Lecture 3: Exercises

Exercises belonging to Lecture 3

Exercise - 9: Dirac Algebra

- Dirac algebra:
- Write the explicit form of the γ-matrices
- Show that: $\left\{\gamma^{\mu}, \gamma^{\nu}\right\} \equiv \gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}=2 g^{\mu \nu}$
- Show that : $\left(\gamma^{0}\right)^{2}=\mathbb{1}_{4} ;\left(\gamma^{1}\right)^{2}=\left(\gamma^{2}\right)^{2}=\left(\gamma^{3}\right)^{2}=-\mathbb{1}_{4}$
- Use anti-commutation rules of α and β to show that: $\gamma^{\mu \dagger}=\gamma^{0} \gamma^{\mu} \gamma^{0}$
- Define $\gamma^{5}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}$ and show: $\gamma^{5^{\dagger}}=\gamma^{5} ;\left(\gamma^{5}\right)^{2}=\mathbb{1}_{4} ;\left\{\gamma^{5}, \gamma^{\mu}\right\}=0$
a) Show that the following plane waves are solutions to Dirac's equation

$$
\psi_{1}=\left(\begin{array}{c}
1 \\
0 \\
p_{z} /(E+m) \\
\left(p_{x}+i p_{y}\right) /(E+m)
\end{array}\right) e^{i(\vec{p} \cdot \vec{x}-E t)} \quad ; \psi_{2}=\left(\begin{array}{c}
0 \\
1 \\
\left(p_{x}-i p_{y}\right) /(E+m) \\
-p_{z} /(E+m)
\end{array}\right) e^{i(\vec{p} \cdot \vec{x}-E t)} \begin{aligned}
& \begin{array}{l}
\text { Before KG: } \\
\phi=N e^{-i\left(p_{\mu} x^{\mu}\right)}
\end{array}
\end{aligned}
$$

$$
\psi_{3}=\left(\begin{array}{c}
p_{z} /(E-m) \\
\left(p_{x}+i p_{y}\right) /(E-m) \\
1 \\
0
\end{array}\right) e^{i(\vec{p} \cdot \vec{x}-E t)} ; \psi_{4}=\left(\begin{array}{c}
\left(p_{x}-i p_{y}\right) /(E-m) \\
-p_{z} /(E-m) \\
0 \\
1
\end{array}\right) e^{i(\vec{p} \cdot \vec{x}-E t)}
$$

b) Write the Dirac equation for particle in rest (choose $\vec{p}=0$) and show that ψ_{1} and ψ_{2} are positive energy solutions: $E=+\left|\sqrt{\vec{p}^{2}+m^{2}}\right|$ whereas ψ_{3} and ψ_{4} are negative energy solutions: $E=$ $-\left|\sqrt{\vec{p}^{2}+m^{2}}\right|$.
c) Optional: Consider the helicity operator $\vec{\sigma} \cdot \vec{p}=\sigma_{x} p_{x}+\sigma_{y} p_{y}+\sigma_{z} p_{z}$ and show that ψ_{1} corresponds to positive helicity solution and ψ_{2} to negative helicity. Similarly for ψ_{3} and ψ_{4}.

- For a given momentum p there still is a two-fold degeneracy: what differentiates solutions ψ_{1} from ψ_{2} ?
- Define the spin operator for Dirac spinors: $\vec{\Sigma}=\left(\begin{array}{cc}\vec{\sigma} & 0 \\ 0 & \vec{\sigma}\end{array}\right)$, where $\vec{\sigma}$ are the three 2×2 Pauli spin matrices
- Define helicity λ as spin "up"/"down" wrt direction of motion of the particle

$$
\lambda=\frac{1}{2} \vec{\Sigma} \cdot \hat{p} \equiv \frac{1}{2}\left(\begin{array}{cc}
\vec{\sigma} \cdot \hat{p} & 0 \\
0 & \vec{\sigma} \cdot \hat{p}
\end{array}\right)=\frac{1}{2|p|}\left(\sigma_{x} p_{x}+\sigma_{y} p_{y}+\sigma_{z} p_{z}\right)
$$

- Split off the Energy and momentum part of Dirac's equation: $\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0$

$$
\left[\left(\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right) E-\left(\begin{array}{cc}
0 & \sigma_{i} \\
-\sigma_{i} & 0
\end{array}\right) p^{i}-\left(\begin{array}{cc}
I & 0 \\
0 & I
\end{array}\right) m\right]\binom{\psi_{A}}{\psi_{B}}=0
$$

- Exercise: Try solutions ψ_{1} and ψ_{2} to see they are helicity eigenstates with $\lambda=+1 / 2$ and $\lambda=-1 / 2$
- Dirac wanted to solve negative energies and he found spin- $1 / 2$ fermions!
- Scalar Field (spin 0 "pion")
a) Show that the Euler-Lagrange equations for $\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \phi\right)-\frac{1}{2} m^{2} \phi^{2}$ results in the Klein-Gordon equation
- Dirac Field (spin $1 / 2$ Fermion)
b) Show that the Euler-Lagrange equations for $\mathcal{L}=i \bar{\psi} \gamma_{\mu} \partial^{\mu} \psi-m \bar{\psi} \psi$ results in the Dirac equation
- Electromagnetic field (spin 1 photon)
c) Show that $\mathcal{L}=-\frac{1}{4}\left(\partial^{\mu} A^{v}-\partial^{v} A^{\mu}\right)\left(\partial_{\mu} A_{v}-\partial_{v} A_{\mu}\right)-j^{\mu} A_{\mu}$ results in Maxwell's equations

These Lagrangians are the fundamental objects in quantum field theory
Descriptions of interactions follow from symmetry principles on these objects.

Exercise - 12 : Covariant Derivative

- We insist that the Lagrangian does not change and invent a "covariant" derivative:
- Replace in $i \bar{\psi} \gamma_{\mu} \partial^{\mu} \psi-m \bar{\psi} \psi$ the derivative by: $\partial^{\mu} \rightarrow D^{\mu} \equiv \partial^{\mu}+i q A^{\mu}$
- Require that the vector field A^{μ} transforms together with the particle wave ψ

$$
\begin{aligned}
\psi(x) \rightarrow \psi^{\prime}(x) & =\mathrm{e}^{i q \alpha(x)} \psi(x) \\
A^{\mu}(x) \rightarrow A^{\prime \mu}(x) & =A^{\mu}(x)-\partial^{\mu} \alpha(x)
\end{aligned}
$$

- \rightarrow Exercise: check that the Lagrangian now is invariant!

