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Lecture 1: “Particles”
Classification of particles

• Lepton: fundamental particle
• Hadron: consist of quarks
• Meson: 1 quark + 1 antiquark (𝜋!,𝐵"#, …)
• Baryon: 3 quarks (𝑝 ,𝑛 , Λ, …)
• Anti-baryon: 3 anti-quarks

• Fermion: particle with half-integer spin.
• Antisymmetric wave function: obeys Pauli-

exclusion principle and Pauli-Dirac statistics
• All fundamental quarks and leptons are spin-½
• Baryons (S= ⁄$ %, ⁄& %) 

• Boson: particle with integer spin
• Symmetric wave function: Bose-Einstein statistics
• Mesons: (S=0, 1), Higgs (S=0)
• Force carriers: 𝛾, 𝑊, 𝑍, 𝑔 (S=1); graviton(S=2)
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Lecture 2: “Forces”

Vertex: 𝑒Vertex: 𝑒

Propagator: $
'!

Weak interaction
• Original idea, Fermi: 4-point ‘contact’ interaction (1933) 

• Short range, so not a bad idea at low energies 
• However, force = exchange of particle: ‘intermediate vector boson’

�22

- W is (electrically) charged! 
- (q2 = ‘energy’ of W) 
- if q2 > Mw2 —> effect visible 
- note: if MW large —> force small

- GF ~ 10-5 (~ g2/MW2) 
- compare to 𝛼 ~ 10-2
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but also ‘propagator’
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Lecture 3: “Waves” – wave equations

Quantum Mechanics: 𝐸 → 6𝐸 = 𝑖ℏ +
+,

;       𝑝 → �̂� = −𝑖ℏ𝛻

𝐸 =
�⃗�%

2𝑚

𝐸% = 𝑝%𝑐% +𝑚%𝑐- −
1
𝑐%

𝜕%

𝜕𝑡%
𝜙 = −𝛻%𝜙 +

𝑚%𝑐%

ℏ%
𝜙

𝜕.𝜕.𝜙 +𝑚%𝜙 = 0

𝑖ℏ
𝜕
𝜕𝑡 𝜓 = −

ℏ%

2𝑚𝛻%𝜓

Non-relativistic spin 0: Schrödinger:

𝜕𝜌
𝜕𝑡 + 𝛻 ⋅ 𝚥 = 0

𝜌 ≡ 𝜓∗𝜓 = 𝑁 "

𝚥 ≡ #ℏ
"%

𝜓𝛻𝜓∗ − 𝜓∗𝛻𝜓 = & !

%
�⃗�

Relativistic spin 0:

Relativistic spin- ½: 

𝐻 = �⃗� ⋅ �⃗� + 𝛽𝑚 𝑖
𝜕
𝜕𝑡 𝜓 = −𝑖 �⃗� ⋅ 𝛻 + 𝛽𝑚 𝜓

𝑖𝛾.𝜕. −𝑚 𝜓 = 0

Klein-Gordon:

Dirac:

𝑗' = 2 𝑁 "𝑝'𝜌 = 2 𝑁 "𝐸
𝚥 = 2 𝑁 "�⃗�

𝜓 = 𝑁𝑒/ 1⃗2⃗*3,

𝑗( = 3𝜓𝛾(𝜓 = 𝜓)𝜓 = 5
#*+

,

𝜓# "

Probability interpretation
(Continuity equation)

𝜙 = 𝑁𝑒/ 1⃗2⃗*3,

𝜓 = 𝑢(𝑝)𝑒/ 1⃗2⃗*3,

𝑢 𝑝 =

.

.

.

.

𝑗' = 3𝜓𝛾'𝜓

Relativistic spin-1: Proca:

𝜕.𝜕.𝐴4 +𝑚%𝐴4 = 𝑗4
Fundamental
force carriers

Fundamental
quarks and leptons

Example: pions

EM: Maxwell equations 
for 𝐸 and 𝐵 fields

EM: 𝐴# = 𝛾à𝑚 = 0
QCD: 𝐴# = 𝑔à𝑚 = 0
Weak: 𝐴# = 𝑊,𝑍à𝑚 ≠ 0

𝑗' 𝜌, 𝚥 = 𝑖 𝜙∗ 𝜕'𝜙 − 𝜙 𝜕'𝜙∗

𝛾! = 𝛽, 𝛽�⃗�

(The Master in action)

https://www.youtube.com/watch?v=Ci86Aps7CMo


Lecture 3: “Waves” – gauge invariance
Lagrangians: Spin 0 Scalar field: ℒ = $

%
𝜕.𝜙 𝜕.𝜙 − $

%
𝑚%𝜙%

Spin ½ Dirac fermion ℒ = 𝑖 0𝜓𝛾.𝜕.𝜓 −𝑚 0𝜓𝜓

Spin 1 gauge boson (photon) : ℒ = − $
-
𝜕.𝐴4 − 𝜕4𝐴. 𝜕.𝐴4 − 𝜕4𝐴. − 𝑗.𝐴.

𝜕ℒ
𝜕𝜙 𝑥

= 𝜕.
𝜕ℒ

𝜕 𝜕.𝜙 𝑥
Euler Lagrange lead to the wave equations:                                                                  (from field theory)

All forces result from requiring a symmetry principle: Lagrangian should stay invariant under transformations

𝜓 𝑥 → 𝜓5 𝑥 = e/'6 2 𝜓 𝑥
𝐴. 𝑥 → 𝐴5. 𝑥 = 𝐴. 𝑥 − 𝜕.𝛼 𝑥

1) QED = U(1) symmetry ℒ = 𝑖 0𝜓𝛾.𝜕.𝜓 −𝑚 0𝜓𝜓 ℒ = 𝑖 0𝜓𝛾. 𝐷.𝜓 −𝑚 0𝜓𝜓

𝜕. → 𝐷. ≡ 𝜕. + 𝑖𝑞𝐴.

ℒ = 𝑖 0𝜓𝛾. 𝜕.𝜓 −𝑚 0𝜓𝜓 − 𝑞 0𝜓𝛾.𝜓𝐴.
Covariant derivative:

“free” “interaction”

2) Weak = SU(2) symmetry 𝜓 = 𝜓7
𝜓8

3) QCD = SU(3) symmetry 𝜓 =
𝜓9
𝜓(
𝜓:

𝜓 𝑥 → 𝜓5 𝑥 = exp /
%
𝑔𝜏 ⋅ �⃗� 𝑥 𝜓7

𝜓8
𝜓 𝑥 → 𝜓5 𝑥 = exp /

%
𝑔"𝜆 ⋅ �⃗� 𝑥

𝜓9
𝜓(
𝜓:

è 1 E.M. photon field: 𝐴. 𝑥

è 3 weak  fields: 𝑊.! 𝑥 , 𝑊.* 𝑥 , 𝑍. 𝑥 è 8   colored gluon fields: 𝑔. 𝑥



Lecture 4: “Symmetries” – Standard Model 
• The Lagrangian of the Standard Model includes electromagnetic, weak and strong 

interactions according to the gauge field principle

• Construction of the Lagrangian: ℒ = ℒ+,-- − ℒ./0-,120.3/ = ℒ4.,12 − 𝑔𝐽5𝐴5
• With 𝑔 a coupling constant, 𝐽. a  current ( 0𝜓Ο/𝜓) and 𝐴. a force field
A. Local 𝑈 1 gauge invariance: symmetry under complex phase rotations
• Conserved quantum number: (hyper-) charge

• Lagrangian: ℒ = 0𝜓 𝑖𝛾.𝐷. −𝑚 𝜓 = 0𝜓 𝑖𝛾.𝜕. −𝑚 𝜓 − 𝑞 0𝜓𝛾.𝜓
;$%
&

𝐴.

B. Local 𝑆𝑈 2 gauge invariance: symmetry under transformations in isospin doublet space.
• Conserved quantum number: weak isospin

• Lagrangian:  ℒ = Ψ̂ 𝑖𝛾.𝐷. −𝑚 Ψ = Ψ̂ 𝑖𝛾.𝜕. −𝑚 Ψ− (
%
Ψ̂𝛾.𝜏Ψ𝑏.

;"'()
&

C. Local 𝑆𝑈 3 gauge invariance: symmetry under transformations in colour triplet space
• Conserved quantum number: color

• Lagrangian: ℒ = Φ̂ 𝑖𝛾.𝐷. −𝑚 Φ = Φ̂ 𝑖𝛾.𝜕. −𝑚 Φ− (*
%
Φ̂𝛾.𝜆Φ
;⃗+,-
&

𝑐.



Lecture 4: “Symmetries” – Standard Model

ℒ = #𝜓 𝑖𝛾<𝐷< −𝑚 𝜓 = #𝜓 𝑖𝛾<𝜕< −𝑚 𝜓 − 𝑞𝐽=>
< 𝐴< −

𝑔
2
𝐽?@AB
< 𝑏< −

𝑔C
2
𝐽DEF
< 𝑐<
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and the interaction term in the Lagrangian becomes:

−i
(

eJµ
EM · Aµ +

e

cos θw sin θw
Jµ

NC · Zµ

)

in terms of the physical fields Aµ and Zµ.

11.3 The Mass of the W and Z bosons

In the electroweak model as introduced here, the gauge fields must be massless, since ex-
plicit mass terms (∼ φµφµ) are not gauge invariant. In the Standard Model the mass of
all particles are generated in the mechanism of spontaneous symmetry breaking, intro-
ducing the Higgs particle (see later lectures.) Here we just give an empirical argument
to predict the mass of the W and Z particles.

1. Mass terms are of the following form:

M2
φ = ⟨φ |H|φ⟩ for any field φ

2. From the comparison with the Fermi 4-point interaction we find:

GF√
2

=
g2

8M2
W

⇒ M2
W =

√
2g2

8GF
=

√
2

8GF

e2

sin2 θ

Thus, we get the following predictions:

MW =

√
√
√
√

√
2

8GF

e

sin θw
= 81 GeV

MZ = MW (gz/g) = MW /cos θ = 91 GeV

11.4 The Coupling Constants for Z → f f̄

For the neutral Z-current interaction we have in general:

−igZ Jµ
NC Zµ = −i

g

cos θw

(

Jµ
3 − sin2 θwJµ

EM

)

Zµ

= −i
g

cos θw
ψ̄fγ

µ
[
1

2

(

1 − γ5
)

T3 − sin2 θwQ
]

︸ ︷︷ ︸

1
2(Cf

V −Cf
Aγ5)

ψf · Zµ

which we can represent with the following vertex:

Z0

f

f
−i

g

cos θw
γµ 1

2

(

Cf
V − Cf

Aγ
5
)

𝐴5QED U(1) ℒ<=> = −𝐽.𝐴. with  𝐽. = 𝑞 0𝜓𝛾.𝜓

Weak SU(2) : ℒ<=> = −𝐽.𝑏. with  𝐽. =
(
%
Ψ̂ 𝛾.𝜏 Ψ

9.2. THE CHARGED CURRENT 147

As you will show in exercise 9.2 we can rewrite the charged current Lagrangian as

LCC = �g W+

µ
J+µ

� g W�
µ

J�µ (9.24)

with

Jµ,± =
1
p

2
 L �µ ⌧±  L (9.25)

and ⌧± = 1

2
(⌧1 ± i⌧2), or in our representation

⌧+ =

✓
0 1
0 0

◆
and ⌧� =

✓
0 0
1 0

◆
. (9.26)

The leptonic currents can then be written as

J+µ =
1
p

2
⌫L �µ eL and J�µ =

1
p

2
eL �µ ⌫L (9.27)

or written out with the left-handed projection operators:

J+µ =
1
p

2
⌫

1

2

�
1 + �5

�
�µ

1

2

�
1� �5

�
e (9.28)

and similar for J�µ. Verify for yourself that
�
1 + �5

�
�µ

�
1� �5

�
= 2�µ

�
1� �5

�
(9.29)

such that we can rewrite the leptonic charge raising current as

J+µ =
1

2
p

2
⌫ �µ

�
1� �5

�
e (9.30)

and the leptonic charge lowering current as

J�µ =
1

2
p

2
e �µ

�
1� �5

�
⌫ . (9.31)

Remembering that a vector interaction has an operator �µ in the current and an axial
vector interaction a term �µ�5, we recognize in the charged weak interaction the famous
“V-A” interaction. The story for the quark doublet is identical. Drawn as diagrams,
the charged currents then look as follows:

Charge raising: W+

e�

⌫e

W+

d

u

Charge lowering: W�

e�

⌫e

W�

d

u
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and the interaction term in the Lagrangian becomes:
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in terms of the physical fields Aµ and Zµ.

11.3 The Mass of the W and Z bosons

In the electroweak model as introduced here, the gauge fields must be massless, since ex-
plicit mass terms (∼ φµφµ) are not gauge invariant. In the Standard Model the mass of
all particles are generated in the mechanism of spontaneous symmetry breaking, intro-
ducing the Higgs particle (see later lectures.) Here we just give an empirical argument
to predict the mass of the W and Z particles.

