PHY3004: Nuclear and Particle Physics Marcel Merk, Jacco de Vries

The Standard Model

Lecture 1: "Particles"

Classification of particles

- Lepton: fundamental particle
- Hadron: consist of quarks
- Meson: 1 quark +1 antiquark ($\left.\pi^{+}, B_{S}^{0}, \ldots\right)$
- Baryon: 3 quarks (p, n, Λ, \ldots)
- Anti-baryon: 3 anti-quarks
- Fermion: particle with half-integer spin.
- Antisymmetric wave function: obeys Pauliexclusion principle and Pauli-Dirac statistics
- All fundamental quarks and leptons are spin- $1 / 2$
- Baryons ($\mathrm{S}=1 / 2,3 / 2$)
- Boson: particle with integer spin
- Symmetric wave function: Bose-Einstein statistics
- Mesons: $(S=0,1)$, Higgs ($S=0$)
- Force carriers: $\gamma, W, Z, g(\mathrm{~S}=1)$; graviton(S=2)

Standard Model of Elementary Particles

Recap: "Seeing the wood for the trees"

- Lecture 1: "Particles"
- Zooming into constituents of matter
- Skills: distinguish particle types, Spin
- Lecture 2: "Forces"
- Exchange of quanta: EM, Weak, QCD
- Skills: 4-vectors, Feynman diagrams
- Lecture 3: "Waves"

- Quantum fields and gauge invariance
- Dirac algebra, Lagrangian, co- \& contra variant
- Lecture 4: "Symmetries"
- Standard Model, Higgs, Discrete Symmetries
- Skills: Lagrangians, Chirality \& Helicity
- Lecture 5: "Scattering"

Wave Equations

Contents:

1. Wave equations and Probability

Griffiths chapter 7
a) Wave equations for spin-0 fields

- Schrödinger (non relativistic), Klein-Gordon (relativistic)
b) Wave equation for spin- $1 / 2$ fields
- Dirac equation (relativistic)
- Fundamental fermions
c) Wave equations for spin-1 fields

If you are unfamiliar with the math, just focus on the concepts.
The math requires some practice, but is less tricky then it may look.
\rightarrow Also, check the recorded videos.

- Gauge boson fields; eg. electromagnetic field

2. Gauge field theory

Griffiths chapter 10
a) Variational Calculus and Lagrangians
b) Local Gauge invariance
i. QED
ii. Yang-Mills Theory (Weak, Strong)

- Required Quantum Mechanics knowledge:
- Angular momentum and spin: study Griffiths sections 4.2 ,4.3, In particular Pauli Matrices

Part 1
 Wave Equations and Probability

1a) Spin-0

Schrödinger Equation and Probability

$$
i \frac{\partial}{\partial t}(t \psi)-i t \frac{\partial \psi}{\partial t}=i \psi+i t \frac{\partial \psi}{\partial t}-i t \frac{\partial \psi}{\partial t}=i \psi
$$

- Quantization of classical non-relativistic theory:
- Take $E=\frac{\vec{p}^{2}}{2 m}$ and substitute energy and momentum by operators that operate on ψ :

$$
E \rightarrow \hat{E}=i \hbar \frac{\partial}{\partial t} \quad ; \quad p \rightarrow \hat{p}=-i \hbar \vec{\nabla}
$$

$$
([E, t]=-i \hbar, \quad[x, p]=-i \hbar)
$$

- Result is Schrödinger's equation: $i \hbar \frac{\partial}{\partial t} \psi=-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi \rightarrow \frac{\partial}{\partial t} \psi=\frac{i \hbar}{2 m} \nabla^{2} \psi$
- Plane wave solutions: $\psi=N e^{i(\vec{p} \vec{x}-E t) / \hbar}$ with the kinematic relation $E=p^{2} / 2 m$
- Multiply both sides Schrödinger by ψ^{*} and add its complex conjugate

$$
\begin{aligned}
& \psi^{*} \frac{\partial}{\partial t} \psi=\psi^{*}\left(\frac{i \hbar}{2 m}\right) \nabla^{2} \psi \\
& \psi \frac{\partial}{\partial t} \psi^{*}=\psi\left(\frac{-i \hbar}{2 m}\right) \nabla^{2} \psi^{*}
\end{aligned}
$$

$$
\frac{\partial}{\partial t} \underbrace{\left(\psi^{*} \psi\right)}_{\rho}=-\vec{\nabla} \cdot \underbrace{\left[\frac{i \hbar}{2 m}\left(\psi \vec{\nabla} \psi^{*}-\psi \vec{\nabla} \psi\right)\right]}_{\vec{\prime}}
$$

Recognize "continuity" equation:

$$
\frac{\partial \rho}{\partial t}+\vec{\nabla} \cdot \vec{\jmath}=0
$$

Law of conserved currents, with:

$$
\begin{aligned}
& \rho \equiv \psi^{*} \psi=|N|^{2} \\
& \vec{J} \equiv \frac{i \hbar}{2 m}\left(\psi \vec{\nabla} \psi^{*}-\psi^{*} \vec{\nabla} \psi\right)=\frac{|N|^{2}}{m} \vec{p}
\end{aligned}
$$

Use: $\vec{\nabla} \cdot\left(\psi^{} \vec{\nabla} \psi-\psi \vec{\nabla} \psi^{*}\right)=\psi^{*} \nabla^{2} \psi-\psi \nabla^{2} \psi^{*}$

- Interpret: probability waves!

Relativistic: Klein-Gordon equation

- Quantization of relativistic theory
 Note: $p_{\mu} \rightarrow-i \hbar \partial_{\mu}$

- Start with $E^{2}=p^{2} c^{2}+m^{2} c^{4}$ and substitute again $E \rightarrow i \hbar \frac{\partial}{\partial t}$ and $\vec{p} \rightarrow-i \hbar \vec{\nabla}$ operates on ϕ
- Result is Klein-Gordon equation: $-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \phi=-\nabla^{2} \phi+\frac{m^{2} c^{2}}{\hbar^{2}} \phi \quad$ Use now: $\hbar=c=1$
- Plane wave solutions: $\phi=N e^{i(\vec{p} \vec{x}-E t) / \hbar}$ with relativistic relation $E^{2}=\vec{p}^{2}+m^{2}$
- Use the covariant notation:

$$
p_{\mu} p^{\mu}=E^{2}-\vec{p}^{2}=m^{2}
$$

$$
\begin{aligned}
& \partial^{\mu}=\left(\frac{\partial}{\partial t},-\vec{V}\right) \quad ; \quad \partial_{\mu}=\left(\frac{\partial}{\partial t}, \vec{\nabla}\right) \\
& \partial_{\mu} \partial^{\mu} \equiv \frac{\partial^{2}}{\partial t^{2}}-\vec{\nabla}^{2} \quad \text { (as usually take } c=\hbar=1 \text {) } \\
& p^{0}=E \text { and } x^{0}=t
\end{aligned}
$$

- Klein-Gordon in four-vector notation: $\partial_{\mu} \partial^{\mu} \phi+m^{2} \phi=0$
- Plane wave solutions: $\phi=N e^{-i\left(p_{\mu} x^{\mu}\right)} \quad$ (Remember this is: $\left.\phi=N e^{-i(E t-\vec{p} \vec{x})}\right)$
- Time and space coordinates are now treated fully symmetric
- This is needed in a relativistic theory where time and space for different observes are linear combinations of each other

Klein-Gordon conserved currents

- Similar to the Schrödinger case multiply both sides by -i ϕ^{*} from left and add the expression to its complex conjugate

$$
\begin{aligned}
-i \phi^{*}\left(-\frac{\partial^{2} \phi}{\partial t^{2}}\right) & =-i \phi^{*}\left(-\nabla^{2} \phi+m^{2} \phi\right) \\
i \phi\left(-\frac{\partial^{2} \phi^{*}}{\partial t^{2}}\right) & =i \phi\left(-\nabla^{2} \phi^{*}+m^{2} \phi^{*}\right)
\end{aligned}
$$

$$
\frac{\partial}{\partial t} i \underbrace{i\left(\phi^{*} \frac{\partial \phi}{\partial t}-\phi \frac{\partial \phi^{*}}{\partial t}\right)}_{\rho}=\vec{\nabla} \cdot \underbrace{\left[i\left(\phi^{*} \vec{\nabla} \phi-\phi \vec{\nabla} \phi^{*}\right)\right]}_{-\vec{\jmath}}
$$

