

Thermal and electrical conductivity of metals

LEP 3.5.02

Related topics

Electrical conductivity, Wiedmann-Franz law, Lorenz number, diffusion, temperature gradient, heat transport, specific heat, four-point measurement

Principle and task

The thermal conductivity of copper and aluminium is determined in a constant temperature gradient from the calorimetrically measured heat flow.

The electrical conductivity of copper and aluminium is determined, and the Wiedmann-Franz law is tested.

Equipment

Calorimeter vessel, 500 ml Calor. vessel w. heat conduct. conn. Heat conductivity rod, Cu Heat conductivity rod, Al Magn. stirrer, mini, controlable Heat conductive paste, 50 g	04401.10 04518.10 04518.11 04518.12 35712.93 03747.00
Heat conductive paste, 50 g	03747.00
Gauze bag	04408.00
Rheostat, 10 Ohm , 5.7 A	06110.02

Fig. 1a: Experimental set-up for thermal conductivity.

Immers.heater, 300 W, 220-250VDC/AC	05947.93	1
Temperature meter digital, 4-2	13617.93	1
Temperature probe, immers. type	11759.01	1
Surface temperature probe PT100	11759.02	2
Stopwatch, digital, 1/100 sec.	03071.01	1
Tripod base -PASS-	02002.55	1
Bench clamp -PASS-	02010.00	1
Support rod -PASS-, square, I 630 mm	02027.55	1
Support rod -PASS-, square, I 1000 mm	02028.55	1
Universal clamp	37715.00	4
Right angle clamp -PASS-	02040.55	6
Supporting block 105×105×57 mm	02073.00	1
Glass beaker, short, 400 ml	36014.00	1
Multitap transf., 14VAC/12VDC, 5A	13533.93	1
Digital multimeter	07134.00	2
Universal measuring amplifier	13626.93	1
Connecting cord, 500 mm, red	07361.01	4
Connecting cord, 500 mm, blue	07361.04	4

Problems

- Determine the heat capacity of the calorimeter in a mixture experiment as a preliminary test. Measure the calefaction of water at a temperature of 0°C in a calorimeter due to the action of the ambient temperature as a function of time.
- To begin with, establish a constant temperature gradient in a metal rod with the use of two heat reservoirs (boiling water and ice water) After removing the pieces of ice, measure the calefaction of the cold water as a function of time and determine the thermal conductivity of the metal rod.
- 3. Determine the electrical conductivity of copper and aluminium by recording a current-voltage characteristic line.
- 4. Test of the Wiedmann-Franz law.

Set-up and procedure

- 1. Measurement of the heat capacity of the lower calorimeter
 - Weigh the calorimeter at room temperature.
 - Measure and record the room temperature and the temperature of the preheated water provided.
 - After filling the calorimeter with hot water, determine the mixing temperature in the calorimeter.
 - Reweigh the calorimeter to determine the mass of the water that it contains.
 - Calculate the heat capacity of the calorimeter.
 - Determine the influence of the heat of the surroundings on the calefaction of the water (0°C without pieces of ice) by measuring the temperature change in a 30-minute period.
- 2. Determination of the thermal conductivity
 - Perform the experimental set-up according to Fig. 1.
 - Weigh the empty, lower calorimeter.
 - Insert the insulated end of the metal rod into the upper calorimeter vessel. To improve the heat transfer, cover the end of the metal rod with heat-conduction paste.
 - Attach the metal rod to the support stand in such a manner that the lower calorimeter can be withdrawn from beneath it.

1

LEP 3.5.02

Thermal and electrical conductivity of metals

- The height of the lower calorimeter can be changed with the aid of the supporting block. When doing so, care must be taken to ensure that the non-insulated end of the rod remains completely immersed in the cold water during the experiment.
- The surface temperature probe must be positioned as close to the rod as possible.
- The outermost indentations on the rod (separation: 31.5 cm) are used to measure the temperature difference in the rod. To improve the heat transfer between the rod and the surface probe, use heat-conduction paste.
- Using an immersion heater, bring the water in the upper calorimeter to a boil, and keep it at this temperature.
- Ensure that the upper calorimeter is well filled to avoid a drop in temperature due to contingent refilling with water.
- Keep the water in the lower calorimeter at 0°C with the help of ice (in a gauze pouch).
- The measurement can be begun when a constant temperature gradient has become established between the upper and lower surface probes, i.e. when no changes occur during the differential measurement.
- At the onset of measurement, remove the ice from the lower calorimeter.
- Measure and record the change in the differential temperature and the temperature of the water in the lower calorimeter for a period of 5 minutes.

- Weigh the water-filled calorimeter and determine the mass of the water. Settings of the temperature measuring device 4-2:
 - In the first display on the measuring device, the temperature of the lower calorimeter is displayed.
 - In the second display, the differential measurement between the upper and the lower surface probe is shown.
- The thermal conductivity of different metals can be determined from the measuring results.
- 3. Measurement of the electrical conductivity.
 - Perform the experimental set-up according to the circuit diagram in Fig. 2 (set-up in accordance with a 4-conductor measuring method).
 - Set the voltage on the variable transformer to 6 V.
 - The amplifier must calibrated to 0 in a voltage-free state to avoid a collapse of the output voltage.
 - Select the amplifier settings as follows:

Input: Low Drift Amplification: 10⁴ Time Constant: 0

- Set the rheostat to its maximum value and slowly decrease the value during the experiment.
- Read and note the values for current and voltage
- The resistance, and thus the electrical conductivity, can be determined from the measured values.