1. Mass terms are of the following form:

M2
φ = ⟨φ |H|φ⟩ for any field φ

2. From the comparison with the Fermi 4-point interaction we find:
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−igZ Jµ
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)𝐽'- =

+
"
HΨ𝛾'𝜏-Ψ with   𝜏± = +

"
𝜏+ ± 𝑖𝜏"

𝐽'± =
+
"
HΨ𝛾'𝜏±Ψ with   𝜏± = +

"
𝜏+ ± 𝑖𝜏"𝑊'± ≡

1
2
𝑏'+ ∓ 𝑖𝑏'"

𝑍'~𝑏'-

𝛾5 = 𝐴5 cos 𝜃6 + 𝑏57 sin 𝜃6
𝑍5 = −A5 sin 𝜃6 + 𝑏57 cos 𝜃6

Electroweak mixing SU(2)xU(1):

𝑆𝑈 3 !"#"$×𝑆𝑈 2 %×𝑈 1 &Standard Model: 
𝑔/01

𝑞

𝑞

Electromagnetic
interaction 

Weak
interaction 

Strong
interaction 



Lecture 4: “Symmetries” – Symmetry breaking

• Start with a (new) scalar field 𝜙:  (Klein-Gordon), with a potential:  
 
 
 
 
 
                                Imaginary mass? —> makes no sense!  
                                

Simple example

�61

For a real scalar field for example:

Lscalar =
1

2
(@µ�) (@

µ
�)�

1

2
m

2
�
2
! Euler-Lagrange ! (@µ@

µ +m
2)� = 0| {z }

Klein-Gordon equation

In electroweak theory, kinematics of fermions, i.e. spin-1/2 particles is described by:

Lfermion = i ̄�µ@
µ
 �m ̄ ! Euler-Lagrange ! (i�µ@

µ
�m) = 0| {z }

Dirac equation

In general, the Lagrangian for a real scalar particle (�) is given by:

L = (@µ�)
2

| {z }
kinetic term

+ C|{z}
constant

+ ↵�|{z}
?

+ ��
2

|{z}
mass term

+ ��
3

|{z}
3-point int.

+ ��
4

|{z}
4-point int.

+ ... (1)

We can interpret the particle spectrum of the theory when studying the Lagrangian under
small perturbations. In expression (1), the constant (potential) term is for most purposes
of no importance as it does not appear in the equation of motion, the term linear in the
field has no direct interpretation (and should not be present as we will explain later), the
quadratic term in the fields represents the mass of the field/particle and higher order terms
describe interaction terms.

1.3 Simple example of symmetry breaking

To describe the main idea of symmetry breaking we start with a simple model for a real
scalar field � (or a theory to which we add a new field �), with a specific potential term:

L =
1

2
(@µ�)

2
� V(�)

=
1

2
(@µ�)

2
�

1

2
µ
2
�
2
�

1

4
��

4 (2)

Note that L is symmetric under � ! �� and that � is positive to ensure an absolute
minimum in the Lagrangian. We can investigate in some detail the two possibilities for the
sign of µ2: positive or negative.

1.3.1 µ
2
> 0: Free particle with additional interactions

)φV(

φ

To investigate the particle spectrum we look at the Lagrangian for
small perturbations around the minimum (vacuum). The vacuum
is at � = 0 and is symmetric in �. Using expression (1) we see that
the Lagrangian describes a free particle with mass µ that has an
additional four-point self-interaction:

L =
1

2
(@µ�)

2
�

1

2
µ
2
�
2

| {z }
free particle, mass µ

�
1

4
��

4

| {z }
interaction

6

1.3.2 µ
2
< 0: Introducing a particle with imaginary mass ?

φ

)φV( v

η

The situation with µ
2
< 0 looks strange since at first glance it

would appear to describe a particle � with an imaginary mass.
However, if we take a closer look at the potential, we see that it
does not make sense to interpret the particle spectrum using the
field � since perturbation theory around � = 0 will not converge
(not a stable minimum) as the vacuum is located at:

�0 =

r
�
µ2

�
= v or µ

2 = ��v
2 (3)

As before, to investigate the particle spectrum in the theory, we have to look at small
perturbations around this minimum. To do this it is more natural to introduce a field ⌘

(simply a shift of the � field) that is centered at the vacuum: ⌘ = �� v.

Rewriting the Lagrangian in terms of ⌘

Expressing the Lagrangian in terms of the shifted field ⌘ is done by replacing � by ⌘+ v in
the original Lagrangian from equation (2):

Kinetic term: Lkin(⌘) =
1

2
(@µ(⌘ + v)@µ(⌘ + v))

=
1

2
(@µ⌘)(@

µ
⌘) , since @µv = 0.

Potential term: V(⌘) = +
1

2
µ
2(⌘ + v)2 +

1

4
�(⌘ + v)4

= �v
2
⌘
2 + �v⌘

3 +
1

4
�⌘

4
�

1

4
�v

4,

where we used µ
2 = ��v

2 from equation (3). Although the Lagrangian is still symmetric
in �, the perturbations around the minimum are not symmetric in ⌘, i.e. V(�⌘) 6= V(⌘).
Neglecting the irrelevant 1

4
�v

4 constant term and neglecting terms or order ⌘2 we have as
Lagrangian:

Full Lagrangian: L(⌘) =
1

2
(@µ⌘)(@

µ
⌘)� �v

2
⌘
2
� �v⌘

3
�

1

4
�⌘

4
�

1

4
�v

4

=
1

2
(@µ⌘)(@

µ
⌘)� �v

2
⌘
2

From section 1.2 we see that this describes the kinematics for a massive scalar particle:

1

2
m

2

⌘ = �v
2
! m⌘ =

p

2�v2
⇣
=

p
�2µ2

⌘
Note: m⌘ > 0.
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𝑣

ℒ =
1
2
𝜕<𝜙

T
− 𝑉 𝜙 =

1
2
𝜕<𝜙

T
−
1
2
𝜇T𝜙T −

1
4
𝜆𝜙U

Massive Klein-Gordon
term (Spin 0, mass =𝜇)

Interaction 
term

The Lagrangian has a minimum for 𝜙( = − '!

2
= 𝑣 or 𝜇" = −𝜆𝑣"

Conclusion: 
• The symmetry of the Lagrangian by adding a 

symmetric potential 𝜙 has not been destroyed
• The vacuum is no longer in a symmetric position

The real case include complex fields 𝜙



Lecture 4: “Symmetries” – Symmetry breaking

ℒ = 𝜕<𝜙
∗ 𝜕<𝜙 − 𝜇T 𝜙∗𝜙 − 𝜆 𝜙∗𝜙 T where 𝜙 = Z

T
𝜙Z + 𝑖𝜙T

Massive Klein-Gordon 
term (Spin 0, mass = 𝜇)

Interaction 
term

The Lagrangian has  minima for 𝜙+" + 𝜙"" =
3'!

2
= 𝑣

Conclusion: 
• The symmetry of the Lagrangian by adding a 

symmetric potential 𝜙 has not been destroyed
• The vacuum is no longer in a symmetric position

The real case includes a complex isospin doublet 𝜙
𝜙 =

1
2
𝜙+ + 𝑖𝜙"
𝜙- + 𝑖𝜙,

𝜙( =
1
2
0
𝑣
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11.4.2 µ2 < 0

V(  )Φ

φ2

v−
φ1

ξ
η

When µ2 < 0 there is not a single vacuum located at
„

0
0

«
, but an infinite number of vacua that satisfy:

q
�2

1
+ �2

2
=

r
�µ2

�
= v

From the infinite number we choose �0 as �1 = v and
�2 = 0. To see what particles are present in this model,
the behaviour of the Lagrangian is studied under small
oscillations around the vacuum.

Looking at the symmetry we would use a ↵ei�. When
looking at perturbations around this minimum it is nat-
ural to define the shifted fields ⌘ and ⇠, with: ⌘ = �1�v
and ⇠ = �2, which means that the (perturbations around
the) vacuum are described by (see section 11.5.2):

�0 =
1
p

2
(⌘ + v + i⇠)

η

ξφ2

φ1
[2] [1]

circle of vacua

Using �2 = �⇤� = 1

2
[(v + ⌘)2 + ⇠2] and µ2 = ��v2 we can rewrite the Lagrangian in

terms of the shifted fields.

Kinetic term: Lkin(⌘, ⇠) =
1

2
@µ(⌘ + v � i⇠)@µ(⌘ + v + i⇠)

=
1

2
(@µ⌘)2 +

1

2
(@µ⇠)

2 , since @µv = 0.

Potential term: V(⌘, ⇠) = µ2�2 + ��4

= �
1

2
�v2[(v + ⌘)2 + ⇠2] +

1

4
�[(v + ⌘)2 + ⇠2]2

= �
1

4
�v4 + �v2⌘2 + �v⌘3 +

1

4
�⌘4 +

1

4
�⇠4 + �v⌘⇠2 +

1

2
�⌘2⇠2

Neglecting the constant and higher order terms, the full Lagrangian can be written as:

L(⌘, ⇠) =
1

2
(@µ⌘)2

� (�v2)⌘2

| {z }
massive scalar particle ⌘

+
1

2
(@µ⇠)

2 + 0 · ⇠2

| {z }
massless scalar particle ⇠

+ higher order terms

We can identify this as a massive ⌘ particle and a massless ⇠ particle:

m⌘ =
p

2�v2 =
p
�2µ2 > 0 and m⇠ = 0

𝜇T < 0

massless γ + massive 𝑊4, 𝑊4, 𝑍 



Recap: “Seeing the wood for the trees”
• Lecture 1: “Particles”
• Zooming into constituents of matter
• Skills: distinguish particle types, Spin

• Lecture 2: “Forces”
• Exchange of quanta: EM, Weak, QCD
• Skills: 4-vectors, Feynman diagrams

• Lecture 3: “Waves”
• Quantum fields and gauge invariance
• Dirac algebra, Lagrangian, co- & contra variant

• Lecture 4: “Symmetries”
• Standard Model, Higgs, Discrete Symmetries
• Skills: Lagrangians, Chirality & Helicity

• Lecture 5: “Scattering”
• Cross section, decay, perturbation theory
• Skills: Dirac-delta function, Feynman Calculus

• Lecture 6: “Detectors”
• Energy loss mechanisms, detection technologies
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You may wonder why we need to consider a finite time interval T . The reason is that
when we assume that the initial state is an eigenstate of the free Hamiltonian with fixed
momentum (or energy), we have lost track of where a particle is in both space and

time. A moving wave packet would see the static potential during a finite time, but the
plane waves do not. Just like we will need to normalize the wave functions on a finite
volume, we will need to normalize the potential to a finite time. A proper treatment is
rather lengthy and relies on the use of wave packets. (See e.g. the book by K.Gottfried,
“Quantum Mechanics” (1966), Volume 1, sections 12, 56.) In the end, we can write
transition probabilities in terms of plane waves, provided that we normalize to T and
V . We discuss the normalization in more detail below.

2.3 Relativistic scattering

Fermi’s golden rule allows us to compute the scattering rate of non-relativistic particles
on a static potential. In scattering experiments at high energies we need to deal with two
scattering particles, rather than single particles scattering on a source. As an example,
consider two spin-less electrons scatter in their mutual electromagnetic field, as depicted
in Fig. 2.3.

µ

B

e

C

e− −

e

e

−

−

A

D

i
i

f

f

A

Figure 2.3: Scattering of two electrons in an electromagnetic potential.

Such scattering processes can be described by the exchange of virtual particles, Yukawa’s
force carriers. Even without understanding the details of the interaction, we can readily
identify one place where it should di↵er from the discussion above: the result must
somehow encode four-momentum conservation and not just energy conservation.

Our master formula for the di↵erential cross-section, Eq. (2.8) is essentially a gener-
alization to problems with more than one particle in the initial or final state. We
cannot derive the expressions for a scattering cross section at high energies without
going through the machinery of quantum field theory. (This is not entirely true: see
Thomson, chapter 3 and section 5.1.) Instead, we will sketch the main results, then work
through the electrodynamics of spin-less particles as an example in the next lectures.

𝑔8𝑔8

1
𝑞9 −𝑀8

9

𝑍



Today: Scattering Theory and Feynman Calculus

Part 1 : Decay and Cross Section
Part 2 : Perturbation Theory and the Golden Rule
Part 3 : Feynman Calculus

Griffiths Chapter 6

“Let’s play around with physics and math”

Griffiths §6.1

Griffiths §6.2 and PP1 Chapter 2 

Griffiths §6.3



Scattering Theory and Feynman Calculus

Part 1
Decay and Cross Section

Griffiths Chapter 6

Griffiths §6.1



Terminology: Decays

• A quantum particle decays with equal 
probability per unit time
• 𝑑𝑁/𝑁 = −Γ𝑑𝑡 such that:    

𝑁 = 𝑁 0 𝑒\]^ = 𝑁 0 𝑒\^/`

• Γ ≡decay rate     Z
]
= 𝜏 ≡ mean lifetime

• Often particles can decay in many quantum ways; each with its own partial 
decay “width” Γd
• Total decay rate Γ̂ a^ = ∑b Γb and  lifetime 𝜏 = Z

]'('
and  Branching Ratio  𝐵𝑅b =

])
]'('

• The decay rate can be calculated from the Standard Model
• Compare theory and experiment



Terminology: Cross Section
• A scattering process is measured using “cross section”; the effective surface seen by a 

particle colliding with a target. We use the same for collisions: 
• e.g. proton-proton colliders.