- The quadratic equation $E^{2}=p^{2}+m^{2}$ leads to double solutions: $E^{2}=\cdots \Rightarrow E= \pm \cdots$

Again recognize "continuity" equation, the law of conserved currents:

$$
\frac{\partial \rho}{\partial t}+\vec{\nabla} \cdot \vec{\jmath}=0 \quad \Rightarrow \quad \partial_{\mu} j^{\mu}=0
$$

With now:

$$
j^{\mu}=(\rho, \vec{\jmath})=i\left[\phi^{*}\left(\partial^{\mu} \phi\right)-\phi\left(\partial^{\mu} \phi^{*}\right)\right]
$$

It gives for plane waves: $\phi=N e^{-i\left(p_{\mu} x^{\mu}\right)}$

$$
\begin{aligned}
& \rho=2|N|^{2} E \\
& \vec{\jmath}=2|N|^{2} \vec{p}
\end{aligned}
$$

Or in 4-vector: $j^{\mu}=2|N|^{2} p^{\mu}$

- Positive and negative energy solutions
- Negative solutions imply negative probability density ρ !!!
- This bothered Dirac and therefore he looked for an equation linear in E and $p \ldots$

Antiparticles

- Feynman-Stückelberg interpretation

- Charge current of an electron with momentum \vec{p} and energy E $j^{\mu}(-e)=-2 e|N|^{2} p^{\mu}=-2 e|N|^{2}(E, \vec{p})$
- Charge current of a positron

$$
j^{\mu}(+e)=+2 e|N|^{2} p^{\mu}=-2 e|N|^{2}(-E,-\vec{p})
$$

The positron current with energy $-E$ and momentum $-\vec{p}$ is the same as the electron current with E and \vec{p}

- The negative energy particle solutions going backward in time describe the positive-energy antiparticle solutions.
- The wave function $\phi=N e^{-i x_{\mu} p^{\mu}}$ stays invariant for negative energy and going backwards in time
- Consider eg. $e^{-i(-E)(-t)}=e^{-i E t}$
- A positron is an electron travelling backwards in time

Wave Equations

Contents:

1. Wave equations and Probability
a) Wave equations for spin-O fields

- Schrödinger (non relativistic), Klein-Gordon (relativistic)
b) Wave equation for spin- $1 / 2$ fields
- Dirac equation (relativistic)
- Fundamental fermions
c) Wave equations for spin-1 fields
- Gauge boson fields; eg. electromagnetic field

2. Gauge field theory

Griffiths chapter 10 and PP1 chapter 1
a) Variational Calculus and Lagrangians
b) Local Gauge invariance
i. QED
ii. Yang-Mills Theory (Weak, Strong)

- Required Quantum Mechanics knowledge:
- Angular momentum and spin: study Griffiths sections 4.2 ,4.3, In particular Pauli Matrices

Part 1
 Wave Equations and Probability

> 1b) Spin-1/2

Dirac Equation

$$
\text { Instead of } E^{2}=p^{2} c^{2}+m^{2} c^{4}
$$

- Dirac did not like negative probabilities and looked for a wave equation of the form $E=i \frac{\partial}{\partial t} \psi=H \psi=(?)$, but relativistically correct.
- Try: $H=(\vec{\alpha} \cdot \vec{p}+\beta m)$ where $\vec{\alpha} \cdot \vec{p}=\alpha_{1} p_{x}+\alpha_{2} p_{y}+\alpha_{3} p_{z} \quad ; \quad \vec{\alpha}$? β ?
- We know that: $H^{2} \psi=E^{2} \psi=\left(\vec{p}^{2}+m^{2}\right) \psi$
- Write it out: $H^{2}=\left(\sum_{i} \alpha_{i} p_{i}+\beta m\right)\left(\sum_{j} \alpha_{j} p_{j}+\beta m\right)$

$$
\begin{aligned}
& =\left(\sum_{i, j} \alpha_{i} \alpha_{j} p_{i} p_{j}+\sum_{i} \alpha_{i} \beta p_{i} m+\sum_{j} \beta \alpha_{j} p_{j} m+\beta^{2} m^{2}\right) \\
& =(\sum_{i} \alpha_{i}^{2} p_{i}^{2}+\sum_{i>j}^{\sum_{i}\left(\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}\right) p_{i} p_{j}+\sum_{i}\left(\alpha_{i} \beta+\beta \alpha_{i}\right) p_{i} m+\underbrace{\beta^{2} m^{2}})} \begin{array}{l}
=0
\end{array}=m^{2} \\
& \mathrm{f}: \beta^{2}=1=m^{2}
\end{aligned}
$$

- This works out if:
- $\alpha_{1}^{2}=\alpha_{2}^{2}=\alpha_{3}^{2}=\beta^{2}=1$ - $\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta$ anti-commute: ie.: $\alpha_{1} \alpha_{2}=-\alpha_{2} \alpha_{1}$ etc
- Anti-commutator: $\left\{\alpha_{i}, \alpha_{j}\right\}=2 \delta_{i j} ;\left\{\alpha_{i}, \beta\right\}=0 ; \beta^{2}=1$
- Using definition: $\{A, B\}=A B+B A$:

Dirac's idea

$$
\left\{\alpha_{i}, \alpha_{j}\right\}=2 \delta_{i j} ;\left\{\alpha_{i}, \beta\right\}=0 ; \beta^{2}=1
$$

- Clearly α_{i} and β cannot be numbers. Let them be matrices!
- In that case they operate on a wave function that is a column vector
- The simplest case that allows the requirements are 4×4 matrices.

$$
E \psi=H \psi=(\vec{\alpha} \vec{p}+\beta m) \psi
$$

- Dirac's equation becomes:

$$
\begin{aligned}
& \text { Remember: } \\
& \qquad E \rightarrow i \frac{\partial}{\partial t} \quad \vec{p} \rightarrow-i \vec{\nabla}
\end{aligned}
$$

- It is possible making use of the Pauli spin matrices
- $\alpha_{i}=\left(\begin{array}{cc}0 & \sigma_{i} \\ \sigma_{i} & 0\end{array}\right)$ and $\beta=\left(\begin{array}{cc}\mathbb{1} & 0 \\ 0 & -\mathbb{1}\end{array}\right)$ with $\sigma_{1}=\sigma_{x}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) ; \sigma_{2}=\sigma_{y}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right) ; \sigma_{3}=\sigma_{z}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
- Note that α and β are hermitian: $\alpha_{i}^{\dagger}=\alpha_{i}$ and $\beta^{\dagger}=\beta$ (Since Hamiltonian has real E eigenvalues.)
- Remember: $\left\{\sigma_{i}, \sigma_{j}\right\}=\sigma_{i} \sigma_{j}+\sigma_{j} \sigma_{i}=2 \delta_{i j} \mathbb{1} \quad$ and $\quad \sigma_{1}^{2}=\sigma_{2}^{2}=\sigma_{3}^{2}=\mathbb{1}$
- Unfortunately we also need: $\sigma_{i} \beta+\beta \sigma_{i}=0 \quad \rightarrow$ We need 4×4 matrices!

