Exercises belonging to Lecture 1

- In particle physics we make often use of natural units
 - Very confusing at first but very convenient when you are used to it ("sloppy") Set $c = 2.998 \times 10^8 \ m/s \equiv 1$ and $\hbar = 1.055 \times 10^{-34} \ Js \equiv 1$ (Just leave them out and put them back at very end of any calculation)
 - Consequence: there is only one basic unit for length, time, mass and energy: *GeV*
- Exercise: derive the numbers on the conversion table on the next page

quantity	symbol in natural units	equivalent symbol in ordinary units
space	x	$x/\hbar c$
time	t	t/\hbar
mass	m	mc^2
momentum	p	pc
energy	E	E
positron charge	е	$e\sqrt{\hbar c/\epsilon_0}$

Conversion of basic quantities between natural and ordinary units.

quantity	conversion factor	natural unit	normal unit
mass	$1 \text{ kg} = 5.61 \times 10^{26} \text{ GeV}$	GeV	GeV/c^2
length	$1 \text{ m} = 5.07 \times 10^{15} \text{GeV}^{-1}$	${\rm GeV}^{-1}$	$\hbar c/{ m GeV}$
time	$1 \text{ s} = 1.52 \times 10^{24} \text{GeV}^{-1}$	${\rm GeV}^{-1}$	$\hbar/{ m GeV}$

Conversion factors from natural units to ordinary units.

Exercise-2 : The Yukawa Potential

- The electric force is transmitted by a photon with m = 0. The wave equation for a static electric field caused by pointlike charge e is: $\nabla^2 V(r) = 0$ (Laplace equation)
 - a) Show that the Coulomb potential $V(r) = -e^2 \frac{1}{r}$ fulfills this equation.
 - Note that the potential is *spherical symmetric,* ie. use spherical coordinates.
- The nuclear force is transmitted by a pi-meson with $m = m_{\pi}$. The wave equation for a static nuclear field caused by a pointlike color charge g is: $\nabla^2 U(r) = m^2 U(r)$ (Klein-Gordon equation)
 - b) Show that the Yukawa potential $U(r) = -g^2 \frac{e^{-r/R}}{r}$ fulfills this equation for a certain value of R, the **range** of the force. What is the relation between R and m_{π} ?
 - Again note that the potential is *spherical symmetric*.
 - This value is between the electron and proton mass, hence the particle was called a pi-meson or pion.
 - c) Calculate the range of the force from Heisenberg's uncertainty relation, using $R = c\Delta t$ and $\Delta E\Delta t \leq \frac{\hbar}{2}$ and $\Delta E = mc^2$.
 - d) The weak force is mediated by W(80 GeV) and Z (91 GeV) bosons. What is the estimated range of the weak force?

Exercise-3: Kinematics: Z-boson production

- The Z-boson particle is a carrier of the weak force. It has a mass of 91.1 GeV. It can be produced experimentally by annihilation of an electron and a positron. The mass of an electron, as well as that of a positron, is 0.511 MeV.
 - a) Assume that an electron and a positron are accelerated in opposite directions and collide head-on to produce a Z-boson in the lab frame.
 Calculate the minimal beam energy required for the electron and the positron in order to produce a Z-boson.
 - b) Assume that a beam of positron particles is shot on a target containing electrons. Calculate the beam energy required for the positron beam in order to produce Z-bosons.
 - c) This experiment was carried out in the 1990's. Which method do you think was used? Why?