PHY3004: Nuclear and Particle Physics Marcel Merk, Jacco de Vries, ...

The Standard Model

Lecture 1: "Particles"

Classification of particles

- Lepton: fundamental particle
- Hadron: consist of quarks
- Meson: 1 quark +1 antiquark ($\left.\pi^{+}, B_{S}^{0}, \ldots\right)$
- Baryon: 3 quarks (p, n, Λ, \ldots)
- Anti-baryon: 3 anti-quarks
- Fermion: particle with half-integer spin.
- Antisymmetric wave function: obeys Pauliexclusion principle and Pauli-Dirac statistics
- All fundamental quarks and leptons are spin- $1 / 2$
- Baryons ($\mathrm{S}=1 / 2,3 / 2$)
- Boson: particle with integer spin
- Symmetric wave function: Bose-Einstein statistics
- Mesons: $(S=0,1)$, Higgs ($S=0$)
- Force carriers: $\gamma, W, Z, g(\mathrm{~S}=1)$; graviton(S=2)

Standard Model of Elementary Particles

Lecture 3: "Waves" - wave equations

Probability interpretation (Continuity equation)

Quantum Mechanics: $\quad E \rightarrow \hat{E}=i \hbar \frac{\partial}{\partial t} \quad ; \quad p \rightarrow \hat{p}=-i \hbar \vec{\nabla}$

$$
\frac{\partial \rho}{\partial t}+\vec{\nabla} \cdot \vec{\jmath}=0
$$

Non-relativistic spin 0:

Schrödinger:

$$
E=\frac{\vec{p}^{2}}{2 m}
$$

$$
\psi=N e^{i(\vec{p} \vec{x}-E t)}
$$

Relativistic spin 0:

$$
i \hbar \frac{\partial}{\partial t} \psi=-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi
$$

$$
\rho \equiv \psi^{*} \psi=|N|^{2}
$$

Example: pions

Klein-Gordon:

$$
E^{2}=p^{2} c^{2}+m^{2} c^{4} \quad-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \phi=-\nabla^{2} \phi+\frac{m^{2} c^{2}}{\hbar^{2}} \phi
$$

$$
j^{\mu}(\rho, \vec{\jmath})=i\left[\phi^{*}\left(\partial^{\mu} \phi\right)-\phi\left(\partial^{\mu} \phi^{*}\right)\right]
$$

$$
\begin{aligned}
& \partial_{\mu} \partial^{\mu} \phi+m^{2} \phi=0
\end{aligned} \quad \phi=N e^{i(\vec{p} \vec{x}-E t) \quad \underset{\jmath}{ } \quad \vec{\jmath}=2|N|^{2} \vec{p} \quad j^{\mu}=2|N|^{2} p^{\mu}}
$$

Relativistic spin- $1 / 2$:

Dirac:

$H=(\vec{\alpha} \cdot \vec{p}+\beta m)$

$$
i \frac{\partial}{\partial t} \psi=(-i \vec{\alpha} \cdot \vec{\nabla}+\beta m) \psi
$$

$$
\begin{aligned}
& \psi=u(p) e^{i(\vec{p} \vec{x}-E t)} \quad j^{\mu}=\bar{\psi} \gamma^{\mu} \psi \\
& u(p)=\binom{.}{.} j^{0}=\bar{\psi} \gamma^{0} \psi=\psi^{\dagger} \psi=\sum_{i=1}^{4}\left|\psi_{i}\right|^{2}
\end{aligned}
$$

Fundamental quarks and leptons

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0
$$

Relativistic spin-1:

Fundamental
force carriers

Proca:

$$
\partial_{\mu} \partial^{\mu} A^{v}+m^{2} A^{v}=j^{v}
$$

$\mathrm{EM}: A^{\mu}=\gamma \rightarrow m=0$
QCD: $A^{\mu}=g \rightarrow m=0$
Weak: $A^{\mu}=W, Z \rightarrow m \neq 0$

EM: Maxwell equations
for \vec{E} and \vec{B} fields

Lecture 3: "Waves" - gauge invariance

$$
\begin{array}{llll}
\hline \text { Lagrangians: } & \text { Spin } 0 \text { Scalar field ("pion"): } & \mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \phi\right)-\frac{1}{2} m^{2} \phi^{2} \\
& \text { Spin } 1 / 2 \text { Dirac fermion: } & \mathcal{L}=i \bar{\psi} \gamma_{\mu} \partial^{\mu} \psi-m \bar{\psi} \psi \\
& \text { Spin } 1 \text { gauge boson ("photon") : } \mathcal{L}=-\frac{1}{4}\left(\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}\right)\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right)-j^{\mu} A_{\mu} \\
\text { Euler Lagrange lead to the wave equations: } & \frac{\partial \mathcal{L}}{\partial \phi(x)}=\partial_{\mu} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi(x)\right)}
\end{array}
$$

All forces result from requiring a symmetry principle: Lagrangian should stay invariant

1) $Q E D=U(1)$ symmetry

$$
\mathcal{L}=i \bar{\psi} \gamma_{\mu} \partial^{\mu} \psi-m \bar{\psi} \psi \quad \longrightarrow \quad \mathcal{L}=i \bar{\psi} \gamma_{\mu} D^{\mu} \psi-m \bar{\psi} \psi
$$

Covariant derivative: $\quad \partial^{\mu} \rightarrow D^{\mu} \equiv \partial^{\mu}+i q A^{\mu}$

$$
\psi(x) \rightarrow \psi^{\prime}(x)=\mathrm{e}^{i q \alpha(x)} \psi(x)
$$

$$
A^{\mu}(x) \rightarrow A^{\prime \mu}(x)=A^{\mu}(x)-\partial^{\mu} \alpha(x)
$$

$\rightarrow 1$ E.M. photon field: $A^{\mu}(x)$
2) Weak $=S U(2)$ symmetry $\psi=\binom{\psi_{u}}{\psi_{d}}$

$$
\mathcal{L}=\underbrace{i \bar{\psi} \gamma_{\mu} \partial^{\mu} \psi-m \bar{\psi} \psi}_{\text {"free" }}-\underbrace{q \bar{\psi} \gamma_{\mu} \psi A^{\mu}}_{\text {"interaction" }}
$$

$$
\psi(x) \rightarrow \psi^{\prime}(x)=\exp \left(\frac{i}{2} g \vec{\tau} \cdot \vec{\alpha}(x)\right)\binom{\psi_{u}}{\psi_{d}}
$$

$\rightarrow 3$ weak fields: $W^{\mu+}(x), W^{\mu^{-}}(x), Z^{\mu}(x)$

Recap: "Seeing the wood for the trees"