Dirac's idea

- Clearly α_{i} and β cannot be numbers. Let them be matrices!
- In that case they operate on a wave function that is a column vector
- The simplest case that allows the requirements are 4×4 matrices.
- Dirac's equation becomes:

Remember:
$E \rightarrow i \frac{\partial}{\partial t} \quad p \rightarrow-i \vec{\nabla}$

$$
i \frac{\partial}{\partial t}\left(\begin{array}{l}
\psi_{1} \\
\psi_{2} \\
\psi_{3} \\
\psi_{4}
\end{array}\right)=[-i \underbrace{\left(\begin{array}{cccc}
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
. & \cdot & \cdot & \cdot
\end{array}\right)}_{\overrightarrow{\alpha_{i}}} \cdot \overrightarrow{\nabla_{i}}+\underbrace{\left(\begin{array}{cccc}
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
. & \cdot & \cdot & .
\end{array}\right)}_{\beta} \cdot m\left(\begin{array}{l}
\psi_{1} \\
\psi_{2} \\
\psi_{3} \\
\psi_{4}
\end{array}\right)
$$

- This is a very complicated equation!
- What does it mean that the wave function ψ is now a 1-by-4 column vector?
- ψ is not a 4-vector, since the indices do not represent kinematic variables, but matrices indices!

Covariant form of Dirac's equation

- Dirac equation: $H=E=(\vec{\alpha} \cdot \vec{p}+\beta m) \Rightarrow i \frac{\partial}{\partial t} \psi=(-i \vec{\alpha} \cdot \vec{\nabla}+\beta m) \psi$
- Multiply Dirac's eq. from the left by β; then it becomes:

$$
\left.\frac{\left(i \beta \frac{\partial}{\gamma^{0}}\right.}{\partial t} \psi+i \beta \vec{\beta} \cdot \overrightarrow{\gamma^{1}, \gamma^{2}, \gamma^{3}}-m\right) \psi=0
$$

$$
\text { (Remember } \beta^{2}=1 \text {) }
$$

- Introduce now the Dirac γ-matrices: $\gamma^{\mu} \equiv(\beta, \beta \vec{\alpha}) \quad$ (vector of four 4x4matrices!)
- Covariant form of Dirac eq:

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0
$$

Note (see def covariant derivative):
$A^{\mu} \partial_{\mu}=A^{0} \frac{\partial}{\partial t}+\vec{A} \vec{\nabla}$

- Realise that Dirac's equation is a set of 4 coupled differential equations.
- Requirements on $\vec{\alpha}, \beta$ can be summarized as: $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu}$

Dirac Gamma Matrices

- There is some freedom to implement: $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu}$ in 4×4 matrices.
- We will use the Dirac-Pauli representation

$$
\begin{array}{ll}
\gamma^{0}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) & \gamma^{1}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 \\
0 & -1 & 0 \\
0 \\
-1 & 0 & 0
\end{array}\right) \\
\gamma^{2}=\left(\begin{array}{cccc}
0 & 0 & 0 & -i \\
0 & 0 & i & 0 \\
0 & i & 0 & 0 \\
-i & 0 & 0 & 0
\end{array}\right) & \gamma^{3}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 \\
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
\end{array}
$$

Note the indices: (confusing!)
$\mu, v=0,1,2,3$ are the Lorentz indices in space-time:

Dirac matrix indices: 1,2,3,4 Have to do with the row and column indices of the matrix (and spinors)

$$
\text { Or: } \gamma^{0}=\beta=\left(\begin{array}{cc}
\mathbb{1}_{2} & 0 \\
0 & -\mathbb{1}_{2}
\end{array}\right) \text { and } \gamma^{k}=\beta \alpha_{k}=\left(\begin{array}{cc}
0 & \sigma_{k} \\
-\sigma_{k} & 0
\end{array}\right) \text { with Pauli matrices } \sigma_{k}
$$

- Note: although the gamma indices are Lorentz-indices ("space-time", the gamma-matrices are not 4-vectors! (They are simply constants.)
- Dirac algebra:
- Write the explicit form of the γ-matrices
- Show that: $\left\{\gamma^{\mu}, \gamma^{\nu}\right\} \equiv \gamma^{\mu} \gamma^{v}+\gamma^{v} \gamma^{\mu}=2 g^{\mu \nu}$
- Show that: $\left(\gamma^{0}\right)^{2}=\mathbb{1}_{4} ;\left(\gamma^{1}\right)^{2}=\left(\gamma^{2}\right)^{2}=\left(\gamma^{3}\right)^{2}=-\mathbb{1}_{4}$
- Use anti-commutation rules of α and β to show that: $\gamma^{\mu \dagger}=\gamma^{0} \gamma^{\mu} \gamma^{0}$
- Define $\gamma^{5}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}$ and show: $\gamma^{5^{\dagger}}=\gamma^{5} ;\left(\gamma^{5}\right)^{2}=\mathbb{1}_{4} ;\left\{\gamma^{5}, \gamma^{\mu}\right\}=0$

Exercise: Solutions of free Dirac equation

a) Show that the following plane waves are solutions to Dirac's equation

$$
\psi_{1}=\left(\begin{array}{c}
1 \\
0 \\
p_{z} /(E+m) \\
\left(p_{x}+i p_{y}\right) /(E+m)
\end{array}\right) e^{i(\vec{p} \cdot \vec{x}-E t)} \quad ; \psi_{2}=\left(\begin{array}{c}
0 \\
1 \\
\left(p_{x}-i p_{y}\right) /(E+m) \\
-p_{z} /(E+m)
\end{array}\right) e^{i(\vec{p} \cdot \vec{x}-E t)} \begin{aligned}
& \begin{array}{l}
\text { Before KG: } \\
\phi=N e^{-i\left(p_{\mu} x^{\mu}\right)}
\end{array}
\end{aligned}
$$

$$
\psi_{3}=\left(\begin{array}{c}
p_{z} /(E-m) \\
\left(p_{x}+i p_{y}\right) /(E-m) \\
1 \\
0
\end{array}\right) e^{i(\vec{p} \cdot \vec{x}-E t)} ; \psi_{4}=\left(\begin{array}{c}
\left(p_{x}-i p_{y}\right) /(E-m) \\
-p_{z} /(E-m) \\
0 \\
1
\end{array}\right) e^{i(\vec{p} \cdot \vec{x}-E t)}
$$

b) Write the Dirac equation for particle in rest (choose $\vec{p}=0$) and show that ψ_{1} and ψ_{2} are positive energy solutions: $E=+\left|\sqrt{\vec{p}^{2}+m^{2}}\right|$ whereas ψ_{3} and ψ_{4} are negative energy solutions: $E=$ $-\left|\sqrt{\vec{p}^{2}+m^{2}}\right|$.
c) Consider the helicity operator $\vec{\sigma} \cdot \vec{p}=\sigma_{x} p_{x}+\sigma_{y} p_{y}+\sigma_{z} p_{z}$ and show that ψ_{1} corresponds to positive helicity solution and ψ_{2} to negative helicity. Similarly for ψ_{3} and ψ_{4}.

Spin and Helicity - hint for exercise c)

- For a given momentum p there still is a two-fold degeneracy with the same energy: what differentiates solutions ψ_{1} from ψ_{2} ? \rightarrow It is spin!!
- Define the spin operator for Dirac spinors: $\vec{\Sigma}=\left(\begin{array}{cc}\vec{\sigma} & 0 \\ 0 & \vec{\sigma}\end{array}\right)$, where $\vec{\sigma}$ are the three 2×2 Pauli spin matrices
- Define helicity λ as spin "up"/"down" wrt direction of motion of the particle

$$
\lambda=\frac{1}{2} \vec{\Sigma} \cdot \hat{p} \equiv \frac{1}{2}\left(\begin{array}{cc}
\vec{\sigma} \cdot \hat{p} & 0 \\
0 & \vec{\sigma} \cdot \hat{p}
\end{array}\right)=\frac{1}{2|p|}\left(\sigma_{x} p_{x}+\sigma_{y} p_{y}+\sigma_{z} p_{z}\right)
$$

- Split off the Energy and momentum part of Dirac's equation: $\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0$

$$
\left[\left(\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right) E-\left(\begin{array}{cc}
0 & \sigma_{i} \\
-\sigma_{i} & 0
\end{array}\right) p^{i}-\left(\begin{array}{cc}
I & 0 \\
0 & I
\end{array}\right) m\right]\binom{\psi_{A}}{\psi_{B}}=0
$$

- Exercise: Try solutions ψ_{1} and ψ_{2} to see they are helicity eigenstates with $\lambda=+1 / 2$ and $\lambda=-1 / 2$
- Dirac wanted to solve negative energies and he found spin- $1 / 2$ fermions!