• For colliding protons many processes may happen:
• Exclusive cross section 𝜎: : cross section for one specific process “𝑖”
• Inclusive cross section 𝜎;<;: sum all possible exclusive cross sections: 𝜎;<; = ∑:= 𝜎:

• The cross section can for example depend on 
the energy of the collision
• Look at the process 𝑒c𝑒\ → 𝑞#𝑞
• There is a resonance at 91 GeV; the mass of the 
𝑍- boson

• And there is a peak near 0 GeV; the photon 
resonance

• “Electroweak process”
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Al(SLD) 0.23098 ± 0.00026

A
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A
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had
fb 0.2324 ± 0.0012

Average 0.23153 ± 0.00016

Δαhad= 0.02758 ± 0.00035Δα(5)

mt= 178.0 ± 4.3 GeV

Figure 1: Left plot: Z0 hadronic cross section; points are measurements and the solid line is the SM prediction.
Various e+e− collider energy ranges are reported. Right plot: Comparison of the effective electroweak mixing
angle sin θlept

eff for leptons obtained from asymmetries depending on lepton couplings (top) only and also on quark
couplings (bottom). The SM prediction is shown as a function of the Higgs mass. Vacuum polarization corrections

and top mass uncertainty dominate the SM prediction uncertainty.

• L3 final result 5 on hadron and lepton pairs cross sections and lepton pairs asymmetries
using both inclusive and non radiative sample. An overall good agreement is found with the
standard model. An example is shown in figure 2 (right) for hadron cross section.

3 W physics at LEP

W bosons are pair-produced at LEP. The tree-level description of e+e−→ W+W− is the so-
called CC03 diagrams 2. As each unstable W boson decays into lepton or quark pairs, a four
fermion (4f) final state is obtained with three possible topologies. The fully leptonic channel
ℓνℓℓνℓ is characterized by two high energy isolated acoplanar leptons with large missing energy.
The semi-leptonic channel qqℓνℓ exhibits an isolated high energy lepton with two jets and miss-
ing energy. The qqqq channel features at least four jets and very little missing energy. The
three branching ratios are about 10%, 46% and 44% respectively. Width effects and interfer-
ing e+e−→ 4f diagrams destroy CC03 gauge invariance. CC03 diagrams are embedded in an
e+e−→ 4f description 6 with O(α) electroweak corrections that maintains gauge invariance and
keeps theoretical uncertainties under control. This takes into account background from non-
WW e+e−→ 4f processes. The other significant background is represented by e+e−→ Z0/γ→
hadrons.

3.1 W pair production

W pair production (CC03 cross section) in the kinematic region explored by LEP shows a good
consistency with the SM expectations incorporating O(α) electroweak corrections (only the W
→ τντbranching ratio is ≈ 2.8 σ above its expectation). Final results for the W+W− cross
sections and W branching rations are available from ALEPH, L3 and DELPHI. OPAL has
preliminary results for

√
s = 161- 189 GeV and final for

√
s = 192 - 207 GeV. Good agreement

with the SM prediction is also found for Z0 pair production (main 4f background to W+W−

after event selection). The results 3 are shown in Figure 3. The typical cross section for W+W−

production beyond 180 GeV is about 17 pb.

3.2 W mass and width extraction

At threshold for W+W− production (
√

s ≈ 161 GeV), the W mass is derived from the cross sec-
tion measurement. Above threshold, real W bosons are reconstructed from their decay products

q

q

q

q

e4 + 𝑒3 → 𝑞 3𝑞

γ 𝑍𝑒

𝑒 𝑒

𝑒



Scattering
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Figure 6.1 Scattering from a fixed po-
tential: 0 is the scattering angle, b is the 
impact parameter.Scattering center

If the particle comes in with an impact parameter between b and b + db, 
it will emerge with a scattering angle between в and в + dO. More generally, if 
it passes through an infinitesimal area da, it will scatter into a corresponding 
solid angle dQ (Fig. 6.3). Naturally, the larger we make da, the larger dQ will be. 
The proportionality factor is called the differential scattering cross section, D:

In principle, D might depend on the azimuthal angle ф; however, most potentials 
of interest are spherically symmetrical, in which case the differential cross section 
depends only on 0 (or, if you prefer, on b \  By the way, the notation, D, is my 
own; most people call it simply da/dQ, and in the rest of the book I’ll revert to 
the standard terminology. The name “differential cross section” is poorly chosen; 
it’s not a differential at all, in the mathematical sense (the words would apply 
more naturally to da than to da/dQ).

Now, from Figure 6.3 we see that

(Areas and solid angles are intrinsically positive, hence the absolute value signs.) 
Accordingly,

da = D(6)dQ (6 .8)

da = |b db dф\, dQ = |sin в dO dф\ (6.9)

(6.10)

b

Figure 6.2 Hard-sphere scattering.

• Scattering of particles with 
Coulomb interaction

192 6ДНЕ  FEYNMAN CALCULUS

Figure 6.1 Scattering from a fixed po-
tential: 0 is the scattering angle, b is the 
impact parameter.Scattering center

If the particle comes in with an impact parameter between b and b + db, 
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the standard terminology. The name “differential cross section” is poorly chosen; 
it’s not a differential at all, in the mathematical sense (the words would apply 
more naturally to da than to da/dQ).

Now, from Figure 6.3 we see that

(Areas and solid angles are intrinsically positive, hence the absolute value signs.) 
Accordingly,

da = D(6)dQ (6 .8)

da = |b db dф\, dQ = |sin в dO dф\ (6.9)

(6.10)

b

Figure 6.2 Hard-sphere scattering.
𝑏 = Impact Parameter
𝜃 =Scattering Angle
1-to-1 relation 𝑏 and 𝜃

𝑏 = 𝑅 sin𝛼
2𝛼 + 𝜃 = 𝜋
sin𝛼 = sin 𝜋/2 − 𝜃/2 = cos 𝜃/2
𝑏 = 𝑅 cos 𝜃/2

• Scattering on a “hard sphere”

𝜃 is scattering angle

Griffiths §6.1

𝐹



A) Hard Sphere Scattering

• Calculation of hard sphere scattering

6.1 LIFETIMES AND CROSS SECTIONS 193

0

Figure 6.3 Particle incident in area dc scatters into solid angle dil.

EXAMPLE 6.2
In the case of hard-sphere scattering, Example 6.1, we find 

db
dd 2 SmW

and hence

^  Rb sin(0/2) R 2 cos(0/2) sin(0/2) _ R 2
D\P) ~ — —л— “  —л------ “  ~T2 sin в 2 sin в 4

Finally, the total cross section is the integral of da over all solid angles:

which is, of course, the total cross section the sphere presents to an incoming 
beam: Any particles within this area will scatter, any outside will pass by 
unaffected.

As Example 6.3 indicates, the formalism developed here is consistent with our 
naive sense of the term “cross sec tio n ,in  the case of a “hard” target; its virtue 
is that it applies as well to “soft” targets, which do not have sharp edges.

EXAMPLE 6.4 Rutherford Scattering
A particle of charge q\ scatters off a stationary particle of charge In 
classical mechanics the formula relating the impact parameter to the scat-
tering angle is1

(6 .11)

EXAMPLE 63
For hard-sphere scattering

— dQ = irR2
4

b = ^  cot(0/2)

Particle incident in 
Area 𝑑𝜎 scatters into 
solid angle 𝑑Ω

d𝜎 = 𝐷 𝜃 dΩ
d𝜎 = 𝑏 d𝑏 d𝜙

𝐷 𝜃 =
d𝜎
dΩ

=
𝑏

sin 𝜃
d𝑏
d𝜃 d𝑏

d𝜃
= −

𝑅
2
sin

𝜃
2

=
𝑅9

2
cos 𝜃/2 sin 𝜃/2

sin 𝜃

=
𝑅9

4

Then:

𝜎 = Bd𝜎 = B𝐷 𝜃 dΩ

= B
𝑅9

4 dΩ = 𝜋𝑅9

This corresponds to the projected
surface of the circle seen by the particle 

*𝑑Ω = *sin 𝜃 d𝜃 d𝜙 = 4𝜋

𝐷 𝜃 =
𝑅𝑏 sin 𝜃/2
2 sin 𝜃

( cos 𝛼 sin 𝛼 = "
#
sin 2𝛼 )

If particle goes through 𝑑𝜎 it will scatter through solid angle 𝑑Ω ∶

𝑏 = 𝑅 cos 𝜃/2
Hard scattering: 

dΩ = sin 𝜃 d𝜃 d𝜙

Griffiths §6.1

“Differential cross-section”

𝑅
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the standard terminology. The name “differential cross section” is poorly chosen; 
it’s not a differential at all, in the mathematical sense (the words would apply 
more naturally to da than to da/dQ).

Now, from Figure 6.3 we see that

(Areas and solid angles are intrinsically positive, hence the absolute value signs.) 
Accordingly,

da = D(6)dQ (6 .8)

da = |b db dф\, dQ = |sin в dO dф\ (6.9)

(6.10)

b

Figure 6.2 Hard-sphere scattering.

B) Rutherford Scattering (point charge)

• Scattering of charged particles 
with Coulomb force
• Eg alpha particles on nucleus target

• Coulomb Force law:   

𝑏 =
𝑞>𝑞9
2𝐸

cot 𝜃/2

𝐷 𝜃 =
𝑞>𝑞9

4𝐸 sin9 𝜃/2

9

𝜎 = 2𝜋
𝑞>𝑞9
4𝐸

9
B
?

@ 1
sinA 𝜃/2 sin 𝜃 d𝜃

𝐹 =
𝑞>𝑞9
𝑟9

Consider as given (see Griffiths):

The integral turns out to be infinite!
Particle sees an infinitely large scattering surface?
Reason is that Coulomb force has infinite range.

Most “collisions” will happen at large distance, 
which is what Rutherford observed.

𝐷 𝜃 =
d𝜎
dΩ

=
𝑏

sin 𝜃
d𝑏
d𝜃

𝜎 = Bd𝜎 = B𝐷 𝜃 dΩ

Griffiths §6.1

𝑞>

𝑞9

𝐹
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EXAMPLE 6.2
In the case of hard-sphere scattering, Example 6.1, we find 

db
dd 2 SmW

and hence

^  Rb sin(0/2) R 2 cos(0/2) sin(0/2) _ R 2
D\P) ~ — —л— “  —л------ “  ~T2 sin в 2 sin в 4

Finally, the total cross section is the integral of da over all solid angles:

which is, of course, the total cross section the sphere presents to an incoming 
beam: Any particles within this area will scatter, any outside will pass by 
unaffected.

As Example 6.3 indicates, the formalism developed here is consistent with our 
naive sense of the term “cross sec tio n ,in  the case of a “hard” target; its virtue 
is that it applies as well to “soft” targets, which do not have sharp edges.

EXAMPLE 6.4 Rutherford Scattering
A particle of charge q\ scatters off a stationary particle of charge In 
classical mechanics the formula relating the impact parameter to the scat-
tering angle is1

(6 .11)

EXAMPLE 63
For hard-sphere scattering

— dQ = irR2
4

b = ^  cot(0/2)

Luminosity
• Consider beam of particles on a target 
• Luminosity ℒ is number of particles per unit time, per unit area. 
• Number of particles passing through area d𝜎: 𝑑𝑁 = ℒ d𝜎
• Number of particles scattering into solid angle dΩ : 𝑑𝑁 = ℒ d𝜎 = ℒ 𝐷 𝜃 dΩ
• By counting one can measure the differential cross section:
• Alternatively the total cross section: 𝑁 = ℒ 𝜎

d𝜎
dΩ = 𝐷 𝜃 =

d𝑁
ℒ dΩ

Griffiths §6.1

These aspects are
needed when you
Compare theory 
with experiments.

• Experimental particle physics: 
• Measure number of events 𝑁 and the luminosity ℒ to find cross section 𝜎 = ⁄𝑁 ℒ
• Compare with theoretical calculation of 𝜎 (or jkjl) using e.g. Standard Model   

ℒ



Scattering Theory and Feynman Calculus

Part 2
Perturbation Theory and the Golden Rule

Griffiths §6.2 and PP1 Chapter 2 

Griffiths Chapter 6

Griffiths only states the “Golden Rule”.
In next 7 slides we will try to understand it! 
For the exam only Griffith level is required.

“How to calculate the cross section 𝜎”



Fermi’s Golden Rule

• To calculate decay rates and cross section in relativistic scattering we use a 
general formula that we cannot fully derive within the scope of these lectures
• For a fully relativistic derivation: quantum field theory
• We will ”make it plausible” using non-relativistic single particle theory
• see also the book of Thomsom §2.3.6 and chapter 3, or Nikhef PP1 lecture notes chapter 2

• Here is the end-result:
•

• Golden Rule for decays: 1 → 2 + 3 + 4 +⋯𝑛

• Golden Rule for scattering: 1 + 2 → 3 + 4 + 5 +⋯𝑛

Γ =
𝑆
2𝑚!

k ℳ " 2𝜋 #𝛿# 𝑝! − 𝑝" − 𝑝$…− 𝑝% × p
&'"

%

2𝜋𝛿 𝑝&" −𝑚&" 𝜃 𝑝&(
𝑑#𝑝&
2𝜋 #

𝜎 =
𝑆

4 𝑝! ⋅ 𝑝" " − 𝑚!𝑚"
"
k ℳ " 2𝜋 #𝛿# 𝑝! + 𝑝" − 𝑝$…− 𝑝% × p

&'$

%

2𝜋𝛿 𝑝&" −𝑚&" 𝜃 𝑝&(
𝑑#𝑝&
2𝜋 #

OK, let’s go….



