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AbstractIn this report I treat the subject of black hole radiation. Until the early seventiesblack holes were considered to be eternal objects in our universe, but the strikinganalogy with the laws of thermodynamics and the explicit calculation of the black holeradiation, due to quantum e�ects, by Hawking, showed a di�erent scenario. Hawkingrecognized already the problems concerning quantum purity due to thermal radiationo� the black hole and the occurence of divergent energies due to the gravitational blueshift.Backreaction e�ects were neglected by Hawking, but could lead to corrections ofHawkings result and resolve the information problem. Furthermore, including backre-action ensures energy conservation. I included backreaction e�ects in the simple movingmirror model and found that the temperature of the mirror is reduced by a factor 1/2relative to the standard result. However, the WKB approximation I used breaks downin the case of dilaton gravity and therefore I could not extend the result to real blackholes.
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Chapter 1IntroductionA great deal of e�ort has been made the last few decades to construct a uni�ed theoryof the forces of nature. In 1961 Glashow proposed the gauge symmetry SU(2)�U(1)as the uni�cation of the weak interactions and the theory of quantum electrodynamics(also known as QED, which has gauge symmetry U(1)). The gauge theory with sym-metry SU(3), quantum chromodynamics (QCD), became in 1973 a strong candidate forthe strong interactions. The standard electroweak theory and QCD together form thestandard model. A possible candidate for a grand uni�ed theory (GUT, i.e. a gaugetheory with a single coupling constant) is a theory with gauge symmetry SU(5). Thelast few years there has also been a revival of string theory, which incorporates gravity,and is considered as another serious candidate for the Theory of Everything.Until now it has not been possible to include the fourth force, namely gravity. Prob-lems arise while constructing a quantum theory of gravity, because it appears thatthe coupling constant is not dimensionless, making perturbation expansion impossible.Another problem is that gravity couples to everything, because it inuences the metric.A graviton is thus both a source of gravitation and subject to gravitation.Therefore one considers the gravitational �eld as a classical background, obtaining asemiclassical theory. Hawking considered quantum processes in a classical backgroundgeometry and found that vacuum uctuations near the black hole horizon results inthermal radiation o� the hole [1]. Because of those quantum processes the black holelooses mass and can eventually disappear, while black holes were considered classicallyas eternal objects.Hawking's result opened a new area in physics and is derived in di�erent ways byseveral authors. One of the strongest arguments to support the Hawking e�ect is thedeep connection between the laws of black hole physics and the laws of thermodynamics.This is also the major reason why Hawking's discovery is now widely believed to be real.The paper is organized as follows. I will start more or less historically by discussingthe subject of black hole thermodynamics, developed in the late sixties, anticipatingHawking by suggesting that black holes behave as black bodies with a temperature.5



6 CHAPTER 1. INTRODUCTIONIn chapter 3 I discuss briey the problems which arise assuming black holes havinga temperature and emitting thermal radiation. The di�erent points of view in litera-ture are given. Instead of treating subsequently the Hawking e�ect, I will discuss theUnruh e�ect in chapter 4. The Unruh e�ect is in some sense more general, becauseit states that particle production occurs wherever a bifurcate killing horizon appears.Even an accelerating observer in Minkowski spacetime detects thermal radiation. Thebreakdown of Poincare invariance as we have in curved spacetime is already manifestin non-inertial systems in at spacetime. In chapter 5 the Hawking e�ect is explic-itly calculated, giving a strong support to the theory of black hole thermodynamics ofchapter 2. In Hawking's calculation pure states can evolve into mixed states herebyviolating the basic principle of unitary evolution in quantum mechanics. In chapter3 it became clear that backreaction e�ects are important and may lead to correctionsof Hawking's result. Furthermore, due to the gravitational redshift the energy nearthe horizon diverges. In order to investigate back reaction e�ects and to implementenergy conservation I treat in chapter 6 a model, which mimics many of the features ofgravitational collapse. With this moving mirror model I showed that including back-reaction e�ects and thus energy conservation, leeds to a correction of the temperatureby a factor half relative to the standard result.



Chapter 2Black Hole Thermodynamics2.1 Black HoleBefore we start talking about black holes I will give a short review of what a black holeis. I will use units where �h = c = 1.In 1916 Einstein found his classical �eld equations of general relativity,G�� = 8�T�� : (2.1)If one imposes the metric to be static and spherically symmetric one �nds an exactsolution for the vacuum �eld equations G�� = 0, namely the Schwarzschild solution,which has line elementds2 = (1� 2mr )dt2 � 11� 2mr dr2 � r2(d�2 + sin2 �d�2): (2.2)This solution is physically interesting, because the objects in our universe are mostlyspherically symmetric and the surrounding space can be considered empty. We seethat the line element is singular at the coordinates r = 0 and r = 2m. The coordinatesingularity at r = 2m is however removable by performing a coordinate transforma-tion. The other singularity, at r = 0, is an intrinsic singularity and is not removableby coordinate transformations. Although r = 2m is no real singularity, it remains an
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I-Figure 2.1: Two di�erent �gures of a black hole: a) Schwarzschild solution. b) Compacti�ed Kruskalsolution. 7



8 CHAPTER 2. BLACK HOLE THERMODYNAMICSinteresting point (or sphere), called the Schwarzschild radius. If one writes the solu-tion in Eddington-Finkelstein coordinates, one sees the lightcones pointing towards thecenter of the hole and it becomes clear that nothing can come back after passing theSchwarzschild radius; r = 2m is therefore called an event horizon. It is impossible tobecome aware of events that take place behind the horizon. Therefore this object isreferred to as a \black hole".By performing a suitable coordinate transformation one removes the coordinatesingularity at r = 2m obtaining the Eddington-Finkelstein coordinates. The Kruskalsolution is the maximal analytic extension of the geometry (i.e. every geodesic ends inin�nity or in a singularity) and can be compacti�ed by mapping the in�nite interval toa �nite interval. In this way one obtains the penrose diagram of �gure 2.1 b).We can imagine di�erent types of black holes. Beside the collapsing star, we canimagine huge black holes formed after a collapsing star cluster. On the other hand wecan imagine so called primordial black holes with masses of � 1012 kg. One often hearsthe question if elementary particles could be black holes. The answer is no, because theCompton wavelength of a particle is much bigger then its Schwarzschild radius. Thosetwo length scales are equal (up to a factor p�) at the Planck mass:2Gmc2 = 2��hmc =) mP l � 10�8kg (2.3)By combining the fundamental constants c; �h and G one �nds units of length, time andmass, the so called Planck units:mP l = sc�hG � 2:18 � 10�8 kg (2.4)lP l = sG�hc3 � 1:62 � 10�35mtP l = sG�hc5 � 5:39 � 10�44 sEP l = mP lc2 � 1:22 � 1019GeVThe Planck values mark the frontier where a full theory of quantum gravity is indis-pensable.As we will see in the following chapters quantum e�ects alter the course of gravita-tional collapse. As seen by an asymptotic observer, collapsing matter evaporates beforeforming a real curvature singularity (see �gure 3.1)! However, after stellar collapse theevaporation of a large heavy object proceeds very slowly, so we refer to this object asa black hole, keeping in mind that it is a rather classical notion.



2.2. THERMODYNAMICS 92.2 ThermodynamicsIn the late sixties and begin seventies a lot of work has been done on the theory ofblack holes. For example one has calculated stimulated emission in the ergo regionof a rotating black hole (or even a neutron star), the so called superradiance. Oneof the most remarkable results obtained was the striking analogy between the laws ofthermodynamics and the black hole laws (see for a recent review [2]).It was found that classically energy extraction from black holes is possible as longas the black hole area does not decrease. This can be done for example by dropping anopposite charged particle in a charged black hole, by diminishing angular momentumof a rotating black hole or by letting two black holes collide, which form one biggerblack hole. The analogy between entropy and the horizon area of the black hole wasmade. �A � 0 () �S � 0 (2.5)The Second Law of thermodynamics, stating that the total entropy never decreases,has now an analog in black hole physics with Hawking's area theorem.It turns out that the analogy of the First Law (dE = TdS) in black hole theorybecomes dM = �8�GdA+ 
dJ +�dQ; (2.6)where A; J and Q are respectively the area, angular momentum and charge and 
 and� are the angular velocity and electric potential of the horizon. The surface gravity isdenoted by � (= 1=4M for a non-rotating neutral black hole). This formula suggeststhat � plays the role of temperature. By introducing quantummechanics Hawkingfound in 1975 that a black hole has indeed a temperature kTH = �2� ! This equivalent ofthe �rst law ensures energy conservation during black hole processes like superradianceor radiation from rotating and charged black holes whereby the hole looses angularmomentum or charge.The constancy of � on the horizon is the analogy of the Zeroth Law, which statesthat the temperature is uniform everywhere in a system in thermal equilibrium.The Third Law (the temperature can not be reduced to zero in a �nite number ofsteps) has its analogy in the fact that zero surface gravity requires a black hole within�nite mass. There are however some di�culties with charged black holes. For anextremal black hole (a hole which is maximally charged, e2 = M2) the temperaturewould be reduced to zero (see (5.23)). The question is if the extremal limit can inprinciple be reached.Concluding we can write down an explicit expression for the entropy by comparingmass and thermodynamic energy (which is not so strange knowing that the mass of ablack hole is the same quantity as its energy), so we �nd for the entropydS = dET = 8�MkBdM ;Sbh = 4�kBM2 = 14kBA: (2.7)



10 CHAPTER 2. BLACK HOLE THERMODYNAMICSThis is the famous Bekenstein-Hawking entropy. When a black hole radiates, the massof the black hole and thus the entropy decreases. To ensure the validity of the secondlaw, which states that entropy always increases, we get the Generalized Second LawS = Sth + Sbh (2.8)with Sth the thermodynamic entropy. The black hole entropy radiates away in the formof thermodynamic entropy. The laws of thermodynamics and the laws of black holes areso strongly related that the laws of black holes actually are the laws of thermodynamics.In chapter 5 I will give the derivation of the Hawking e�ect and will show that inSI units the Hawking temperature is given by T = �hc38�MkBG , and thus the expressionfor the black hole entropy Sbh 1 becomesSbh = 14kB AG�h=c3 (2.9)In this form it becomes visible that the area is expressed in units of the Planck lengthsquared. Entropy is a measure of the containing information and therefore it is sug-gested that a Planck length squared contains a limited amount of information. This isin contradiction with the idea that a black hole can be made in unnumerable di�erentways and that therefore the entropy should be in�nite. The problem is our lack ofknowledge about Planck scale physics, but a possible candidate to resolve these prob-lems is string theory. More details on the information problem are given in chapter 3.It is also visible that (2.9) is clearly a quantum mechanical result; in the classical limit�h! 0 the entropy goes to in�nity.
1The subscript \bh" conveniently stands for both \Bekenstein-Hawking" and \black hole".