Antiparticles: positive and negative energy solutions

- Dirac spinor solutions $\psi_{i}\left(x^{\mu}\right)=\psi_{i}(t, \vec{x})=u_{i}(E, \vec{p}) e^{i(\vec{p} \vec{x}-E t)}=u_{i}\left(p^{\mu}\right) e^{-i p_{\mu} x^{\mu}}$ with $i=1,2,3,4$
- Since we work with antiparticles, instead of negative energy particles travelling backwards instead in time, antiparticle solutions can be defined

$$
\begin{aligned}
& u_{3}(-E,-\vec{p}) e^{i((-\vec{p}) \vec{x}-(-E) t)}=v_{2}(E, \vec{p}) e^{-i(\vec{p} \vec{x}-E t)}=v_{2}\left(p^{\mu}\right) e^{i p_{\mu} x^{\mu}} \\
& u_{4}(-E,-\vec{p}) e^{i((-\vec{p}) \vec{x}-(-E) t)}=v_{1}(E, \vec{p}) e^{-i(\vec{p} \vec{x}-E t)}=v_{1}\left(p^{\mu}\right) e^{i p_{\mu} x^{\mu}}
\end{aligned}
$$

- Where now the energy of the antiparticle solutions v_{1} and v_{2} is positive: $E>0$
- Explicit: $u_{4}=\left(\begin{array}{c}\left(p_{x}-i p_{y}\right) /(E-m) \\ -p_{z} /(E-m) \\ 0 \\ 1\end{array}\right)$ and $u_{3}=\left(\begin{array}{c}p_{z} /(E-m) \\ \left(p_{x}+i p_{y}\right) /(E-m) \\ 1 \\ 0\end{array}\right)$ becomes...

Antiparticles: positive and negative energy solutions

- Dirac spinor solutions $\psi_{i}\left(x^{\mu}\right)=\psi_{i}(t, \vec{x})=u_{i}(E, \vec{p}) e^{i(\vec{p} \vec{x}-E t)}=u_{i}\left(p^{\mu}\right) e^{-i p_{\mu} x^{\mu}}$ with $i=1,2,3,4$
- Since we work with antiparticles, instead of negative energy particles travelling backwards instead in time, antiparticle solutions can be defined

$$
\begin{aligned}
& u_{3}(-E,-\vec{p}) e^{i((-\vec{p}) \vec{x}-(-E) t)}=v_{2}(E, \vec{p}) e^{-i(\vec{p} \vec{x}-E t)}=v_{2}\left(p^{\mu}\right) e^{i p_{\mu} x^{\mu}} \\
& u_{4}(-E,-\vec{p}) e^{i((-\vec{p}) \vec{x}-(-E) t)}=v_{1}(E, \vec{p}) e^{-i(\vec{p} \vec{x}-E t)}=v_{1}\left(p^{\mu}\right) e^{i p_{\mu} x^{\mu}}
\end{aligned}
$$

- Where now the energy of the antiparticle solutions v_{1} and v_{2} is positive: $E>0$
- Explicit: $v_{1}=\left(\begin{array}{c}\left(p_{x}-i p_{y}\right) /(E+m) \\ -p_{z} /(E+m) \\ 0 \\ 1\end{array}\right)$ and $v_{2}=\left(\begin{array}{c}p_{z} /(E+m) \\ \left(p_{x}+i p_{y}\right) /(E+m) \\ 1 \\ 0\end{array}\right)$
- Where E and \vec{p} are now the energy and momentum of the antiparticle

Adjoint spinors

- Adjoint spinors

- Solutions of the Dirac equation are called spinors
- Current density and continuity equation require adjoints instead of complex conjugates

$$
\text { Remember: }(A B)^{\dagger}=B^{\dagger} A^{\dagger}
$$

$$
\begin{aligned}
& i \gamma^{0} \frac{\partial \psi}{\partial t}+i \sum_{k=1,2,3} \gamma^{k} \frac{\partial \psi}{\partial x^{k}} \quad-m \psi=0 \begin{array}{l}
\text { - The minus sign in }\left(-\gamma^{k}\right) \text { disturbs the } \\
\text { Lorentz invariant form: } \psi^{\dagger} \text { is not physical }
\end{array} \\
&-i \frac{\partial \psi^{\dagger}}{\partial t} \gamma^{0}-i \sum_{k=1,2,3} \begin{array}{l}
\frac{\partial \psi^{\dagger}}{\partial x^{k}}\left(-\gamma^{k}\right)-m \psi^{\dagger}=0
\end{array} \begin{array}{l}
\text { Restore covariance by multiplying second } \\
\text { equation from the right by } \gamma^{0} \text { and define: } \\
\gamma^{0^{\dagger}=\gamma^{0} ; \gamma^{k^{\dagger}}=-\gamma^{k} ;-\gamma^{k} \gamma^{0}=\gamma^{0} \gamma^{k}} \quad \bar{\psi}=\psi^{\dagger} \gamma^{0}
\end{array} \\
& \gamma^{0}=\beta=\left(\begin{array}{cc}
\mathbb{1}_{2} & 0 \\
0 & -\mathbb{1}_{2}
\end{array}\right)
\end{aligned}
$$

Adjoint spinors

- Adjoint spinors

- Solutions of the Dirac equation are called spinors
- Current density and continuity equation require adjoints instead of complex conjugates

$$
\begin{aligned}
& \text { Remember: }(A B)^{\dagger}=B^{\dagger} A^{\dagger}
\end{aligned}
$$

$$
\begin{aligned}
& \gamma^{0^{\dagger}}=\gamma^{0} ; \gamma^{k^{\dagger}}=-\gamma^{k} ;-\gamma^{k} \gamma^{0}=\gamma^{0} \gamma^{k} \quad \bar{\psi}=\psi^{\dagger} \gamma^{0} \\
& \gamma^{0}=\beta=\left(\begin{array}{cc}
\mathbb{1}_{2} & 0 \\
0 & -\mathbb{1}_{2}
\end{array}\right) \\
& \text { - Dirac spinor: } \psi=\left(\begin{array}{l}
\psi_{1} \\
\psi_{2} \\
\psi_{3} \\
\psi_{4}
\end{array}\right) \text {, adjoint Dirac spinor: } \bar{\psi}=\left(\overline{\psi_{1}}, \overline{\psi_{2}}, \overline{\psi_{3}}, \overline{\psi_{4}}\right)^{r^{0}}
\end{aligned}
$$

- Dirac equation: $i \gamma^{\mu} \partial_{\mu} \psi-m \psi=0$; adjoint Dirac equation: $i \partial_{\mu} \bar{\psi} \gamma^{\mu}+m \bar{\psi}=0$

Dirac Current density and conserved current

- Apply a similar trick as before for Schrödinger and Klein-Gordon case:
- Multiply adjoint Dirac eq from right by ψ and multiply Dirac eq. from left by $\bar{\psi}$

$$
\begin{array}{rr}
\left(i \partial_{\mu} \bar{\psi} \gamma^{\mu}+m \bar{\psi}\right) & \psi=0 \\
\bar{\psi}\left(i \gamma^{\mu} \partial_{\mu} \psi-m \psi\right) & =0
\end{array}
$$

$+$

$$
\begin{aligned}
\bar{\psi} \gamma^{\mu}\left(\partial_{\mu} \psi\right)+\left(\partial_{\mu} \bar{\psi}\right) \gamma^{\mu} \psi & =0 \\
\partial_{\mu}\left(\bar{\psi} \gamma^{\mu} \psi\right) & =0
\end{aligned}
$$