- Lecture 1: "Particles"
- Zooming into constituents of matter
- Skills: distinguish particle types, Spin
- Lecture 2: "Forces"
- Exchange of quanta: EM, Weak, QCD
- Skills: 4-vectors, Feynman diagrams
- Lecture 3: "Waves"

- Quantum fields and gauge invariance
- Dirac algebra, Lagrangian, co- \& contra variant
- Lecture 4: "Symmetries"
- Standard Model, Higgs, Discrete Symmetries
- Skills: Lagrangians, Chirality \& Helicity
- Lecture 5: "Scattering"

- Gauge Symmetries: Standard Model
- Symmetry Breaking: Higgs Mechanism
- Discrete Symmetries

Griffiths 9.7, PP1 Lect 9
Griffiths 10.7-9, PP1 Lect 11
Griffiths chapter 4

Symmetry and non-observables

T.D.Lee: "The root to all symmetry principles lies in the assumption that it is impossible to observe certain basic quantities; the non-observables"

There are four main types of symmetry:

- Permutation symmetry:

Bose-Einstein and Fermi-Dirac Statistics

- Continuous space-time symmetries:
translation, rotation, velocity, acceleration,...
- Discrete symmetries:
space inversion, time reversal, charge conjugation,...
- Unitary symmetries: gauge invariances:
U_{1} (charge), SU_{2} (isospin), SU_{3} (color),...

\Rightarrow If a quantity is fundamentally non-observable it is related to an exact symmetry
\Rightarrow If it could in principle be observed by an improved measurement; the symmetry is said to be broken
Noether Theorem: symmetry

Symmetry and non-observables

Non-observables	Symmetry Transformations	Conservation Laws or Selection Rule
Difference between identical particles	Permutation	B.-E. or F.-D. statistics
Absolute spatial position	Space translation: $\vec{r} \rightarrow \vec{r}+\vec{\Delta}$	momentum
Absolute time	Time translation: $t \rightarrow t+\tau$	energy
Absolute spatial direction	Rotation: $\vec{r} \rightarrow \vec{r}^{\prime}$	angular momentum
Absolute velocity	Lorentz transformation	generators of the Lorentz group
Absolute right (or left)	$\vec{r} \rightarrow-\vec{r}$	parity
Absolute sign of electric charge	$e \rightarrow-e$	charge conjugation
Relative phase between states of different charge Q	$\psi \rightarrow e^{i \theta Q} \psi$	charge
Relative phase between states of different baryon number B	$\psi \rightarrow e^{i \theta N} \psi$	baryon number
Relative phase between states of different lepton number L	$\psi \rightarrow e^{i \theta L} \psi$	lepton number
Difference between different coherent mixture of p and n states	$\binom{p}{n} \rightarrow U\binom{p}{n}$	isospin

Symmetry and non-observables: example

- Simple example: potential energy V between two charged particles:

Absolute position is a non-observable:
The interaction is independent on the choice of the origin 0 .

Symmetry:
V is invariant under arbitrary
space translations:

$$
\overrightarrow{r_{1}} \rightarrow \vec{r}_{1}+\vec{d} \quad \overrightarrow{r_{2}} \rightarrow \vec{r}_{2}+\vec{d}
$$

Consequently:

$$
V=V\left(\vec{r}_{1}-\vec{r}_{2}\right)
$$

Total momentum is conserved:

$$
\frac{d}{d t} \underbrace{\left(\vec{p}_{1}+\vec{p}_{2}\right)}_{\vec{p}_{\text {tot }}}=\vec{F}_{1}+\vec{F}_{2}=-\left(\vec{\nabla}_{1}+\vec{\nabla}_{2}\right) V=0
$$

Lecture 4: "Symmetries"

Part 1
 Gauge Symmetries in
 The Standard Model

Griffiths 9.7, PP1 Lect 9

- The Lagrangian of the Standard Model includes electromagnetic, weak and strong interactions according to the gauge field principle
- Construction of the Lagrangian: $\mathcal{L}=\mathcal{L}_{\text {free }}-\mathcal{L}_{\text {interaction }}=\mathcal{L}_{\text {Dirac }}-g J^{\mu} A_{\mu}$
- With g a coupling constant, J^{μ} a current $\left(\bar{\psi} \mathrm{O}_{i} \psi\right)$ and A_{μ} a force field
A. Local $U(1)$ gauge invariance: symmetry under complex phase rotations
- Conserved quantum number: (hyper-) charge
- Lagrangian: $\mathcal{L}=\bar{\psi}\left(i \gamma^{\mu} D_{\mu}-m\right) \psi=\bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi-q \bar{\psi} \gamma^{\mu} \psi A_{\mu}$

$$
\left(\partial_{\mu} \rightarrow D_{\mu} \equiv \partial_{\mu}+i q A_{\mu}\right)
$$

Note Spinor: $\psi=\left(\begin{array}{l}\psi_{1} \\ \psi_{2} \\ \psi_{3} \\ \psi_{4}\end{array}\right)$
B. Local $S U(2)$ gauge invariance: symmetry under transformations in isospin doublet space.

- Conserved quantum number: weak isospin
- Lagrangian: $\mathcal{L}=\bar{\Psi}\left(i \gamma^{\mu} D_{\mu}-m\right) \Psi=\bar{\Psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \Psi-\frac{g}{2} \bar{\Psi} \gamma^{\mu} \vec{\tau} \Psi \vec{b}_{\mu}$
$\left.\left(I \partial_{\mu} \rightarrow D_{\mu}=I \partial_{\mu}+i g B_{\mu}\right) \quad ; \quad B_{\mu}=\frac{1}{2} \vec{\tau} \cdot \vec{b}_{\mu}=\frac{1}{2} \tau_{1}^{a} b_{\mu}^{a}=\frac{1}{2}\left(\begin{array}{cc}b_{3} & b_{1}-i b_{2} \\ b_{1}+i b_{2} & -b_{3}\end{array}\right)\right]_{\text {Weak }}^{\mu}$

Note doublet spinors: $\Psi=\binom{\psi_{u}}{\psi_{d}}$ with ψ_{u}, ψ_{d} spinors
C. Local $S U(3)$ gauge invariance: symmetry under transformations in colour triplet space

- Conserved quantum number: color
- Lagrangian: $\mathcal{L}=\bar{\Phi}\left(i \gamma^{\mu} D_{\mu}-m\right) \Phi=\bar{\Phi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \Phi-\frac{g_{s}}{2} \bar{\Phi} \gamma^{\mu} \vec{\lambda} \Phi \vec{c}_{\mu}$ $\left(I \partial_{\mu} \rightarrow D_{\mu}=I \partial_{\mu}+i g_{s} C_{\mu}\right) \quad C_{\mu}$ are 3×3 matrices \rightarrow gluon fields $\underbrace{\mu_{n}}_{J_{Q C D}^{\mu}}$
Note triplet spinors: $\Phi=$ $\psi_{r}, \psi_{g}, \psi_{b}$ spinors

