaves the following invariant: $|x|^{2}=x^{0^{2}}-|\vec{x}|^{2}$
- $|x|^{2}=x^{0^{2}}-|\vec{x}|^{2}=(c t)^{2}-|\vec{x}|^{2}=\left(c t^{\prime}\right)^{2}-\left|\vec{x}^{\prime}\right|^{2}$
- Introduce covariant vectors $x_{\mu}=\sum_{\mu} g_{\mu \nu} x^{\nu}=g_{\mu \nu} x^{\nu}$

Note the Einstein
summation convention

- Inproduct invariants: $I=a_{\mu} b^{\mu}=a \cdot b=a_{\mu}^{\prime} b^{\prime \mu}$ for any Lorentz 4-vectors a^{μ} and b^{μ}
- Example invariant mass: $E^{2}=\vec{p}^{2} c^{2}+m^{2} c^{4} \Rightarrow p^{\mu}=(E, \vec{p}) \Rightarrow p_{\mu} p^{\mu}=E^{2}-\vec{p}^{2}=m^{2}$

Skill: Four vectors \& co- and contra-variance

- Contravariant vector:

$$
\begin{aligned}
& x^{\mu}=(c t, \vec{x}) \\
& p^{\mu}=(E, \vec{p})
\end{aligned}
$$

- Covariant vector:

$$
\begin{aligned}
& x_{\mu}=(c t,-\vec{x}) \\
& p_{\mu}=(E,-\vec{p})
\end{aligned}
$$

But covariant derivative:

$$
\partial_{\mu}=\left(\frac{1}{c} \frac{\partial}{\partial t}, \vec{\nabla}\right)
$$

Note that the minus sign is "opposite" to the case of the coordinate four-vectors.

- Use cases:
$\partial_{\mu} A^{\mu}=\partial^{\mu} A_{\mu}=\frac{\partial A^{0}}{\partial t}+\frac{\partial A^{1}}{\partial x}+\frac{\partial A^{2}}{\partial y}+\frac{\partial A^{3}}{\partial z} \quad \partial_{\mu} \partial^{\mu} \phi=\frac{\partial \phi}{\partial t}-\frac{\partial \phi}{\partial x}-\frac{\partial \phi}{\partial y}-\frac{\partial \phi}{\partial z}$

Skill: Dirac Gamma Matrices

- Dirac γ matrices: $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu}$ in 4×4 matrices.
- We will use the Dirac-Pauli representation

$$
\begin{array}{ll}
\gamma^{0}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) & \gamma^{1}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 \\
0 & -1 & 0 \\
0 \\
-1 & 0 & 0
\end{array}\right) \\
\gamma^{2}=\left(\begin{array}{cccc}
0 & 0 & 0 & -i \\
0 & 0 & i & 0 \\
0 & i & 0 & 0 \\
-i & 0 & 0 & 0
\end{array}\right) & \gamma^{3}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 \\
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
\end{array}
$$

Note the indices: (confusing!)
$\mu, v=0,1,2,3$ are the Lorentz indices in space-time:

Dirac matrix indices: 1,2,3,4 Have to do with the row and column indices of the matrix (and spinors)

Or: $\gamma^{0}=\beta=\left(\begin{array}{cc}\mathbb{1}_{2} & 0 \\ 0 & -\mathbb{1}_{2}\end{array}\right)$ and $\gamma^{k}=\beta \alpha_{k}=\left(\begin{array}{cc}0 & \sigma_{k} \\ -\sigma_{k} & 0\end{array}\right)$ with Pauli matrices σ_{k}
Define also the chirality matrix: $\gamma^{5}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}$

- Note: although the gamma indices are Lorentz-indices ("space-time", the gamma-matrices are not 4-vectors! (They are simply constants.)
- Consider a function defined by the following prescription:

$$
\delta(x)=\lim _{\Delta \rightarrow 0}\left\{\begin{array}{cc}
1 / \Delta & \text { for }|x|<\Delta / 2 \\
0 & \text { otherwise }
\end{array}\right.
$$

$$
\text { surface }=1
$$

- The integral of this function is normalized: $\int_{-\infty}^{\infty} \delta(x) \mathrm{d} x=1$ \qquad
- For a function $f(x)$ we have: $f(x) \delta(x)=f(0) \delta(x)$

$$
\text { ...and therefore: } \int_{-\infty}^{\infty} f(x) \delta(x) \mathrm{d} x=f(0) \int_{-\infty}^{\infty} \delta(x) \mathrm{d} x=f(0)
$$

- An important representation of the Dirac delta function is:

$$
\delta(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i k x} \mathrm{~d} k
$$