- Probability: Zero-th component of the current:

$$
j^{0}=\bar{\psi} \gamma^{0} \psi=\psi^{\dagger} \psi=\sum_{i=1}^{4}\left|\psi_{i}\right|^{2}
$$

- This always gives a positive probability, which was the motivation of Dirac.
- Dirac was looking for an explanation for positive and negative energy solutions by linearising Klein-Gordon equation
- He found that his solutions described spin- $1 / 2$ particles
- He predicted, based on symmetry, that for each particle there should exist an antiparticle (the negative energy solution).
- We had relativistic fields:
- Spin-O: Klein-Gordon: e.g. pion particles
- Spin-1/2: Dirac : e.g. quarks and leptons
- How about forces? Spin=1

Wave Equations

Contents:

1. Wave equations and Probability
a) Wave equations for spin-O fields

- Schrödinger (non relativistic), Klein-Gordon (relativistic)
b) Wave equation for spin- $1 / 2$ fields
- Dirac equation (relativistic)
- Fundamental fermions
c) Wave equations for spin-1 fields
- Gauge boson fields; eg. electromagnetic field

2. Gauge field theory

Griffiths chapter 10 and PP1 chapter 1
a) Variational Calculus and Lagrangians
b) Local Gauge invariance
i. QED
ii. Yang-Mills Theory (Weak, Strong)

- Required Quantum Mechanics knowledge:
- Angular momentum and spin: study Griffiths sections 4.2 ,4.3, In particular Pauli Matrices

Part 1
 Wave Equations and Probability

> 1c) Spin-1

- Maxwell equations describe electric and magnetic fields induced by charges and currents: (used Heavyside-Lorentz units: $c=1, \epsilon_{0}=1, \mu_{0}=1$)

1. Gauss' law:
$\vec{\nabla} \cdot \vec{E}=\rho$
2. No magnetic charges: $\quad \vec{\nabla} \cdot \vec{B}=0$

From 1. and 4. derive continuity
3. Faraday's law of induction: $\vec{\nabla} \times \vec{E}+\frac{\partial \vec{B}}{\partial t}=0$

$$
\vec{\nabla} \cdot \vec{\jmath}=-\frac{\partial \rho}{\partial t}
$$

\rightarrow charge conservation
This was the motivation for
4. Modified Ampère's law: $\quad \vec{\nabla} \times \vec{B}-\frac{\partial \vec{E}}{\partial t}=\vec{\jmath}$

Maxwell to modify Ampère's law

- Define a Lorentz covariant 4-vector field $A^{\mu}=(V, \vec{A})$ as follows: $\vec{B}=\vec{\nabla} \times \vec{A} \quad$ (then automatically 2. follows)
$\vec{E}=-\frac{\partial \vec{A}}{\partial t}-\vec{\nabla} V$ with $V=A^{0} \quad$ (then automatically 3 . follows)
a) Show Maxwell equations can be summarized in covariant form:

$$
\partial_{\mu} \partial^{\mu} A^{v}-\partial^{v} \partial_{\mu} A^{\mu}=j^{v} \quad \text { (Derive expressions for } \rho \text { and } \vec{\jmath} \text { and use: } \vec{\nabla} \times(\vec{\nabla} \times \vec{A})=-\nabla^{2} \vec{A}+\vec{\nabla}(\vec{\nabla} \cdot \vec{A})
$$

The Antisymmetric tensor $F^{\mu \nu}$

- Maxwell's equation $\partial_{\mu} \partial^{\mu} A^{v}-\partial^{v} \partial_{\mu} A^{\mu}=j^{v}$ can be further shortened by introducing the antisymmetric tensor: $F^{\mu \nu} \equiv \partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}$:

$$
F^{\mu \nu}=\left(\begin{array}{cccc}
0 & -E_{x} & -E_{y} & -E_{z} \\
E_{x} & 0 & -B_{z} & B_{y} \\
E_{y} & B_{z} & 0 & -B_{x} \\
E_{z} & -B_{y} & B_{x} & 0
\end{array}\right)
$$

- Show that Maxwell's equations become: $\partial_{\mu} F^{\mu \nu}=j^{\nu}$
- Hint: derive the expressions for charge ($q=j^{0}$) and current $(\vec{I}=\vec{\jmath})$ separately. Use the identity: $\vec{\nabla} \times(\vec{\nabla} \times \vec{A})=-\nabla^{2} \vec{A}+\vec{\nabla}(\vec{\nabla} \cdot \vec{A})$. Remember the definitions:

$$
\mathrm{A}_{\mu}=\left(A_{0},-\vec{A}\right) \quad ; \quad \partial_{\mu}=\left(\frac{\partial}{\partial t}, \vec{\nabla}\right) \quad ; \quad g^{\mu \nu}=g_{\mu \nu}=\operatorname{diag}(1,-1,-1,-1)
$$

Wave Equations

Contents:

1. Wave equations and Probability
a) Wave equations for spin-O fields

- Schrödinger (non relativistic), Klein-Gordon (relativistic)
b) Wave equation for spin- $1 / 2$ fields
- Dirac equation (relativistic)
- Fundamental fermions
c) Wave equations for spin-1 fields
- Gauge boson fields; eg. electromagnetic field

2. Gauge field theory

Griffiths chapter 10 and PP1 chapter 1
a) Variational Calculus and Lagrangians
b) Local Gauge invariance
i. QED
ii. Yang-Mills Theory (Weak, Strong)

- Required Quantum Mechanics knowledge:
- Angular momentum and spin: study Griffiths sections 4.2 ,4.3, In particular Pauli Matrices

Part 2
 Gauge Theory

2a) Variational Calculus and Lagrangians

- Relativistic Field theory: fields replace the generalized coordinates
- Also time and space will be treated symmetric
- Replace $L(q, \dot{q})$ for classical particles by a Lagrange density $\mathcal{L}(\phi(x), \partial \phi(x))$ in terms of fields and gradients such that $L \equiv \int d^{3} x \mathcal{L}(\phi, \partial \phi)$
- Principle of least actions becomes:

$$
\mathrm{S}=\int_{t_{1}}^{t_{2}} d^{4} x \mathcal{L}(\phi(x), \partial \phi(x)) \quad \text { and again } \quad \delta S=0
$$

t_{1}, t_{2} are endpoints of the path

Classical was:

$$
S=\int_{t_{1}}^{t_{2}} d t L(q, \dot{q}) \Rightarrow \delta S=0
$$

$$
\frac{\partial \mathcal{L}}{\partial \phi(x)}=\partial_{\mu} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi(x)\right)}
$$

- Euler Lagrange Equations of motion becomes:
- Classical was: $\frac{\partial L}{\partial q_{i}}=\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{i}}\right)$
- Scalar Field (spin 0 "pion")
a) Show that the Euler-Lagrange equations for $\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \phi\right)-\frac{1}{2} m^{2} \phi^{2}$ results in the Klein-Gordon equation
- Dirac Field (spin $1 / 2$ Fermion)
b) Show that the Euler-Lagrange equations for $\mathcal{L}=i \bar{\psi} \gamma_{\mu} \partial^{\mu} \psi-m \bar{\psi} \psi$ results in the Dirac equation
- Electromagnetic field (spin 1 photon)
c) Show that $\mathcal{L}=-\frac{1}{4}\left(\partial^{\mu} A^{v}-\partial^{v} A^{\mu}\right)\left(\partial_{\mu} A_{v}-\partial_{v} A_{\mu}\right)-j^{\mu} A_{\mu}$ results in Maxwell's equations

These Lagrangians are the fundamental objects in quantum field theory
Descriptions of interactions follow from symmetry principles on these objects.