Chapter 3Information ProblemIn the last chapter I mentioned the fact that black holes have a temperature TH =18�M and radiate thermal radiation just as a black body of temperature TH . Imaginenow forming a black hole out of pure quantum states. The black hole subsequentlystarts radiating thermal radiation which are mixed states. This is a serious violationof quantum mechanics, where pure states evolve unitarily to pure states, U j 0i =e�i!tj 0i = j ti. Furthermore, we see that probability is conserved when the evolutionoperator is unitary; h tj ti = h 0jU yU j 0i = h 0j 0i = 1. One could also say thatinformation is lost in the Hawking process.You might wonder what the point is if you consider the following process whereinformation is absorbed, thermalized and radiated away. Consider a cold piece of blackcole which absorbs the signal of a coherent laser, starts burning and subsequently emitsthe laser signal in the form of thermal radiation. The di�erence between this processand the Hawking process, is that the former is a macroscopic description without spec-ifying the microscopic process of the coal. In the black hole case the outside observersees the information being stored somehow microscopicly on the stretched horizon be-fore being radiated away. The stretched horizon is a physical membrane just outside(about a few Planck lengths) the event horizon.To give some insight in how a pure state could apparently evolve in a mixed stateI will give a general mixing mechanism, [3]. Consider a quantum theory with Hamilto-nian H(�). A pure state  (0) evolves for each � in a pure state  (t) at time t: (t) = e�iH(�)t (0): (3.1)But suppose that � is poorly known and that it has a probability distribution P (�).The expectation value of an operator O becomes a mixed statehOi =X� P (�)h (t)jOj (t)i: (3.2)A black hole can be made in approximately eA=4 di�erent ways, assuming that a blackhole has entropy A=4. Recall that the entropy of a macrostate is equal to the loga-rithm of possible microstates, S = A4 = ln(#m:s:). The number of microstates can be11



12 CHAPTER 3. INFORMATION PROBLEMidenti�ed with the di�erent possibilities to make a black hole. The uncertainty in theHamiltonian H (which 'forms' the black hole) possibly gives rise to a mixed state.Discussions about the information problem resulted in three di�erent directions whichmay lead to the solution of the problem.3.1 RemnantsThe �rst possibility is that the information is stored in the last 10�5 g, the Planckmass, [4]. Describing such a system would require knowledge of Planck scale physics,which we do not have [5].What we can say is that if all the information is stored in the last 10�5 g, thenthe information could only be radiated away in the form of a very large number ofsocalled soft particles, for example photons with low energy. The time to radiate allthe information in this way turns out to be very large�10�5g � � Mmpl�4tpl;withM the original mass of the hole, which gives rise to the idea of a long-lived remnant.A black hole may even leave a stable remnant at the end of his live.This solution might seem to be an easy way out, but at least the basic principles ofquantum mechanics are not violated.However, one other principle is now violated, namely crossing symmetry. A particlethat couples to the electromagnetic �eld implies by crossing symmetry Schwinger pairproduction. The gravitational analog is Hawking radiation. The decay rate of a blackhole is proportional to the number of species which can be produced. A small blackhole should therefore decay with a high rate. Leaving a remnant would mean violationof crossing symmetry.3.2 Nice SlicesAnother possibility is that the black hole disappears and the information is simply lost[6]. An argument to support this idea is the socalled nice slice argument.The argument is based on the fact that almost the entire evolution of a black holeinvolves low-energy particles, i.e. energies far below the Planck scale. Only in the�nal stage of the evaporation process one has to deal with high energies, but therewould be too little particles left to carry all the information and is thus consideredto be irrelevant. The history of a black hole may therefore be described by ordinarylow-energy e�ective �eld theory, i.e. a �eld theory with a cuto� in order to avoid largeenergies.To show that only low energy physics is involved we foliate the geometry with afamily of Cauchy surfaces. We call a family of surfaces nice slices if the surfaces avoidregions of strong curvature and if both the infalling matter and the Hawking particles



3.3. COMPLEMENTARITY, S-MATRIX ANSATZ 13have low energies in the frame of the surface. Hence a nice slice does not contain theregion inside the black hole. If one chooses the nice slices to agree with surfaces ofconstant time far from the hole, then one could parametrize the surfaces by t and anexample of a full set of nice slices could be the followinguv = R2; v < et=2GMuet=4GMu+ e�t=4GMv = 2R; v > et=2GMuAt this point one may introduce the nice slice Hamiltonian which generates the timeevolution. The Hamiltonian maps the state on one slice to a state on the neighboringslice, i@tj�i = Hnsj�i: (3.3)One has to realize that the nice slice argument involves information loss which impliesa violation of unitarity (a breakdown of quantummechanics!).The nice-slice theory is a local quantum �eld theory and therefore spacelike sepa-rated operators will commute. Consider a late time slice � and separate it in two parts,one part behind the horizon �in and one outside the hole, �out. According to (3.3) thestates evolve linearly to another time slice, but according to the \no quantum Xeroxprinciple" the initial information can not evolve completely to two separated sets ofcommuting degrees of freedom. The problem arises if one considers the infalling infor-mation being recorded inside the hole. Since an infalling observer sees nothing unusualhappen while passing the horizon, little or no information can be found outside thehorizon in the form of Hawking radiation or stored in the stretched horizon (a surfacewhich is a few Planck lengths away from the event horizon). The information does notcome out and is thus lost after the evaporation of the hole.Furthermore, information transmission requires energy and therefore also energyconservation is violated. If evolution is not described by a unitary operator then theHamiltonian is time dependent and energy is not conserved. But as we will see, noneof the possible solutions are ideal.3.3 Complementarity, S-Matrix AnsatzThe third possibility is that the information is stored in some way in the out-goingHawking radiation. The key-point is to take interactions into account, which wereneglected by Hawking (see [7, 8, 9, 10]). Massless scalar�elds can be regarded as asuperposition of left- and rightmoving parts. Leftmoving waves after a certain timeafter gravitational collapse, will disappear behind the horizon. Those waves howevercould inuence the outgoing waves and hence the thermal spectrum. Another way ofseeing it is that incoming particles interact with the outgoing particles, because theinfalling matter enlarges the Schwarzschild radius, or v0, and changes the total blackhole geometry. The variation in v0 is very small, but the e�ect on the wave-function ofan outgoing particle is enormous. Taking this small quantum contribution into account,one �nds that the in- and outgoing �elds no longer commute.



14 CHAPTER 3. INFORMATION PROBLEMThe idea is to assume that the evolution of the black hole Hilbert space is describedby a unitary operator U(t). One refers to this approach as the S-matrix Ansatz, wherethe S-matrix working on the in-state gives the out-statejouti = Sjini (3.4)The S-matrix Ansatz only makes sense if one takes interactions into account; the in-and out-states are independent without interaction between them and if so there couldbe no matrix connecting them.Because of the unitary evolution of black hole states, the Hilbert-space is onlyallowed to contain either all in-states1 or all out-states, but not both sets simultaneously,since we expect the S-matrix to connect these Hilbert-spaces. The in-states evolve eitherinto the black hole or out to null in�nity J+, dependent on the position of the observer.In fact, those two worlds are complementary, the information is both evolved intothe hole as well as out to in�nity! An infalling observer will see the infalling matter(inclusive information) propagate without interaction or perturbation into the hole.The observer at J+ , the asymptotic observer, sees Hawking radiation and the infallingmatter appears to evaporate (inclusive information) completely before it falls in thehole. Actually, one might say that there is no singularity formed at all! It looks like aquantum copying machine, where the infalling matter is the complementary description,or the duplicate, of the outgoing matter. A justi�cation for this view can be the factthat so called superobservers can not exist, i.e. it is not possible for ordinary people todo experiments simultaneously on both sides of the horizon. A similar paradox occursin quantum mechanics where we can consider light also in two di�erent ways, as aparticle or as a wave.
t

evaporation
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infalling
matter

unitaryFigure 3.1: Infalling matter evolves unitarily to Hawking radiation without having formed a singu-larity.General relativity seems to be violated by having created two di�erent (complemen-tary) worlds. There is not necessarily a relation between the two di�erent Hamiltoniansof the two worlds, i.e. there is not necessarily a transformation from one world to itscomplementary partner and reality is described by only one Hamiltonian. Furthermore,the fact that the in- and out-going �elds no longer commute seems to violate localityand causality2, because events behind the black hole horizon are spacelike separated1Here we mean with in-states, those in-states which are evolved into the hole.2The causality condition means that no signal can travel faster than the speed of light.



3.3. COMPLEMENTARITY, S-MATRIX ANSATZ 15from events outside the horizon and therefore they can not inuence each other. How-ever, commutators in light front string theory remain large even when observers areseparated by a macroscopic distance. String theory can possibly solve the paradox andis a strong candidate for a quantum theory of gravity.



