
Lecture 1: Discussion Topics

Discussions Topics belonging to 
Lecture 1

When you are assigned a topic, prepare to lead a discussion on the subject with the tutor group.
You are expected to introduce the topic, prepare a few slides or write on the board, 
and be somewhat of an expert.
At the same time you do not have to know everything. You may also address questions to the tutor group.



Topic-1: Natural Units: Griffiths: p. 9-10 

• Redefine the unit ℏ = !
"#
≈ 1.055 × 10$%& Js  to be: ℏ ≡ 1

• Redefine the unit 𝑐 = 2.998 × 10' m/s to be: 𝑐 ≡ 1
• Explain how Energy, mass, distance, time can then be expressed in the 

unit GeV
• How can you get answers that can be compared with measurements?
• What are the advantages of doing this?



Topic-1: Natural Units:I.5. UNITS IN PARTICLE PHYSICS 13

quantity symbol in natural units equivalent symbol in ordinary units
space x x/~c
time t t/~
mass m mc2

momentum p pc
energy E E
positron charge e e

p
~c/✏0

Table i.5: Conversion of basic quantities between natural and ordinary units.

quantity conversion factor natural unit normal unit
mass 1 kg = 5.61⇥ 1026 GeV GeV GeV/c2

length 1 m = 5.07⇥ 1015 GeV�1 GeV�1 ~c/ GeV
time 1 s = 1.52⇥ 1024 GeV�1 GeV�1 ~/ GeV

Table i.6: Conversion factors from natural units to ordinary units.

where ✏0 is the vacuum permittivity. The dimension of the factor e2/✏0 is fixed — it is
[L3M/T2] — but this still leaves a choice of what to put in the charges and what in the
vacuum permittivity.

In the SI system the unit of charge is the Coulomb. (It is currently defined via the
Ampére, which in turn is defined as the current leading to a particular force between
two current-carrying wires. In the near future, this definition will probably be replaced
by the charge corresponding to a fixed number of particles with the positron charge.)
The positron charge expressed in Coulombs is about

e ⇡ 1.6023⇥ 10�19C (i.14)

while the vacuum permittivity is

✏0 ⇡ 8.854⇥ 10�12C2s2kg�1m�3. (i.15)

As we shall see in Lecture 3 the Maxwell equations look much more neat if, in addition
to c = 1, we choose ✏0 = 1. This is called the Heaviside-Lorentz system. Obviously, this
choice a↵ects the numerical value of e. However, note that coupling constant ↵, defined
in equation i.2, is dimensionless and hence independent of the system of units. In this
course we will often write e2, when in fact we mean ↵.

Finally, it is customary to express scattering cross sections in barn: one barn is equal
to 10�24cm2.

Griffiths: p. 9-10 



Topic-2: The Lorentz Transformation

• Why are space and time coordinates not universal (ie not the same for 
each observer)?
• Explain the Lorentz transformation
• When does this effect become noticeable?
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A reference system or coordinate system is used to 
determine the time and position of  an event.

Reference system S is linked to observer Alice at 
position (x,y,z) = (0,0,0)
An event is fully specified by giving its coordinates 
and time: (t, x, y, z)

Reference system S’ is linked to observer Bob who 
is moving  with velocity v with respect to Alice. 
The event has: (t’, x’, y’, z’)

How are the coordinates of an event, say a 
lightning strike in a tree, expressed in coordinates 
for Alice and for Bob?

(t, x, y, z)    à (t’, x’, y’, z’)

10Topic-2: The Lorentz Transformation



Topic-2: Space-time diagram

Arrival Bob
Arrival Alice

Departure Alice & Bob

Bob drives from Maastricht to 
Amsterdam with 100 km/h.

Alice drives from Maastricht to 
Amsterdam with 200 km/h.

Events with space-time coordinates: (x,t)
More general: it is a 4-dimensional space: (x,y,z,t)

Maastricht Amsterdam

x

t

200 km

1 h

1 h

10h00

11h00

12h00

(x,t)

Bob’s world-line
Alice’s world-line

“Events”:

“World lines”:



Topic-2: Coordinate transformation
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How does Alice’s trip look like in the coordinates of the reference system of Bob?

Alice as seen from Maastricht
S = fixed reference system in Maastricht

Alice as seen from Bob
S’ = fixed reference to Bob

Bob’s frame moves with velocity v (100km/h) with respect to Maastricht



Topic-2: Coordinate transformation
How does Alice’s trip look like in the coordinates of the reference system of Bob?

Classical (Gallilei Transformation): Relativistic (Lorentz Transformation):

t0 = t

x0 = x � v t

t0 = �

✓
t �

v

c2
x

◆

x0 = � (x � v t)

� =
1

q
1 � v2
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with:



Topic-2: Lorentz Transformations

Hendrik Anton Lorentz (1853 – 1928)

Dutch Physicist in Leiden
(Nobelprize 1902 with Pieter Zeeman)

To explain the Michelson-Morley experiment 
he assumed that bodies contracted due to 
intermolecular forces as they were moving 
through the aether.
(He believed in the existence if the aether)

Einstein derived it from the relativity 
principle and also saw that time has to be 
modified.



