

Recap: "Seeing the wood for the trees"

- Lecture 1: "Particles"
- Zooming into constituents of matter
- Skills: distinguish particle types, Spin
- Lecture 2: "Forces"
- Exchange of quanta: EM, Weak, QCD
- Skills: 4-vectors, Feynman diagrams
- Lecture 3: "Waves"

- Quantum fields and gauge invariance
- Dirac algebra, Lagrangian, co- \& contra variant
- Lecture 4: "Symmetries"
- Standard Model, Higgs, Discrete Symmetries
- Skills: Lagrangians, Chirality \& Helicity
- Lecture 5: "Scattering"

Lecture 1: "Particles" - Nuclear

Strong nuclear force

Electrostatic repulsion

Lecture 1: "Particles" - subatomic

Electron kinetic energy (KeV)

Lecture 2: "Forces"

Lecture 3: "Waves" - wave equations

Quantum Mechanics: $\quad E \rightarrow \hat{E}=i \hbar \frac{\partial}{\partial t} \quad ; \quad p \rightarrow \hat{p}=-i \hbar \vec{\nabla}$

$$
\frac{\partial \rho}{\partial t}+\vec{\nabla} \cdot \vec{\jmath}=0
$$

Non-relativistic spin 0: Schrödinger:

$$
E=\frac{\vec{p}^{2}}{2 m} \quad i \hbar \frac{\partial}{\partial t} \psi=-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi \quad \psi=N e^{i(\vec{p} \vec{x}-E t)}
$$

Relativistic spin 0:

$$
\begin{aligned}
E^{2}=p^{2} c^{2}+m^{2} c^{4} \quad-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \phi=-\nabla^{2} \phi+\frac{m^{2} c^{2}}{\hbar^{2}} \phi \\
\partial_{\mu} \partial^{\mu} \phi+m^{2} \phi=0 \quad \phi=N e^{i(\vec{p} \vec{x}-E t)}
\end{aligned}
$$

$$
\begin{array}{lll}
\text { Relativistic spin- } 1 / 2: & \text { Dirac: } & \\
H=(\vec{\alpha} \cdot \vec{p}+\beta m) & i \frac{\partial}{\partial t} \psi=(-i \vec{\alpha} \cdot \vec{\nabla}+\beta m) \psi & \psi=u(p) e^{i(\vec{p} \vec{x}-E t)} \\
& j^{0}=\bar{\psi} \gamma^{0} \psi=\psi^{\dagger} \psi=\sum_{i=1}^{4}\left|\psi_{i}\right|^{2} \\
& \left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0 & u(p)=\binom{.}{.}
\end{array}
$$

$$
\begin{aligned}
& \rho=2|N|^{2} E \\
& \vec{\jmath}=2|N|^{2} \vec{p} \\
& j^{\mu}=2|N|^{2} p^{\mu}
\end{aligned}
$$

Lecture 3: "Waves" - gauge invariance

Lagrangians
Spin 0 Scalar field: $\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \phi\right)-m^{2} \phi^{2}$
Spin $1 \not 22$ Dirac fermion $\mathcal{L}=i \bar{\psi} \gamma_{\mu} \partial^{\mu} \psi-m \bar{\psi} \psi$
Spin 1 gauge boson (photon) : $\mathcal{L}=-\frac{1}{4}\left(\partial^{\mu} A^{v}-\partial^{v} A^{\mu}\right)\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right)-j^{\mu} A_{\mu}$
Euler Lagrange lead to the wave equations:

$$
\frac{\partial \mathcal{L}}{\partial \phi(x)}=\partial_{\mu} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi(x)\right)}
$$

Forces result from requiring a symmetry principle: Lagrangian should stay invariant

1) $Q E D=U(1)$ symmetry

$$
\begin{aligned}
& \psi(x) \rightarrow \psi^{\prime}(x)=\mathrm{e}^{i q \alpha(x)} \psi(x) \\
& A^{\mu}(x) \rightarrow A^{\prime \mu}(x)=A^{\mu}(x)-\frac{1}{q} \partial^{\mu} \alpha(x)
\end{aligned}
$$

2) Weak $=S U(2)$ symmetry
3) $Q C D=S U(3)$ symmetry

$$
\mathcal{L}=i \bar{\psi} \gamma_{\mu} \partial^{\mu} \psi-m \bar{\psi} \psi \quad \longrightarrow \quad \mathcal{L}=i \bar{\psi} \gamma_{\mu} D^{\mu} \psi-m \bar{\psi} \psi
$$