16 CHAPTER 3. INFORMATION PROBLEM



Chapter 4The Unruh E�ectAs a result of e�orts to understand the Hawking e�ect, Unruh discovered the e�ect thata uniformly accelerated observer detects thermal radiation of temperature TU = a2� ,[11]. Although the Unruh e�ect was discovered after the Hawking e�ect I will treat�rst the Unruh e�ect because it is in some way underlying the Hawking e�ect. Thepoint is that even our well known Minkowski vacuum has a thermal character.Consider Minkowski spacetime, in 1+1 dimensions for convenience, with line elementds2 = dt2 � dx2. We transform it conformally1 to the so-called Rindler coordinates(�; �) ds2 = e2a�(d�2� d�2) (4.1)where the coordinate transformation is given byt = 1aea� sinh a�;x = 1aea� cosh a�: (4.2)In this coordinate system a uniform accelerating observer travels along a line withconstant � (see �gure 4.1), with proper acceleration ae�a�. Furthermore we see thatin this form the boost symmetry, generated by the killing vector @@� , is manifest 2. Anon-in�nitesimal Lorentz boost along the x-axis is a transformation from system S tosystem S' with relative velocity v in the x-direction between the systems. Note thatthe translation symmetries generated by @@t and @@x are not manifest anymore.We now have constructed the so-called Rindler space. This spacetime is said tobe globally hyperbolic because it admits a Cauchy surface. A Cauchy surface is asort of 'time slice'. More precisely, if every (past or future) inextendible causal curve(through an arbitrary point of spacetime) intersects a surface �, then � is said to be1Conformal transformation: �gab = 
2gab. The lightcones remain unchanged in a conformaltransformation.2Recall that a boost along the x-axis is equivalent to an imaginary rotation in (x; it)-space; sinh � =i sin i� 17



18 CHAPTER 4. THE UNRUH EFFECTa Cauchy surface. For examples the lines � = const: are Cauchy surfaces in Rindlerspace. Because of the admittance of Cauchy surfaces, one has a well de�ned classicalevolution on globally hyperbolic spacetimes and Rindler space is thus a spacetime inits own right. We can therefore apply the standard procedure to construct quantum�elds. If both sets are complete one can expand one set in terms of the other set andconversely. For example, if we have two expansions � and �� with sets of mode solutionsuk and �uk one can write the relation between the two sets as follows:�uj =Xi (�jiui + �jiu�i ) (4.3)ui =Xj (��ji�uj � �ji�u�j )with the coe�cients � and ��ij = (�ui; uj); �ij = �(�ui; u�j) (4.4)These relations are known as Bogolyubov transformations with �ij and �ij the Bo-golyubov coe�cients. With these equations in hand, and knowing that � and �� describethe same quantum�eld, one obtains relations between the creation and annihilation op-erators from the di�erent expansionsai =Xj (�ji�aj + ��ji�ayj) (4.5)�aj =Xi (��jiai � ��jiayi )The coe�cient � is important, because it gives you the number of u-mode particlespresent in the \vacuum" j�0i:h�0jayiaij�0i =Xj j�jij2h�0j�aj�ayj j�0i =Xj j�jij2 (4.6)(Recall that the number operator Ni = ayiai counts the number of i-particles.)Now I will construct the quantum �elds explicitly. A massless quantum �eld in 1+1dimensional Minkowski spacetime satis�es the Klein-Gordon equation2� = (@2t � @2x)� = 0 (4.7)with mode solutions uk(t; x) = 1p4�!eikx�i!t ; ! = jkj > 0: (4.8)The modes are said to be positive frequency modes with respect to the Minkowskitime t, because they are eigenfunctions of the killing vector @@t . Note that if � 6= 0
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ξ=constFigure 4.1: a) The trajectory of a uniformly accelerating observer. b) Rindler space with lines ofconstant � and �.then �u is a mixture of positive frequency modes u and negative frequency modes u�,see (4.3). So if a pure positive frequency mode in one system corresponds to a mixtureof positive and negative frequency modes in another system, then the vacua in bothsystems will di�er.The system is quantized by treating the �eld � as an operator. � may be expanded asfollows: �(t; x) =Xk [akuk(t; x) + ayku�k(t; x)]; (4.9)with u the mode solutions (4.8) and a; ay the annihilation, respectively the creationoperators. We de�ne (�1; �2) as the usual scalar product and � and a satisfy thecanonical commutation relations [�(t; x); �(t; x0)] = 0 (4.10)[ak; ayk0 ] = �kk0 :This procedure is also known as second quantization in order to distinguish the quan-tization in quantum �eld theory, with � an operator, from the (\�rst") quantizationin ordinary quantum mechanics, where one imposes commutation relations upon theobservables and where � is a wavefunction.In exactly the same way we can construct quantum �elds in Rindler coordinates.The equation satis�ed by the (massless) Klein-Gordon �eld in Rindler coordinates ise2a�2� = (@2� � @2� )� = 0; (4.11)with mode solutions uk = 1p4�!eik��i!� : (4.12)Note that we obtained here two classes of mode solutions. The upper sign applies inregion L, the lower sign in region R, because the killing vector is past-directed in region



20 CHAPTER 4. THE UNRUH EFFECTL; with increasing �, the slope of the line � = const: is increasing and one can see from�gure 4.1 that @@� is then past-directed in region L. Note also that Rindler observers inregion R are completely disconnected from region L and vice versa.We can expand the �eld in this second set of modes:�(x; t) = 1Xk=�1(bLkuLk + bLyk uL�k + bRk uRk + bRyk uR�k ): (4.13)As both sets (4.9) and (4.13) are complete, one can expand the Rindler modes in termsof the Minkowski modes and conversely. Constructing the Bogolyubov transformationsone gets the relations between the di�erent sets of mode solutions. Equating (4.9)and (4.13) and using the Bogolyubov transformations, it is possible to deduce relationsbetween the ladderoperators and thus one can express the Minkowski vacuum in termsof Rindler modes, as in (4.6).Here I will use a slightly di�erent method, which was used by Unruh, by �rstmaking use of analytic continuation across the horizons of the mode solutions (4.12) tothe regions F and P (obtaining an imaginary a). Then we construct the Bogolyubovtransformations between the new modes and the Rindler modes. The trajectory of auniform accelerating observer approaches the lines u = 0 and v = 0 for which � !�1. The Rindler modes are thus non-analytic there, but special linear combinationsare. The new modes are analytically continued to the other side of the horizon. Theappearance of horizons is crucial to get thermal radiation. The new modes have thesame analycity properties as the Minkowski modes and therefore they share the samevacuum, provided that the analytic continuation is performed in the lower half complexplane, i.e. ln(�1) = �i�, not +i�, �xing the sign of the exponent which gives rise tothe thermal spectrum.The two combinations are uRk + e��!=auL��k (4.14)and uR��k + e�!=auLk :One can see why these combinations are analytic and bounded in the lower half complexMinkowski plane, just as the Minkowski modes (4.8), by writingea�+a� � v =) uRk + e��!=auL��k � ( v�i!=a k < 0ui!=a k > 0 (4.15)with u; v the Minkowski null coordinates, u = t� r and v = t + r.One can expand the �-�eld in the new modes as follows:� = 1Xk=�1 1p2 sinh(�!=a)� (4.16)hd(1)k (e�!=2auRk + e��!=2auR��k) + d(2)k (e��!=2auR��k + e�!=2auLk )i+ h:c:



21The Bogolyubov transformations between the new modes (4.14) and the Rindler modes(4.12) are easily obtained. By taking the inner products (�; uRk ); (�; uLk ) with � from thenew expansion and from the Rindler expansion, one �nds the Bogolyubov transforma-tion between the Rindler operators b and the operators d which act on the Minkowskivacuum: b(1)k = 1psinh �!=a(e�!=2ad(2)k + e��!=2ad(1)yk ) (4.17)and simular for b(2)k . To know what Rindler particles are present in the Minkowskivacuum, we calculateh0M jbL;Ryk bL;Rk j0Mi = e��!=ap2 sinh(�!=a) = 1e2�!=a � 1 (4.18)which is precisely the Planck spectrum of a black body with temperature TU = a2� (seeappendix B).A uniformly accelerated observer, or Rindler observer sees the red-shifted temper-ature TU = ae�a�2� : (4.19)The proper acceleration is ae�a�, since the lines with constant � are the hyperbolaex2� t2 = 1a2e�2a� and the temperature seen by the accelerating observer is proportionalto the proper acceleration. Furthermore, the red-shifted temperature is T = 1pg00Tand from (4.1) we see that g00 = e2a�. In the same way one can show that an inertialobserver sees himself immersed in a thermal bath of Rindler particles.A way to understand the Unruh process is to imagine vacuum processes where pairsof virtual particles and anti-particles are created. One of the particles is detected by theaccelerating observer, while its counterpart passes the horizon u = 0 and gets eternallydisconnected from the world of the ever accelerating observer, wedge R.In SI units the temperature is given byTU = �ha2�kBc = a � 4:05 � 10�21 Km=s2 (4.20)which shows that it is very di�cult, if not impossible to see the Unruh e�ect in thelaboratory. However, recently the Unruh e�ect was mentioned in the context of sonolu-minesence, a phenomenon which is still unexplained [12]. A related geometrical e�ect,which is detected experimentally, is the Casimir e�ect. By imposing certain bound-ary conditions one alters the topology and can give non-zero vacuum stress energy.Casimir calculated that two conducting surfaces at close distance (� 10�6m) feel at-tractive forces in the vacuum, due to vacuum uctuations. Between the plates we havethe situation that not all the uctuations are aloud, because the waves have to \�t"between the plates. Outside the plates there are more uctuations which results in apressure and a measurable force.