Wave Equations

Contents:

1. Wave equations and Probability
a) Wave equations for spin-O fields

- Schrödinger (non relativistic), Klein-Gordon (relativistic)
b) Wave equation for spin- $1 / 2$ fields
- Dirac equation (relativistic)
- Fundamental fermions
c) Wave equations for spin-1 fields
- Gauge boson fields; eg. electromagnetic field

2. Gauge field theory

Griffiths chapter 10 and PP1 chapter 1
a) Variational Calculus and Lagrangians
b) Local Gauge invariance
i. QED
ii. Yang-Mills Theory (Weak, Strong)

- Required Quantum Mechanics knowledge:
- Angular momentum and spin: study Griffiths sections 4.2 ,4.3, In particular Pauli Matrices

Part 2
Gauge Theory

2b) Local Gauge Invariance
i) QED

- global gauge invariance: the phase of the wave function is not observable: Changing the wave function $\psi(x) \rightarrow \psi^{\prime}(x)=e^{i \alpha} \psi(x)$ should not change the Lagrangian for an electron
- Look at Dirac Lagrangian: $\mathcal{L}=i \bar{\psi} \gamma^{\mu} \partial_{\mu} \psi-m \bar{\psi} \psi$

$$
e^{-i \alpha} \bar{\psi} e^{i \alpha} \psi=\bar{\psi} \psi
$$

- It should not change for $\psi \rightarrow \psi^{\prime}$ and $\bar{\psi} \rightarrow \overline{\psi^{\prime}}=\psi^{\prime \dagger} \gamma^{0} ; \overline{\psi^{\prime}}=e^{-i \alpha} \bar{\psi} \rightarrow$ OK.
- local gauge invariance: invariance under changing phases in space and time
- An electron wave function can have a different phases at different places and times - $\psi(x) \rightarrow \psi^{\prime}(x)=e^{i \alpha(x)} \psi(x)$ and $\bar{\psi}(x) \rightarrow \overline{\psi^{\prime}}(x)=e^{-i \alpha(x)} \bar{\psi}(x)$
- Check this for the Dirac Lagrangian

Problem in the term: $\partial_{\mu} \psi(x) \rightarrow \partial_{\mu} \psi^{\prime(x)}=e^{i \alpha(x)}\left(\partial_{\mu} \psi(x)+i \partial_{\mu} \alpha(x) \psi(x)\right)$
Hence: $\mathcal{L} \rightarrow \mathcal{L}^{\prime}+i \partial_{\mu} \alpha(x) \bar{\psi}(x) \gamma^{\mu} \psi(x)$
trouble

- It seems that the Lagrangian will change, but this is not allowed!

Covariant Derivative

- We insist that the Lagrangian does not change and invent a "covariant" derivative:
- Replace in $i \bar{\psi} \gamma_{\mu} \partial^{\mu} \psi-m \bar{\psi} \psi$ the derivative by: $\partial^{\mu} \rightarrow D^{\mu} \equiv \partial^{\mu}+i q A^{\mu}$
- Require that the vector field A^{μ} transforms together with the particle wave ψ

$$
\begin{aligned}
& \psi(x) \rightarrow \psi^{\prime}(x) \\
&=\mathrm{e}^{i \alpha(x)} \psi(x) \\
& A^{\mu}(x) \rightarrow A^{\prime \mu}(x)
\end{aligned}=A^{\mu}(x)-\frac{1}{q} \partial^{\mu} \alpha(x) \text {. }
$$

- \rightarrow Exercise: check that the Lagrangian now is invariant!
- What have we done?
- We insist the electron can have a local phase factor $\alpha(x)$ without changing the physics
- We then must at the same time introduce a photon field $A^{\mu}(x)$, which couples to charge!
\Rightarrow Gauge invariance implies interactions!
- Remember gauge transformations EM field: $A^{\mu} \rightarrow A^{\prime \mu}=A^{\mu}+\partial^{\mu} \lambda$ is same photon
- λ is coupled to the phase of the wave function of the electrons
- The same principle can also be used for weak and strong interactions: implement other symmetries

Quantum Electrodynamics (QED)

- The free Dirac Lagrangian is: $\mathcal{L}_{\text {free }}=i \bar{\psi} \gamma_{\mu} \partial^{\mu} \psi-m \bar{\psi} \psi$
- Introducing electromagnetism implies: $\partial^{\mu} \rightarrow D^{\mu} \equiv \partial^{\mu}+i q A^{\mu}$
- Resulting in: $\quad \mathcal{L}_{E M}=i \bar{\psi} \gamma_{\mu} D^{\mu} \psi-m \bar{\psi} \psi$

$$
\begin{aligned}
& \mathcal{L}_{E M}=i \bar{\psi} \gamma_{\mu} \partial^{\mu} \psi-m \bar{\psi} \psi-q \bar{\psi} \gamma_{\mu} A^{\mu} \psi \\
& \mathcal{L}_{E M}=\mathcal{L}_{\text {free }}-\mathcal{L}_{\text {int }} \text { with } \mathcal{L}_{\text {int }}=-J_{\mu} A^{\mu} \text { and } J_{\mu}=q \bar{\psi} \gamma_{\mu} \psi
\end{aligned}
$$

- Remember that the Dirac probability current was $J_{\mu}=\bar{\psi} \gamma_{\mu} \psi$ such that we now have a charge current: $J_{\mu}=q \psi \gamma_{\mu} \psi$
- The system is described as free Lagrangian plus an interaction Lagrangian of the form: "current \times field" $\mathcal{L}_{\text {int }}=-J_{\mu} A^{\mu}$
Part 2 Gauge Theory
2b) Local Gauge Invariance ii) Yang-Mills theories* (Weak, Strong)
* Note: this is a more technical part: focus on the concept involved; the precise mathematics is less important for now

Yang Mills Theories

- QED is called a $U(1)$ symmetry. It means that a 1-dimensional unitary transformation (the phase factor $\mathrm{e}^{i \alpha(x)}$) does not change the physics.
- The unitary symmetry couples to the charge quantum number
- Let us require that the weak interaction can not differentiate between rotations in the space of "up-down": Isospin.
- Rewrite $\mathcal{L}=\bar{u}\left(i \gamma^{\mu} \partial_{\mu}-m\right) u+\bar{d}\left(i \gamma^{\mu} \partial_{\mu}-m\right) d$ where u (isospin up) and d (isospin down) are a doublet of spinor waves as follows:

$$
\mathcal{L}=\bar{\psi}\left(i \gamma^{\mu} I \partial_{\mu}-I m\right) \psi \text { with } \psi=\binom{u}{d} \text { and } I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

- We think of the "up" and "down" directions in weak isospin space

SU2 Gauge Invariance

EM was: $\psi(x) \rightarrow \psi^{\prime}(x)=G_{E M} \psi(x)=e^{i \alpha(x)} \psi(x)$

- We require gauge invariance: $\psi(x) \rightarrow \psi^{\prime}(x)=G(x) \psi(x)$ with $G(x)=\exp \left(\frac{i}{2} \vec{\tau} \cdot \vec{\alpha}(x)\right)$ - $\vec{\tau}=\tau_{1}, \tau_{2}, \tau_{3}$ are the Pauli Matrices
- This is now a rotation in isospin space generated by 2×2 Pauli matrices!
- Just like QED there is the problem that the Lagrangian does not automatically stay invariant (just write it out), because: $\partial_{\mu} \psi(x) \rightarrow \partial_{\mu} \psi^{\prime}(x)=G(x)\left(\partial_{\mu} \psi\right)+\left(\partial_{\mu} G\right) \psi$
To solve this a corresponding covariant drouble
- To solve this a corresponding covariant derivative must be introduced to keep the Lagrangian invariant:

$$
I \partial_{\mu} \rightarrow D_{\mu}=I \partial_{\mu}+i g B_{\mu} \quad I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

