

Related topics

Voltage source, electromotive force (e.m.f.), terminal voltage, no-load operation, short circuit, Ohm's law, Kirchhoff's laws, power matching.

Principle and task

Both the terminal voltage of a voltage source and the current depend on the load, i.e. on the external resistance. The terminal voltage is measured as a function of the current and from it the internal resistance and no-load voltage of the voltage source are determined and the power graph plotted.

Equipment

Battery box	06030.21	1
Flat cell battery, 9 V	07496.10	1
Flat battery, 4.5 V	07496.01	1
Power supply 5 V DC/0.3 A	11076.93	1
Rheostat, 10 Ohm, 5.7 A	06110.02	1
Rheostat, 100 Ohm, 1.8 A	06114.02	1
Digital multimeter	07134.00	2
Double sockets, 1 pair, red a. black	07264.00	1
Connecting cord, 500 mm, red	07361.01	3
Connecting cord, 500 mm, blue	07361.04	2

Problems

- 1. To measure the terminal voltage $U_{\rm t}$ of a number of voltage source as a function of the current, varying the external resistance $R_{\rm e}$, and to calculate the no-load voltage U_0 and the internal resistance $R_{\rm i}$.
 - 1.1 Slimline battery
 - 1.2 Power supply
 - 1.2.1 Alternating voltage output
 - 1.2.2 Direct voltage output
- 2. To measure directly the no-load voltage of the slimline battery (with no external resistance) and its internal resistance (by power matching, $R_{i} = R_{e}$).
- 3. To determine the power diagram from the relationship between terminal voltage and current, as illustrated by the slimline battery.

Set-up and procedure

1. Connect a variable resistor $R_{\rm e}$ to the voltage source as shown in Fig. 2. (Use the 100 Ω rheostat, or the 10 Ω rheostat for higher currents). For convenience, vary the current *I* in 0.1 A steps for the slimline battery, and in 0.05 A steps for power supply. Measure the terminal voltage $U_{\rm t}$ with the digital voltmeter.

Fig.1: Experimental set-up for determining the no-load voltage and internal resistance of a voltage source.

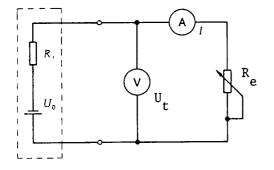



Fig. 2: Circuit for measuring terminal voltage and current.

2. First measure the no-load voltage U_0 directly, without external resistance.

Then load the voltage source (without the ammeter), with an external resistor $R_{\rm e}.$

Set R_e so that

$$U_{\rm t} = \frac{U_0}{2}$$

In this case the internal resistance is $R_i = R_e$.

Measure $R_{\rm e}$ with the resistance measuring range of the digital multimeter.

Theory and evaluation

Real voltage sources can be represented in the equivalent circuit diagram by an ideal voltage source with no-load voltage U_0 and internal resistance R_1 connected in series (Fig. 2).

If the voltage source is connected to an external resistance $R_{\rm e}$, then according to Ohm's law a current

$$I = \frac{U_0}{R_{\rm i} + R_{\rm e}} \tag{1}$$

will flow.

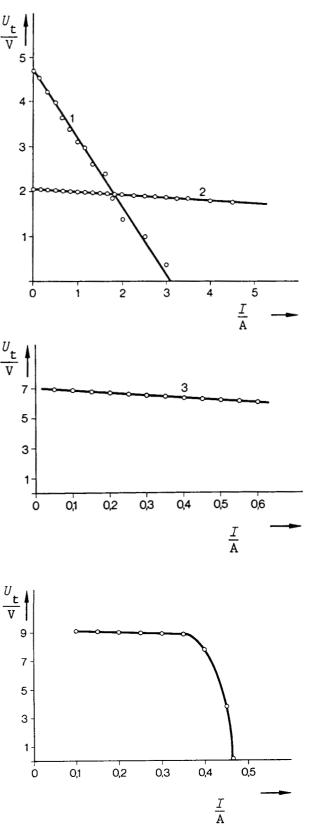
The terminal voltage $U_{\rm t}$ is given by:

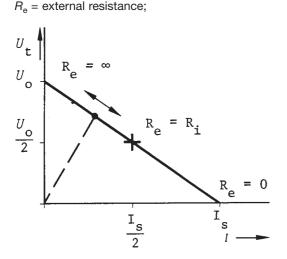
$$U_{\rm t} = U_0 - R_{\rm i} I \tag{2}$$

The regression lines with a linear portion in accordance with equation (2) give the following values:

1.1 Slimline battery	1.2 Power supply, alternating voltage
$U_0 = 4.66 \text{ V}$	$U_0 = 6.948 \text{ V}$
$R_{\rm i} = 1.47 \ \Omega$	<i>R</i> _i = 1.55 Ω
s _{U0} = 0.03 V	s _{U0} = 0.005 V
$s_{R_i} = 0.02 \ \Omega$	$s_{R_i} = 0.01$ Ω

- Fig. 3: Terminal voltage as a function of the current: 1) slimline battery
 - 2) lead-acid accumulator (not included)
 - 3) power supply, alternating output voltage.