Standard Model

- The Lagrangian of the Standard Model includes electromagnetic, weak and strong interactions according to the gauge field principle
- Construction of the Lagrangian: $\mathcal{L}=\mathcal{L}_{\text {free }}-\mathcal{L}_{\text {interaction }}=\mathcal{L}_{\text {Dirac }}-g J^{\mu} A_{\mu}$
- With g a coupling constant, J^{μ} a current $\left(\bar{\psi} \mathrm{O}_{i} \psi\right)$ and A_{μ} a force field

Standard Model Lagrangian:

$$
\mathcal{L}=\bar{\psi}\left(i \gamma^{\mu} D_{\mu}-m\right) \psi=\bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi-q J_{E M}^{\mu} A_{\mu}-\frac{g}{2} J_{\text {Weak }}^{\mu} \vec{b}_{\mu}-\frac{g_{s}}{2} J_{Q C D}^{\mu} \vec{c}_{\mu}
$$

Implements $\mathrm{U}(1), \mathrm{SU}(2)$ and $\mathrm{SU}(3)$ symmetries simultaneous:

$$
S U(3)_{\text {color }} \times S U(2)_{L} \times U(1)_{Y}
$$

Requiring the Lagrangian to be invariant (symmetry) implies that the EM, Weak and Strong force fields must exist and the interactions respectively conserve charge, weak isospin, and color.

Electromagnetism and Weak force

- $\mathrm{U}(1)$ gauge transformations require that the laws of physics (i.e. the Lagrangian) is invariant under:

$$
\begin{gathered}
\psi(x) \rightarrow \psi^{\prime}(x)=\mathrm{e}^{i q \alpha(x)} \psi(x) \\
A^{\mu}(x) \rightarrow A^{\prime \mu}(x)=A^{\mu}(x)-\partial^{\mu} \alpha(x) \\
\left(\partial_{\mu} \rightarrow D_{\mu} \equiv \partial_{\mu}+i q A_{\mu}\right)
\end{gathered}
$$

Electromagnetic field

 gauge transformation- This leads to the interaction: $\mathcal{L}_{\mathrm{int}}=-J_{\mu} A^{\mu}$ with $J_{\mu}=q \bar{\psi} \gamma_{\mu} \psi$

- $\operatorname{SU}(2)$ gauge transformations require that the laws of physics (i.e. the Lagrangian) is invariant under:

$$
\begin{array}{ll}
\Psi(x) \rightarrow \Psi^{\prime}(x)=\mathrm{e}^{i g \frac{1}{2} \vec{\tau} \cdot \vec{\alpha}(x)} \Psi(x) & \text { With doublets } \Psi=\binom{\psi_{u}}{\psi_{d}} \text { and } \bar{\Psi}=\left(\psi_{u}, \psi_{d}\right) \\
\left(I \partial_{\mu} \rightarrow D_{\mu}=I \partial_{\mu}+i g B_{\mu}\right) ; & B_{\mu}=\frac{1}{2} \vec{\tau} \cdot \vec{b}_{\mu}=\frac{1}{2} \tau_{1}^{a} b_{\mu}^{a}=\frac{1}{2}\left(\begin{array}{cc}
b_{3} & b_{1}-i b_{2} \\
b_{1}+i b_{2} & -b_{3}
\end{array}\right)
\end{array}
$$

- This leads to the interaction: $\mathcal{L}_{\text {int }}=-\vec{J}_{\mu} \vec{b}^{\mu}$ with $\vec{J}_{\mu}=\frac{g}{2} \bar{\Psi} \gamma_{\mu} \vec{\tau} \Psi \quad$ Note: $\vec{J}_{\mu}=J_{\mu}^{1}, J_{\mu}^{2}, J_{\mu}^{3}$

$$
\text { Weak Isospin: } T_{i}=\frac{1}{2} \tau_{i} \quad \vec{\tau}=\tau_{1}, \tau_{2}, \tau_{3} \text { are the Pauli matrices: } \tau_{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \tau_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \tau_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

The weak force

- The weak interaction includes charged $\left(J_{\mu}^{1}\right.$ and $\left.J_{\mu}^{2}\right)$ and neutral $\left(J_{\mu}^{3}\right)$ currents
- It turns out the following charge current fields are realized in Nature:
- $W_{\mu}^{ \pm} \equiv \frac{1}{\sqrt{2}}\left(b_{\mu}^{1} \mp i b_{\mu}^{2}\right)$ and $Z_{\mu}=b_{\mu}^{3} \quad$ (see exercise)
- The charged current becomes
- $J_{\mu}^{ \pm}=\frac{1}{\sqrt{2}} \bar{\Psi} \gamma_{\mu} \tau^{ \pm} \Psi \quad$ with $\quad \tau^{ \pm}=\frac{1}{2}\left(\tau_{1} \pm i \tau_{2}\right)$

$$
\tau^{+}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad \tau^{-}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

Charge raising interaction: $J_{\mu}^{+}=\frac{g}{2 \sqrt{2}} \bar{v} \gamma_{\mu} e$
Charge lowering interaction: $J_{\mu}^{-}=\frac{g}{2 \sqrt{2}} \bar{e} \gamma_{\mu} v$

- The neutral current is:

$$
J_{\mu}^{-}=\frac{g}{2 \sqrt{2}} \bar{d} \gamma_{\mu} u
$$

$$
J_{\mu}^{3}=\frac{1}{2} \bar{\Psi} \gamma_{\mu} \tau^{3} \Psi \quad \tau^{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

- Show that the definition $W_{\mu}^{ \pm}=\frac{b_{\mu}^{1} \mp i b_{\mu}^{2}}{\sqrt{2}}$ leads to the charged current:

$$
\mathcal{L}=-W_{\mu}^{+} J^{\mu^{+}}-W_{\mu}^{-} J^{\mu^{-}} \text {with } J^{\mu+}=\frac{g}{\sqrt{2}} \bar{\Psi} \gamma_{\mu} \tau^{+} \Psi \text { and } J^{\mu^{-}}=\frac{g}{\sqrt{2}} \bar{\Psi} \gamma_{\mu} \tau^{-} \Psi
$$

