

Exploring the high-precision frontier

with the LHCb detector

High-precision measurements

- Standard Model and Feynman Diagrams
- Historical perspective

Recent highlights from CERN

High-precision measurements

- Standard Model and Feynman Diagrams
- Historical perspective
 - **W**
 - neutrino
 - charm
 - bottom
 - top
 - **Z**
 - Higgs
- Recent highlights from the LHCb experiment
 - CP violation in $B_s^0 \rightarrow J/\psi \phi$ and $B_s^0 \rightarrow D_s^- \mu^+ v$
 - Observation of $B^0_s \rightarrow \mu^+ \mu^-$
 - Precision measurements on $B^0 \rightarrow K^* \mu^+ \mu^-$
 - Lepton flavour violation?
 - **B**⁺→**K**⁺μ⁺μ⁻
 - *B→Dµ*+*v*

Standard Model

e

"Standard" Model ?

- Enough unanswered questions that justify search for new phenomena...
 - What is dark matter?
 - What caused the matter antimatter imbalance?
 - Why does the strong interaction preserve CP symmetry?
 - Why is the neutrino mass so small?
 - Is lepton number conserved?

- ...?

Feynman diagram

R.Feynman, Phys.Rev. 76 (1949) 769

In addition to their value as a mathematical tool, Feynman diagrams provide deep physical insight into the nature of particle interactions. Particles interact in every way available; in fact, intermediate virtual particles are allowed to propagate faster than light.

Feynman diagram

- Higher order diagram
- "Virtual" particles

High-precision measurements

Standard Model and Feynman Diagrams

- Historical perspective
 - W
 - neutrino _
 - charm —
 - bottom _
 - top —
 - Ζ
 - Higgs —
- Recent highlights from CERN

Bosons (Forces)

weak force

Higgs

Historical perspective: W

Radioactive decay was "discovery" of weak interaction?

$$\frac{G_F}{\sqrt{2}} = \frac{g^2}{8M_W^2}$$

Historical perspective: W

Radioactive decay was "discovery" of weak interaction?

E.Fermi, Z.Phys. 88 (1934) 161

UA1 Coll., Phys.Lett. B122 (1983) 103

Historical perspective: V

Radioactive decay was "discovery" of neutrino?

E.Fermi, Z.Phys. 88 (1934) 161

Cowan, Reines, et al., Science 124 (1956) 103-104

)irect

Historical perspective: charm

Kaon decay was "discovery" of charm quark?

GIM, Phys.Rev. D2 (1970) 1285

B.Richter et al, Phys.Rev.Lett. 33 (1974) 1406

lrect

Historical perspective: bottom

CP violation was "discovery" of 3rd generation?

Cronin and Fitch, Phys.Rev.Lett. 13 (1964) 138

Indire

L.Lederman et al., Phys.Rev.Lett. 39 (1977) 252

Historical perspective: top

Bottom mixing was "discovery" of top quark?

Indired

Historical perspective: Z

Neutral current interaction was "discovery" of Z?

Gargamelle Coll., Phys.Lett. B46 (1973) 138

UA1 Coll., Phys.Lett. B126 (1983) 398

Historical perspective: Higgs

Precision measurements at LEP were "discovery" of Higgs?

Historical perspective: Higgs

Precision measurements at LEP were "discovery" of Higgs?