22 CHAPTER 4. THE UNRUH EFFECTBut there are more methods to derive the Unruh e�ect, [13]. In statistical mechanicswe have the KMS-condition, named after Kubo, Martin and Schwinger, which saysthat the property of periodicity in imaginary time is associated with states of �nitetemperature in �eld theory. Formally one can write the KMS-condition as follows:For each pair of local observables A, B, there is a function F(z) of the complex variablez, that is analytic in the strip Im z � (0; �) and continuous on its boundaries, such thatF (t) = �(ABt) and F (t+ i�) = �(AtB) for real t.Simply one writes: hA�i�Bi� = hBAi� (4.21)de�ning hAi� to be the expectation value Tr(�A), � the inverse temperature, and Atto be the time translation by t of the operator A. I will prove that the KMS-conditionis equivalent to that of local thermodynamical stability.We have At = eitHAe�itHso, with t = �i�, hA�i�Bi� = Z�1Tr(�e�HAe��HB)with � the density matrix. In order to satisfy the KMS condition we get the conditionTr(�e�HAe��HB) = Tr(�BA)or, by using the cyclical property of the trace,e�H�Be��H = �B =) e�H�B = B�e�H :By putting B = I , one sees that � commutes with e�H . This means that e�H� com-mutes with arbitrary B and must be of the form cI with c a scalar. As Tr� = 1, � mustbe the canonical density matrix �c = Z�1e��H . In other words, �c is the only densitymatrix that satis�es the KMS-condition.Because of G(�; �0) = f(sinh(�0��)) and sinh(x� i�) = sinh(�x), it can be shown thatthe two-point function G(�; �0) = h�(�); �(�0)i along a uniformly accelerated worldlinein Minkowski vacuum satis�es the KMS condition!G(� � 2�ia ; �0) = G(�0; �) (4.22)The two-point correlation function is a Green function and is an important entity.The two-point function is de�ned as the vacuum expectation value of the time orderedproduct of the �elds �(x) and �(y), G(x; y) = h0jT�(x)�(y)j0i and give informationabout the system. With the two-point correlation function in hand one knows the



4.1. PARTICLE DETECTOR 23evolution of the system and one can calculate the observables. Along a uniformlyaccelerated worldline the Minkowski vacuum is a thermal state.j0Mi =Yj hNXnj e��nj!j=ajnj ; Ri 
 jnj ; Lii (4.23)Another way to analyse the thermal properties of the Minkowski vacuum is to look atthe intimate relation between the topological structure and the particle concept. Wealready noticed the importance of horizons. In fact, the key geometrical structure inthe Minkowski spacetime analysis which gives rise to the thermal state property of thevacuum, is the bifurcate killing horizon generated by the Lorentz boost isometries. InRindler, Kruskal and De Sitter spacetime two killing horizons appear which divide thespacetime into di�erent sections or wedges. A pair of intersecting killing horizons iscalled the bifurcation horizon. The killing �eld @=@� is normal to (null plane) horizonsand therefore we get non-analytic behaviour across the horizon. Analytic continuationacross the horizon gives rise to the factor e��!=k which is responsible for the thermalspectrum.The notion of vacuum has become subjective. We can not speak anymore about thevacuum. So when one speaks about \the" vacuum, what do they mean? The conven-tional vacuum, \the" vacuum, is the agreed vacuum for all inertial observers. Boththe conventional vacuum and the set of inertial observers (in Minkowski space) areinvariant under the poincar�e group3. From (4.20) we see that the temperature indeedvanishes if the acceleration is equal to zero. Furthermore, \the" vacuum becomes onlyill de�ned when huge accelerations or very strong gravitational �elds are involved.4.1 Particle DetectorIn order to understand the Unruh e�ect better and to clarify the obscure notion of\particles", one has developed models of \particle detectors"4. The essential feature ofa particle detector is the interaction with the �eld. After interaction the state of thedetector has changed. One can show that a non-inertial detector will not detect thesame particle density as an inertial one.In literature one �nds two models. One model is a particle detector which consistsof an idealized point particle with internal energy levels. The interaction Lagrangian isdescribed bym(�)�[x(�)], with m(�) the detectors monopole moment, and the detectorcouples via monopole interaction to the �eld �. The other model (Unruh and Wald,[14]) is essentially a \particle in a box" detector, which is simpli�ed by allowing thedetector only two energy levels. I will treat the second model in more detail. We �nd3A poincar�e transformation is a proper Lorentz transformation followed by a translation. Thegenerators of the poincar�e group are the six generators of the lorentz group (3 from rotations and 3from boosts) plus the four generators of the translation group. The poincar�e group is thus the groupof rotations (3), spacetime translations (4) and Lorentz boosts (3).4Don't confuse here particle detectors with bubble chambers.



24 CHAPTER 4. THE UNRUH EFFECTa remarkable paradox involving the change of the �eld energy during detection. In thefollowing it will be shown that the detector \detects", i.e. the detector will be foundin its excited state j "i when it absorbs a quantum of the �eld.The total hamiltonian of the �eld-detector system isH = HF +HD +HI (4.24)where HF is the free Klein-Gordon hamiltonian of the massless �-�eld, H = R dx[12�2+12(r�)2]. For the detector hamiltonian HD we takeHD = 
AyA: (4.25)The raising and lowering operators are de�ned byAyj #i = j "i (4.26)Aj "i = j #iwhere the kets represent the state of the detector. The coupling of the detector to the�-�eld is assumed to be given by the interaction HamiltonianHI = �(t) Z �(x)[	(~x)A+	�(~x)Ay]p�gd3~x (4.27)where 	(~x) is a smooth function which vanishes outside the detector and �(t) is thecoupling constant with explicit time dependence in order to enable us to turn thedetector on and o�.The system, i.e. a state jsi at time t1 evolves to time t2 viajs; t2i = e�i R t2t1 Hdtjs; t1i: (4.28)Let us take the initial state at early times to be a state where the detector is in its loweststate while the �eld is containing n particles, thus jn; #i. At late times the system willbe found, in �rst order in �, in the statejs1i = jn; #i � i Z ei
t0�(t0)	�(~x)�0(x0)p�gd3~x0dt0jn; "i: (4.29)It can be shown with some tedious algebra thatZ f�0p�gd4x � a (4.30)for any function f (for \example" f = �ei
t	�). Here a is the annihilation operator forthe free �eld.We can conclude that our simple model does function properly as a detector becausethe detector will be excited if and only if one quantum of the �eld is absorbed, due tothe appearance of the annihilation operator a.



4.1. PARTICLE DETECTOR 25We now let the detector uniformly accelerate by taking the boost killing �eld asits killing time. Choosing the Minkowski vacuum j0Mi as initial state and letting thedetector uniformly accelerate (which results in the fact that the annihilation operatorin (4.30) becomes the Rindler annihilation operator in the right wedge R, aR), we getjs1i = j0M ; #i� iaRj0M ; "i: (4.31)The Minkowski vacuum is equivalent to a thermal bath of Rindler particles (see (4.23)),and hence we see that the detector detects (absorbs) indeed particles, because of theannihilation operator aR.On the other hand we can, by using the Bogolyubov transformations, express theRindler operator in terms of Minkowski operators, instead of expressing the Minkowskivacuum state in terms of Rindler states. One �nds that the detection of a particle, i.e.the absorption of a (Rindler) quantum, corresponds to the emission of a Minkowskiparticle!An inertial observer sees the emission of a particle, while an accelerating observerin the detector frame sees absorption. The apparent paradox whether the �eld winsor looses energy �h!, can be resolved as follows. According to the inertial observer the�eld energy increases by one quantum. The Rindler observer has a di�erent interpre-tation, but agrees that the �eld energy increases. The initial state of the �eld is not aneigenstate of energy and thus the act of detection, the measurement, indicates that alarger number of particles then originally expected were present initially.
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Chapter 5The Hawking E�ectClosely related to the Unruh e�ect is the Hawking e�ect, which states that at su�cientlylate times after gravitational collapse a black hole will emit thermal radiation at atemperature TH = �2� , due to quantum e�ects. This e�ect strongly supports therelationship between thermodynamics and black hole physics, as described in chapter2. Secondly, one would expect according to the principle of equivalence 1 that also instrong gravitational �elds some thermal e�ects could occur.In his calculation of the outgoing ux, Hawking worked with a �xed backgroundgeometry. He neglected backreaction e�ects of the quantum �elds on the black hole.The reason for this approximation is the absence of a quantum theory of gravity. Beforethe theory of quantum electrodynamics was developed, one used successfully the sameprocedure by considering the electromagnetic �eld as a classical background �eld.Without taking backreaction e�ects into account however, it seems unavoidablethat pure states evolve into mixed states and thereby violating quantum mechanics. Idiscussed this problem in chapter 3.Now I will give you the derivation of Hawking's result, following [15]. I will workin 1+1 dimensions with the advantage that it enables us to say something about theenergy-stress-tensor. The result is the same as in four dimensions. Secondly we restrictour attention to massless scalar�elds. Note that the solutions of the Klein-Gordon equa-tion for massless scalar�elds, @u@v� = 0, are superpositions of left- and rightmovingwaves.Consider a collapsing spherically symmetric ball of matter, forming a black hole.One can imagine nullrays �in = e�i!v coming in from J� (the rightmoving part isirrelevant), being reected in the center of the ball and becoming outgoing waves �out =e�i!p(u). However, nullrays which are emitted after v = v0, will pass the horizon and fallinto the singularity. (Hawking looked at the time reversal process where an outgoingwave �out = e�i!0u reects at the origin and becomes the ingoing wave �in = e�i!0f(v).)Here I have used a WKB approximation (see appendix A) by taking the classical1\A frame linearly accelerated relative to an inertial frame in special relativity is locally identicalto a frame at rest in a gravitational �eld." 27
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Figure 5.1: a) A collapsing star forming a black hole. b) Incoming test particles (photons for example)which reect at r = 0. c) The time reversed process.path v ! p(u) of the reecting wave, resulting in the waves described above. Hawkingreferred to this approach as the geometrical optics approximation, which means thatone takes the waves at one frequency, without taking dispersion into account.Before we can calculate the Bogolyubov coe�cients, we will have to �nd the phasep(u) of the out-going wave. The recipe is as follows.� We begin by writing down the expressions of the line element for respectively theregions in- and outside the matter ballds2 = A(U; V )dUdV (5.1)ds2 = C(r)dudv (5.2)with C = 1� 2Mr for a Schwarzschild black hole andu = t � r� +R�0 v = t + r� �R�0 (5.3)U = � � r +R0 V = � + r �R0where dr� � drC since Cdudv = Cdt2 � 1C dr2. R0 is the initial position of thesurface of the collapsing ball and the relation between R0 and R�0 is the same asthe relation between r and r�.The coordinate transformation is given byU = �(u) v = �(V ):At the center of the matter ball, at r = 0, one has v = �(V ) = �(U � 2R0) =�[�(u) � 2R0] � p(u) because the quantum�eld has to obey the reection con-dition, i.e. to vanish at the reection point r = 0. In fact, the expression for