Electroweak unification

- A strange phenomenon for the neutral current
- The $S U(2)$ gauge field b_{μ}^{3} and and the $U(1)$ gauge field A_{μ} are not physical
- The physical fields are: $\quad \gamma_{\mu}=A_{\mu} \cos \theta_{W}+b_{\mu}^{3} \sin \theta_{W} \quad$ ("mixing")

$$
Z_{\mu}=-A_{\mu} \sin \theta_{W}+b_{\mu}^{3} \cos \theta_{W}
$$

- The electromagnetic and weak interaction are linear combinations of the $U(1)$ and $S U(2)$ symmetries - why??
- We speak of a unified electroweak force
- The $U(1)$ symmetry is related to the quantity "hypercharge" Y
- The charge of a particle is given by the relation: $Q=T_{3}+\frac{1}{2} Y$
- The Standard Model of interactions implements the symmetry:

$$
S U(3)_{\text {color }} \times S U(2)_{L} \times U(1)_{Y}
$$

- Mystery 1: How do gauge bosons and fermions acquire a mass
- Mystery 2: The weak interaction is only left-handed

Electroweak Quantum Numbers

For weak isospin some people write T_{3} while others write I_{3} With: $Q=T_{3}+\frac{1}{2} Y$
Generation Or $: Q=I_{3}+\frac{1}{2} Y$

Lecture 4: "Symmetries"

Part 2
Electroweak Symmetry Breaking
The Higgs Mechanism

Griffiths 10.7-9, PP1 Lect 11

- Massive particles are forbidden in the SM Lagrangian
- A hypothetical mass term in the Lagrangian for the photon is not gauge invariant under $A^{\mu} \rightarrow A^{\mu \prime}$:

$$
m^{2} A_{\mu} A^{\mu} \rightarrow m^{2}\left(A_{\mu}+\frac{1}{e} \partial_{\mu} \alpha\right)\left(A^{\mu}+\frac{1}{e} \partial^{\mu} \alpha\right) \neq m^{2} A_{\mu} A^{\mu}
$$

- The same holds (harder to show) for the weak mediators W, Z
- However they are massive
- $\rightarrow \mathrm{SU}(2) \times \mathrm{X}(1)$ symmetry is broken
- We will give an example how mass terms can be generated without destroying the symmetry of the Lagrangian
- Add a new field ϕ to the Lagrangian

- Chose a scalar field ($S=0$)
- Include a potential $V(\phi): \quad \mathcal{L}=T-V$

$$
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-V(\phi)=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-\frac{1}{2} \mu^{2} \phi^{2}-\frac{1}{4} \lambda \phi^{4}
$$

Massive Klein-Gordon Interaction term (Spin 0, mass $=\mu$) term

- The vacuum (lowest energy state) has $\phi=0$
- This means no-field in the vacuum.
- The Lagrangian describes a new particle with $S=0$ and $m=\mu$
- Add a new field ϕ to the Lagrangian

Case B)

- Chose a scalar field ($S=0$)

$$
\phi=H
$$

- Include a potential $V(\phi): \quad \mathcal{L}=T-V$

$$
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-V(\phi)=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-\frac{1}{2} \mu^{2} \phi^{2}-\frac{1}{4} \lambda \phi^{4}
$$

Massive Klein-Gordon term (Spin 0, mass $=\mu$)

- The particle has imaginary mass? $\mu^{2}<0$

- The Lagrangian has a minimum for $\phi_{0}=\sqrt{-\frac{\mu^{2}}{\lambda}} \equiv v$ or $\mu^{2}=-\lambda v^{2}$
- The lowest energy (vacuum) includes a field with value v

$$
\text { Just do: } \frac{\partial V}{\partial \phi}=0
$$

Exercise - 19 : Symmetry breaking

$$
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-V(\phi)=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-\frac{1}{2} \mu^{2} \phi^{2}-\frac{1}{4} \lambda \phi^{4} \quad \text { Case B) } \quad \mu^{2}<\mathbf{0}:
$$

- Redefine coordinates: $\eta \equiv \phi-v \quad$ (η is the "shifted" field)
- Exercise: re-write the Lagrangian in η and v to show:

$$
\mathcal{L}(\eta)=\frac{1}{2}\left(\partial_{\mu} \eta\right)\left(\partial^{\mu} \eta\right)-\lambda v^{2} \eta^{2}-\lambda v \eta^{3}-\frac{1}{4} \lambda \eta^{4}-\frac{1}{4} \lambda v^{4}
$$

- Ignore the constant term $\frac{1}{4} \lambda v^{4}$ and neglect higher order η^{3} :

$$
\mathcal{L}(\eta)=\frac{1}{2}\left(\partial_{\mu} \eta\right)\left(\partial^{\mu} \eta\right)-\underbrace{\lambda v^{2}}_{\text {mass }} \eta^{2}
$$

- This describes a new scalar field η with a mass $\frac{1}{2} m_{\eta}^{2}=\lambda v^{2} \Rightarrow m_{\eta}=\sqrt{2 \lambda v^{2}}\left(=\sqrt{-2 \mu^{2}}\right)$
- Price to pay: Lagrangian is no longer symmetric under $\eta \rightarrow-\eta$ in the new field.

$$
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-V(\phi)=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-\frac{1}{2} \mu^{2} \phi^{2}-\frac{1}{4} \lambda \phi^{4} \quad \text { Case B) } \quad \mu^{2}<\mathbf{0}:
$$

- Redefine coordinates: $\eta \equiv \phi-v$

Conclusion:

- The symmetry of the Lagrangian by adding a symmetric potential ϕ has not been destroyed
- The vacuum is no longer in a symmetric position
\rightarrow The physical case includes a complex field ϕ

- This describes a new scalar field η with a mass $\frac{1}{2} m_{\eta}^{2}=\lambda v^{2} \Rightarrow m_{\eta}=\sqrt{2 \lambda v^{2}}\left(=\sqrt{-2 \mu^{2}}\right)$
- Price to pay: Lagrangian is no longer symmetric under $\eta \rightarrow-\eta$ in the new field.
- Introduce a complex scalar field: $\phi=\frac{1}{\sqrt{2}}\left(\phi_{1}+i \phi_{2}\right)$
- The Lagrangian term is: $\mathcal{L}=\left(\partial_{\mu} \phi\right)^{*}\left(\partial^{\mu} \phi\right)-V(\phi)$, with $V(\phi)=\mu^{2}\left(\phi^{*} \phi\right)+\lambda\left(\phi^{*} \phi\right)^{2}$
- Lagrangian:

Case A)

$$
\begin{aligned}
\mathcal{L}\left(\phi_{1}, \phi_{2}\right)=\frac{1}{2}\left(\partial_{\mu} \phi_{1}\right)^{2} & +\frac{1}{2}\left(\partial_{\mu} \phi_{2}\right)^{2} \\
& -\frac{1}{2} \mu^{2}\left(\phi_{1}^{2}+\phi_{2}^{2}\right)-\frac{1}{4} \lambda\left(\phi_{1}^{2}+\phi_{2}^{2}\right)^{2}
\end{aligned}
$$