Scattering with waves
• An incoming particle is 

represented by a wave packet of 
incoming plane waves: 
• Example 1:
• Calculate the scattering of these 

waves in an external potential

• Example 2: 
• For collisions the scattering potential 
𝐴< of particle 𝐴 is determined by the 
field of particle 𝐵 and vice versa. 

2.2. NON-RELATIVISTIC SCATTERING 33

The ‘physics’ (the dynamics of the interaction) is contained in the transition rate Wfi.
The flux and the phase space factors are just ‘bookkeeping’, required to compare the
result with the measurements.

The rigorous computation of the transition rate requires quantum field theory, which
is outside the scope of this course. However, to illustrate the concepts we discuss non-
relativistic scattering of a single particle in a time-dependent potential and formulate
the result in a Lorentz covariant way. In the next chapter we will derive the lowest order
amplitude for the scattering of A + B ! A + B, which can still be done without field
theory. We can link that result to the ‘Feynman rules’ derived in field theory.

2.2 Non-relativistic scattering

t=0 

H

V(x,t)ψ
i

ψ
f

0

0H
t=T/2t=−T/2

Figure 2.1: Scattering of a single particle in a potential.

Consider the scattering of a particle in a potential as depicted in Fig. 2.1 Assume that
both long before and long after the interaction takes place, the system is described by
the free Schrödinger equation,

i~ @ 
@t

= H0  (2.9)

where H0 is the unperturbed, time-independent Hamiltonian for a free particle. Let
�m(x) be a normalized eigenstate of H0 with eigenvalue Em,

H0�m(x) = Em�m(x). (2.10)

The states �m form an orthonormal basis,
Z
�⇤

m
(x) �n(x) d3x = �mn. (2.11)

We use the Kronecker delta, as if the spectrum of eigenstates is discrete. In chapter 2 we
considered a continuous spectrum of eigenstates for the free Hamiltonian, ‘numbered’
by the wave number k. Eventually, we could do that here, too, replacing the Kronecker
delta by a Dirac delta-function. However, it is trivial to change between the two and
the notation is a bit easier when we work with a discrete set of states.

𝜓(𝑥) = 𝑁𝑒)*+,
Free particle
Hamiltonian

“perturbation”
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You may wonder why we need to consider a finite time interval T . The reason is that
when we assume that the initial state is an eigenstate of the free Hamiltonian with fixed
momentum (or energy), we have lost track of where a particle is in both space and

time. A moving wave packet would see the static potential during a finite time, but the
plane waves do not. Just like we will need to normalize the wave functions on a finite
volume, we will need to normalize the potential to a finite time. A proper treatment is
rather lengthy and relies on the use of wave packets. (See e.g. the book by K.Gottfried,
“Quantum Mechanics” (1966), Volume 1, sections 12, 56.) In the end, we can write
transition probabilities in terms of plane waves, provided that we normalize to T and
V . We discuss the normalization in more detail below.

2.3 Relativistic scattering

Fermi’s golden rule allows us to compute the scattering rate of non-relativistic particles
on a static potential. In scattering experiments at high energies we need to deal with two
scattering particles, rather than single particles scattering on a source. As an example,
consider two spin-less electrons scatter in their mutual electromagnetic field, as depicted
in Fig. 2.3.

µ

B

e

C

e− −

e

e

−

−

A

D

i
i

f

f

A

Figure 2.3: Scattering of two electrons in an electromagnetic potential.

Such scattering processes can be described by the exchange of virtual particles, Yukawa’s
force carriers. Even without understanding the details of the interaction, we can readily
identify one place where it should di↵er from the discussion above: the result must
somehow encode four-momentum conservation and not just energy conservation.

Our master formula for the di↵erential cross-section, Eq. (2.8) is essentially a gener-
alization to problems with more than one particle in the initial or final state. We
cannot derive the expressions for a scattering cross section at high energies without
going through the machinery of quantum field theory. (This is not entirely true: see
Thomson, chapter 3 and section 5.1.) Instead, we will sketch the main results, then work
through the electrodynamics of spin-less particles as an example in the next lectures.

𝐴s

𝐴5= 𝑉, 𝐴

Dp



Perturbation Theory

• Consider the free Schrödinger equation

• 𝐻m is time-independent Hamiltonian

• Eigenstates orthogonal:

• where  𝜙n �⃗� form orthonormal basis for any solution and 

• Hamiltonian with time-dependent perturbation

• Solutions are of the form can be written as

• Substituting gives:

2.2. NON-RELATIVISTIC SCATTERING 33

The ‘physics’ (the dynamics of the interaction) is contained in the transition rate Wfi.
The flux and the phase space factors are just ‘bookkeeping’, required to compare the
result with the measurements.

The rigorous computation of the transition rate requires quantum field theory, which
is outside the scope of this course. However, to illustrate the concepts we discuss non-
relativistic scattering of a single particle in a time-dependent potential and formulate
the result in a Lorentz covariant way. In the next chapter we will derive the lowest order
amplitude for the scattering of A + B ! A + B, which can still be done without field
theory. We can link that result to the ‘Feynman rules’ derived in field theory.

2.2 Non-relativistic scattering

t=0 

H

V(x,t)ψ
i

ψ
f

0

0H
t=T/2t=−T/2

Figure 2.1: Scattering of a single particle in a potential.

Consider the scattering of a particle in a potential as depicted in Fig. 2.1 Assume that
both long before and long after the interaction takes place, the system is described by
the free Schrödinger equation,

i~ @ 
@t

= H0  (2.9)

where H0 is the unperturbed, time-independent Hamiltonian for a free particle. Let
�m(x) be a normalized eigenstate of H0 with eigenvalue Em,

H0�m(x) = Em�m(x). (2.10)

The states �m form an orthonormal basis,
Z
�⇤

m
(x) �n(x) d3x = �mn. (2.11)

We use the Kronecker delta, as if the spectrum of eigenstates is discrete. In chapter 2 we
considered a continuous spectrum of eigenstates for the free Hamiltonian, ‘numbered’
by the wave number k. Eventually, we could do that here, too, replacing the Kronecker
delta by a Dirac delta-function. However, it is trivial to change between the two and
the notation is a bit easier when we work with a discrete set of states.

𝑖
𝜕𝜓
𝜕𝑡 = 𝐻?𝜓

𝐻?𝜙B �⃗� = 𝐸B𝜙B �⃗�

𝜓B �⃗�, 𝑡 = 𝜙B �⃗� 𝑒C:D5;

𝑖
𝜕𝜓
𝜕𝑡

= 𝐻? + 𝑉 �⃗�, 𝑡 𝜓

𝜓 �⃗�, 𝑡 = Q
EF?

G

𝑎E 𝑡 𝜙E �⃗� 𝑒C:D6;

𝑖 Q
EF?

G
d𝑎E 𝑡
d𝑡

𝜙E �⃗� 𝑒C:D6; = Q
EF?

G

𝑉 �⃗�, 𝑡 𝑎E 𝑡 𝜙E �⃗� 𝑒C:D6;

B𝜙B∗ �⃗� 𝜙E �⃗� 𝑑7𝑥 = 𝛿BE

𝑖 J
./0

1
d𝑎. 𝑡
d𝑡

𝜙. �⃗� 𝑒234$5 + 𝑖 −𝑖𝐸. J
./0

1

𝑎. 𝑡 𝜙. �⃗� 𝑒234$5 = J
./0

1

𝐸.𝑎. 𝑡 𝜙. �⃗� 𝑒234$5 +J
./0

1

𝑉 �⃗�, 𝑡 𝑎. 𝑡 𝜙. �⃗� 𝑒234$5

(Particle = wave packet)



• Using orthonormality gives:

or in short:                                                           with 

and the transition matrix element: 

Perturbation Theory

• Multiply the equation:

… from the left by                 with
to find: 

𝑖 Q
EF?

G
d𝑎E 𝑡
d𝑡 𝜙E �⃗� 𝑒C:D6; = Q

EF?

G

𝑉 �⃗�, 𝑡 𝑎E 𝑡 𝜙E �⃗� 𝑒C:D6;

𝑖 Q
EF?

G
d𝑎E 𝑡
d𝑡 Bd7𝑥𝜙V∗ �⃗� 𝜙E �⃗�

W76

𝑒C: D6CD7 ; = Q
EF?

G

𝑎E 𝑡 Bd7𝑥 𝜙V∗ �⃗� 𝑉 �⃗�, 𝑡 𝜙E �⃗� 𝑒C: D6CD7 ;

𝑖
d𝑎V 𝑡
d𝑡

= Q
EF?

G

𝑎E 𝑡 𝑉VE 𝑒:X76; 𝜔VE = 𝐸V − 𝐸E

𝑉VE = B𝑑7𝑥 𝜙V∗ 𝑉 �⃗�, 𝑡 𝜙E �⃗�

𝜓V∗ = 𝜙V∗𝑒:D7;B𝜓V∗𝑑7𝑥

𝑖
𝑑𝑎V 𝑡
𝑑𝑡 = Q

EF?

G

𝑎E 𝑡 Bd7𝑥 𝜙V∗ �⃗� 𝑉 �⃗�, 𝑡 𝜙E �⃗� 𝑒C: D6CD7 ;



Perturbation Theory
• Solving differential equation:

• Start with some assumption of zero-th order 
for 𝑎' and then for each order 𝑜:

• First order: assume one step interaction:  
“during” interaction: 𝑎V

? (𝑡) = 𝛿V: :

• Perturbation theory:              

𝑖
d𝑎V 𝑡
d𝑡 = Q

EF?

G

𝑎E 𝑡 𝑉VE 𝑒:X76;

𝑖
d𝑎V

<Y> 𝑡
d𝑡 = Q

EF?

G

𝑎E
< 𝑡 𝑉VE 𝑒:X76;

𝑎V
> 𝑡 = B

CG

; d𝑎V 𝑡Z

d𝑡 d𝑡Z = −𝑖B
CG

;
𝑉V: 𝑡Z 𝑒:X78;
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𝑖
d𝑎V

> 𝑡
d𝑡 = 𝑉V: 𝑡 𝑒:X78;

𝑎: −∞ = 1 and 𝑎V −∞ = 0 (for 𝑓 ≠ 𝑖)
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In some cases the set of equations (2.17) can be solved explicitly. A general solution is
obtained in perturbation theory, by expanding in Vkn. The approximation of order p+1
can be obtained by inserting the p-th order result on the right hand side of Eq. (2.17),

i~da(p+1)

k
(t)

dt
⇡

X

n

a(p)

n
(t)Vkn(t)ei!knt (2.20)

Without loss in generality we now assume that the incoming wave is prepared in eigen-
state i of the free Hamiltonian, i.e. ak(�1) = �ki. The zeroeth order approximation

then is a(0)

k
(t) = �ki (no interaction occurs) and the first order result becomes

i~da(1)

k
(t)

dt
= Vki(t)e

i!kit (2.21)

Using that af (�1) = 0 and integrating this equation we obtain for the coe�cient a(1)

k
(t)

at time t,

a(1)

k
(t) =

Z
t

�1

daf (t0)

dt
dt0 =

1

i~

Z
t

�1
Vki(t

0)ei!kit
0
dt0 for k 6= i (2.22)

Higher order approximations can be obtained by inserting the lowest order solution in
the right side of Eq. (2.20). (See textbooks.) A graphical illustration of the first and
second order perturbation is given in Fig. 2.2. Note that the lowest order approximation
makes one ‘quantum step’ from the initial state i to the final state f , while the second
order approximation includes all amplitudes i! n! f .

V

fi

fn

ni
space

time

i

f

i

f
1−st order 2−nd order

V V

Figure 2.2: First and second order approximation in scattering.

In the following we only consider the first order approximation (Born approximation).
We define the transition amplitude Tfi as the amplitude to go from a state i to a final
state f at large times,

Tfi ⌘ af(t!1) =
1

i~

Z 1

�1
dt

Z
d3x  ⇤

f
(x, t) V (x, t)  i(x, t) (2.23)

where we substituted the definitions of Vkn and !kn. We can write the result more
compactly as

Tfi =
1

i~

Z
d4x  ⇤

f
(x) V (x)  i(x) (2.24)
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The ‘physics’ (the dynamics of the interaction) is contained in the transition rate Wfi.
The flux and the phase space factors are just ‘bookkeeping’, required to compare the
result with the measurements.

The rigorous computation of the transition rate requires quantum field theory, which
is outside the scope of this course. However, to illustrate the concepts we discuss non-
relativistic scattering of a single particle in a time-dependent potential and formulate
the result in a Lorentz covariant way. In the next chapter we will derive the lowest order
amplitude for the scattering of A + B ! A + B, which can still be done without field
theory. We can link that result to the ‘Feynman rules’ derived in field theory.