29the total massless scalar�eld is a superposition of left- and rightmoving waves,� = e�i!v � e�i!p(u). This shows that the quantum�eld indeed vanishes at thereection point. We neglect one term of the �eld, because it does not contributeto the reection process.� Secondly, the line elements have to match on the collapsing surface r = R(�),C(R)(dt2 � dR�2) = A(d�2 � dR2) (5.4)With this relation in hand we �nddUdu = d� � drdt� dr� = d�(1� _R)CCdt� _Rd� = (1� _R)C(AC(1� _R2) + _R2) 12 � _R (5.5)where _R = @R=@� .� Finally note that we only consider the particle ux in the asymptotic region (i.e.near the horizon, C ! 0, or equivalent, at late times u ! 1), hence we canapproximate (5.5) by dUdu � ( _R� 1)C(R)2 _R : (5.6)We �nd 12Cdu = dU _R_R� 1 (5.7)In order to �nd an expression for _R one can expand R(�) near the horizonR(�) = Rh + _R(� � �h) +O((� � �h)2)and thus: 1@C2@r u = �lnjU +Rh � �hj+ const: (5.8)=) �(u) = U / e��u + const: (5.9)The phase p(u) of our outgoing wave now �nally becomes:p(u) = Ce��u +D (5.10)We used v = �(V ) / V because at late times an asymptotic observer sees the matterball hardly change, due to time dilation.The constant � is the so called surface gravity of the horizon and is de�ned by� = 1@C2@r jr=Rh = 14M : (5.11)The surface gravity is a measure of the strength of the gravitational �eld at the horizon.More precisely, � is the magnitude of the acceleration, with respect to killing time, of



30 CHAPTER 5. THE HAWKING EFFECTa stationary particle just outside the horizon. This is the same as the force per unitmass that must be applied at in�nity in order to hold the particle on its path.Formally the surface gravity is de�ned as the magnitude of the gradient of the normof the horizon generating killing �eld �a (evaluated at the horizon):�2 � �(raj�j)(raj�j): (5.12)The constant C in (5.10) turns out to be � 1� and the constant D is the horizon v0.As u ! 1, v approaches indeed the horizon v0, as we can see in �gure 5.1. Further-more, on physical grounds we expected already the phase factor of the outgoing wave,p(u), to become exponentially small as the surface of the matter ball approaches theevent horizon, due to the gravitational redshift.If we consider an outgoing wave �out = e�i!0u, then the corresponding ingoing wavehad to be �in = e�i!0p�1(v). We write f(v) for the inverse function of p(u)f(v) = � 1� ln(�(v0 � v))� v0: (5.13)We wish to calculate the Bogolyubov coe�cients � and � which relate the di�erentexpansions of the quantum �eld. One of the expansions is in terms of outgoing modesand the other in terms of ingoing modes. But instead of the outgoing mode in the form�out = e�i!0u, we take its incoming form �in = e�i!0f(v), which is of course the same(reected) wave. The Bogolyubov coe�cients are scalar products of wave modes andgive therefore the overlap between the modes. We now wish to calculate the overlapbetween the incoming waves from the di�erent expansions.�!!0 = �(�out; ��in) = �(e�i!v ; ei!0f(v)) (5.14)�!!0 = (�out; �in) = (e�i!v ; e�i!0f(v))After an integration by parts and including the normalization factor, one obtains�!!0�!!0 ) = � i2�r !!0 Z v00 e�i!0f(v)�i!vdv = (5.15)= � i2��r !!0 Z �v00 v0�i!0=�eiv0(!0�!)+i!v0=�dv0 == � 1p4�2!!0 eiv0(!0�!) i�! �i!0=� Z �i!0v00 x�i!0=�e�xdx:With the de�nition of the Gamma function �(n) = R10 xn�1e�xdx and with the knowl-edge that lightrays after v = v0 do not contribute to the integral, we �nd:�!!0�!!0 ) = � 1p4�2!!0 eiv0(!0�!)e��!0=2�(!� )�i!0=� i!0� �(� i!0� ): (5.16)



31As we saw in chapter 4, the out-going radiation spectrum is given by the Bogolyubovcoe�cient �, hN!0i = F (!0) =X! j�!!0 j2: (5.17)After a straightforward calculation we �nd for the ux coming out of a neutral, non-rotating black hole: F (!0) = 1e2�!0=� � 1 (5.18)The same result is found if we use the (completeness) relationX! (j�!!0 j2 � j�!!0 j2) = 1; (5.19)and the fact that j�!!0 j2 and j�!!0 j2 are independent of !:F (!0) =X! j�!!0 j2 = 1j�!!0 j2j�!!0 j2 � 1 = 1e2�!0=� � 1 : (5.20)This is precisely the spectrum you would expect for (bosonic) thermal radiation at atemperature TH = �2�kB = 18�kBM � 1:2 � 1023 1M K kg: (5.21)Of course we assumed that the black hole is surrounded by empty space, otherwisea black hole heavier then 0:007M� (about half of the moon) would absorb the (3K) background radiation. The notion of thermodynamic equilibrium becomes curioushowever, because a big, cold black hole would absorb the 3 K-radiation and insteadof becoming hotter, as one would expect according to the Laws of thermodynamics, itbecomes bigger and thus colder! This might seem as a violation of the Second Law,but it is not according to the Generalized Second Law. A black hole acts as a vacuumcleaner of entropy, storing it on its area.Although one encounters some technical di�culties in the four dimensional case,the derivation is roughly the same and the result is identical. It is also possible togeneralize the result to charged and rotating black holes. A rotating hole emits a uxF (!0) = 1e2�(!0�m
)=� � 1 (5.22)where m is the azimuthal quantum number (m = �l; :::;+l) and 
 the angular speedat the event horizon. The temperature of a charged black hole turns out to beT = 18�kBM �1� 16�2e4A2 � (5.23)with A the area of the event horizon and e the charge of the hole.We restricted our attention to massless scalar�elds, which is actually quite unphys-ical (the only scalar particles we know of are Higgs bosons, which are still not found



32 CHAPTER 5. THE HAWKING EFFECTexperimentally and have big masses). However, having the fundamental thermody-namic nature of quantum particle production in mind, the calculations should also bevalid for higher spin �elds. Because of the anticommuting nature of fermions we wouldget a +sign in (5.19) resulting in the appropriate Planck factor for Fermi statistics (seeappendix B).Due to the radiation, the black hole looses mass and gets hotter. For a hole withmass M � 1014 kg the creation of electron-positron pairs becomes possible, at aboutM � 1012 kg the Schwarzschild radius approaches the range of strong interactions andwhen the hole has reached the Planck mass M � 10�8 kg nobody knows what theoutcome is, a �nal burst of huge energy, or maybe a stable remnant, as described insection 3.1.5.1 Stress TensorHow real is this black hole radiation actually? A heuristic way to understand theHawking process was given by Hawking personally. All the time and in the wholeof space we have quantum processes in the vacuum, where pairs of virtual particlesand anti-particles are created. These vacuum uctuations are possible because theuncertainty relation of Heisenberg states that one can not measure the total energywith in�nite accuracy at one moment, �E�t � �h, and therefore energy conservationcan be violated in short time intervals. Hence these pairs annihilate immediately,typically in 10�23 s.Now imagine that this happens just outside the event horizon. Due to the stronggravitational �eld these particles can be separated causing one particle to fall in thehole while the other particle manages to escape to in�nity, constituting to the thermalradiation. Inside the black hole the virtual anti-particle becomes real without loosing
Figure 5.2: Pair creation of virtual particles and anti particles near the horizon.its negative energy. This is possible because the time translation generating killing�eld becomes spacelike inside the horizon, allowing negative values. This is a heuristicdescription of the process and should not be taken too literally, because one could alsoimagine the particle falling into the hole and increasing the mass of the hole while theantiparticle escapes.Investigating the energy stress tensor T�� is a more rigorous and relevant methodto get more insight in the physical existence of the Hawking radiation [17, 16]. We will



5.1. STRESS TENSOR 33�nd an expression for the energy-momentum tensor regularized by the point-splittingprocedure. As before we will restrict our attention to the quantum theory of a masslessscalar �eld in two dimensions.The classical expression for the stress tensor isT��(x) = @��@�� � 12g��@��@�� (5.24)where � are normal modes. The operator � can be expanded in those modes. For theoperator T�� we get T��(x) = @��@��� 12g��@��@��: (5.25)Now consider a point x� at a proper distance j�j from x. We denote the normalizedtangent vector at x by t�(�) � dx��d� :Next we de�ne the matrix e��(�) as the matrix which maps the vectors at x to those atx� 2. Evaluating one �eld at x�� and the other at x� we �nd for the expectation valueof T�� : hT��(x; �)i = h0j@��(x�)@��(x��)j0i�e��(�)e��(��) � 12g��e��(�)e��(��)�:After an expansion in powers of � and using the fact that every two dimensional metricis conformally at (i.e. for any coordinate system we can write ds2 = C(u; v)dudv) weget hT��(x; �)i = �� 1�24�t�t� + R24��� t�t�t�t� � 12g���+ ��� +O(�);where R is the curvature scalar and the tensor ��� has the components (in the specialnull coordinates (�u; �v) such that the normal modes are simple exponentials e�i!�v , e�i!�uon J� and J+ respectively): ��u�u = � 112�pC@2�u(C)� 12 (5.26)��v�v = � 112�pC@2�v(C)� 12��u�v = ��v�u = 0:One sees immediately that the result diverges as � ! 0. Moreover, the result containsterms which depend on the (arbitrary!) direction of point separation. Therefore wewill simply discard the terms containing � or the tangent vector t�:hT��(x)i = ��� + R48�g�� : (5.27)2This means that e��(�), for �xed � in a given coordinate system, is the contravariant vector x�obtained by parallel transport - along the geodesic from x - of the basic vector in the � direction.