- Lagrangian:

$$
\begin{gathered}
\mathcal{L}\left(\phi_{1}, \phi_{2}\right)=\underbrace{\frac{1}{2}\left(\partial_{\mu} \phi_{1}\right)^{2}-\frac{1}{2} \mu^{2}\left(\phi_{1}^{2}\right)}_{\text {Particle } \phi_{1}, \text { mass } \mu}+\underbrace{\frac{1}{2}\left(\partial_{\mu} \phi_{2}\right)^{2}-\frac{1}{2} \mu^{2}\left(\phi_{2}^{2}\right)}_{\text {Particle } \phi_{2}, \text { mass } \mu} \\
+ \text { interaction terms }
\end{gathered}
$$

- Introduce a complex scalar field: $\phi=\frac{1}{\sqrt{2}}\left(\phi_{1}+i \phi_{2}\right)$
- The Lagrangian term is: $\mathcal{L}=\left(\partial_{\mu} \phi\right)^{*}\left(\partial^{\mu} \phi\right)-V(\phi)$, with $V(\phi)=\mu^{2}\left(\phi^{*} \phi\right)+\lambda\left(\phi^{*} \phi\right)^{2}$
- Lagrangian:

Case B)
$\mathcal{L}\left(\phi_{1}, \phi_{2}\right)=\frac{1}{2}\left(\partial_{\mu} \phi_{1}\right)^{2}+\frac{1}{2}\left(\partial_{\mu} \phi_{2}\right)^{2}$

$$
-\frac{1}{2} \mu^{2}\left(\phi_{1}^{2}+\phi_{2}^{2}\right)-\frac{1}{4} \lambda\left(\phi_{1}^{2}+\phi_{2}^{2}\right)^{2}
$$

- We now have a whole circle of vacua to chose from:
[2]
- Redefine coordinates: $\eta=\phi_{1}-v, \quad \xi=\phi_{2}, \quad \phi_{0}=\frac{1}{\sqrt{2}}(v+\eta+i \xi)$
- Exercise: rewrite the Lagrangian ignoring constant terms and higher order terms:

$$
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \eta\right)^{2}-\left(\lambda v^{2}\right) \eta^{2}+\frac{1}{2}\left(\partial_{\mu} \xi\right)^{2}-0 \cdot \xi^{2}+\text { higher order terms }
$$

Case B) massive scalar particle μ massless scalar particle ξ

- Symmetry breaking: chose [1]: $\phi_{0}=\frac{1}{\sqrt{2}}(v+\eta+i \xi)$

Higgs Mechanism

- The Higgs mechanism breaks the symmetry of the (electro-)weak interaction
- Works along the lines as described in previous slides; introduce a complex SU(2) doublet
- Details beyond the scope these lectures, idea as follows:
- Electroweak Lagrangian: $\mathcal{L}=\bar{\psi}\left(i \gamma^{\mu} D_{\mu}-m\right) \psi+\left(D_{\mu} \phi\right)^{\dagger}\left(D^{\mu} \phi\right)-V(\phi)$
- Where the covariant derivatives:

$$
\begin{aligned}
& \mathrm{U}(1): \psi(x) \rightarrow \psi^{\prime}(x)=\mathrm{e}^{i \alpha(x)} \psi(x) \quad \text { and } \mathrm{SU}(2): \psi(x) \rightarrow \psi^{\prime}(x)=G(x) \psi(x) \\
& A^{\mu}(x) \rightarrow A^{\prime \mu}(x)=A^{\mu}(x)-\frac{1}{q} \partial^{\mu} \alpha(x) \quad \text { with } G(x)=\exp \left(\frac{i}{2} \vec{\tau} \cdot \vec{\alpha}(x)\right) \\
& \Rightarrow \quad D^{\mu}=\partial^{\mu}+i q A^{\mu} \\
& B_{\mu}^{\prime}=G B_{\mu} G^{-1}+\frac{i}{g}\left(\partial_{\mu} G\right) G^{-1} \\
& \Rightarrow \quad D_{\mu}=I \partial_{\mu}+i g B_{\mu}
\end{aligned}
$$

- Higgs field is weak isospin doublet: $\quad \phi=\binom{\phi^{+}}{\phi^{0}}=\frac{1}{\sqrt{2}}\binom{\phi_{1}+i \phi_{2}}{\phi_{3}+i \phi_{4}} \quad ; \quad \phi_{0}=\frac{1}{\sqrt{2}}\binom{0}{v}$
- With the potential: $V(\phi)=\mu^{2}\left(\phi^{\dagger} \phi\right)+\lambda\left(\phi^{\dagger} \phi\right)^{2}$ where: $\mu^{2}<0$
- The Higgs mechanism breaks the symmetry of the (electro-)weak interaction
- The Higgs choses a preferred direction in weak isospin space
- One massive Higgs scalar field remains - due to field excitations around v; the earlier η term
- Three massless Goldstone bosons appear, but they are re-written as massterms for the gauge fields of the broken symmetry.
- The W^{+}, W^{-}, Z^{0} bosons acquire mass.
- The photon remains massless

- Higgs and fermions:
- The SM allows to couple the Higgs field to fermion isospin doublets:
- The vacuum expectation value of the Higgs gives rise the fermion masses
- Mass term: $m_{f}=Y_{f} \cdot \frac{1}{\sqrt{2}} v$ where Y_{f} is a particle constant.
- For the top quark: $Y_{f}=1$?!

- Mass eigenstates and interaction eigenstates:
- The Higgs and the W boson do not agree on the "generation" eigenstates, see lecture 2.
- The Higgs couplings give rise to the CKM elements

Exercise - 20 : Mass of the proton

Besides giving mass to the weak vector bosons, it was briefly flashed that the same Higgs mechanism is responsible for giving mass to the fermion masses in the Standard Model, through ad-hoc Yukawa couplings. The mass of a 'naked' quark can be estimated through models of soft QCD, where it enters as a parameter for e.g. the binding energy of a meson. For up and down, they are found to be roughly 2 resp. $5 \mathrm{MeV} / \mathrm{c}$.
a) What fraction of the proton mass is due to the Higgs mass of the constituent quarks?
b) Can you find out where the other part of the proton mass comes from?

- See also:

- https://en.wikipedia.org/wiki/Mathematical_formulation_of_the_Standard_Model

Lecture 4: "Symmetries"

Part 3

Discrete Symmetries

Griffiths chapter 4

Discrete Symmetries

- Is nature invariant if we look at it through a mirror?

Discrete C, P, T Symmetries

- Parity, P:
unobservable: (absolute handedness)
- Reflects a system through the origin.

Converts right-handed to left-handed.