Precision measurements point to new phenomena

Quantum fluctuations at precision frontier

complement

direct production at <u>energy frontier</u>

High-precision measurements

- Standard Model and Feynman Diagrams
- Historical perspective
- Recent highlights from LHCb
 - CP violation in $B_s^0 \rightarrow J/\psi \phi$ and $B_s^0 \rightarrow D_s^- \mu^+ v$
 - Observation of $B^0_s \rightarrow \mu^+ \mu^-$
 - Precision measurements on $B^0 \rightarrow K^* \mu^+ \mu^-$
 - Lepton flavour violation?
 - **B**⁺→**K**⁺µ⁺µ⁻
 - *B→Dµ*+*v*

INTERNATIONAL JOURNAL OF HIGH-ENERGY PHYSICS

VOLUME 55 NUMBER 9 NOVEMBER 2015

LHCb detector

proton

a 2-7

proton

-

The LHCb Detector

874

The LHCb Detector

25

The LHCb Detector

7

19:49:24 Event 143858637

26

LHCb THCp

LHC and LHCb

First LHC run: big success

	Run-1	Run-2	Run-3
Year	2010 - 2012	2015 - 2018	2020 - 2030
Energy	7-8 TeV	13 TeV	13 TeV
Lumi	3 fb⁻¹	5 fb⁻¹	50 fb ⁻¹
Nr(B)	10 ¹²	5x10 ¹²	5x10 ¹³

1,000,000,000,000 B-mesons produced

$B_s^0 \rightarrow J/\psi \phi$ and $B_s^0 \rightarrow D_s^- \mu^+ v$

- Search for new matter antimatter differences
- Do new particles contribute to the asymmetry?
 - ➢ Is there more CP violation in the "box" ?

$B_s^0 \rightarrow J/\psi \phi$ and $B_s^0 \rightarrow D_s^- \mu^+ v$

- Search for new matter antimatter differences
- Do new particles contribute to the asymmetry?
 - Is there more CP violation in the "box" ?

b

 \bar{B}^0_s

S

W

s

b

W

 B_s^0

$B_s^0 \rightarrow J/\psi \varphi$ and $B_s^0 \rightarrow D_s^- \mu^+ v$

- Search for new matter antimatter differences
- Do new particles contribute to the asymmetry?
 - Is there more CP violation in the "box" ?

b

 \bar{B}^0_s

S

W

s

b

W

 B_s^0

- Similar rare decay as $K^0 \rightarrow \mu^+ \mu^-$
- Very, very rare in the SM
- Sensitive to small effects beyond the SM

Historical endeavour!

- Challenge: huge amount of events with two muons!
 - Background: $BR(B \rightarrow X\mu^+) = 10^{-1}$
 - Signal: $BR(B_s^0 \rightarrow \mu^+ \mu^-) < 10^{-8}$
- 10^{12} B produced; probability of $\mu\mu$ decay 10^{-9} ; eff ~5%
 - Expect ~50 events

Signal 1:107 Background

LHCb Coll. Phys.Rev.Lett. 110, 021801 (2013)

First evidence, 3.5σ

LHCb Coll. Phys.Rev.Lett. 110, 021801 (2013)

4σ

LHCb Coll. Phys.Rev.Lett. 111, 101805 (2013)

First observation, 6.2σ

 $B_d^0 \rightarrow \mu^+ \mu^-$?

First evidence at 3.0σ

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (2.8 \,{}^{+0.7}_{-0.6}) \times 10^{-9}$$
$$\mathcal{B}(B^0 \to \mu^+ \mu^-) = (3.9 \,{}^{+1.6}_{-1.4}) \times 10^{-10}$$

First observation, 6.2σ

$B_d^0 \rightarrow \mu^+ \mu^-$?

- First evidence at 3.0σ
- 2.3σ above SM prediction
- R_{SM}=0.030±0.003

$$R = \frac{\mathcal{B}(B^0 \to \mu\mu)}{\mathcal{B}(B^0_s \to \mu\mu)} = 0.14^{+0.08}_{-0.06}$$

Historical endeavour!