2.2 Non-relativistic scattering
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V(x,t)ψ
i

ψ
f

0

0H
t=T/2t=−T/2

Figure 2.1: Scattering of a single particle in a potential.

Consider the scattering of a particle in a potential as depicted in Fig. 2.1 Assume that
both long before and long after the interaction takes place, the system is described by
the free Schrödinger equation,

i~ @ 
@t

= H0  (2.9)

where H0 is the unperturbed, time-independent Hamiltonian for a free particle. Let
�m(x) be a normalized eigenstate of H0 with eigenvalue Em,

H0�m(x) = Em�m(x). (2.10)

The states �m form an orthonormal basis,
Z
�⇤

m
(x) �n(x) d3x = �mn. (2.11)

We use the Kronecker delta, as if the spectrum of eigenstates is discrete. In chapter 2 we
considered a continuous spectrum of eigenstates for the free Hamiltonian, ‘numbered’
by the wave number k. Eventually, we could do that here, too, replacing the Kronecker
delta by a Dirac delta-function. However, it is trivial to change between the two and
the notation is a bit easier when we work with a discrete set of states.

for 𝑓 ≠ 𝑖

𝑉6. = [𝑑7𝑥 𝜙6∗ 𝑉 �⃗�, 𝑡 𝜙. �⃗�

𝜔6. = 𝐸6 − 𝐸.

𝜓# �⃗�, 𝑡 = 𝑎# 𝑡 𝜙# �⃗� 𝑒3#:";
with 𝑎# −∞ = 1



Perturbation Theory

• First order perturbation: 

Results in (“Born approximation”) “transition amplitude” 𝑇vd:

• If the potential is time independent (“static”) we find:

• Where we have used an implementation 
of the Dirac delta function:

𝑇V: ≡ 𝑎V 𝑡 → ∞ = −𝑖 B
CG

G
d𝑡Bd7𝑥𝜓V∗ �⃗�, 𝑡 𝑉 �⃗�, 𝑡 𝜓: �⃗�, 𝑡 = −𝑖 BdA𝑥 𝜓V∗ 𝑥 𝑉 𝑥 𝜓: 𝑥

𝑇V: ≡ 𝑎V 𝑡 → ∞ = −𝑖 𝑉V:B
CG

G
𝑒:X78;d𝑡 = −2𝜋𝑉V:𝛿 𝐸V − 𝐸:

𝛿 𝑥 =
1
2𝜋BCG

G
𝑒:^_d𝑘
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In some cases the set of equations (2.17) can be solved explicitly. A general solution is
obtained in perturbation theory, by expanding in Vkn. The approximation of order p+1
can be obtained by inserting the p-th order result on the right hand side of Eq. (2.17),

i~da(p+1)

k
(t)

dt
⇡

X

n

a(p)

n
(t)Vkn(t)ei!knt (2.20)

Without loss in generality we now assume that the incoming wave is prepared in eigen-
state i of the free Hamiltonian, i.e. ak(�1) = �ki. The zeroeth order approximation

then is a(0)

k
(t) = �ki (no interaction occurs) and the first order result becomes

i~da(1)

k
(t)

dt
= Vki(t)e

i!kit (2.21)

Using that af (�1) = 0 and integrating this equation we obtain for the coe�cient a(1)

k
(t)

at time t,

a(1)

k
(t) =

Z
t

�1

daf (t0)

dt
dt0 =

1

i~

Z
t

�1
Vki(t

0)ei!kit
0
dt0 for k 6= i (2.22)

Higher order approximations can be obtained by inserting the lowest order solution in
the right side of Eq. (2.20). (See textbooks.) A graphical illustration of the first and
second order perturbation is given in Fig. 2.2. Note that the lowest order approximation
makes one ‘quantum step’ from the initial state i to the final state f , while the second
order approximation includes all amplitudes i! n! f .
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Figure 2.2: First and second order approximation in scattering.

In the following we only consider the first order approximation (Born approximation).
We define the transition amplitude Tfi as the amplitude to go from a state i to a final
state f at large times,

Tfi ⌘ af(t!1) =
1

i~

Z 1

�1
dt

Z
d3x  ⇤

f
(x, t) V (x, t)  i(x, t) (2.23)

where we substituted the definitions of Vkn and !kn. We can write the result more
compactly as

Tfi =
1

i~

Z
d4x  ⇤

f
(x) V (x)  i(x) (2.24)

( 𝑉63 = ∫d7𝑥 𝜙6∗ 𝑉 �⃗�, 𝑡 𝜙3 �⃗� )

𝑎V
> 𝑡 = B

CG

; d𝑎V 𝑡Z

d𝑡 d𝑡Z = −𝑖B
CG

;
𝑉V: 𝑡Z 𝑒:X78;
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Note: co-variant form!
“cheat relativity theory”

𝜔63 = 𝐸6 − 𝐸3

Energy conservation!



Golden Rule – non-relativistic

• Transition rate is defined as:

• After squaring of the delta function (not trivial, see     
PP1) results in transition probability per unit time:
• Where the delta function takes care of energy conservation
• The name 𝑉rb was used here since it relates to the potential 𝑉
• We adapt the more common name for the matrix element ℳ

• Waves à particles: The differential cross section is:
• Where flux represents the “density” of the number of incoming 

states per particle: states àparticle
• The phase space factor Φ (also ‘LIPS’) is the density of outgoing 

states (final state “realisation possibilities”) 

𝑊rb ≡ lim
s→t

𝑇rb
T

𝑇

𝑊rb = 2𝜋 𝑉rb
T
𝛿 𝐸r − 𝐸b

𝜎 =
𝑊rb
_lux

Φ

• Next extend it to relativistic scattering using the matrix element ℳ

For more, see  Chapter 2 
of the Nikhef PP1 Lectures

𝑇V: = −2𝜋𝑉V:𝛿 𝐸V − 𝐸:

( 𝑉63 = ∫d7𝑥 𝜙6∗ 𝑉 �⃗�, 𝑡 𝜙3 �⃗� )
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• After squaring of the delta function (not trivial, see     
PP1) results in transition probability per unit time:
• Where the delta function takes care of energy conservation
• The name 𝑉rb was used here since it relates to the potential 𝑉
• We adapt the more common name for the matrix element ℳ

• Waves à particles: The differential cross section is:
• Where flux represents the “density” of the number of incoming 

states per particle: states àparticle
• The phase space factor Φ (also ‘LIPS’) is the density of outgoing 

states (final state “realisation possibilities”) 

𝑊rb ≡ lim
s→t
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𝑇

𝑊rb = 2𝜋 𝑉rb
T
𝛿 𝐸r − 𝐸b
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For more, see  Chapter 2 
of the Nikhef PP1 Lectures
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Fermi’s Golden Rule - Relativistic

• In Griffiths the relativistic Golden Rule for decay and scattering are just 
stated.
• Try to gain understanding by considering each of the terms qualitatively. 

A. Golden Rule for decays: 1 → 2 + 3 + 4 +⋯𝑛

B. Golden Rule for scattering (cross section): 1 + 2 → 3 + 4 + 5 +⋯𝑛

• We will discuss them in turn…

Γ =
𝑆
2𝑚!

k ℳ " 2𝜋 #𝛿# 𝑝! − 𝑝" − 𝑝$…− 𝑝% × p
&'"

%

2𝜋𝛿 𝑝&" −𝑚&" 𝜃 𝑝&(
𝑑#𝑝&
2𝜋 #

𝜎 =
𝑆

4 𝑝! ⋅ 𝑝" " − 𝑚!𝑚"
"
k ℳ " 2𝜋 #𝛿# 𝑝! + 𝑝" − 𝑝$…− 𝑝% × p

&'$

%

2𝜋𝛿 𝑝&" −𝑚&" 𝜃 𝑝&(
𝑑#𝑝&
2𝜋 #

Griffiths §6.2 Back to Griffiths

Γ ≡decay rate     +
<
= 𝜏 ≡ mean lifetime



A. Decay

• Golden Rule for Decay:

• 𝑆 is a quantum factor to prevent double counting for identical particles
• Each species with s particles in the final state gives factor 1/𝑠!
• Eg.: decay 𝑎 → 𝑏 + 𝑏 + 𝑐 + 𝑐 + 𝑐 gets factor 1/2! × 1/3! = 1/12

• 2𝑚Z = 2𝐸: density of incoming states (see lecture 3: 𝜌 = 2 𝑁 T𝐸).
• ℳ is the Matrix Element: contains the dynamics (the interesting particle physics). It is 

given by the Feynman rules. See later.
• ∫ implements the integral over all realization possibilities to obtain the final state. 
• 𝛿 is the Dirac delta function. 𝛿U implements energy-momentum conservation and      
∏𝛿 assures produced particles are on-mass shell: 𝑝T = 𝑚T → 𝐸T − �⃗�T = 𝑚T .

• 𝜃 step function so that only 𝐸 > 0 .
• Each 𝛿-function comes with a factor 2𝜋 and each 𝑑U𝑝 with ⁄1 2𝜋 .            

Γ =
𝑆
2𝑚!

k ℳ " 2𝜋 #𝛿# 𝑝! − 𝑝" − 𝑝$…− 𝑝% × p
&'"

%

2𝜋𝛿 𝑝&" −𝑚&" 𝜃 𝑝&(
𝑑#𝑝&
2𝜋 #

underlying reason:
ℏ = ℎ/2𝜋

𝜃 𝑝=( =
“Heavyside function”

0

11

4

32

5

Phase Space Φ:
Realize each possibility 
with equal probability



A. Decay
• Decay:

• Using the mathematical characteristics of Dirac 𝛿 functions (optional exercise, 
Griffiths page 205: “the 𝜃 𝑝() -function kills the 𝛿 𝑝() ”), the second part can be 
shortened into: 

Γ =
𝑆
2𝑚!

k ℳ " 2𝜋 #𝛿# 𝑝! − 𝑝" − 𝑝$…− 𝑝% × p
&'"

%

2𝜋𝛿 𝑝&" −𝑚&" 𝜃 𝑝&(
𝑑#𝑝&
2𝜋 #

Γ =
𝑆
2𝑚!

k ℳ " 2𝜋 #𝛿# 𝑝! − 𝑝" − 𝑝$…− 𝑝% × p
&'"

%
1
2𝐸&

𝑑$�⃗�&
2𝜋 $

• Consider the example 𝐴 → 𝐵 + 𝐶

• Kinematics for the two-particle case……

𝐴
𝐵𝐶

Eg.: 𝐾 → 𝜋4 + 𝜋3

𝐴: 𝑝!
- = 𝑚!, 0, 0, 0

𝐵: 𝑝"
- = 𝐸", 𝑝", 0, 0

𝐶: 𝑝$
- = 𝐸$ 𝑝$, 0, 0

Γ =
𝑆

32𝜋"𝑚!
k ℳ " 𝛿# 𝑝! − 𝑝" − 𝑝$

𝑑$�⃗�"
𝐸"

𝑑$�⃗�$
𝐸$

𝜃 𝑝=( =
“Heavyside function”

0

11

4

32

5

Use:  𝛿 𝑥9 − 𝑎9 = :
9;

𝛿 𝑥 − 𝑎 + 𝛿 𝑥 + 𝑎



Two-particle decay … calculate…

Γ =
𝑆

32𝜋"𝑚!
k ℳ " 𝛿# 𝑝! − 𝑝" − 𝑝$

𝑑$�⃗�"
𝐸"

𝑑$�⃗�$
𝐸$

𝛿# 𝑝! − 𝑝" − 𝑝$ = 𝛿 𝑝!( − 𝑝"( − 𝑝$( 𝛿$ �⃗�! − �⃗�" − �⃗�$

Now: 𝑝!( = 𝑚! and �⃗�! = 0

Γ =
𝑆

32𝜋"𝑚!
k ℳ "

𝛿 𝑚! − �⃗�"" +𝑚"
" − �⃗�$" +𝑚$

"

�⃗�"" +𝑚"
" �⃗�$" +𝑚$

"
𝛿$ �⃗�" + �⃗�$ 𝑑$�⃗�"𝑑$�⃗�$

𝐴
𝐵𝐶

𝐴: 𝑝!
- = 𝑚!, 0, 0, 0

𝐵: 𝑝"
- = 𝐸", 𝑝", 0, 0

𝐶: 𝑝$
- = 𝐸$ 𝑝$, 0, 0

Next: use �⃗�$ = −�⃗�"

Γ =
𝑆

32𝜋"𝑚!
k ℳ "

𝛿 𝑚! − �⃗�"" +𝑚"
" − �⃗�"" +𝑚$

"

�⃗�"" +𝑚"
" �⃗�"" +𝑚$

"
𝑑$�⃗�" Next, go to spherical coordinates:

�⃗�" → 𝑝, 𝜃, 𝜙

Γ =
𝑆

32𝜋"𝑚!
k ℳ "

𝛿 𝑚! − 𝑝" +𝑚"
" − 𝑝" +𝑚$

"

𝑝" +𝑚"
" 𝑝" +𝑚$

"
𝑝"𝑑𝑝ksin 𝜃 𝑑𝜃 𝑑𝜙

#.