- $\overrightarrow{\boldsymbol{x}} \rightarrow-\overrightarrow{\boldsymbol{x}}, \overrightarrow{\boldsymbol{p}} \rightarrow-\overrightarrow{\boldsymbol{p}}$ (vectors) but $\overrightarrow{\boldsymbol{L}}=\overrightarrow{\boldsymbol{x}} \times \overrightarrow{\boldsymbol{p}}$ (axial vectors)
- Charge Conjugation, C : unobservable: (absolute charge)
- Turns internal charges to opposite sign.
- $\boldsymbol{e}^{+} \rightarrow \boldsymbol{e}^{-}, \boldsymbol{K}^{-} \rightarrow \boldsymbol{K}^{+}$
- Time Reversal, T: unobservable: (direction of time)
- Changes direction of motion of particles
- $t \rightarrow-\boldsymbol{t}$
- CPT Theorem:
- All interactions are invariant under combined C, P and T operation
- A particle is an antiparticle travelling backward in time
- Implies e.g. particle and anti-particle have equal masses and lifetimes

Parity: Helicity and Chirality

- Parity image
- $\vec{L}=\vec{r} \times \vec{p} \rightarrow-\vec{r} \times-\vec{p}=\vec{L}$
- Same for spin \vec{S}
- Helicity: spin projection on momentum
- $\lambda=\vec{\sigma} \cdot \vec{p} \rightarrow \vec{\sigma} \cdot-\vec{p}=-\lambda$
- The mirror of left-handed = righthanded
- Chirality:
- If you, as observer overtake the electron, it changes from left handed to right-handed
- How is it for a neutrino - zero mass?
- You cannot overtake it.
- Chirality is the helicity in the relativistic
 limit: $m \rightarrow 0 ; v \rightarrow c$

Exercise - 21 : Helicity vs Chirality

a) Write out the chirality operator γ^{5} in the Dirac-Pauli representation.
b) The helicity operator is defined as $\lambda=\frac{1}{2} \vec{\Sigma} \cdot \hat{p}$. Show that helicity operator and the chirality operator have the same effect on a spinor solution, i.e.

$$
\gamma^{5} \psi=\gamma^{5}\binom{\chi^{(s)}}{\frac{\vec{\sigma}}{E+m} \chi^{(s)}} \approx \lambda\binom{\chi^{(s)}}{\frac{\vec{\sigma} \cdot \vec{p}}{E+m} \chi^{(s)}}=\lambda \psi \quad \text { with: } \chi^{(1)}=\binom{1}{0} ; \chi^{(2)}=\binom{0}{1}
$$

in the relativistic limit where $E \gg m$
c) Show explicitly that for a Dirac spinor:

$$
\begin{aligned}
& \bar{\psi} \gamma^{\mu} \psi=\overline{\psi_{L}} \gamma^{\mu} \psi_{L}+\overline{\psi_{R}} \gamma^{\mu} \psi_{R} \text { making use of } \psi=\psi_{L}+\psi_{R} \text { and the } \\
& \text { projection operators: } \psi_{L}=\frac{1}{2}\left(1-\gamma^{5}\right) \text { and } \psi_{R}=\frac{1}{2}\left(1+\gamma^{5}\right)
\end{aligned}
$$

d) Explain why the weak interaction is called left-handed.
"I cannot believe God is a weak left-hander."

The weak interaction of particles is "left-handed"

- Look at the weak pion decay: $\pi^{-} \rightarrow \mu^{-} \bar{v}_{\mu}$ in the pion:

$$
\text { Spin }=1 / 2 \quad \text { Spin }=0 \quad \text { Spin }=1 / 2
$$

Fig. 4.10 Decay of π^{-}at rest.

- $\pi^{-} \rightarrow \mu^{-} \bar{v}$: muon spin was found right handed: anti-neutrino is also right handed (R.H.)
- Compare to the decay: $\pi^{+} \rightarrow \mu^{+} v$ and measure the spin of the muon:
- $\pi^{+} \rightarrow \mu^{+} v$: anti-muon spin was found left-handed: neutrino is also left handed (L.H.)
- Since neutrino's are ultra-relativistic ($m \approx 0$): neutrino's are always left-handed anti-neutrino's are always right handed
\rightarrow The weak interaction maximally violates parity symmetry!

Classical Mirror Worlds

\rightarrow Invariant!

- Parity P: $\vec{x} \rightarrow-\vec{x}, \vec{p} \rightarrow-\vec{p}$
- Mass m

$$
P m=m
$$

: scalar

- Force $\vec{F} \quad(\vec{F}=d \vec{p} / d t)$

$$
P \vec{F}=P d \vec{p} / d t=-d \vec{p} / d t=-\vec{F} \quad: \text { vector }
$$

- Acceleration $\vec{a}\left(\vec{a}=d^{2} \vec{x} / d t^{2}\right) \quad P \vec{a}=-d^{2} x / d t^{2}=-\vec{a} \quad$: vector
- Angular momentum $\vec{L}, \vec{S}, \vec{J}(\vec{L}=\vec{x} \times \vec{p}) \quad P \vec{L}=-\vec{x} \times-\vec{p}=\vec{L} \quad$: axial vector
- Parity: Newton's law is invariant under P-operation (i.e. the same in the mirror world):

$$
\vec{F}=m \vec{a} \quad \xrightarrow{P}-\vec{F}=-m \vec{a} \quad \Leftrightarrow \quad \vec{F}=m \vec{a}
$$

- Charge: Lorentz Force in the C-mirror world is invariant:

$$
\vec{F}=q[\vec{E}+\vec{v} \times \vec{B}] \xrightarrow{C} \vec{F}=-q[-\vec{E}+\vec{v} \times-\vec{B}]
$$

- Time: laws of physics are also invariant unchanged under T-reversal, since:

$$
\vec{F}=m \vec{a}=m \frac{d^{2} \vec{x}}{d t^{2}} \xrightarrow{T} \vec{F}=m \frac{d^{2} \vec{x}}{d(-t)^{2}} \quad \Leftrightarrow \quad \vec{F}=m \vec{a}
$$

- QM: Consider Schrodinger's equation $(t \rightarrow-t)$: $\quad i \hbar \frac{\partial \psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \vec{\nabla}^{2} \psi$

Complex conjugation is required to stay invariant:

$$
\psi \xrightarrow{T} \psi^{*}
$$

C-, P-, T - Symmetry

- Classical Theory is invariant under C, P, T operations; i.e. they conserve C, P, T symmetry
- Newton mechanics, Maxwell electrodynamics.
- Suppose we watch some physical event. Can we determine unambiguously whether:
- We are watching the event where all charges are reversed or not?
- We are watching the event in a mirror or not?
- Macroscopic biological asymmetries are considered accidents of evolution rather than fundamental asymmetry in the laws of physics.
- We are watching the event in a film running backwards or not?
- The arrow of time is due to thermodynamics: i.e. the realization of a macroscopic final state is statistically more probable than the initial state

Macroscopic time reversal

- At each crossing: 50\% - 50\% choice to go left or right
- After many decisions: reverse the velocity of the final state and return
- Do we end up with the initial state?

