Lecture 2: Exercises

Exercises belonging to Lecture 2

Exercise-4: Variational calculus Lagrange Formalism classical

- Example of variational calculus and least action principle: what is the shortest path between two points in space?
- Distance of two close points:
$d l=\sqrt{d x^{2}+d y^{2}}=\sqrt{d x^{2}\left(1+\left(\frac{d y}{d x}\right)^{2}\right)}=\sqrt{1+y^{\prime 2}} d x \quad$ with $y^{\prime}=d y / d x$
- Total length from $\left(x_{0}, y_{0}\right)$ to $\left(x_{1}, y_{1}\right)$:

$$
l=\int_{x_{0}}^{x_{1}} d l=\int_{x_{0}}^{x_{1}} \sqrt{1+y^{\prime 2}} d x=\int_{x_{0}}^{x_{1}} f\left(y, y^{\prime}\right) d x
$$

- Task is to find a function $y(x)$ for which l is minimal
- In general assume the path length is given by: $I=\int_{x_{0}}^{x_{1}} f\left(y, y^{\prime}\right) d x$

- Variational principle: shortest path is stationary: $\delta I=0$
a) Write $\delta f\left(y, y^{\prime}\right)=\frac{\partial f}{\partial y} \delta y+\frac{\partial f}{\partial y^{\prime}} \delta y^{\prime}$ where $\delta y^{\prime}=\delta\left(\frac{d y}{d x}\right)=\frac{d}{d x}(\delta y)$

Show using partial integration that $\delta I=0$ leads to the Hamilton Lagrange equation $\frac{\partial f}{\partial y}-\frac{d}{d x} \frac{\partial f}{\partial y^{\prime}}=0$
b) Here for the shortest path we have $f\left(y^{\prime}\right)=l=\sqrt{1+y^{\prime 2}}$.

Then $\partial f / \partial y=0$ and $\partial f / \partial y^{\prime}=y^{\prime} / \sqrt{1+y^{\prime 2}}$
Show that the variational principle leads to a straight line path: $\frac{d}{d x}\left(\frac{y^{\prime}}{\sqrt{1+y^{\prime 2}}}\right)=0$ or that y^{\prime} is a constant: $d y / d x=a ; y=a x+b$

Exercise-5: 4-Vector derivatives

a) Start with the expression for a Lorentz transformation along the x^{1} axis. Write down the inverse transformation (i.e. express $\left(x^{0}, x^{1}\right)$ in $\left(x^{0 \prime}, x^{1 \prime}\right)$)
b) Use the chain rule to express the derivatives $\partial / \partial x^{0 \prime}$ and $\partial / \partial x^{1 \prime}$ in $\partial / \partial x^{0}$ and $\partial / \partial x^{1}$
c) Use the result to show that $\left(\partial / \partial x^{0},-\partial / \partial x^{1}\right)$ transforms in the same way as $\left(x^{0}, x^{1}\right)$
d) In other words the derivative four-vectors transform inversely to the coordinate four-vectors:

$$
\partial^{\mu}=\left(\frac{1}{c} \frac{\partial}{\partial t},-\vec{\nabla}\right) \text { and } \partial_{\mu}=\left(\frac{1}{c} \frac{\partial}{\partial t}, \vec{\nabla}\right)
$$

Note the difference w.r.t. the minus sign!
e) Explicit 4-vectors: $(c t, x, y, z)$ and $\left(E / c, p_{x}, p_{y}, p_{z}\right) \rightarrow$ use next $c \equiv 1$

Co- and contravariant derivatives

- Contravariant vector:

$$
x^{\mu}=(c t, \vec{x})
$$

But covariant derivative:

$$
\partial^{\mu}=\left(\frac{1}{c} \frac{\partial}{\partial t},-\vec{\nabla}\right)
$$

- Covariant vector:

$$
x_{\mu}=(c t,-\vec{x})
$$

But covariant derivative:

$$
\partial_{\mu}=\left(\frac{1}{c} \frac{\partial}{\partial t}, \vec{\nabla}\right)
$$

Note that the minus sign is "opposite" to the case of the coordinate four-vectors.

Exercises 6, 7, 8

6. [Griffiths exercise 2.2] "Crossing lightsabers"

- Draw the lowest-order Feynman diagram representing Delbruck scattering: $\gamma+$ $\gamma \rightarrow \gamma+\gamma$
- This has no classical analogue. Explain why.

7. [Griffiths exercise 2.4]

- Determine the invariant mass of the virtual photon in each of the lowest-order Feynman diagrams for Bhabha scattering. Assume electron and positron at rest.

8. [Griffiths exercise 2.7]

- Examine the processes in the left column of Griffiths exercise 2.7 and state which one is possible or impossible, and why / with which interaction. Hint: draw the corresponding Feynman diagrams if needed.