- g is the coupling constant that replaces charge q in QED and B_{μ} is now a new vector force field that replaces A_{μ} of QED.
- The object B_{μ} is now a 2×2 matrix: $\quad B_{\mu}=\frac{1}{2} \vec{\tau} \cdot \vec{b}_{\mu}=\frac{1}{2} \tau_{1}^{a} b_{\mu}^{a}=\frac{1}{2}\left(\begin{array}{cc}b_{3} & b_{1}-i b_{2} \\ b_{1}+i b_{2} & -b_{3}\end{array}\right)$ $\vec{b}_{\mu}=\left(b_{1}, b_{2}, b_{3}\right)$ are now three new gauge fields
- We need 3 instead of one, because there are three generators of 2×2 rotations
- We now get the desired behaviour if : $D_{\mu} \psi(x) \rightarrow D^{\prime}{ }_{\mu} \psi^{\prime}(x)=G(x)\left(D_{\mu} \psi\right)$

Gauge transformation for B_{μ} field - (for experts)

- We get the desired behaviour if: $D_{\mu} \psi(x) \rightarrow D^{\prime}{ }_{\mu} \psi^{\prime}(x)=G(x)\left(D_{\mu} \psi\right)$
- The left side of this equation is:

$$
\begin{aligned}
D_{\mu}^{\prime} \psi^{\prime}(x) & =\left(\partial_{\mu}+i g B_{\mu}^{\prime}\right) \psi^{\prime} \\
& =G\left(\partial_{\mu} \psi\right)+\left(\partial_{\mu} G\right) \psi+i g B_{\mu}^{\prime}(G \psi)
\end{aligned}
$$

- While the right hand side is: $G\left(D_{\mu} \psi\right)=G\left(\partial_{\mu} \psi\right)+i g G B_{\mu} \psi$
- So the required transformation of the field is: $\operatorname{ig} B_{\mu}^{\prime}(G \psi)=\operatorname{ig} G\left(B_{\mu} \psi\right)-\left(\partial_{\mu} G\right) \psi$
- Multiply the equation by G^{-1} on the right (and omitting ψ): $B_{\mu}^{\prime}=G B_{\mu} G^{-1}+\frac{i}{g}\left(\partial_{\mu} G\right) G^{-1}$
- Compare this to the case of electromagnetism where $G_{e m}=e^{i \alpha(x)}$ gives:

$$
A_{\mu}^{\prime}=G_{e m} A G_{e m}^{-1}+\frac{i}{g}\left(\partial_{\mu} G_{e m}\right) G_{e m}^{-1}=A_{\mu}-\frac{1}{q} \partial_{\mu} \alpha
$$

... which is exactly what we had before.

Interpretation: weak Interaction

- We try to describe an interaction with a symmetry between two states:
- "up" and "down" states with invariance under SU2 rotations
- To do this requires the existence of three force fields, related to the gauge field: \vec{B}_{μ}
- What are they?
- They must be three massless bosons, similar to the photon, that couple to "up" and "own" states.
- They are the W^{-}, Z^{0}, W^{+}bosons.
- How come they have a mass (unlike the photon?) \rightarrow Higgs mechanism
- Again the interaction Lagrangian will be of the form "current \times field:" $\vec{J}_{\mu} \vec{b}^{\mu}$, where the current is now: $J_{\mu}=\frac{g}{2} \bar{\psi} \gamma_{\mu} \vec{\tau} \psi \quad$ (for EM it was: $J_{\mu}=q \bar{\psi} \gamma_{\mu} \psi$)
- The "up" and "down" states are $\psi=\binom{u}{d}$ and $\psi=\binom{v}{e}$ and we describe the weak interaction.
- How about the strong interaction?
- The "charge" of the strong interaction is "colour"
- The wave function of a quark has three components:
- $\psi=\left(\begin{array}{l}\psi_{r} \\ \psi_{g} \\ \psi_{b}\end{array}\right)$; Require a symmetry generated by 3×3 rotations in 3-dim color space: SU(3)
- There are 8 generator matrices λ_{i} and as a consequence there are 8 vector fields needed to keep the Lagrangian invariant
- There exist 8 gluons, related to:

$$
\begin{array}{llll}
\lambda_{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) & \lambda_{2}=\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right) & \lambda_{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right) & \lambda_{4}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right) \\
\lambda_{5}=\left(\begin{array}{ccc}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right) & \lambda_{6}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) & \lambda_{7}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & -i & 0
\end{array}\right) & \lambda_{8}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right)
\end{array}
$$

The Standard Model

- The Standard Model implements local gauge invariance at the same time to
- Electromagnetism (U(1) symmetry transformations) $\rightarrow 1$ photon
- Weak interaction (SU(2) symmetry transformations) $\rightarrow 3$ weak bosons
- Strong interaction (SU(3) symmetry transformations) $\rightarrow 8$ gluons
- The SM gauge group is $S U(3) \otimes S U(2) \otimes U(1)$
- For an exact symmetry the force particles should be massless.
- $S U(3)$ is exact \rightarrow massless gluons
- $S U(2) \otimes U(1)$ is an approximate (ie "broken") symmetry.
- It is broken in the Higgs mechanism such that there remains one massless boson (photon) and three massive particles ($\mathrm{W}^{-}, \mathrm{Z}^{0}, \mathrm{~W}^{+}$).

Lecture 3: Discussion Topics

Discussions Topics belonging to Lecture 3

- Explain the difference between Lorentz indices and Dirac indices
- Is γ^{μ} a four-vector? Why (not)?
- Is $j^{\mu}=\bar{\psi} \gamma^{\mu} \psi$ a four-vector? Why (not)?
- Explain the difference between helicity and chirality
- How is each one defined?
- Which of the two is Lorentz invariant?
- Which one of the two do we refer to when talking about the left or right handedness of a particle?

Topic-8: Helicity vs Chirality - background information

a) Write out the chirality operator γ^{5} in the Dirac-Pauli representation.
b) The helicity operator is defined as $\lambda=\frac{1}{2} \vec{\Sigma} \cdot \hat{p}$. Show that helicity operator and the chirality operator have the same effect on a spinor solution, i.e.

$$
\gamma^{5} \psi=\gamma^{5}\binom{\chi^{(s)}}{\frac{\vec{\sigma} \cdot \vec{p}}{E+m} \chi^{(s)}} \approx \lambda\binom{\chi^{(s)}}{\frac{\vec{\sigma} \cdot \vec{p}}{E+m} \chi^{(s)}}=\lambda \psi \quad \text { with: } \chi^{(1)}=\binom{1}{0} ; \chi^{(2)}=\binom{0}{1}
$$

in the relativistic limit where $E \gg m$
c) Show explicitly that for a Dirac spinor:

$$
\begin{aligned}
& \bar{\psi} \gamma^{\mu} \psi=\overline{\psi_{L}} \gamma^{\mu} \psi_{L}+\overline{\psi_{R}} \gamma^{\mu} \psi_{R} \text { making use of } \psi=\psi_{L}+\psi_{R} \text { and the } \\
& \text { projection operators: } \psi_{L}=\frac{1}{2}\left(1-\gamma^{5}\right) \text { and } \psi_{R}=\frac{1}{2}\left(1+\gamma^{5}\right)
\end{aligned}
$$

d) Explain why the weak interaction is called left-handed.
"I cannot believe God is a weak left-hander."

Topic-9: Maxwell's equation

- Maxwell's equations can be described relativistically with the 4-vector field A^{μ}.
- Show how you get E and B fields from A^{μ}
- Explain the concept of gauge invariance.
- Is the A^{μ} field physical or not?
- The photon is a spin-1 quantum, but why can it not have a spin-0 component?