34 CHAPTER 5. THE HAWKING EFFECTAs in (5.2) we consider the metric: ds2 = C(r)dudvBecause of the fact that any two dimensional coordinate system is conformally relatedto Minkowski spacetime which results in R = 0, and because of@2u = 14(C2@2r + CC 0@r)we �nd for the stress tensor:hTuui = 1192� (2CC 00� (C 0)2) = 124��3M22r4 � Mr3 �: (5.28)So far there has been no collapse and still no black hole is formed. If there is agravitational collapse, then the coordinates (u; v) are no longer appropriate, because theoutgoing modes e�i!u become complicated exponentials e�i!p(u). In other coordinates�u = p(u) and �v = v , the metric becomesds2 = �C(�u; �v)d�ud�v:With p(u) = e�u=4M + v0 as in (5.10):�C(�u; �v) = C(r)dud�u = (1� 2Mr ) 4Mv0 � �u (5.29)we �nd for the energy tensor:hTuui = 124��3M22r4 � Mr3 + 132M2�: (5.30)For large r we see an outgoing uxhTuui = 1768�M2 = �12� 18�M �2: (5.31)This is exactly the energy ux for a body with temperature T = 18�M . Near the horizonhowever (r � 2M) we see a negative energy ux going into the horizon.hTvvi = 124��3M22r4 � Mr3 � �! � 13768�M2 (5.32)Indeed one could in some way describe this process as the creation of particles andantiparticles near the horizon. Particles carrying the positive energy escape to in�nity,while their counterparts with negative energy fall through the horizon into the blackhole.



Chapter 6Moving MirrorsIn 1976 Davies and Fulling [18] developed a simple \moving mirror" model, whichprovides a very useful analogy to the black hole situation (see also [19, 20, 21]). Bychoosing suitable trajectories, the moving mirror mimics many of the features of blackhole radiance, with the di�erence that the quantum �elds propagate in at Minkowskispace instead of complicated geometries with high curvatures. First we will treat thecase with a �xed trajectory, which represents a �xed background geometry. Then wetake the rest mass of the mirror �nite and calculate classically the back reaction e�ectof the reection of massless scalar �elds o� the boundary.6.1 Fixed TrajectoryConsider a reecting boundary in 1+1 dimensions following a trajectory at late times(for example z(t) = ln(cosh t)) that mimics the e�ect of the gravitational collapsegeometry, z(t) = �t � 1�e�2�t + v0; (6.1)In the black hole case the incoming waves travel through the collapsing matter andreect at r = 0. The mirror trajectory represents thus the origin of the black holegeometry. The last term, v0, is the horizon after which the lightrays travel undisturbedto the left, without being reected. This represents the black hole event horizon.Furthermore we see that the mirror velocity approaches the speed of light exponentiallyfast v(t) � dz(t)dt = �1 + 2e�2�t: (6.2)Secondly we have a massless scalar�eld �, which reects o� the mirror. We imposethe reection boundary condition that the �eld has to vanish on the boundary,�(t; z(t)) = 0 (6.3)(One could see that this is a reection condition by imagining a running wave on a ropewith a �xed end. The wave vanishes at the �xed end and reects.)35



36 CHAPTER 6. MOVING MIRRORSA late outgoing wave along u = �u hits the mirror approximately at time t =12(�u+ v0). From (6.1) we deduce the following relation at the reection point (�u; �v):�v � v0 = � 1�e��(�u+v0) =) �u = �v0 � 1� ln[��(�v � v0)] � f(�v) (6.4)This classical calculation gives us the classical trajectory f(v) ! u of an monochro-matic outgoing wavefunction (monochromatic means that the wave function is sharplypeaked at one frequency), which reects o� the mirror. Taking the classical trajectoryas the phase of the wavefunction corresponds to making use of the WKB approxima-tion, as described in appendix A. Due to this classical approximation, we have themonochromatic out-wavefunction �out � e�i!0u (6.5)and the corresponding complicated in-wave�in � e�i!0f(v):Note that we have constructed the mirror trajectory in such way, that the function f(v)is identical to the phase of the wavefunction in (5.13). The Bogolyubov coe�cients aretherefore the same as in (5.16)�!!0 = 1p4�2!!0e��!0=2�eiv0(!0�!)(!� )�i!0��(1 + i!0� ) (6.6)and we �nd for the out-going uxF (!0) =X! j�!!0 j2 = 1e2�!0=� � 1 (6.7)which is the ux of the radiation of a black body with temperature T = �2� . However,� is not the surface gravity but a measure of the acceleration.
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Figure 6.1: The mirror trajectory z(t) with reecting particle.



6.1. FIXED TRAJECTORY 376.1.1 Saddlepoint ApproximationFor later comparison I will calculate the Bogolyubov coe�cients again, but now by usingthe method of saddlepoints. The idea is to approximate the integral (5.15) by takingonly the biggest contribution of the integral into account. The biggest contribution ofthe integral is at the so-called saddlepoint and is found in our case where the derivativeof the exponent vanishes. Note that it makes no di�erence if we take the outgoingforms of the waves e�i!0u; e�i!p(u) or the ingoing forms e�i!0f(v); e�i!v .The saddlepoints for �!!0 and �!!0 lie respectively at u = �u� with!0 = �!@up(u)j�u� =) �u� = v0 � 1� log(�!0! ) (6.8)The saddlepoint u = �u+ that contributes to �!!0 , corresponds to the physical reectiontime, which is uniquely determined for given in and out-frequency via the Dopplerrelation !0 = ! 1 + v1� v (6.9)with v the velocity of the mirror given in (6.2). This means that one could also deduce(6.8) by using (6.9). The reection point satis�es the equation p(�u) = �v, and we see:!0 = !@up(u) = !@uv = ! _t + _r_t � _r = ! 1 + v1� v :The saddlepoint u = �u� that contributes to �!!0 , on the other hand, has an imag-inary part equal to �=�, because of the term 1� log(�1) = �i�=�. The saddlepoint�u� corresponds therefore to the virtual reection process that gives rise to the particlecreation phenomenon. These out-going reection times correspond to ingoing times �v�with �v� = v0 � !0�! (6.10)Hence for the Bogolyubov coe�cients we �nd 1�!!0 � ei!0�u+�i!�v+ � e� i!0� ln(!0! )�iv0(!�!0)+ i!0��!!0 � ei!0�u�+i!�v� � e� i!0� ln(�!0! )+iv0(!+!0)+ i!0� : (6.11)The out-going ux is again our well known Planck spectrumF (!0) = 1j�!!0�!!0 j2 � 1 = 1e2�!0=� � 1 : (6.12)1Instead of � we take here its conjugate. This means nothing more then looking at the outgoingwave where the ingoingwave had to have negative energy. In (5.15) we saw that the outgoing energy !0changed sign. One could say that we look at the time reversed process. Looking at the time reversedprocess has no inuence on the mirror trajectory, because we take it �xed. In the next section however,we will have to be consistent and take the mirror trajectory at late times determined in order to beable to look at the time reversed process.



38 CHAPTER 6. MOVING MIRRORS6.1.2 Uniform AccelerationIf one takes the acceleration of the mirror uniform one �nds that the Bogolyubovcoe�cient � is non-zero and that the mirror therefore emits particles. However, theenergy stress tensor vanishes! Recall the relation for the expectation value of the stresstensor, (5.27), hT��i = ��� (6.13)which becomes after a coordinate transformationu = f(�u) v = �v () �u = p(u) �v = v (6.14)to a coordinate system (�u; �v) in which the mirror remains at rest, (�x = 0):hT�u�ui = � 112� (f 0(�u)) 12@2�u(f 0(�u))� 12 (6.15)Transforming to the (u; v) system giveshTuui = � 112� (f 0(�u))� 32@2u(f 0(�u))� 12 (6.16)and, with z(t) the mirror trajectory, we �nd in the (x; t) systemhTtti = hTxxi = � 112� (1� _z2) 12(1� _z)2 dd�u �z(1� _z2) 32 (6.17)For non-relativistic motion this is simply � 112� ddt �z. We see that a uniform acceleratingmirror will not radiate energy, although we are dealing with non-inertial motion ofthe mirror and particle creation o� the mirror occurs! The problem is that in curvedspacetime or involving non-inertial motions, the particle concept becomes bad de�nedand di�erent from our conventional view. The statement \energy �h! per quantum"does not apply in this case.6.2 Backreaction on the MirrorIn this section we will repeat the calculation from section 6.1, but now by takingthe backreaction of the radiation o� the mirror into account. This section is largelybased on [22]. Backreaction e�ects are important for two reasons. First we have theinformation problem as described in chapter 3. Including backreaction e�ects couldlead to a solution of the problem (see section 3.3). Secondly there is the problem ofdivergent energies as v ! v0. The radiation coming o� a mirror or out of a black holeat late times, had to be in�nitely blue-shifted incoming waves, due to the Dopplershift(or gravitational shift).A mirror with in�nite mass corresponds to a �xed trajectory, because an objectwith in�nite mass does not feel the bounce from particles. I will therefore take themirror mass to be �nite and impose energy conservation upon reection. However, the
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reflected photonFigure 6.2: The reection of a photon o� a mirror particle with �nite mass.Bogolyubov coe�cients are not exactly soluble anymore which forces us to use approx-imations. We will use here the saddlepoint approximation.Consider an incoming photon with energy �h! which collides elastically with a mir-ror particle with mass m. After the collision the mirror particle has energy (v)mc2and the photon reemerges with a energy �h!0. (From now we put again �h = c = 1). Wewant to express the energy !0 in terms of ! and the mirror velocity v just after thecollision. With the condition for energy conservation in two dimensions, p0+k0 = p+k,classically one �nds: k � k0 = p0 � (k0 � k) (6.18)and with k = (!;�!); k0 = (!0; !0) and p0 = (m;�mjvj):!0 = ! 1�2 � 2!m � (6.19)with � the Doppler factor � = s1� v1 + v : (6.20)Note that for v! �1 we get !0 ! 0 and for m!1 we �nd the quadratic Doppler-shift as expected (see (6.9)). We now wish to consider the same classical mirror trajec-tory as in the previous section. We imagine therefore that there is some external forcethat acts on the mirror particle, which in the absence of other forces (such as thosedue to possible (virtual) collisions with the photons) will keep it in the given trajectory(6.1). More speci�cally, in determining the relevant classical WKB-trajectory, we keepthe mirror trajectory after the collision with the photon �xed, so that it always remainsasymptotic to v = v0. From (6.1) we deduce 2v = � 1�e�2�(t�v0) + v02Note that we take now a shifted trajectory t! t� v0.



