
Lecture 4: Exercises

Exercises belonging to Lecture 4



Exercise – 13 : Charge Current

• Show that the definition 𝑊!± =
#!"∓%#!#

&
leads to the charged current: 
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$ −𝑊!(𝐽!
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Exercise – 14 : Symmetry breaking

ℒ =
1
2
𝜕!𝜙

" − 𝑉 𝜙 =
1
2
𝜕!𝜙

" −
1
2
𝜇"𝜙" −

1
4
𝜆𝜙#

𝜙

• Start with a (new) scalar field !:  (Klein-Gordon), with a potential:  
 
 
 
 
 
                                Imaginary mass? —> makes no sense! 
                                

Simple example
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For a real scalar field for example:

Lscalar =
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µ
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Klein-Gordon equation

In electroweak theory, kinematics of fermions, i.e. spin-1/2 particles is described by:

Lfermion = i ̄�µ@
µ
 �m ̄ ! Euler-Lagrange ! (i�µ@

µ
�m) = 0| {z }

Dirac equation

In general, the Lagrangian for a real scalar particle (�) is given by:
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4-point int.

+ ... (1)

We can interpret the particle spectrum of the theory when studying the Lagrangian under
small perturbations. In expression (1), the constant (potential) term is for most purposes
of no importance as it does not appear in the equation of motion, the term linear in the
field has no direct interpretation (and should not be present as we will explain later), the
quadratic term in the fields represents the mass of the field/particle and higher order terms
describe interaction terms.

1.3 Simple example of symmetry breaking

To describe the main idea of symmetry breaking we start with a simple model for a real
scalar field � (or a theory to which we add a new field �), with a specific potential term:
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Note that L is symmetric under � ! �� and that � is positive to ensure an absolute
minimum in the Lagrangian. We can investigate in some detail the two possibilities for the
sign of µ2: positive or negative.

1.3.1 µ
2
> 0: Free particle with additional interactions

)φV(

φ

To investigate the particle spectrum we look at the Lagrangian for
small perturbations around the minimum (vacuum). The vacuum
is at � = 0 and is symmetric in �. Using expression (1) we see that
the Lagrangian describes a free particle with mass µ that has an
additional four-point self-interaction:
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1.3.2 µ
2
< 0: Introducing a particle with imaginary mass ?

φ

)φV( v

η

The situation with µ
2
< 0 looks strange since at first glance it

would appear to describe a particle � with an imaginary mass.
However, if we take a closer look at the potential, we see that it
does not make sense to interpret the particle spectrum using the
field � since perturbation theory around � = 0 will not converge
(not a stable minimum) as the vacuum is located at:
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As before, to investigate the particle spectrum in the theory, we have to look at small
perturbations around this minimum. To do this it is more natural to introduce a field ⌘

(simply a shift of the � field) that is centered at the vacuum: ⌘ = �� v.

Rewriting the Lagrangian in terms of ⌘

Expressing the Lagrangian in terms of the shifted field ⌘ is done by replacing � by ⌘+ v in
the original Lagrangian from equation (2):
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where we used µ
2 = ��v

2 from equation (3). Although the Lagrangian is still symmetric
in �, the perturbations around the minimum are not symmetric in ⌘, i.e. V(�⌘) 6= V(⌘).
Neglecting the irrelevant 1

4
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4 constant term and neglecting terms or order ⌘2 we have as
Lagrangian:
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From section 1.2 we see that this describes the kinematics for a massive scalar particle:
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Note: m⌘ > 0.
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𝑣

Case B) 

• Redefine coordinates: 𝜂 ≡ 𝜙 − 𝑣
• Exercise: re-write the Lagrangian in 𝜂 and 𝑣 to show:

• Ignore the constant term %
#
𝜆𝑣# and neglect higher order 𝜂&:

• This describes a new scalar field 𝜂 with a mass %"𝑚'
" = 𝜆𝑣" ⇒ 𝑚' = 2𝜆𝑣" (= −2𝜇") 

• Price to pay: Lagrangian is no longer symmetric under 𝜂 → −𝜂 in the new field.