Macroscopic time reversal

- At each crossing: 50\% - 50\% choice to go left or right
- After many decisions: reverse the velocity of the final state and return
- Do we end up with the initial state?

Macroscopic time reversal

This is why we doit teach our children about entropy until much later...

Parity Violation

Before 1956 physicists were convinced that the laws of nature were left-right symmetric. Strange?

A "gedanken" experiment: consider two perfectly mirror symmetric cars:

" L " and " R " are fully symmetric, Each nut, bolt, molecule etc.
However the engine is a black box
Person "L" gets in, starts, $60 \mathrm{~km} / \mathrm{h}$
Person " R " gets in, starts, What happens?

What happens in case the ignition mechanism uses, say, $\mathrm{Co}^{60} \beta$ decay?

- Look again at pion decay

Fig. 4.10 Decay of π^{-}at rest.

- Both Parity P as well as charge conjugation C symmetry are violated

- But happens if we do both: $C P$?

Weak Force breaks C and P, is $C P$ really OK?

- Weak interaction breaks \boldsymbol{C} and \boldsymbol{P} symmetry maximally!
- Nature is left-handed for matter and righthanded for antimatter.
- Despite maximal violation of \boldsymbol{C} and \boldsymbol{P}, combined $\boldsymbol{C P}$ seemed conserved...
- But in 1964, Christenson, Cronin, Fitch and Turlay observed $\boldsymbol{C P}$ violation in decays of neutral kaons!

Discovery of $C P$-Violation with Kaons

- Create a pure K_{L} beam ("wait" for K_{S} to decay)
- If $C P$ is conserved, should not see $K_{L} \rightarrow \pi^{+} \pi^{-}$

K_{S} : Short-lived is $C P$ even:
$K_{1}^{0} \rightarrow \pi^{+} \pi^{-} \quad$ (fast)
K_{L} : Long-lived is $C P$ odd:
$K_{2}^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0} \quad$ (slow)

Discovery of CP-Violation with Kaons

- If $C P$ is conserved,

CPV Signal: $K_{L} \rightarrow$

Expected Backgrc

THE MIRROR DID NOF SEEM TO BE OPERATING PROPERLY.

K_{S} : Short-lived is $C P$ even:
$K_{1}^{0} \rightarrow \pi^{+} \pi^{-} \quad$ (fast)
K_{L} : Long-lived is CP odd:
$K_{2}^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0} \quad$ (slow)

Alternative: Charge Asymmetry in K^{0} decays

Measure $A=\frac{N^{+}-N^{-}}{N^{+}+N^{-}} \quad$ with $\quad \begin{aligned} & N^{+}=K^{0} \rightarrow \pi^{-} e^{+} v \\ & N^{-}=\overline{K^{0}} \rightarrow \pi^{+} e^{-} \bar{v}\end{aligned} \quad$ vs the K^{0} decay time

Contact with Aliens !

CP Violation \& B-mesons

- Example: $B^{0} \rightarrow K^{+} \pi^{-}$
- Two quantum amplitudes (Feynman diagrams)
- Interference gives rise to CP violation
- Requires "strong" and "weak" phases

$$
\begin{array}{cc}
A=A_{1}+A_{2} e^{i \phi} e^{i \delta} & \bar{A}=A_{1}+A_{2} e^{-i \phi} e^{i \delta} \\
|A|^{2}= & \left|A_{1}\right|^{2}+\left|A_{2}\right|^{2}+A_{1} A_{2}\left(e^{i \phi} e^{i \delta}+e^{-i \phi} e^{-i \delta}\right) \\
|\bar{A}|^{2}= & \left|A_{1}\right|^{2}+\left|A_{2}\right|^{2}+A_{1} A_{2}\left(e^{-i \phi} e^{i \delta}+e^{i \phi} e^{i \delta}\right) \\
|A-\bar{A}|^{2}=4 A_{1} A_{2} \sin \phi \sin \delta
\end{array}
$$

CP Violation is a hot topic at the LHCb experiment

CPT symmetry implies that an antiparticle is identical to a particle travelling backwards in time.

Symmetry breaking in the early universe

- Higgs mechanism generates mass
- For the weak bosons
- For the fermions
- Higgs couplings lead to CKM couplings
- 3 generations allow for CP violation
- Can it explain the matter anti-matter asymmetry?
- So far: no!

a) What do you think is the difference between an exact and a broken symmetry?
b) Can you explain the name spontaneous symmetry breaking means?
c) Which symmetry is involved in the gauge theories below? Which of these gauge symmetries are exact? Why/Why not?
i. U1(Q) symmetry
ii. SU2(u-d-flavour) symmetry
iii. SU3(u-d-s-flavour) symmetry
iv. SU6(u-d-s-c-b-t) symmetry
v. SU3(colour) symmetry
vi. SU5(Grand unified) symmetry
vii. SuperSymmetry

Lecture 4: Discussion Topics

Discussions Topics belonging to Lecture 4

- Explain the idea behind non observables
- What are the symmetries and non-observables related to:
- Electromagnetism
- Weak interaction
- Strong interaction
- C-violation
- P-Violation
- T-Violation

Topic-10: Symmetry and non-observables

T.D.Lee: "The root to all symmetry principles lies in the assumption that it is impossible to observe certain basic quantities; the non-observables"

There are four main types of symmetry:

- Permutation symmetry:

Bose-Einstein and Fermi-Dirac Statistics

- Continuous space-time symmetries:
translation, rotation, velocity, acceleration,...
- Discrete symmetries:
space inversion, time reversal, charge conjugation,...
- Unitary symmetries: gauge invariances:
U_{1} (charge), SU_{2} (isospin), SU_{3} (color), \ldots

\Rightarrow If a quantity is fundamentally non-observable it is related to an exact symmetry
\Rightarrow If it could in principle be observed by an improved measurement; the symmetry is said to be broken
Noether Theorem: symmetry

Topic-10: Symmetry and non-observables

Non-observables	Symmetry Transformations	Conservation Laws or Selection Rule
Difference between identical particles	Permutation	B.-E. or F.-D. statistics
Absolute spatial position	Space translation: $\vec{r} \rightarrow \vec{r}+\vec{\Delta}$	momentum
Absolute time	Time translation: $t \rightarrow t+\tau$	energy
Absolute spatial direction	Rotation: $\vec{r} \rightarrow \vec{r}^{\prime}$	angular momentum
Absolute velocity	Lorentz transformation	generators of the Lorentz group
Absolute right (or left)	$\vec{r} \rightarrow-\vec{r}$	parity
Absolute sign of electric charge	$e \rightarrow-e$	charge conjugation
Relative phase between states of different charge Q	$\psi \rightarrow e^{i \theta Q} \psi$	charge
Relative phase between states of different baryon number B	$\psi \rightarrow e^{i \theta N} \psi$	baryon number
Relative phase between states of different lepton number L	$\psi \rightarrow e^{i \theta L} \psi$	lepton number
Difference between different coherent mixture of p and n states	$\left.\begin{array}{l}p \\ n\end{array}\right) \rightarrow U\binom{p}{n}$	isospin

Topic-10: Symmetry and non-observables: example

- Simple example: potential energy V between two charged particles:

Absolute position is a non-observable:
The interaction is independent on the choice of the origin 0 .