Covariant derivative: $\quad \partial^{\mu} \rightarrow D^{\mu} \equiv \partial^{\mu}+i q A^{\mu}$

$$
\mathcal{L}=i \bar{\psi} \gamma_{\mu} \partial^{\mu} \psi-m \bar{\psi} \psi-q \bar{\psi} \gamma_{\mu} A^{\mu} \psi
$$

Lecture 4: "Symmetries" - Standard Model

- The Lagrangian of the Standard Model includes electromagnetic, weak and strong interactions according to the gauge field principle
- Construction of the Lagrangian: $\mathcal{L}=\mathcal{L}_{\text {free }}-\mathcal{L}_{\text {interaction }}=\mathcal{L}_{\text {Dirac }}-g J^{\mu} A_{\mu}$
- With g a coupling constant, J^{μ} a current $\left(\bar{\psi} \mathrm{O}_{i} \psi\right)$ and A_{μ} a force field
A. Local $U(1)$ gauge invariance: symmetry under complex phase rotations
- Conserved quantum number: (hyper-) charge
- Lagrangian: $\mathcal{L}=\bar{\psi}\left(i \gamma^{\mu} D_{\mu}-m\right) \psi=\bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi-q \underbrace{\bar{\psi} \gamma^{\mu} \psi}_{J_{E M}^{\mu}} A_{\mu}$
B. Local $S U(2)$ gauge invariance: symmetry under transformations in isospin doublet space.
- Conserved quantum number: weak isospin
- Lagrangian: $\mathcal{L}=\bar{\Psi}\left(i \gamma^{\mu} D_{\mu}-m\right) \Psi=\bar{\Psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \Psi-\frac{g}{2} \underbrace{\bar{\Psi} \gamma^{\mu} \vec{\tau} \Psi}_{J_{\text {Weak }}^{\mu}} \vec{b}_{\mu}$
C. Local $S U(3)$ gauge invariance: symmetry under transformations in colour triplet space
- Conserved quantum number: color
- Lagrangian: $\mathcal{L}=\bar{\Phi}\left(i \gamma^{\mu} D_{\mu}-m\right) \Phi=\bar{\Phi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \Phi-\frac{g_{s}}{2} \underbrace{\bar{\Phi} \gamma^{\mu} \vec{\lambda} \Phi \vec{c}_{\mu}}_{\vec{J}_{Q C D}^{\mu}}$

Lecture 4: "Symmetries" - Standard Model

$$
\mathcal{L}=\bar{\psi}\left(i \gamma^{\mu} D_{\mu}-m\right) \psi=\bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi-q J_{E M}^{\mu} A_{\mu}-\frac{g}{2} J_{\text {Weak }}^{\mu} \vec{b}_{\mu}-\frac{g_{s}}{2} J_{Q C D}^{\mu} \vec{c}_{\mu}
$$

$\operatorname{QED} U(1) \mathcal{L}_{\text {int }}=-J_{\mu} A^{\mu}$ with $J_{\mu}=q \bar{\psi} \gamma_{\mu} \psi$
Weak SU(2) : $\mathcal{L}_{\text {int }}=-\vec{J}_{\mu} \vec{b}^{\mu}$ with $\vec{J}_{\mu}=\frac{g}{2} \bar{\Psi} \gamma_{\mu} \vec{\tau} \Psi$

$$
\begin{array}{rlrl}
W_{\mu}^{ \pm} & \equiv \frac{1}{\sqrt{2}}\left(b_{\mu}^{1} \mp i b_{\mu}^{2}\right) & J_{\mu}^{ \pm}=\frac{1}{\sqrt{2}} \bar{\Psi} \gamma_{\mu} \tau^{ \pm} \Psi & \text { with } \tau^{ \pm}=\frac{1}{2}\left(\tau_{1} \pm i \tau_{2}\right) \\
Z_{\mu} & =b_{\mu}^{3} & J_{\mu}^{3} & =\frac{1}{2} \bar{\Psi} \gamma_{\mu} \tau^{3} \Psi \\
\text { with } \tau^{ \pm}=\frac{1}{2}\left(\tau_{1} \pm i \tau_{2}\right)
\end{array}
$$

Electroweak $\operatorname{SU}(2) \times U(1): \quad \gamma_{\mu}=A_{\mu} \cos \theta_{W}+b_{\mu}^{3} \sin \theta_{W}$

$$
Z_{\mu}=-\mathrm{A}_{\mu} \sin \theta_{W}+b_{\mu}^{3} \cos \theta_{W}
$$

Standard Model: $\quad S U(3)_{\text {color }} \times S U(2)_{L} \times U(1)_{Y}$