23502

2

Thermal and electrical conductivity of metals

LEP 3.5.02

Fig. 2.

Fig. 3. Diagram: Heat of surroundings over time.

Theory and evaluation

If a temperature difference exists between different locations of a body, heat conduction occurs. In this experiment there is a one-dimensional temperature gradient along a rod. The quantity of heat dQ transported with time dt is a function of the cross-sectional area a and the temperature gradient $\delta T/\delta x$ perpendicular to the surface.

$$\frac{dQ}{dt} = -\lambda A \cdot \frac{\partial T}{\partial x} \tag{1}$$

 λ is the heat conductivity of the substance.

The temperature distribution in a body is generally a function of location and time and is in accordance with the Boltzmann transport equation

$$\frac{\partial T}{\partial t} = \frac{\lambda}{\rho \cdot c} \cdot \frac{\partial^2 T}{\partial x^2} \tag{2}$$

Where $\boldsymbol{\rho}$ is the density and c is the specific heat capacity of the substance.

After a time, a steady state

$$\frac{\partial T}{\partial x} = 0 \tag{3}$$

is achieved if the two ends of the metal rod having a length $\it I$ are maintained at constant temperatures $\it T_1$ and $\it T_2$, respectively, by two heat reservoirs.

Substituting equation (3) in equation (2), the following equation is obtained:

$$T(x) = \frac{T_2 - T_1}{I} \cdot x + T_1 \tag{4}$$

 The heat capacity of the calorimeter is obtained from results of the mixing experiment and the following formula:

$$C = c_W \cdot m_W \cdot \frac{\vartheta_W - \vartheta_M}{\vartheta_M - \vartheta_R} \tag{1}$$

 $c_{\rm W}$ = Specific heat capacity of water

 $m_{\rm W} = {\rm Mass} {\rm \ of \ the \ water}$

 $\vartheta_{\rm W}$ = Temperature of the hot water

 ϑ_{M} = Mixing temperature

 ϑ_R = Room temperature

The measurement supplies a value of approximately 78 J/K \pm 25%. The large variations in the results are a result of the manner in which the experiment is performed and of the experimental set-up.

The addition of heat from the surroundings is calculated from the temperature increase (T of the cold water in the calorimeter.

$$\Delta Q = (c_{W} \cdot m_{W} + C) \cdot \Delta T$$
where $\Delta T = T - T_{0}$ (6)

$$T_0$$
 = Temperature at time t = 0

The heat energy supplied to the lower calorimeter can be calculated using Equation (6). The values and the change in the temperature difference on the metal rod are plotted as a function of time.

In the diagram illustrating the temperature difference, one can see that the temperature essentially remains constant. Consequently, equation 3 can be considered as having been satisfied. In order to calculate the heat energy transported by the metal rod according to Equation 1, the ambient heat fraction must be subtracted.

$$\frac{dQ_{Stab}}{dt} = \frac{dQ_{ges}}{dt} - \frac{dQ_{Umg}}{dt} \tag{7}$$

dQ/dt for the ambient heat can be calculated from the slope of the graph in Fig. 3. dQ/dt for the entire set-up can be calculated from the slope of the graph of Q over t in Figs. 4 and 5. With the values for the length of the rod ($\Delta x = 31.5$ cm), the area (A: $4.91 \cdot 10^{-4}$ m²) and the averaged temperature on the

Thermal and electrical conductivity of metals

Fig. 4a: ΔT as function of time for aluminium.

metal rod, the heat conduction number can be calculated using Equation (1). The following result as the average values:

$$\lambda_{Al} = 254 \text{ W/Km}$$

$$\lambda_{CII} = 447 \text{ W/Km}$$

The literature values are:

$$\lambda_{AI} = 220 \text{ W/Km}$$

$$\lambda_{Cu} = 384 \text{ W/Km}$$

3. At room temperature the conduction electrons in metal have a much greater mean free path than the phonons. For this reason heat conduction in metal is primarily due to the electrons.

The resulting correlation between the thermal conductivity λ and the electrical conductivity σ is established by the Wiedmann-Franz law:

$$\frac{\lambda}{\sigma} = L T$$
 (8)

The Lorenz number L, which can be experimentally determined using Equation (8), is established by the theory of elec-

Fig. 4b: Q as a function of time for aluminium.

tron vapour (for temperatures above the Debye temperature) to be:

$$L = \frac{\pi^2}{3} \cdot \frac{k^2}{e^2} = 2.4 \cdot 10^{-8} \frac{W\Omega}{K^2}$$
 (9)

k – Universal gas constant = $1.38 \cdot 10^{-23}$ J/K

The electrical conductivity is determined by the resistance R of the rod and its geometric dimensions (I = 0.315 m, A = 4.91

$$\sigma = \frac{I}{A \cdot B} \tag{10}$$

From Equation (8) The following values result for T = 300 K and the λ from the second part of the experiment.

	R/10 ⁻⁶ Ω	$\sigma/10^{7} (\Omega \text{m})^{-1}$	L/10 ⁻⁸ WΩK ⁻²
AL	19.6	3.27	2.5
CU	12.04	5.33	2.35

The Debye temperatures of copper and aluminium are 335 K and 419 K, respectively. Below the Debye temperature the ratio of the conductivity is smaller that given by Equation (8).

Fig. 5a: ΔT as function of time for copper.

Fig. 5b: Q as function of time for copper.

4