Topic-2: Let’s go crazy and derive them…
Start with classical Galilei Transformation:

𝑥! = 𝑥 − 𝑣𝑡
𝑥 = 𝑥! + 𝑣𝑡′

Let’s try a modification by including a factor:
𝑥! = 𝑓 𝑥 − 𝑣𝑡
𝑥 = 𝑓 𝑥! + 𝑣𝑡′

For light: 𝑥 = 𝑐𝑡 and 𝑥! = 𝑐𝑡!, so:
𝑐𝑡! = 𝑓 𝑐𝑡 − 𝑣𝑡
𝑐𝑡 = 𝑓 𝑐𝑡! + 𝑣𝑡′

Then: 𝑡! = 𝑓
𝑐 − 𝑣
𝑐

𝑡

𝑡 = 𝑓
𝑐 + 𝑣
𝑐

𝑡′

Substitute first into second:

𝑡 = 𝑓
𝑐 + 𝑣
𝑐 𝑓

𝑐 − 𝑣
𝑐 𝑡

Divide by 𝑡: 1 = "#$
"

"%$
"

𝑓& = "!%$!

"!
𝑓&

It follows then that:

So that we find:

Therefor we have derived the 
Lorentz transformation:

Similarly we find the Lorentz 
transformation for time:
(see lecture notes)

whereas the Galilei
translation was:

𝑓& =
𝑐&

𝑐& − 𝑣&
=

1
1 − ⁄𝑣& 𝑐&

𝑓 =
1

1 − ⁄𝑣& 𝑐&
= 𝛾

𝑥! = 𝛾 𝑥 − 𝑣𝑡

𝑡! = 𝛾 𝑡 −
𝑣
𝑐&
𝑥

𝑡! = 𝑡
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Topic-3: Four vectors & co- and contra-variance

• Explain the so-called covariant (ie 4-vector) notation.
• What is the difference between contra-variant and co-variant?
• Explain Einstein’s summation convention for indices



Topic-3: Four vectors & co- and contra-variance

• Four vector: 𝑥! = 𝑥", 𝑥#, 𝑥$, 𝑥%  with  𝑥" = 𝑐𝑡 ⇒ 𝑥"= 𝑡 (use 𝑐 ≡ 1 convention)
• We call this a contravariant vector and: 𝑥! = 𝑥", �⃗�

• Lorentz transformation along 𝑥#axis using 𝛽 = ⁄𝑣 𝑐 and 𝛾 = ⁄1 1 − 𝛽$ is:
𝑥"& = 𝛾 𝑥" − 𝛽𝑥#

𝑥#& = 𝛾 𝑥# − 𝛽𝑥"
𝑥$& = 𝑥$
𝑥%& = 𝑥%

• Lorentz transformations leave the “length” 𝑠 invariant s = 𝑥 ⋅ 𝑥 = 𝑥 $ = 𝑥"$ − �⃗� $

• Explicitly: 𝑐𝑡 & − �⃗� & = 𝑐𝑡! & − �⃗�′ & = 𝑠 is invariant.

• This can be written as: 

See Griffiths: chapter 3 

𝑥!& = Λ'
!𝑥'  ; Λ'

! =

𝛾 −𝛽 0 0
−𝛽 𝛾 0 0
0 0 1 0
0 0 0 1

Write it in Matrix notation:

𝑠 = 𝑥!, 𝑥", 𝑥#, 𝑥$
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

𝑥!, 𝑥", 𝑥#, 𝑥$

“Metric tensor”



Topic-3: Scalar product and co- and contra-variant
• Define co-variant vectors: 𝑥! = 𝑥", −�⃗�

• Define the metric tensor: 𝑔!' =
1 0
0 −1

0 0
0 0

0 0
0 0

−1 0
0 −1

• To obtain a co-variant from contra-variant vector:
𝑥! =5

!
𝑔!'𝑥' = 𝑔!'𝑥'

• Then the invariance distance s = 𝑥!𝑥! = ∑!' 𝑥!𝑔!'𝑥' = 𝑥"$ − �⃗� $

• We speak of a scalar product: 𝐴 ⋅ 𝐵 = 𝐴!𝐵! = 𝑔!'𝐴!𝐵', where a sum is always implicit 
over contravariant and covariant indices. 

• The scalar product or inproduct of Lorentz 4-vectors is always Lorentz invariant: 
• 𝐼 = 𝑎%𝑏% = 𝑎 ⋅ 𝑏  for any Lorentz 4-vectors 𝑎% and 𝑏%
• Example are the space-time vectors 𝑎% , but also the 4-momentum vector 𝑝% = 𝐸, �⃗�
• 𝐸# = �⃗�#𝑐# +𝑚#𝑐& ⇒ 𝑝%= 𝐸, �⃗� ⇒ 𝑝%𝑝% = 𝐸# − �⃗�# = 𝑚#   the invariant mass

Note the Einstein 
summation convention!

Definition:
A contravariant vector 
transforms like 𝑥! and a 
covariant vector transforms 
like Note the Einstein 
summation convention!



Topic-3: Co- and contravariant derivatives

• Contravariant vector:

𝑥! = 𝑐𝑡, �⃗�

But covariant derivative:

𝜕! =
1
𝑐
𝜕
𝜕𝑡 , −∇

• Covariant vector:

𝑥? = 𝑐𝑡, −�⃗�

But covariant derivative:

𝜕! =
1
𝑐
𝜕
𝜕𝑡
, ∇

Note that the minus sign is “opposite” to the case of the coordinate four-vectors.

Griffiths: chapter 3 