Two-particle decay … calculate…

The integral over 𝑑𝑝 is not easy to calculate. Make the substitution: 𝑢 ≡ 𝑝" +𝑚"
" + 𝑝" +𝑚$

"

Then:                                                              ;
𝑑𝑢
𝑑𝑝

=
𝑢𝑝

𝑝" +𝑚"
" 𝑝" +𝑚$

"

Such that we recognize:

Γ =
𝑆

8𝜋𝑚!
k
/!0/<

1
ℳ " 𝛿 𝑚! − 𝑢

𝑝
𝑢 𝑑𝑢 which only has a contribution for 𝑢 = 𝑚! (𝛿-function):

Inverting the equation for 𝑢 and 𝑝 and putting 𝑢 = 𝑚! gives (exercise):

𝑝 = �⃗� =
1
2𝑚!

𝑚!
# +𝑚"

# +𝑚$
# − 2𝑚!

"𝑚"
" − 2𝑚!

"𝑚$
" − 2𝑚"

"𝑚$
"

and putting 𝑢 = 𝑚! gives finally : Γ = * ,⃗
-./g

h ℳ 0

Note that the 𝛿-functions were enough to do all the integrals and put the required kinematic value for �⃗�

𝑝𝑑𝑝 =
𝑑𝑢
𝑢

𝑝" +𝑚"
" 𝑝" +𝑚$

"

Note: 𝑚: > 𝑚9 +𝑚7

Griffiths pages 207 - 208



Exercise (Optional):  Kinematics relation

• Show explicitly that by inverting the equation:

𝑚� = 𝑝� +𝑚�
� + 𝑝� +𝑚�

�

it follows that:

𝑝 = �
��!

𝑚�
� +𝑚�

� +𝑚�
� − 2𝑚�

�𝑚�
� − 2𝑚�

�𝑚�
� − 2𝑚�

�𝑚�
�
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(b) According to Eq. 6.10,
ds

dW
=

����
b

sin q

db
dq

����. In this case,

dq

db
= p

1
2

1
[1 + (k/b2E)]3/2

✓
k
E

◆ ✓
� 2

b3

◆
= � kp

E

✓
b2 +

k
E

◆�3/2

ds

dW
=

b
sin q

E
kp

✓
b2 +

k
E

◆3/2
. But we want it in terms of q :

1� q

p
=

1p
1 + (k/b2E)

=) 1 +
k

b2E
=

1
(1� q

p )2

=) k
b2E

=
1

(1� q
p )2
� 1 =

1� 1 + 2 q
p �

q2

p2

(1� q
p )2

=
q(2p � q)
(p � q)2

b2E
k

=
(p � q)2

q(2p � q)
; b2 =

k
E

(p � q)2

q(2p � q)

) ds

dW
=

b4

sin q

E
kp

✓
1 +

k
b2E

◆3/2
=

1
sin q

k2

E2
(p � q)4

q2(2p � q)2
E

kp

✓
p

p � q

◆3

ds

dW
=

p2

sin q

k
E

(p � q)
q2(2p � q)2

(c)

s =
Z ds

dW
dW =

p2k
E

Z 1
sin q

(p � q)
q2(2p � q)2 (sin q dq df)

=
2p3k

E

Z p

0

(p � q)
q2(2p � q)2 dq = Infinity.

Problem 6.5

m1c =
q

r2 + m2
2c2 +

q
r2 + m2

3c2. Square:

m2
1c2 = r2 + m2

2c2 + r2 + m2
3c2 + 2

q
r2 + m2

2c2
q

r2 + m2
3c2

c2

2
(m2

1 �m2
2 �m2

3)� r2 =
q

r2 + m2
2c2

q
r2 + m2

3c2. Square again:

c4

4
(m2

1�m2
2�m2

3)
2� r2c2(m2

1�m2
2�m2

3)+◆◆r4 = ◆◆r4 + r2c2(m2
2 + m2

3)+ m2
2m2

3c4

c4

4

h
(m2

1 �m2
2 �m2

3)
2 � 4m2

2m2
3

i
= r2c2(m2

2 + m2
3 + m2

1�m2
2�m2

3) = r2m2
1c2
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r2 =
c2

4m2
1

h
m4

1 + m4
2 + m4

3 � 2m2
1m2

2 � 2m2
1m2

3 + 2m2
2m2

3 � 4m2
2m2

3

i

r =
c

2m1

q
m4

1 + m4
2 + m4

3 � 2m2
1m2

2 � 2m2
1m2

3 � 2m2
2m2

3 X

Problem 6.6

Plug M = ampc into Eq. 6.35, with S = 1/2:

G =
|p|

16ph̄m2
pc

(ampc)2 =
a2c

16ph̄
|p|.

But Eg = 1
2 mpc2 ) |pg| = Eg/c = 1

2 mpc. So G = a2mpc2/32ph̄.

t =
1
G

=
32ph̄

a2mpc2 =
32p(6.58⇥ 10�22)(137)2

135
= 9.2⇥ 10�18 s.

The experimental value is 8.4⇥ 10�17 s, so this estimate is off by a factor of 10.

Problem 6.7

(a) In the CM frame, p2 = �p1, so p1 =
✓

E1
c

, p1

◆
, p2 =

✓
E2
c

,�p1

◆
.

p1 · p2 =
E1
c

E2
c
� p1 · (�p1) =

E1E2
c2 + p2

1

(p1 · p2)2 � (m1m2c2)2 =
✓

E1E2
c2 + p2

1

◆2
� (m1m2c2)2

=
E2

1E2
2

c4 + 2
E1E2

c2 p2
1 + p4

1 �m2
1m2

2c4

But m2
1c2 =

E2
1

c2 � p2
1, and m2

2c2 =
E2

2
c2 � p2

2 =
E2

2
c2 � p2

1. So:

(p1 · p2)2 � (m1m2c2)2

=
�

��E2
1E2

2
c4 + 2

E1E2
c2 p2

1 + ◆◆p
4
1 �

 
E2

1
c2 � p2

1

! 
E2

2
c2 � p2

1

!

| {z }

�
�E2

1 E2
2

c4 �p2
1

(E2
1+E2

2)
c2 +◆◆p

4
1

=
1
c2 p2

1(E2
1 + E2

2 + 2E1E2) =
1
c2 p2

1(E1 + E2)2.
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(b) According to Eq. 6.10,
ds

dW
=

����
b

sin q

db
dq

����. In this case,

dq

db
= p

1
2

1
[1 + (k/b2E)]3/2

✓
k
E

◆ ✓
� 2

b3

◆
= � kp

E

✓
b2 +

k
E

◆�3/2

ds

dW
=

b
sin q

E
kp

✓
b2 +

k
E

◆3/2
. But we want it in terms of q :

1� q

p
=

1p
1 + (k/b2E)

=) 1 +
k

b2E
=

1
(1� q

p )2

=) k
b2E

=
1

(1� q
p )2
� 1 =

1� 1 + 2 q
p �

q2

p2

(1� q
p )2

=
q(2p � q)
(p � q)2

b2E
k

=
(p � q)2

q(2p � q)
; b2 =

k
E

(p � q)2

q(2p � q)

) ds

dW
=

b4

sin q

E
kp

✓
1 +

k
b2E

◆3/2
=

1
sin q

k2

E2
(p � q)4

q2(2p � q)2
E

kp

✓
p

p � q

◆3

ds

dW
=

p2

sin q

k
E

(p � q)
q2(2p � q)2

(c)

s =
Z ds

dW
dW =

p2k
E

Z 1
sin q

(p � q)
q2(2p � q)2 (sin q dq df)

=
2p3k

E

Z p

0

(p � q)
q2(2p � q)2 dq = Infinity.

Problem 6.5

m1c =
q

r2 + m2
2c2 +

q
r2 + m2

3c2. Square:

m2
1c2 = r2 + m2

2c2 + r2 + m2
3c2 + 2

q
r2 + m2

2c2
q

r2 + m2
3c2

c2

2
(m2

1 �m2
2 �m2

3)� r2 =
q

r2 + m2
2c2

q
r2 + m2

3c2. Square again:

c4

4
(m2

1�m2
2�m2

3)
2� r2c2(m2

1�m2
2�m2

3)+◆◆r4 = ◆◆r4 + r2c2(m2
2 + m2

3)+ m2
2m2

3c4

c4

4

h
(m2

1 �m2
2 �m2

3)
2 � 4m2

2m2
3

i
= r2c2(m2

2 + m2
3 + m2

1�m2
2�m2

3) = r2m2
1c2

Solution: (put 𝑐 = 1)



B. Cross Section                                                     (Scattering)

• Golden rule for cross section:

• Can be shortened, just as for decay, by doing the integrals over 𝑝�

requiring on-mass relation: 𝑝�� = 𝑝�� +𝑚�� = 𝐸� to find:

𝜎 =
𝑆

4 𝑝! ⋅ 𝑝" " − 𝑚!𝑚"
"
k ℳ " 2𝜋 #𝛿# 𝑝! + 𝑝" − 𝑝$…− 𝑝% × p

&'$

%

2𝜋𝛿 𝑝&" −𝑚&" 𝜃 𝑝&(
𝑑#𝑝&
2𝜋 #

𝜎 =
𝑆

4 𝑝! ⋅ 𝑝" " − 𝑚!𝑚"
"
k ℳ " 2𝜋 #𝛿# 𝑝! + 𝑝" − 𝑝$…− 𝑝% × p

&'$

%
1
2𝐸&

𝑑$�⃗�&
2𝜋 $

• Consider the (“2-to-2”) example 𝐴 + 𝐵 → 𝐶 + 𝐷
• Kinematics for the two-particle case……

Before After 
B DA

C
𝜃

𝑝! 𝑝"
𝑝#

𝑝$

1

6

3

2

5

4

Flux Phase Space Φ

Remember NR: 𝜎 = >!"
?@AB

Φ



Two-to-Two cross section …

𝜎 =
𝑆

4 𝑝! ⋅ 𝑝" " − 𝑚!𝑚"
"
k ℳ " 2𝜋 #𝛿# 𝑝! + 𝑝" − 𝑝$ − 𝑝# × p

&'$

%
1
2𝐸&

𝑑$�⃗�&
2𝜋 $

Before After 
B DA

C
𝜃

𝑝! 𝑝"
𝑝#

𝑝$

• 𝐴 + 𝐵 → 𝐶 + 𝐷

Use: 𝑝!
- = 𝐸!, �⃗�! , 0,0 and 𝑝"

- = 𝐸", − �⃗�! , 0,0 to see that, after kinematic calculation’s – see Griffiths…

𝜎 =
𝑆

64𝜋" 𝐸! + 𝐸" �⃗�!
k ℳ " 2𝜋 #𝛿# 𝑝! + 𝑝" − 𝑝$ − 𝑝#

𝑑$�⃗�$
𝐸$

𝑑$�⃗�#
𝐸#

Again, split up the 𝛿# 𝑝! + 𝑝" − 𝑝$ − 𝑝# into 𝛿 𝐸! + 𝐸" − 𝐸$ − 𝐸# × 𝛿$ �⃗�$ + �⃗�# …etc… similar as decay.

Complication: there is an angle 𝜃 in the game and we cannot carry out the integral , since ℳ can depend on it.
(Q: Why was there no 𝜃 in the case of decay?).

Determine the angle dependent cross section:
𝑑𝜎
𝑑Ω =

1
8𝜋

9 𝑆 ℳ 9

𝐸> + 𝐸9 9
�⃗�V
�⃗�:

Kinematics for the two-particle case in Center-of-Mass: �⃗�" = −�⃗�!



Two-to-Two cross section …

𝜎 =
𝑆

4 𝑝! ⋅ 𝑝" " − 𝑚!𝑚"
"
k ℳ " 2𝜋 #𝛿# 𝑝! + 𝑝" − 𝑝$ − 𝑝# × p

&'$

%
1
2𝐸&

𝑑$�⃗�&
2𝜋 $

Before After 
B DA

C
𝜃

𝑝! 𝑝"
𝑝#

𝑝$

• 𝐴 + 𝐵 → 𝐶 + 𝐷

Use: 𝑝!
- = 𝐸!, �⃗�! , 0,0 and 𝑝"

- = 𝐸", − �⃗�! , 0,0 to see that, after kinematic calculation’s – see Griffiths…

𝜎 =
𝑆

64𝜋" 𝐸! + 𝐸" �⃗�!
k ℳ " 2𝜋 #𝛿# 𝑝! + 𝑝" − 𝑝$ − 𝑝#

𝑑$�⃗�$
𝐸$

𝑑$�⃗�#
𝐸#

Again, split up the 𝛿# 𝑝! + 𝑝" − 𝑝$ − 𝑝# into 𝛿 𝐸! + 𝐸" − 𝐸$ − 𝐸# × 𝛿$ �⃗�$ + �⃗�# …etc… similar as decay.

Complication: there is an angle 𝜃 in the game and we cannot carry out the integral , since ℳ can depend on it.
(Q: Why was there no 𝜃 in the case of decay?).

Determine the angle dependent cross section:
𝑑𝜎
𝑑Ω =

1
8𝜋

9 𝑆 ℳ 9

𝐸> + 𝐸9 9
�⃗�V
�⃗�:

Kinematics for the two-particle case in Center-of-Mass: �⃗�" = −�⃗�!