Fig. 4: Terminal voltage as a function of the current: power supply, direct voltage output 9 V, 0.3 A.

2

Fig. 5: Current/voltage characteristic of a voltage source with constant internal resistance

- $R_{i} (U_{0} = \text{no-load voltage},$
- $I_{\rm s}$ = short-curcuit current,

At low currents (up to 0.3 A) the following values are obtained from the regression lines of the measurements plotted in Fig. 4 (see equation [2]):

 $\begin{array}{l} U_0 \,=\, 9.080 \; \mathsf{V} \\ R_{\mathrm{i}} \,=\, 0.36 \quad \Omega \\ \mathrm{s}_{U_0} \,=\, 0.005 \; \mathsf{V} \\ \mathrm{s}_{R_{\mathrm{i}}} \,=\, 0.02 \quad \Omega \end{array}$

The curve is typical of electronically controlled power supplies: the voltage stabilisation causes a low internal resistance (at low currents); the current limiter makes the internal resistance rise suddenly so that a given value is not exceeded.

2. Ideally is a linear relationship between the terminal voltage $U_{\rm t}$ and the current *I* (equation 2, Fig. 5).

The external resistance $R_{\rm e}$ determines the ratio of terminal voltage to current at the working point.

$$R_{\rm e} = \frac{U_{\rm t}}{I} \tag{3}$$

We destinguish three types of load:

No-load: (voltage matching)

 $R_{\rm e} = \infty$

No current flows and there is no voltage drop over R_i

 $U_{\rm t} = U_0$

Short-circuit (current matching)

 $R_{\rm e} = 0$

The voltage drops by U_0 across the internal resistance, so that $U_t = 0$.

The short-circuit current that flows is:

$$I_{\rm s} = \frac{U_0}{R_{\rm i}} \tag{4}$$

Power matching

(Resistance matching)

$$R_{\rm e} = R_{\rm i}$$

In this case

$$U_{\rm t} = \frac{U_0}{2} \;, \quad I = \; \frac{I_{\rm s}}{2} \;. \label{eq:Ut}$$

The measurements taken with the slimline battery gave

$$U_0 = 4.69 \text{ V} \pm 0.01 \text{ V}$$

 $R_i = 1.50 \Omega \pm 0.01 \Omega$

3. The power diagram of a voltage source shows the mutually opposed relationships between terminal voltage and current, and the derived power output, as a function of the external load. For this purpose, the measured values are normalised with the corresponding characteristic quantities of the voltage source.

From equations (1) and (4) we obtain

$$\frac{I}{I_s} = \frac{1}{1 + \frac{R_e}{R_i}} \tag{5}$$

Equation (2) gives

$$\frac{U_t}{U_0} = 1 - \frac{1}{1 + \frac{R_e}{R_i}}$$
(6)

or, from (5):

$$\frac{U_t}{U_0} + \frac{I}{I_s} = 1 \tag{7}$$

The power absorbed by resistor $R_{\rm e}$ is

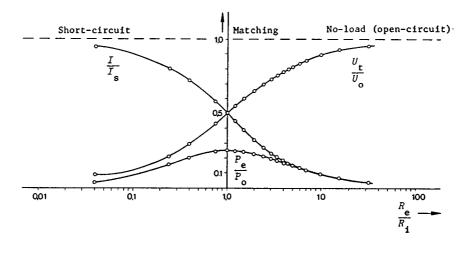
$$P = I^2 \cdot R_{\rm e} \tag{8}$$

It is normalised with the power absorbed by $R_{\rm i}$ in the event of a short-circuit

$$P_{0} = \frac{U_{0}^{2}}{R_{i}}$$
(9)

Therefore,

$$\frac{P}{P_0} = \frac{U_{\rm t}}{U_0} \cdot \frac{I}{I_{\rm s}} = \frac{R_{\rm e}/R_{\rm i}}{(1+R_{\rm e}/R_{\rm i})^2}$$
(10)


Fig. 6 shows the relationship between equations (5), (6) and (10), using the values (para. 1.1) measured with the slimline battery. The size of the external resistor $R_{\rm e}$ was calculated using equation (3). The value of $R_{\rm e}$ thus includes the internal reistance of the ammeter. The power absorbed by $R_{\rm e}$ is at its maximum value when $R_{\rm e} = R_{\rm i}$.

3

24103

Fig. 6: Power diagram of a voltage source.

Note

Aditional experiments can be performed with a standard car batterie supplied locally.

24103

4