High-precision measurements

- Standard Model and Feynman Diagrams
- Historical perspective
- Recent highlights from LHCb
 - CP violation in $B_s^0 \rightarrow J/\psi \phi$ and $B_s^0 \rightarrow D_s^- \mu^+ v$
 - Observation of $B^0_s \rightarrow \mu^+ \mu^-$
 - Precision measurements on $B^0 \rightarrow K^* \mu^+ \mu^-$
 - Lepton flavour violation?
 - $B^+ \rightarrow K^+ \mu^+ \mu^-$
 - *B→Dµ*+*v*

- Similar loop diagram!
- More observables
 - Invariant mass of µµ-pair
 - Angles of K and μ

- Similar loop diagram!
- More observables
 - Invariant mass of µµ-pair
 - Angles of K and μ

LHCb, arXiv:1512.04442

- Similar loop diagram!
- More observables
 - Invariant mass of µµ-pair
 - Angles of K and µ
- Debate on SM calculation
 - Non-perturbative "charm loop" effects?

- Similar loop diagram!
- More observables
 - Invariant mass of µµ-pair
 - Angles of K and μ
- Debate on SM calculation
 - Non-perturbative "charm loop" effects?

$B^+ \rightarrow K^+ \mu^+ \mu^-$

- Similar loop diagram!
- Measure ratio µ/e
- SM expectation: $R_{K}=1$

$$R_K = \frac{\Gamma(B^+ \to K^+ \mu^+ \mu^-)}{\Gamma(B^+ \to K^+ e^+ e^-)}$$

$B^+ \rightarrow K^+ \mu^+ \mu^-$

- Similar loop diagram!
- Measure ratio µ/e
- SM expectation: $R_{K}=1$

$$R_K = \frac{\Gamma(B^+ \to K^+ \mu^+ \mu^-)}{\Gamma(B^+ \to K^+ e^+ e^-)}$$

LHCb Coll., Phys. Rev. Lett. 113 (2014) 151601

 $R_K = 0.745^{+0.090}_{-0.074}$ (stat) ± 0.036 (syst)

> Lepton flavour "non-universal" ?

Intermezzo:

Effective coupling can be of various "kinds"

C₉

C₁₀

- Vector coupling:
- Axial coupling:

. . .

- Left-handed coupling (V-A): C₉-C₁₀
- Right-handed (to quarks): C₉', C₁₀', ...
- $b \longrightarrow \mu^{+}$

Theory: Model independent fits

• C_9^{NP} deviates from 0 by >4 σ

 $\Delta \mathrm{Re}(\mathcal{C}_9) = -1.04 \pm 0.25$

 C_{9}

Caveat: debate on non-pertirbative charm-loop effects

 μ^+

*B→D*µ*+*v*

Measure ratio τ/μ :

SM expectation: R(D*)=0.252±0.003

$$\mathcal{R}(D^*) \equiv \mathcal{B}(\overline{B}{}^0 \to D^{*+}\tau^-\overline{\nu}_{\tau})/\mathcal{B}(\overline{B}{}^0 \to D^{*+}\mu^-\overline{\nu}_{\mu})$$

$$R(D^*) = 0.322 \pm 0.018 (\text{stat}) \pm 0.012 (\text{sys})$$

» Lepton flavour "non-universal" ?

$B \rightarrow D^{(*)}\mu^+\nu$

- Measure ratio τ/μ
- R(D) also deviates...
- Combined: 3.9σ

» Lepton flavour "non-universal" ??

Tensions...?

 $\Delta~\chi^2=1$

New physics?

More involved Standard Model calculation?

New physics?

- More involved Standard Model calculation?
- Statistical fluctuations?

New physics?

- More involved Standard Model calculation?
- Statistical fluctuations?

- Or first hints for new particles??
 - Leptoquark ?
 - Couples to quark and leptons
 - Explaining many open questions
 - g-2, $B \rightarrow K \mu \mu$, $B \rightarrow D^* \mu v$, diphoton
 - ≻ <u>Z' ?</u>
 - New symmetry, new boson (force)
 - Explaining many open questions
 - *B→Kµµ, B→D*µv*

Outlook

Run-2 just started
Expect x5 more B-decays by 2018
Preparations for Run-3 in 2020 are ongoing

proton

Otor