If you really want to know…



How are you doing?



How are you doing?



How are you doing?



Scattering Theory and Feynman Calculus

Part 3
Feynman Calculus Griffiths §6.3

Griffiths Chapter 6

Or: how to find the matrix element ℳ
This is the dynamics: the interesting bit! 



Feynman Rules: ABC Toy Theory 

• All the “real” particle physics is in the calculation of the matrix  ℳ.

• A full derivation of QED is not in the scope of the lectures. We give a “recipe”. 

𝐴
𝐵

𝐶

• Consider ABC example theory
• ABC model is simplest possible “theory”.
• Particles have no spin
• Particles are their own antiparticle
• No “arrows” needed
• Think of 𝜋8, 𝐾8, 𝜂 particles etc

• No real forces, just “particles”

• For the following recipe keep perturbation theory and the golden rule in mind.

Only one fundamental vertex



Feynman Rules: ABC Toy Theory for 𝐴 + 𝐵 → 𝐴 + 𝐵
• Recipe to find ℳ:

1. Draw all the possible diagrams
2. Label the external 4-momenta 𝑝:

5 and 
put an arrow for the direction forward 
in time for external lines

3. For each vertex write a factor −𝑖𝑔
4. Propagators: for each internal line 

write:  :
mC
DCBC

D

• Note that for an internal line: 𝑞9: ≠ 𝑚9:
𝑡

𝐴

𝐵

𝐵

𝐴

𝐶

𝑝#
𝑞

𝑝"

𝑝! 𝑝$

−𝑖𝑔 −𝑖𝑔

𝐴

𝐵 𝐴

𝐵

𝐶

𝑝!

𝑝"

𝑝$

𝑝#

𝑞

−𝑖𝑔

−𝑖𝑔

5. Conservation of energy and momentum:
• For each vertex write a 𝛿-function of the form: 2𝜋 # 𝛿# 𝑘! + 𝑘" + 𝑘$ , with a positive sign for 

momenta 𝑘* going into the vertex. This 𝛿 makes sure that no momentum is “disappearing into a vertex” 

6. Integrate over all internal momenta. For each internal line write a factor >
9@ E 𝑑A𝑞:

7. Result will include a delta function: 2𝜋 A𝛿A 𝑝> + 𝑝9 − 𝑝7…− 𝑝E reflecting overall energy 
and momentum conservation. Erase this delta function factor and multiply by 𝑖. àℳ



Decay: Lifetime of 𝐴 → 𝐵 + 𝐶
Feynman rules:

1. Diagrams: see sketch
2. Labels: see sketch 
3. One vertex: −𝑖𝑔
4. Propagators: no internal lines
5. Conservation of energy and momentum: 2𝜋 A 𝛿A 𝑝> − 𝑝9 − 𝑝7
6. Integrate: no internal momenta
7. Discard delta-function and multiply by 𝑖.

Result for the amplitude: ℳ = 𝑔

We obtain: Γ = * ,⃗
-./n

h ℳ 0 = ,⃗
-./n

h 𝑔0 (no identical particles: 𝑆 = 1)  

where �⃗� = >
9BF

𝑚o
A +𝑚p

A +𝑚q
A − 2𝑚o

9𝑚p
9 − 2𝑚o

9𝑚q
9 − 2𝑚p

9𝑚q
9 (see before) 

So that the lifetime is: 𝜏 = �
�
= ���"

#

2# �⃗

𝐴

𝐵

𝐶𝑝!

𝑝"

𝑝$

−𝑖𝑔



Exercise: Pion Decay

Calculate the lifetime of the neutral pion 𝜋�
The neutral pion decays mainly via: 𝜋m → 𝛾𝛾. Assume that the amplitude has 
dimensions mass × velocity . Griffiths: 𝜋m = Z

T
𝑢#𝑢 − 𝑑�̅�

a) Motivate the reason that the amplitude should be proportional to the 
coupling constant: ℳ ∝ 𝛼 = 𝑒T/4𝜋. Sketch a diagram of the decay.
For dimensional reasons ℳ is of the form ℳ = 𝛼𝑚z

b) Use Fermi’s golden rule for two-body decays to estimate the decay width Γ of 
the pion. What are 𝑆,𝑚{, �⃗� ? Express Γ in GeV.

c) Use the conversion table to calculate the lifetime of the 𝜋m and compare it 
with the experimental value. What do you think?

Griffiths exercise 6.6



𝐴 + 𝐴 → 𝐵 + 𝐵 Scattering: ℳ
Feynman rules:

1. Diagram: see sketch
2. Labels: see sketch 
3. Two vertices: −𝑖𝑔 9 = −𝑔9

4. Propagators: one internal line: :
mDCBG

D

5. Conservation of energy and momentum twice: 
2𝜋 A 𝛿A 𝑝> − 𝑝7 − 𝑞 and 2𝜋 A 𝛿A 𝑝9 + 𝑞 − 𝑝A

6. Integrate: one integral:  >
9@ E 𝑑A𝑞

Result so far: 

− 2𝜋 A𝑔9B
𝑖

𝑞9 −𝑚q
9 𝛿

A 𝑝> − 𝑝7 − 𝑞 𝛿A 𝑝9 + 𝑞 − 𝑝A 𝑑A𝑞

Doing integral over 2nd 𝛿A sets 𝑞 = 𝑝A − 𝑝9 . Into first 𝛿A to find

−𝑔9
𝑖

𝑞9 −𝑚q
9 2𝜋 A𝛿A 𝑝> + 𝑝9 − 𝑝7 − 𝑝A

7. Erase delta-function and multiply by 𝑖 to  find:

𝑡

𝐴

𝐴 𝐵

𝐵

𝐶

𝑝!

𝑝"

𝑝$

𝑝#

𝑞

−𝑖𝑔

−𝑖𝑔

Before After 
𝐴 𝐵𝐴

𝐵
𝜃

𝑝! 𝑝"
𝑝#

𝑝$

ℳ =
𝑔T

𝑝U − 𝑝T T −𝑚E
T



𝐴 + 𝐴 → 𝐵 + 𝐵 Scattering: ℳ

• There is a second diagram: see sketch
• Repeat the computation?
• No, just replace: 𝑝| ↔ 𝑝U and fill in the end result:

• Note: ℳdoes not depend on Lorentz frame: it is a    
Lorentz invariant (scalar) quantity.

𝑡

𝐴

𝐴 𝐵

𝐵

𝐶

𝑝!

𝑝"

𝑝$

𝑝#

𝑞

−𝑖𝑔

−𝑖𝑔

Before After 
𝐴 𝐵𝐴

𝐵
𝜃

𝑝! 𝑝"
𝑝#

𝑝$

ℳ =
𝑔T

𝑝| − 𝑝T T −𝑚E
T +

𝑔T

𝑝U − 𝑝T T −𝑚E
T



𝐴 + 𝐴 → 𝐵 + 𝐵 Scattering: 𝑑𝜎/𝑑Ω

• Look at the matrix element and assume that  
𝑚� = 𝑚� = 𝑚 and 𝑚� = 0 (eg. a photon):

Before After 
𝐴 𝐵𝐴

𝐵
𝜃

𝑝! 𝑝"
𝑝#

𝑝$

ℳ =
𝑔T

𝑝| − 𝑝T T +
𝑔T

𝑝U − 𝑝T T

𝑝A − 𝑝9 9 −𝑚q
9 = 𝑝A9 + 𝑝99 − 2𝑝9 ⋅ 𝑝A
= 𝑚A

9 +𝑚9
9 − 2𝑝9 ⋅ 𝑝A

= 2𝑚9 − 2𝐸9𝐸A + 2 �⃗�9 ⋅ �⃗�A
= 2𝑚9 − 2 𝑚9 + �⃗�9 𝑚9 + �⃗�9 + 2�⃗�9 cos 𝜃
= −2�⃗�9 1 − cos 𝜃

𝑝7 − 𝑝9 9 −𝑚q
9 = −2�⃗�9 1 + cos 𝜃

Note that for 4-vectors:
𝑝# ⋅ 𝑝= = 𝑝#' 𝑝=

' = 𝐸#𝐸= − �⃗�# ⋅ �⃗�=
and that 𝑝" = 𝑝'𝑝' = 𝐸" − �⃗�" = 𝑚"

ℳ =
𝑔9

−2�⃗�9 1 − cos 𝜃 +
𝑔9

−2�⃗�9 1 + cos 𝜃 = −
𝑔9

2�⃗�9 sin9 𝜃

𝑑𝜎
𝑑Ω =

1
8𝜋

9 𝑆 ℳ 9

𝐸> + 𝐸9 9
�⃗�V
�⃗�:

𝑑𝜎
𝑑Ω

=
1
2

𝑔9

16𝜋𝐸�⃗�9 sin9 𝜃

9

• Plug in: (𝑆 = 1/2)

(Invariant mass)



Exercise: Two-to-Two Scattering

Consider the process: 𝐴 + 𝐵 → 𝐴 + 𝐵 in the ABC theory
a) Draw the (two) lowest-order Feynman diagrams, and calculate the amplitudes
b) Find the differential cross-section in the CM frame, assuming 𝑚{ = 𝑚~ = 𝑚 ,𝑚E = 0,

in terms of the (incoming) energy 𝐸 and the scattering angle θ.
c) Assuming next that 𝐵 is much heavier than 𝐴, calculate the differential cross-section 

in the lab frame.
d) For case c), find the total cross-section.

Griffiths exercise 6.15



Feynman Rules: ABC Toy Theory for 𝐴 + 𝐵 → 𝐴 + 𝐵
• Recipe to find ℳ:

1. Draw all the possible diagrams
2. Label the external 4-momenta 𝑝:

5 and 
put an arrow for the direction forward 
in time for external lines

3. For each vertex write a factor −𝑖𝑔
4. Propagators: for each internal line 

write:  :
mC
DCBC

D

• Note that for an internal line: 𝑞9: ≠ 𝑚9:
𝑡

𝐴

𝐵

𝐵

𝐴

𝐶

𝑝#
𝑞

𝑝"

𝑝! 𝑝$

−𝑖𝑔 −𝑖𝑔

𝐴

𝐵 𝐴

𝐵

𝐶

𝑝!

𝑝"

𝑝$

𝑝#

𝑞

−𝑖𝑔

−𝑖𝑔

5. Conservation of energy and momentum:
• For each vertex write a 𝛿-function of the form: 2𝜋 # 𝛿# 𝑘! + 𝑘" + 𝑘$ , with a positive sign for 

momenta 𝑘* going into the vertex. This 𝛿 makes sure that no momentum is “disappearing into a vertex” 

6. Integrate over all internal momenta. For each internal line write a factor >
9@ E 𝑑A𝑞:

7. Result will include a delta function: 2𝜋 A𝛿A 𝑝> + 𝑝9 − 𝑝7…− 𝑝E reflecting overall energy 
and momentum conservation. Erase this delta function factor and multiply by 𝑖. àℳ
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Problem 6.15

(a)

B

A B

A

C

1p

2p

4
p

3p

q

B

AB

A
C

1p

2p

4
p

3p

q

Diagram 1:
Z

(�ig)2 i
q2 �m2

Cc2 (2p)4d4(p1 � p4 � q)(2p)4d4(q + p2 � p3)
d4q

(2p)4

=
�ig2

(p1 � p4)2 �m2
Cc2 (2p)4d4(p1 + p2� p3� p4), M1 =

g2

(p1 � p4)2 �m2
Cc2 .

Diagram 2:
Z

(�ig)2 i
q2 �m2

Cc2 (2p)4d4(p1 + p2 � q)(2p)4d4(q� p3 � p4)
d4q

(2p)4

=
�ig2

(p1 + p2)2 �m2
Cc2 (2p)4d4(p1 + p2� p3� p4), M2 =

g2

(p1 + p2)2 �m2
Cc2 .

M =M1 +M2 = g2

"
1

(p1 � p4)2 �m2
Cc2 +

1
(p1 + p2)2 �m2

Cc2

#

(b)

B

AfterBefore

A

1
p 2p

3
p

4p
q

A

B

p1 =
✓

E
c

, p1

◆
, p2 =

✓
E
c

,�p1

◆
, p3 =

✓
E
c

, p3

◆
, p4 =

✓
E
c

,�p3

◆

(p1 + p2) =
✓

2E
c

, 0
◆

, so (p1 + p2)2 = 4
E2

c2
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p1 � p4 = (0, p1 + p3), so

(p1 � p4)2 = �(p1 + p3)2 = �(p2
1 + p2

3 + 2p1 · p3)

= �(2p2
1 + 2|p1||p1| cos q) = �4p2

1 cos2 q/2.