Topic-9: The photon field and gauge invariance

- Field A^{μ} is just introduced as a mathematical tool
- Gauge freedom: you are free to choose any A^{μ} as long as \vec{E} and \vec{B} fields don't change:

$$
\begin{aligned}
& A^{\mu} \rightarrow A^{\prime \mu}=A^{\mu}+\partial^{\mu} \lambda \\
& V \rightarrow V^{\prime}=V+\frac{\partial \lambda}{\partial t} \\
& \vec{A} \rightarrow \overrightarrow{A^{\prime}}=\vec{A}-\vec{\nabla} \lambda
\end{aligned}
$$

- Choose the Lorentz gauge condition: $\partial_{\mu} A^{\mu}=0$
- Maxwell equation in Lorentz gauge becomes:

$$
\partial_{\mu} \partial^{\mu} A^{v}-\partial^{v} \partial_{\mu} A^{\mu}=j^{v} \Rightarrow \partial_{\mu} \partial^{\mu} A^{v}=j^{v}
$$

- Very similar to Klein-Gordon equation $\partial_{\mu} \partial^{\mu} \phi+m^{2} \phi=0$
- But now 4-equations $\rightarrow 4$ polarizations states of the photon field??
- Photon field solutions: $A^{\mu}(x)=N \varepsilon^{\mu}(p) e^{-i p_{v} x^{v}}$
- A gauge transformation implies: $\varepsilon^{\mu} \rightarrow \varepsilon^{\prime \mu}=\varepsilon^{\mu}+a p^{\mu}$
- Different polarization vectors which differ by multiple of p^{μ} describe same photon
- Only 3 degrees of freedom remain $\rightarrow 3$ polarization states: spin: $-1,0,1 \rightarrow$ choose $\varepsilon^{0}=0$
- Mass of the photon is zero:
- Thus $p^{\mu} p_{\mu}=0 \rightarrow \varepsilon^{\mu} p_{\mu} \rightarrow \vec{\varepsilon} \cdot \vec{p}=0$
- Now only two transverse polarization states remain: Chose $\vec{p}=(0,0, p) \rightarrow \vec{\varepsilon}^{1}=(1,0,0)$ and $\vec{\varepsilon}^{2}=(0,1,0)$

Lecture 3: Exercises

Exercises belonging to Lecture 3

Exercise - 9: Dirac Algebra

- Dirac algebra:
- Write the explicit form of the γ-matrices
- Show that: $\left\{\gamma^{\mu}, \gamma^{\nu}\right\} \equiv \gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}=2 g^{\mu \nu}$
- Show that : $\left(\gamma^{0}\right)^{2}=\mathbb{1}_{4} ;\left(\gamma^{1}\right)^{2}=\left(\gamma^{2}\right)^{2}=\left(\gamma^{3}\right)^{2}=-\mathbb{1}_{4}$
- Use anti-commutation rules of α and β to show that: $\gamma^{\mu \dagger}=\gamma^{0} \gamma^{\mu} \gamma^{0}$
- Define $\gamma^{5}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}$ and show: $\gamma^{5^{\dagger}}=\gamma^{5} ;\left(\gamma^{5}\right)^{2}=\mathbb{1}_{4} ;\left\{\gamma^{5}, \gamma^{\mu}\right\}=0$
a) Show that the following plane waves are solutions to Dirac's equation

$$
\psi_{1}=\left(\begin{array}{c}
1 \\
0 \\
p_{z} /(E+m) \\
\left(p_{x}+i p_{y}\right) /(E+m)
\end{array}\right) e^{i(\vec{p} \cdot \vec{x}-E t)} \quad ; \psi_{2}=\left(\begin{array}{c}
0 \\
1 \\
\left(p_{x}-i p_{y}\right) /(E+m) \\
-p_{z} /(E+m)
\end{array}\right) e^{i(\vec{p} \cdot \vec{x}-E t)} \begin{aligned}
& \begin{array}{l}
\text { Before KG: } \\
\phi=N e^{-i\left(p_{\mu} x^{\mu}\right)}
\end{array}
\end{aligned}
$$

$$
\psi_{3}=\left(\begin{array}{c}
p_{z} /(E-m) \\
\left(p_{x}+i p_{y}\right) /(E-m) \\
1 \\
0
\end{array}\right) e^{i(\vec{p} \cdot \vec{x}-E t)} ; \psi_{4}=\left(\begin{array}{c}
\left(p_{x}-i p_{y}\right) /(E-m) \\
-p_{z} /(E-m) \\
0 \\
1
\end{array}\right) e^{i(\vec{p} \cdot \vec{x}-E t)}
$$

b) Write the Dirac equation for particle in rest (choose $\vec{p}=0$) and show that ψ_{1} and ψ_{2} are positive energy solutions: $E=+\left|\sqrt{\vec{p}^{2}+m^{2}}\right|$ whereas ψ_{3} and ψ_{4} are negative energy solutions: E
$=-\left|\sqrt{\vec{p}^{2}+m^{2}}\right|$.
c) Optional: Consider the helicity operator $\vec{\sigma} \cdot \vec{p}=\sigma_{x} p_{x}+\sigma_{y} p_{y}+\sigma_{z} p_{z}$ and show that ψ_{1} corresponds to positive helicity solution and ψ_{2} to negative helicity. Similarly for ψ_{3} and ψ_{4}.

- For a given momentum p there still is a two-fold degeneracy: what differentiates solutions ψ_{1} from ψ_{2} ?
- Define the spin operator for Dirac spinors: $\vec{\Sigma}=\left(\begin{array}{cc}\vec{\sigma} & 0 \\ 0 & \vec{\sigma}\end{array}\right)$, where $\vec{\sigma}$ are the three 2×2 Pauli spin matrices
- Define helicity λ as spin "up"/"down" wrt direction of motion of the particle

$$
\lambda=\frac{1}{2} \vec{\Sigma} \cdot \hat{p} \equiv \frac{1}{2}\left(\begin{array}{cc}
\vec{\sigma} \cdot \hat{p} & 0 \\
0 & \vec{\sigma} \cdot \hat{p}
\end{array}\right)=\frac{1}{2|p|}\left(\sigma_{x} p_{x}+\sigma_{y} p_{y}+\sigma_{z} p_{z}\right)
$$

- Split off the Energy and momentum part of Dirac's equation: $\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0$

$$
\left[\left(\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right) E-\left(\begin{array}{cc}
0 & \sigma_{i} \\
-\sigma_{i} & 0
\end{array}\right) p^{i}-\left(\begin{array}{cc}
I & 0 \\
0 & I
\end{array}\right) m\right]\binom{\psi_{A}}{\psi_{B}}=0
$$

- Exercise: Try solutions ψ_{1} and ψ_{2} to see they are helicity eigenstates with $\lambda=+1 / 2$ and $\lambda=-1 / 2$
- Dirac wanted to solve negative energies and he found spin- $1 / 2$ fermions!
- Scalar Field (spin 0 "pion")
a) Show that the Euler-Lagrange equations for $\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \phi\right)-\frac{1}{2} m^{2} \phi^{2}$ results in the Klein-Gordon equation
- Dirac Field (spin $1 / 2$ Fermion)
b) Show that the Euler-Lagrange equations for $\mathcal{L}=i \bar{\psi} \gamma_{\mu} \partial^{\mu} \psi-m \bar{\psi} \psi$ results in the Dirac equation
- Electromagnetic field (spin 1 photon)
c) Show that $\mathcal{L}=-\frac{1}{4}\left(\partial^{\mu} A^{v}-\partial^{v} A^{\mu}\right)\left(\partial_{\mu} A_{v}-\partial_{v} A_{\mu}\right)-j^{\mu} A_{\mu}$ results in Maxwell's equations

These Lagrangians are the fundamental objects in quantum field theory
Descriptions of interactions follow from symmetry principles on these objects.

Exercise - 12 : Covariant Derivative

- We insist that the Lagrangian does not change and invent a "covariant" derivative:
- Replace in $i \bar{\psi} \gamma_{\mu} \partial^{\mu} \psi-m \bar{\psi} \psi$ the derivative by: $\partial^{\mu} \rightarrow D^{\mu} \equiv \partial^{\mu}+i q A^{\mu}$
- Require that the vector field A^{μ} transforms together with the particle wave ψ

$$
\begin{aligned}
\psi(x) \rightarrow \psi^{\prime}(x) & =\mathrm{e}^{i q \alpha(x)} \psi(x) \\
A^{\mu}(x) \rightarrow A^{\prime \mu}(x) & =A^{\mu}(x)-\partial^{\mu} \alpha(x)
\end{aligned}
$$

- \rightarrow Exercise: check that the Lagrangian now is invariant!