Lecture 4: "Symmetries" - Symmetry breaking

$$
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-V(\phi)=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-\frac{1}{2} \mu^{2} \phi^{2}-\frac{1}{4} \lambda \phi^{4}
$$

$$
\begin{array}{ll}
\text { Massive Klein-Gordon } & \text { Interaction } \\
\text { term }(\text { Spin } 0, \text { mass }=\mu) & \text { term }
\end{array}
$$

The Lagrangian has a minimum for $\phi_{0}=\sqrt{-\frac{\mu^{2}}{\lambda}}=v$ or $\mu^{2}=-\lambda v^{2}$

Conclusion:

- The symmetry of the Lagrangian by adding a symmetric potential ϕ has not been destroyed

- The vacuum is no longer in a symmetric position

The real case includes a complex field ϕ

Lecture 4 : "Symmetries" - Violation

1) Weak interaction maximally violates parity " P " and also charge symmetry " C "

Fig. 4.10 Decay of π^{-}at rest.
$\stackrel{\bullet}{\pi^{-}}$

2) Weak interaction subtly violates simultanous "CP"

- Requires Quantum Mechanical interference
- Requires existence of three particle generations (CKM)
- Not sufficient to explain absence antimatter in theuniverse

Lecture 5 : "Scattering" - non-Rel.

Perturbation theory

1) $V(x, t)$ is fixed

Solve wave equation $i \frac{\partial \psi}{\partial t}=\left(H_{0}+V(\vec{x}, t)\right) \psi$ Iteratively...

$$
\ldots \text {...use plane waves } \psi=\sum_{n=0}^{\infty} a_{n}(t) \phi_{n}(\vec{x}) e^{-i E_{n} t}
$$

$\mathrm{d} \sigma=\frac{W_{f i}}{\text { flux }} \mathrm{d} \Phi \quad W_{f i} \equiv \lim _{T \rightarrow \infty} \frac{\left|T_{f i}\right|^{2}}{T}$
$T_{f i}=-i \int \mathrm{~d}^{4} x \psi_{f}^{*}(x) V(x) \psi_{i}(x)=-2 \pi V_{f i} \delta\left(E_{f}-E_{i}\right)$
Relativistic: $V_{f i} \boldsymbol{\rightarrow} \mathcal{M}$ "matrix element"
2) Determine V from A field scattering particles (Solve Maxwell equation)

1) Scattering in external potential

2) Scattering in each particle's field C

Lecture 5 : "Scattering" - Relativistic

Cross section:
$\sigma=\frac{S}{4 \sqrt{\left(p_{1} \cdot p_{2}\right)^{2}-\left(m_{1} m_{2}\right)^{2}}} \int|\mathcal{M}|^{2}(2 \pi)^{4} \delta^{4}\left(p_{1}+p_{2}-p_{3} \ldots-p_{n}\right) \times \prod_{j=3}^{n} \frac{1}{2 E_{j}} \frac{d^{3} \vec{p}_{j}}{(2 \pi)^{3}}$
Eg: "2-to-2" scattering:
$\overrightarrow{\mathrm{A}} p_{1} \underset{\text { Before }}{ }{ }^{\circ} p_{2} \mathrm{~B}$

$$
\sigma=\frac{S}{64 \pi^{2}\left(E_{1}+E_{2}\right)\left|\vec{p}_{1}\right|} \int|\mathcal{M}|^{2}(2 \pi)^{4} \delta^{4}\left(p_{1}+p_{2}-p_{3}-p_{4}\right) \frac{d^{3} \vec{p}_{3}}{E_{3}} \frac{d^{3} \vec{p}_{4}}{E_{4}} \quad \frac{d \sigma}{d \Omega}=\left(\frac{1}{8 \pi}\right)^{2} \frac{S|\mathcal{M}|^{2}}{\left(E_{1}+E_{2}\right)^{2}} \frac{\left|\vec{p}_{f}\right|}{\left|\vec{p}_{i}\right|}
$$

How to determine \mathcal{M} ? \rightarrow Feynman rules (depend on actual theory/interaction):

Feynman rules "ABC" theory:

1. Diagrams: see sketch
2. Labels: see sketch
3. One vertex: -ig
4. Propagators: no internal lines
5. Conservation of energy and momentum: $(2 \pi)^{4} \delta^{4}\left(p_{1}-p_{2}-p_{3}\right)$
6. Integrate: no internal momenta
7. Discard delta-function and multiply by i.

Example diagram:
$A+A \rightarrow B+B$
$\mathcal{M}=\frac{g^{2}}{\left(p_{4}-p_{2}\right)^{2}-m_{C}^{2}}$

Standard Model interactions require real Lagrangians and dealing with spinor objects \rightarrow Master level education