M =
g2

4

 
c2

E2 �
1

p2
1 cos2 q/2

!
.

ds

dW
=
✓

h̄c
8p

◆2 |M|2
(2E)2

|p4|
|p1|

; |p4| = |p1|,

=
✓

h̄c
8p

◆2 1
(2E)2

✓
g2

4

◆2 c2

E2 �
1

p2
1 cos2 q/2

!2

But p2
1 = E2/c2 �m2

Ac2, so

 
c2

E2 �
1

p2
1 cos2 q/2

!
=

c2

E2 �
c2

(E2 �m2c4) cos2 q/2

= c2
⇥
(E2 �m2c4) cos2 q/2� E2⇤

E2(E2 �m2c4) cos2 q/2
= c2

⇥
E2 �cos2 q/2� 1

�
�m2c4 cos2 q/2

⇤

E2(E2 �m2c4) cos2 q/2

= �c2
�
E2 sin2 q/2 + m2c4 cos2 q/2

�

E2(E2 �m2c4) cos2 q/2
= �c2

�
E2 tan2 q/2 + m2c4�

E2(E2 �m2c4)

ds

dW
=

8
<

:
g2h̄c3

64p

⇣
E2 tan2 q

2 + m2c4
⌘

E3(E2 �m2c4)

9
=

;

2

.

(c)

B

Before

1
p 2p

A

After

A

3
p

4p
q

B

ds

dW
=
✓

h̄
8pmBc

◆2
|M|2

p1 =
✓

E
c

, p1

◆
, p2 = (mBc, 0)

p3 =
✓

E
c

, p3

◆
, p4 = (mBc, 0)

9
>>=

>>;
From these, we get:
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(p1 � p4) =
✓

E
c
�mBc, p1

◆
; (p1 + p2) =

✓
E
c

+ mBc, p1

◆
.

(p1 � p4)2 �m2
Cc2 =

✓
E
c
�mBc

◆2
� p2

1 �m2
Cc2

=
✓

E
c
�mBc

◆2
�
✓

E2

c2 �m2
Ac2
◆
�m2

Cc2 ⇠= m2
Bc2.

(p1 + p2)2 �m2
Cc2 =

✓
E
c

+ mBc
◆2
� p2

1 �m2
Cc2

=
✓

E
c

+ mBc
◆2
�
✓

E2

c2 �m2
Ac2
◆
�m2

Cc2 ⇠= m2
Bc2.

)M = g2 2
m2

Bc2 .
ds

dW
=

 
h̄g2

4pm3
Bc3

!2

.

(d)

s =
Z ds

dW
dW = 4p

✓
ds

dW

◆
=) s =

1
p

 
h̄g2

2m3
Bc3

!2

.



From ABC to QED
• ABC does not describe electrodynamics in the real world
• We have charged particles and photons
• Fermions have spin=½, forces have spin=1 
• Spin is a complication, we will leave that for a course at master level

• How to get the matrix element and Feynman rules for QED scattering?
• This section will be quite “dense” but try to get the gist of it…



A taste of Relativistic QED Scattering 

38 LECTURE 2. PERTURBATION THEORY AND FERMI’S GOLDEN RULE

You may wonder why we need to consider a finite time interval T . The reason is that
when we assume that the initial state is an eigenstate of the free Hamiltonian with fixed
momentum (or energy), we have lost track of where a particle is in both space and

time. A moving wave packet would see the static potential during a finite time, but the
plane waves do not. Just like we will need to normalize the wave functions on a finite
volume, we will need to normalize the potential to a finite time. A proper treatment is
rather lengthy and relies on the use of wave packets. (See e.g. the book by K.Gottfried,
“Quantum Mechanics” (1966), Volume 1, sections 12, 56.) In the end, we can write
transition probabilities in terms of plane waves, provided that we normalize to T and
V . We discuss the normalization in more detail below.

2.3 Relativistic scattering

Fermi’s golden rule allows us to compute the scattering rate of non-relativistic particles
on a static potential. In scattering experiments at high energies we need to deal with two
scattering particles, rather than single particles scattering on a source. As an example,
consider two spin-less electrons scatter in their mutual electromagnetic field, as depicted
in Fig. 2.3.

µ

B

e

C

e− −

e

e

−

−

A

D

i
i

f

f

A

Figure 2.3: Scattering of two electrons in an electromagnetic potential.

Such scattering processes can be described by the exchange of virtual particles, Yukawa’s
force carriers. Even without understanding the details of the interaction, we can readily
identify one place where it should di↵er from the discussion above: the result must
somehow encode four-momentum conservation and not just energy conservation.

Our master formula for the di↵erential cross-section, Eq. (2.8) is essentially a gener-
alization to problems with more than one particle in the initial or final state. We
cannot derive the expressions for a scattering cross section at high energies without
going through the machinery of quantum field theory. (This is not entirely true: see
Thomson, chapter 3 and section 5.1.) Instead, we will sketch the main results, then work
through the electrodynamics of spin-less particles as an example in the next lectures.

• Dirac equation in QED:     

• Perturbation theory: 

• Transition amplitude: no spin (see before): 
spin ½ (Dirac): 

• Remember

• To determine 𝐴< insert the electromagnetic field that one particle 𝐴 observes 
from the other particle 𝐵 and vice versa. 

ℒrDs = ℒ+,-- − ℒ./0 = ℒ4.,12 − 𝑞 j𝜓𝛾5𝐴5𝜓

= −𝑖BdA𝑥 j𝜓V 𝑥 −𝑒 𝛾5𝐴5 𝑥 𝜓: 𝑥 = −𝑖 B 𝑗5
V:𝐴5𝑑A𝑥

Scatter charged particles 
in each-others 𝐴-field

𝛾5𝑝5 −𝑚 𝜓 + 𝑒𝛾5𝐴5𝜓 = 0

𝐻? + 𝑉 𝜓 = 𝐸𝜓

ℒ./0 = −𝐽5𝐴5 𝐽5 = 𝑞 j𝜓𝛾5𝜓à with

𝑇2* = −𝑖 kd#𝑥 𝜓2∗ 𝑥 𝑉 𝑥 𝜓* 𝑥

𝐻? = �⃗� ⋅ �⃗� + 𝛽𝑚 = 𝛾?𝛾^𝑝^ + 𝛾?𝑚

𝜕5 → 𝜕5 − 𝑖𝑒𝐴5 ; 𝑝5 → 𝑝5 + 𝑒𝐴5

è V = −𝑒𝛾?𝛾5𝐴5

𝑇V: = −𝑖 BdA𝑥 𝜓V
t 𝑥 𝑉 𝑥 𝜓: 𝑥

𝑗-
2* = “transition current”

𝜕5 → 𝑖𝑝5 ;



A taste of Relativistic QED Scattering
• Particle 𝐵𝐷 scatters in the field 𝐴< of particle 𝐴𝐶
• The field 𝐴< is obtained from Maxwell: 𝜕�𝜕�𝐴< = 𝑗{E

<

• Solution: 𝐴< = − Z
�;
𝑗{E
<
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matrix. We take a hermitian conjugate of the wave  , rather than its complex conjugate.
The transition amplitude is still just a scalar.

Substituting the expression for V (x) we obtain

Tfi = �i

Z
 †
f
(x)

�
�e�0�µA

µ(x)
�
 i(x)d

4x

= �i

Z
 

f
(x) (�e) �µ i(x)A

µ(x) d4x
(6.6)

In Lecture 5 we defined the charge current density of the Dirac wave as

jµ(x) = �e  (x) �µ  (x)

In complete analogy to the spinless particle case we define the electromagnetic transition
current between states i and fas

jµ
fi
(x) = �e  

f
(x) �µ  i(x) , (6.7)

such that the transition amplitude can be written as

Tfi = �i

Z
jfi
µ
Aµ d4x . (6.8)

After inserting the plane wave decomposition  (x) = u(p)e�ipx, the transition current
becomes

jµ
fi

= �euf �
µ ui e

i(pf�pi)x . (6.9)

Note that the current is a ‘scalar’ in Dirac spinor space, or schematically,

jµ
fi

= ( uf )

0

@ �µ

1

A

0

@ ui

1

A (6.10)

Now consider again the two-body scattering A+B ! C +D:

q

uA

uB

uC

uD

jµ
AC

jµ
BD

Just as we did for the scattering of spinless particles, we obtain the vector potential Aµ

by using the Maxwell equation with the transition current of one of the two particles
(say ‘particle AC’) as a source. That is, we take

2Aµ = jµ
AC

.

• Transition amplitude becomes:
𝑇rb = −𝑖 ∫ 𝑗rb

<𝐴< 𝑑U𝑥 = −𝑖 ∫ 𝑗<
~F \Z

�; 𝑗 {E
< = −𝑖 ∫ 𝑗<

~F \Z
�; 𝑗 {E

<

• Inserting plane wave solutions:   𝜓 𝑥 = 𝑢 𝑝 𝑒\b��

into the current gives:  𝑗({E)
< = −𝑒#𝑢E𝛾<𝑢{ 𝑒b �<\�= �

and:  𝑗(~F)
< = −𝑒#𝑢F𝛾<𝑢~ 𝑒b �>\�? �

• Hence:    𝑇rb = −𝑖 2𝜋 U𝛿U 𝑝F + 𝑝E − 𝑝~ − 𝑝{ ℳ
with: −𝑖ℳ = 𝑖𝑒 j𝑢q𝛾5𝑢o

u-,0-v

−𝑖𝑔5w
𝑞9

x,3x1y103,

𝑖𝑒 j𝑢s𝛾w𝑢p
u-,0-v
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You may wonder why we need to consider a finite time interval T . The reason is that
when we assume that the initial state is an eigenstate of the free Hamiltonian with fixed
momentum (or energy), we have lost track of where a particle is in both space and

time. A moving wave packet would see the static potential during a finite time, but the
plane waves do not. Just like we will need to normalize the wave functions on a finite
volume, we will need to normalize the potential to a finite time. A proper treatment is
rather lengthy and relies on the use of wave packets. (See e.g. the book by K.Gottfried,
“Quantum Mechanics” (1966), Volume 1, sections 12, 56.) In the end, we can write
transition probabilities in terms of plane waves, provided that we normalize to T and
V . We discuss the normalization in more detail below.

2.3 Relativistic scattering

Fermi’s golden rule allows us to compute the scattering rate of non-relativistic particles
on a static potential. In scattering experiments at high energies we need to deal with two
scattering particles, rather than single particles scattering on a source. As an example,
consider two spin-less electrons scatter in their mutual electromagnetic field, as depicted
in Fig. 2.3.
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Figure 2.3: Scattering of two electrons in an electromagnetic potential.

Such scattering processes can be described by the exchange of virtual particles, Yukawa’s
force carriers. Even without understanding the details of the interaction, we can readily
identify one place where it should di↵er from the discussion above: the result must
somehow encode four-momentum conservation and not just energy conservation.

Our master formula for the di↵erential cross-section, Eq. (2.8) is essentially a gener-
alization to problems with more than one particle in the initial or final state. We
cannot derive the expressions for a scattering cross section at high energies without
going through the machinery of quantum field theory. (This is not entirely true: see
Thomson, chapter 3 and section 5.1.) Instead, we will sketch the main results, then work
through the electrodynamics of spin-less particles as an example in the next lectures.

“Matrix element”

Transition current: 𝑗HI
' = −𝑒 3𝜓I𝛾'𝜓H

Remember: 𝑗' = −𝑒 3𝜓𝛾'𝜓



A taste of Relativistic QED Scattering 
• Note that the current is of the form:

𝑗V:
5 = j𝜓V

⋯
⋮ 𝛾5 ⋮

⋯
𝜓:

It is a 4-vector in Lorentz space (t, x, y, z) ; 𝜇 = 0,1,2,3
It is a scalar in Dirac space (1, 2, 3, 4)

• Finally: 
• Feynman rules for QED are given in Griffiths section 7.5
• To calculate cross sections with spin-½ particles is mathematically involved; it requires taking 

the square of the matrix element and summation over spin states of spinor objects. 
• We leave this fun for a topic of a master level course 
• Section 7.6, 7.7 and 7.8 of Griffiths give you an idea
• It goes beyond the scope of this course

• Next week:  “Detectors”, measuring the particle processes





Lecture 5: Exercises

Exercises belonging to Lecture 5



Exercise – 17: Pion Decay

Calculate the lifetime of the neutral pion 𝜋�
The neutral pion decays mainly via: 𝜋m → 𝛾𝛾. Assume that the amplitude has 
dimensions mass × velocity . Griffiths: 𝜋m = Z

T
𝑢#𝑢 − 𝑑�̅�

a) Motivate the reason that the amplitude should be proportional to the 
coupling constant: ℳ ∝ 𝛼 = 𝑒T/4𝜋. Sketch a diagram of the decay.
For dimensional reasons ℳ is of the form ℳ = 𝛼𝑚z

b) Use Fermi’s golden rule for two-body decays to estimate the decay width Γ of 
the pion. What are 𝑆,𝑚{, �⃗� ? Express Γ in GeV.

c) Use the conversion table to calculate the lifetime of the 𝜋m and compare it 
with the experimental value. What do you think?

Griffiths exercise 6.6



Exercise – 18: Two-to-Two Scattering

Consider the process: 𝐴 + 𝐵 → 𝐴 + 𝐵 in the ABC theory
a) Draw the (two) lowest-order Feynman diagrams, and calculate the amplitudes
b) Find the differential cross-section in the CM frame, assuming 𝑚{ = 𝑚~ = 𝑚 ,𝑚E = 0,

in terms of the (incoming) energy 𝐸 and the scattering angle θ.
c) Assuming next that 𝐵 is much heavier than 𝐴, calculate the differential cross-section 

in the lab frame.
d) For case c), find the total cross-section.

Griffiths exercise 6.15