40 CHAPTER 6. MOVING MIRRORS�(v � v0) = e�2�(t�v0)and by using (6.2) and (6.4) we �nd for late times� � e�2 (u�v0) � 1p�(v0 � v) : (6.21)Thus applying the general formula (6.19), we get the following relation between the in-and out-going energies in terms of the out-going time u!0 � !e�(u�v0) � 2!m e�2 (u�v0) (6.22)and in terms of the incoming time we have! � !0�(v0 � v) + 2!0m p�(v0 � v) (6.23)We see now that the energy ! of the incoming photon can not become in�nitelylarge, neither larger then the mirror energy after collision. Energy is indeed conserved.If we keep !0 �xed, then for late times ! approaches this maximal value! � m2 � � m (6.24)since  � �=(1� v) � �=2 for late times.We would again like to use a combination of a WKB approximation for determiningthe relation between the in- and out-going wave packets and a saddlepoint approxima-tion for the integrals in the expressions of the (corrected) Bogolyubov coe�cients ~�!!0and ~�!!0 . In fact one could say that the two approximations are related, because thesaddlepoint approximation gives us the classical path as does the WKB approximation.Following the same steps as in section 6.1, we can again express these coe�cients interms of the reection points (~u�, ~v�) as~�!!0 � ei!0~u+�i!~v+~�!!0 � ei!0~u�+i!~v� : (6.25)That is, the coe�cients are just equal to the \phase jump" between the incoming andoutgoing wave at the reection point. Note that the incoming frequency ! changes signwhen we calculate the saddlepoints ~u�; ~v� for teh Bogolyubov coe�cient �, becausewe look at the time reversed process. Furthermore, I take +-solution, because in thelimit m!1 one would like to get the old result back and avoid negative values of theexponent.Using (6.22), we �nd the new saddlepoints ~u� at~u�= v0 � 1� log(!0! ) + 2� log(px2 � 1 � x) (6.26)



6.2. BACKREACTION ON THE MIRROR 41and with (6.23) we obtain~v�= v0 � !0�! (�1 + 2x2 � 2xpx2 � 1) (6.27)with x2 = !!0m2 :As before, the physical reection point (~u+; ~v+) that contributes to the Bogolyubovcoe�cient ~�!!0 is always real, while the saddle-point (�u�; �v�) that contributes to ~�!!0again has an imaginary part. This imaginary part, however, is no longer constant, butdepends on the variable x. Note further that the virtual reection point (�u�; �v�) isrelated to the real one by changing the sign of the in-going frequency !. Indeed, the out-going radiation is produced because negative energy in-coming modes can propagatevia virtual trajectories into positive energy out-going modes.It is easy to see that, if we keep the out-going frequency !0 constant (which is stillphysically reasonable), the incoming frequency ! will at late times still grow expo-nentially in the out-going time, but now with half the e-folding time. This implies inparticular that at late times (that is for �(�u+� v0) >> 1), we have the relation~u+ � 2� log x2 + const:between the parameter x and the reection time ~u+. In the following we will make useof this relation to read o� the time dependence of the radiation spectrum, given itsexpression in terms of the in and out-going frequencies.A straightforward calculation now gives the following result for the new Bogolyubovcoe�cients: ~�!!0 � �!!0 exp 2i!0� h�x(px2 + 1� x) + log(px2 + 1 + x)i (6.28)and ~�!!0 � �!!0 exp 2i!0� h� i�2 + x(px2 � 1� x) + log(px2 � 1� x)i (6.29)where �!!0 and �!!0 denote the uncorrected coe�cients given in section 6.1. Note thatwe indeed get the old result back in the limit x! 0, which corresponds to the in�nitemass limit m!1. For the ratio of the absolute values of the new coe�cients we �nd3 j~�!!0 j2j~�!!0 j2 � exph4!0� R(x)i (6.30)with R(x) = � � arccos x + xp1� x2 for x < 1= � for x > 1: (6.31)3Note that the !-dependency is transformed into the time dependency x, which justi�es thisprocedure.



42 CHAPTER 6. MOVING MIRRORS
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κ/2πFigure 6.3: The temperature of the radiation as a function of the outgoing time u = 2� log x2.where we used Im log(�x+ ip1� x2) = ��arctan(x=p1� x2) = ��arccos x. We nowde�ne the out-going spectrum F (!0; x) as a function of the time parameter x asF (!0; x) = 1j�!!0 j2j�!!0 j2 � 1 = 1e!0=kBT (x) � 1 (6.32)where we identi�ed the time-dependent temperature askBT (x) = �4R(x) : (6.33)The temperature as a function of the outgoing time �u is plotted in �gure 6.3.We read o� that after a relatively short amount of time of the order of�u � v0 + 2� log(2m� ) (6.34)the mirror radiates a constant ux of thermal radiation at a temperature kBT = �4� ,where I used (6.26) with x � 1. Recall that the typical frequency of the out-goingradiation is of the order of �, see appendix B.In conclusion, we see that introducing a reecting boundary with �nite mass andimposing energy conservation upon reection, leads to back reaction e�ects with dra-matic consequences: the temperature of the mirror is half of the original result. Thisresult could have been anticipated from equation (6.23). For late times, i.e. in the limitv ! v0, the second term in the denominator determines the corrected Doppler rela-tion between the in- and out-frequencies. In other words, the magnitude of the ingoingfrequency for given !0 grows linearly with the Doppler factor �, instead of quadratically.6.3 Dilaton GravityA close related model to the one of moving mirrors is dilaton gravity, see [23, 24, 25, 4].This model is just complicated enough to contain black hole solutions as well as Hawkingradiation. Again we restrict our attention to two dimensions.



6.3. DILATON GRAVITY 43The action which gives us the Einstein equations isS = Z d2xp�g[R� 12(�f)2]with g the metric, R the Ricci or curvature scalar and f the matter �elds. The actionfor dilaton gravity is given by 4S = 12� Z d2xp�g(e�2�[R+ (2r�)2 + 4�2]� 12(rf)2) (6.35)where � is the dilaton and � a cosmological constant, which sets the scale of the surfacegravity, and e� plays the role of gravitational coupling5 . A factor in front of R in theaction scales the metric giving rise to dilatation of spacetime; � is therefore called adilaton. A crucial property is the fact that we can rescale the metric obtaining a atspacetime ds2 = e2�dx+dx��(x+; x�) = �(x+; x�)with x� = x0 � x1. Now one can solve the classical equations of motion for e�2�e�2� =M � �2x+x� � Z x+ dy+dz+T++ � Zx� dy�dz�T�� (6.36)Putting the energy-momentum tensor equal to zero, we get the static black hole solution(see (2.1)). Without any matter present, i.e. T�� = 0;M = 0, one gets the the twodimensional Minkowski vacuum, or linear dilaton vacuum,ds2 = dx+dx�x+x�which becomes with x� = �e�(r�t) (6.37)our familiar expression for the Minkowski line elementds2 = dt2 � dx2: (6.38)One obtains the Hawking radiation by considering infalling matter. Before the matterscomes in, we have simple Minkowski space-time. The infalling matter forms a black holein the model of dilaton gravity as can be seen from the metric after some coordinatetransformations. If one now calculates the matter stress tensor of the right movers, one�nds the thermal Hawking ux. In the left asymptotic region of the Minkowski plane,(x� ! 0 $ r ! �1), the dilaton takes a large value, as can be seen from (6.36).4We take this action, simply because it gives us a black hole solution. Furthermore, this action isclosely related to an action for some sort of strings. The lowest order string e�ective action looks likeS = R dd+1xp�g[e2�(R+ (2r�)2 + :::) + V ] + loops.5In Yang-Mills theory (the general gauge theories) for example, one writes the Lagrangian as L �� 1g2 :::, with g the coupling constant.