ℒ 𝜂 =
1
2 𝜕!𝜂 𝜕!𝜂 − 𝜆𝑣"𝜂" − 𝜆𝑣𝜂# −

1
4𝜆𝜂

$ −
1
4𝜆𝑣

$

ℒ 𝜂 =
1
2 𝜕!𝜂 𝜕!𝜂 − 𝜆𝑣"𝜂"



Exercise – 15 : Mass of the proton 

Besides giving mass to the weak vector bosons, it was briefly flashed that the 
same Higgs mechanism is responsible for giving mass to the fermion masses in 
the Standard Model, through ad-hoc Yukawa couplings. The mass of a 'naked' 
quark can be estimated through models of soft QCD, where it enters as a 
parameter for e.g. the binding energy of a meson. For up and down, they are 
found to be roughly 2 resp. 5 MeV/c .
a) What fraction of the proton mass is due to the Higgs mass of the 

constituent quarks? 
b) Can you find out where the other part of the proton mass comes from?



Exercise – 16: Dirac delta function (1) 

• Consider a function defined by the following prescription:

• The integral of this function is normalized:

• For a function 𝑓 𝑥 we have: 𝑓 𝑥 𝛿 𝑥 = 𝑓 0 𝛿 𝑥

…and therefore:

• Exercise:
a) Prove that: 𝛿 𝑘𝑥 = %

&
𝛿 𝑥

b) Prove that: 𝛿 𝑔 𝑥 = ∑'(%) %
*! +"

𝛿 𝑥 − 𝑥' , where 𝑔 𝑥' = 0 are the zero-points
• Hint: make a Taylor expansion of 𝑔 around the 0-points.
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which after integration of one of the momenta gives (4pi

p
s! 2EA = 2mA)
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=
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A

|pf | |M|
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Exercises

Exercise 2.1 (The Dirac �-Function)

Consider a function defined by the following prescription

�(x) = lim
�!0

⇢
1/� for |x| < �/2
0 otherwise

0

surface = 1

infinite

The integral of this function is normalized
Z 1

�1
�(x) dx = 1 (2.56)

and for any (reasonable) function f(x) we have
Z 1

�1
f(x) �(x) dx = f(0). (2.57)

These last two properties define the Dirac �-function. The prescription above gives an
approximation of the �-function. We shall encounter more of those prescriptions which
all have in common that they are the limit of a sequence of functions whose properties
converge to those given here.

(a) Starting from the defining properties of the �-function, prove that

�(kx) =
1

|k|
�(x) . (2.58)

(b) Prove that

� (g (x)) =
nX

i=1

1

|g0 (xi)|
� (x� xi) , (2.59)

where the sum i runs over the 0-points of g(x), i.e.:g(xi) = 0.
Hint: make a Taylor expansion of g around the 0-points.

Exercise 2.2 (Lorentz invariance of the flux)
Prove that (ignoring transformations of the volume V ) the flux factor derived in the lab
frame in Eq. (2.49) is indeed Lorentz-invariant by proving the identity

q
(pA · pB)2

�m2

A
m2

B
= |pA|mB (2.60)

𝛿 𝑥 = lim
,→.

41/Δ for 𝑥 < Δ/2
0 otherwise

@
/0

0
𝛿 𝑥 d𝑥 = 1

1
()

)
𝑓 𝑥 𝛿 𝑥 d𝑥 = 𝑓 0 1

()

)
𝛿 𝑥 d𝑥 = 𝑓 0

See Griffiths Appendix A



Exercise – 16: Dirac delta function (2)

• The delta function has many forms. One of them is:

c) Make this plausible by sketching the function sin" 𝛼𝑥 /(𝜋𝛼𝑥") for two relevant 
values of 𝛼

• Remember the Fourier transform:

d) Use this to show that another (important!) representation of the Dirac delta-
function is given by: 

𝛿 𝑥 = lim
1→0

1
𝜋
sin" 𝛼𝑥
𝛼𝑥"

𝑓 𝑥 =
1
2𝜋

@
/0

0
𝑔 𝑘 𝑒'&+ d𝑘

𝑔 𝑘 = @
/0

0
𝑓 𝑥 𝑒/'&+ d𝑥

𝛿 𝑥 =
1
2𝜋

@
/0

0
𝑒'&+ d𝑘 ç We will use this later in the lecture!