Symmetry:
V is invariant under arbitrary
space translations:

$$
\overrightarrow{r_{1}} \rightarrow \vec{r}_{1}+\vec{d} \quad \overrightarrow{r_{2}} \rightarrow \overrightarrow{r_{2}}+\vec{d}
$$

Consequently:

$$
V=V\left(\vec{r}_{1}-\vec{r}_{2}\right)
$$

Total momentum is conserved:

$$
\frac{d}{d t} \underbrace{\left(\vec{p}_{1}+\vec{p}_{2}\right)}_{\vec{p}_{\text {tot }}}=\vec{F}_{1}+\vec{F}_{2}=-\left(\vec{\nabla}_{1}+\vec{\nabla}_{2}\right) V=0
$$

a) What do you think is the difference between an exact and a broken symmetry?
b) Can you explain the name spontaneous symmetry breaking means?
c) Which symmetry is involved in the gauge theories below? Which of these gauge symmetries are exact? Why/Why not?
i. U1(Q) symmetry
ii. SU2(u-d-flavour) symmetry
iii. SU3(u-d-s-flavour) symmetry
iv. SU6(u-d-s-c-b-t) symmetry
v. SU3(colour) symmetry
vi. SU5(Grand unified) symmetry
vii. SuperSymmetry

Lecture 4: Exercises

Exercises belonging to Lecture 4

- Show that the definition $W_{\mu}^{ \pm}=\frac{b_{\mu}^{1} \mp i b_{\mu}^{2}}{\sqrt{2}}$ leads to the charged current:

$$
\mathcal{L}=-W_{\mu}^{+} J^{\mu^{+}}-W_{\mu}^{-} J^{\mu^{-}} \text {with } J^{\mu+}=\frac{g}{\sqrt{2}} \bar{\Psi} \gamma_{\mu} \tau^{+} \Psi \text { and } J^{\mu^{-}}=\frac{g}{\sqrt{2}} \bar{\Psi} \gamma_{\mu} \tau^{-} \Psi
$$

Exercise - 14 : Symmetry breaking

$$
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-V(\phi)=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-\frac{1}{2} \mu^{2} \phi^{2}-\frac{1}{\Lambda} \lambda \phi^{4} \quad \text { Case B) }
$$

- Redefine coordinates: $\eta \equiv \phi-v$
- Exercise: re-write the Lagrangian in η and v to show:

$$
\mathcal{L}(\eta)=\frac{1}{2}\left(\partial_{\mu} \eta\right)\left(\partial^{\mu} \eta\right)-\lambda v^{2} \eta^{2}-\lambda v \eta^{3}-\frac{1}{4} \lambda \eta^{4}-\frac{1}{4} \lambda v^{4}
$$

- Ignore the constant term $\frac{1}{4} \lambda v^{4}$ and neglect higher order η^{3} :

$$
\mathcal{L}(\eta)=\frac{1}{2}\left(\partial_{\mu} \eta\right)\left(\partial^{\mu} \eta\right)-\lambda v^{2} \eta^{2}
$$

- This describes a new scalar field η with a mass $\frac{1}{2} m_{\eta}^{2}=\lambda v^{2} \Rightarrow m_{\eta}=\sqrt{2 \lambda v^{2}} \quad\left(=\sqrt{-2 \mu^{2}}\right)$
- Price to pay: Lagrangian is no longer symmetric under $\eta \rightarrow-\eta$ in the new field.

Exercise - 15 : Mass of the proton

Besides giving mass to the weak vector bosons, it was briefly flashed that the same Higgs mechanism is responsible for giving mass to the fermion masses in the Standard Model, through ad-hoc Yukawa couplings. The mass of a 'naked' quark can be estimated through models of soft QCD, where it enters as a parameter for e.g. the binding energy of a meson. For up and down, they are found to be roughly 2 resp. $5 \mathrm{MeV} / \mathrm{c}$.
a) What fraction of the proton mass is due to the Higgs mass of the constituent quarks?
b) Can you find out where the other part of the proton mass comes from?

- Consider a function defined by the following prescription:

$$
\delta(x)=\lim _{\Delta \rightarrow 0}\left\{\begin{array}{cc}
1 / \Delta & \text { for }|x|<\Delta / 2 \\
0 & \text { otherwise }
\end{array}\right.
$$

- The integral of this function is normalized: $\int_{-\infty}^{\infty} \delta(x) \mathrm{d} x=1$
- For a function $f(x)$ we have: $f(x) \delta(x)=f(0) \delta(x)$

$$
\text { ... and therefore: } \int_{-\infty}^{\infty} f(x) \delta(x) \mathrm{d} x=f(0) \int_{-\infty}^{\infty} \delta(x) \mathrm{d} x=f(0)
$$

- Exercise:
a) Prove that: $\delta(k x)=\frac{1}{|k|} \delta(x)$
b) Prove that: $\delta(g(x))=\sum_{i=1}^{n} \frac{1}{\left|g^{\prime}\left(x_{i}\right)\right|} \delta\left(x-x_{i}\right)$, where $g\left(x_{i}\right)=0$ are the zero-points
- Hint: make a Taylor expansion of g around the 0 -points.

Exercise - 16: Dirac delta function (2)

- The delta function has many forms. One of them is: $\delta(x)=\lim _{\alpha \rightarrow \infty} \frac{1}{\pi} \frac{\sin ^{2} \alpha x}{\alpha x^{2}}$
c) Make this plausible by sketching the function $\sin ^{2}(\alpha x) /\left(\pi \alpha x^{2}\right)$ for two relevant values of α
- Remember the Fourier transform:

$$
\begin{aligned}
& f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} g(k) e^{i k x} \mathrm{~d} k \\
& g(k)=\int_{-\infty}^{\infty} f(x) e^{-i k x} \mathrm{~d} x
\end{aligned}
$$

d) Use this to show that another (important!) representation of the Dirac deltafunction is given by:

$$
\delta(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i k x} \mathrm{~d} k \quad \leftarrow \text { We will use this later in the lecture! }
$$