44 CHAPTER 6. MOVING MIRRORSIncluding the reection condition, i.e. energy conservation, and imposing a cuto� on�, �cr, we �nd the boundary trajectory x�(�) where e�(x+;x�) takes its critical valuee�cr . This is closely related to the moving mirror trajectory or the r = 0 point in theblack hole geometry.Above we considered T�� = 0. If we now consider an incoming shock wave T++ =p+�(x+ � q+) (as the photon in the previous section), one sees that the boundarytrajectory acts as a mirror with negative mass.In particular, one �nds that all incoming particle wave of energy below some criticalvalue !crit will reect back to in�nity, provided it does not disappear behind the horizonof an already existing black hole, see [21]. The trajectory is given by(�2x� � p+)x+ = �m24�2 (6.39)x�(�2x+ + p�) = �m24�2with p� = �2p+q+m2=4�2q+ � p+ : (6.40)For incoming energies larger than p+q+ = m24�2 � !crit we see that the trajectoryafter the collision becomes spacelike. For larger energies than the critical value !crit,the particle wave will never reect back, but always lead to black hole formation. Inthe sub-critical regime one can calculate the relation between the in- and out-goingfrequencies by solving for the corresponding classical geometry. After shifting x� byx� ! y�+P+ , de�ning P+ = e��v0 , and by using (6.37), we can rewrite the trajectoryin the notation of the forgoing sections:e��(�u��v) = 1�(!crite��(�u�v0) � !0): (6.41)The relation x+p+ = y�p� becomes! = !0(1� e��(v0��u)) � !0e�(�u�v0): (6.42)In the background geometry of a black hole of massM , we send a signal with frequency!0 backwards in time from an outgoing time u. It will bounce o� the boundary, andproduce an incoming signal at past in�nity. The relation between the initial frequencyand �nal frequency can thus be written for late times u asu = v0 � 1� log(!0! ); (6.43)with � the dilaton gravity \cosmological constant", which sets the scale of the surfacegravity at the black hole horizon. The time v0 is roughly the black hole formation time.The reection o� the boundary takes place at an ingoing time v given byv = v0 + 1� log�!crit � !� �: (6.44)



6.4. DISCUSSION 45Somewhat surprisingly, we see in (6.43) that the backreaction of the geometry does notmodify the old linearized relation between the in- and out-going frequencies. Hence, ifwe would use this relation to compute the Bogolyubov coe�cients and the out-goingspectrum, we �nd no interesting corrections to the out-going spectrum. We have for! < !crit ~�!!0 � ei!0u+�i!v+ � eiv0(!0�!)� i!0� log(!0! )� i!� log((!crit �!)=�):~�!!0 � ei!0~u�+i!~v� � e��!0� +iv0(!0+!)� i!0� log(!0! )+ i!� log((!crit +!)=�) (6.45)So that j�!!0 j2j�!!0 j2 = e 2�!0� (6.46)which seems to indicate that the out-going thermal spectrum receives no correctionswhatsoever.However, the result (6.43) for the classical reection time is only valid in the sub-critical regime. As soon as ! > !crit (6.47)we can no longer use the above formulas, because there no longer exists a classicaltrajectory that relates an outgoing wave of this frequency to a regular incoming wave.Indeed, as seen from (6.44), there is no longer a physical reection time. Instead, theonly classical solutions that contain out-going particles in the supercritical regime (6.47)are solutions that contain either white holes or naked singularities. In neither case,however, we know of good physical principles that provide concrete initial conditionsfor the out-going state. This super-critical regime (6.47) is reached very quickly, sincein terms of the out-going frequency !0 the inequality reads!0 > !crite��(u�v0): (6.48)Thus we are forced to conclude that the WKB method breaks down when applied totwo-dimensional dilaton gravity.6.4 DiscussionIn appendix A I discuss the WKB approximation. It is shown that the approximationis justi�ed provided that the frequency varies slowly relative to its magnitude. In ourcase the frequency increases exponentially, and thus the variation is big. At the sametime however, the frequency itself is very large, satisfying the condition.Another justi�cation for using this approximation is the fact that this same ap-proximation was used by the physicists who invented the moving mirror model. I justincluded backreaction e�ects in the same calculation. However, I do not deny thatother approximation schemes could give other interesting results.The combination of the WKB approximation and the saddlepoint approximationshould not be viewed as succesive approximations, but rather as related approximations.



46 CHAPTER 6. MOVING MIRRORSAs described in the appendix, the WKB approximation is a classical approximation bytaking the classical path of the quantum�elds. On the other hand the saddlepoints ofthe integral are the classical reection points on the mirror.



Chapter 7ConclusionIn this report I gave a short review of the facts which led to Hawkings discovery andthe explicit calculation of the Hawking e�ect is presented. Through the years their hasbeen done a lot of work on the subject and the e�ect is supported by many authors. Atthe same time one recognized the problems coming along with the acceptance of blackhole evaporation. The violation of unitarity and the inevitable occurrence of divergentenergies are problems which are still unresolved due to the absence of a theory ofquantum gravity and the lack of knowledge of Planck scale physics.I tried to include backreaction e�ects in the moving mirror model in order to imple-ment energy conservation in the particle creation process and found that backreactione�ects indeed a�ect the outcome.In the calculations of the corrections of the original result, I was forced to useapproximations. In itself the result is promising and could give an indication to othermodels. However, it remains a challenge to improve the approximations, in order tostrengthen the result and gain more insight in the whole process. This area in physics,where general relativity and quantum mechanics meet each other, could give moreinsight in what properties a uni�ed theory, or a quantum theory of gravity, shouldpossess.
47



48 CHAPTER 7. CONCLUSION



Appendix AWKB ApproximationConsider the Schr�odinger equation (in 1 dimension), where the potential energy doesnot have a simple form, d2 dx2 + 2��h (E � V (x)) = 0: (A.1)If V = const: the equation (A.1) has simple solutions e� i�hkx. This suggests to try asolution of the form  (x) = e i�hu(x): (A.2)Substitution of (A.2) in (A.1) gives us an equation for the x-dependent phase, u(x):i�hd2udx2 � �dudx�2 + �h2k2(x) = 0 (A.3)where k(x) = 8<: q2��h2 (E � V (x)) E > V (x)�iq2��h2 (V (x)�E) E < V (x):At this point we make the approximation that the potential varies slowly. A �rst crudeapproximation is to omit the �rst term in (A.3). In �rst order, u0, we �nd thusu0 = ��h Z x k(x0)dx0 + C: (A.4)To improve the approximation in second order we write �rstdudx = ��hsk2(x) + i�hu00(x)and make the approximationu1(x) � ��h Z xsk2(x0) + i�hu000(x0)dx0+C1 = ��h Z xqk2(x0)� i�hk0(x0)dx0+C1 (A.5)49



50 APPENDIX A. WKB APPROXIMATIONThe correction is baseless unless u1 is close to u0(x), i.e. unlessjk0(x)j � jk2(x)j: (A.6)This means that k(x) may only vary slowly. With condition (A.6) we can approximate(A.5)u1(x) � ��h Z x k(x0) + i2 k0(x0)k(x0) dx0 + C1 = ��h Z x k(x0)dx0 + i�h2 log k(x) + C1 (A.7)which is known as the WKB approximation, named after Wentzel, Kramers and Bril-louin. As we see in (A.2), u(x) can be regarded as the action S. One expands S inpowers of �h, S = S0 + �hS1 + �h22 S2 + :::Note that S0 + �hS1 = u1(x).The approximated wave function  becomes thus (x) � 8<: e�iR x k(x)dx in zeroth order in �h1pk(x)e�i R x k(x)dx in �rst order in �h (A.8)The WKB approximation is also refered to as classical approximation, stationary stateapproximation or geometrical optics approximation. In the classical limit �h ! 0 weobtain the classical solution and the rays associated with  (orthogonal trajectories tothe surfaces with constant phase) are the possible paths of the classical particle. If wecompare those wavefunctions with the wavefunctions in chapters 5 and 6, we �nde�i!0f(v) = e�i!0 R 1�(v0�v)dv (A.9)e�i!p(u) = e�i! R e��uduThe condition (A.6) becomes in our case�� !0 (A.10)Note that !0 � !e��u .In path integral language the transport of a wave function is described as (t) = Z dr0 (r0)hZ Dr e i�hS(r)i (A.11)with  (0) = �(r0)ei=�hS(r0) and S the action of the path r. For small �h, thus in theclassical limit, the extrema of the action dominate the path integral and the integralcan be approximated by the saddlepoint phase (r; t)� e i�hS0(r0)+R rr0 @S0@r0 dr�Et (A.12)This formula means that the energy at r0 is transported along the classical trajectoryto r(t). However, the frequency of the wave function must vary su�ciently slowly.Imposing that E is constant giving an energy eigenstate, yields the WKB expressionfor eigenstates in one dimensional quantum mechanics.



Appendix BThermal SpectrumIn this appendix I will calculate the expectation value of the number operator in anideal gas and give the expression for the Planck spectrum of a black body.The partition function Z is given byZ = Tre��(H��N) (B.1)where the number operator and the hamilton operator are given byN =Xp aypap H =Xp �paypap:Hence we �nd for the expectation valuehaypaqi = 1ZTr(e��Pi(�i��)Niaypaq): (B.2)An important relation is[A;B] = B () eABe�A = eBapplied to [Np; ayp] = ayp: (B.3)Using this in the �rst step:Tr(e��Pi(�i��)Niaypaq) = e��(�p��)Tr(e��Pi(�i��)Niaqayp) = (B.4)= e��(�p��)[�pqTr(e��Pi(�i��)Ni)� 1ZTr(e��Pi(�i��)Niaypaq)gives us the �nal result haypaqi = �pqe�(�p��) � 1 (B.5)where the +sign is for fermions and the - sign for bosons and with � the inverse tem-perature 1/kT. 51



52 APPENDIX B. THERMAL SPECTRUMThe precise Planck expression for the density of radiationE(!0) = 2!02�c3 �h!0e�h!0=kT � 1 :With �h = 1, the maximum of this function lies at !0 � 3kT , so the statement that thetypical frequency of the out-going radiation is of the order �, in the case of the movingmirrors, is justi�ed.
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