Detecting CP violation with B decays

Lecture 3: B decays

N. Tuning

Niels Tuning (1)

Detecting CP violation with B decays

- 1) CP violation: CKM and the SM
- 2) Detecting: Detector requirements
- 3) B-decays: $sin 2\beta$, ϕ_s , $B_s^0 \rightarrow D_s^+K^-$

Charged Currents

The charged current term reads:

$$\begin{split} \mathcal{L}_{CC} &= \frac{g}{\sqrt{2}} \overline{u_{Li}^{I}} \gamma^{\mu} W_{\mu}^{-} d_{Li}^{I} + \frac{g}{\sqrt{2}} \overline{d_{Li}^{I}} \gamma^{\mu} W_{\mu}^{+} u_{Li}^{I} = J_{CC}^{\mu-} W_{\mu}^{-} + J_{CC}^{\mu+} W_{\mu}^{+} \\ &= \frac{g}{\sqrt{2}} \overline{u_{i}} \left(\frac{1 - \gamma^{5}}{2} \right) \gamma^{\mu} W_{\mu}^{-} V_{ij} \left(\frac{1 - \gamma^{5}}{2} \right) d_{j} + \frac{g}{\sqrt{2}} \overline{d_{j}} \left(\frac{1 - \gamma^{5}}{2} \right) \gamma^{\mu} W_{\mu}^{+} V_{ji}^{\dagger} \left(\frac{1 - \gamma^{5}}{2} \right) u_{i} \\ &= \frac{g}{\sqrt{2}} \overline{u_{i}} \gamma^{\mu} W_{\mu}^{-} V_{ij} \left(1 - \gamma^{5} \right) d_{j} + \frac{g}{\sqrt{2}} \overline{d_{j}} \gamma^{\mu} W_{\mu}^{+} V_{ij}^{*} \left(1 - \gamma^{5} \right) u_{i} \end{split}$$

Under the CP operator this gives:

(Together with $(x,t) \rightarrow (-x,t)$)

$$L_{CC} \xrightarrow{CP} \frac{g}{\sqrt{2}} \overline{d_j} \gamma^{\mu} W^+_{\mu} V_{ij} \left(1 - \gamma^5\right) u_i + \frac{g}{\sqrt{2}} \overline{u_i} \gamma^{\mu} W^i_{\mu} V^*_{ij} \left(1 - \gamma^5\right) d_j$$

A comparison shows that CP is conserved only if $V_{ij} = V_{ij}^{*}$

In general the charged current term is CP violating

CKM-matrix: where are the phases?

• Possibility 1: simply 3 'rotations', and put phase on smallest:

$$V_{CKM} = \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{13}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{13}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} = \\ \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{13}} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{13}} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta_{13}} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{13}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{13}} & c_{23}c_{13} \end{pmatrix}$$

• Possibility 2: parameterize according to magnitude, in $O(\lambda)$:

$$-\underbrace{W}_{d,s,b} \begin{pmatrix} u \\ V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho \in i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho \in i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

(CKM: a quick reminder)

1) Matrix to transform weak- and mass-eigenstates:

2) Matrix has imaginary numbers:

$$\begin{pmatrix} |V_{ud}| & |V_{us}| & |V_{ub}|e^{-i\gamma} \\ -|V_{cd}| & |V_{cs}| & |V_{cb}| \\ |V_{td}|e^{-i\beta} & -|V_{ts}|e^{i\beta_s} & |V_{tb}| \end{pmatrix}$$

• 3) Matrix is unitary: $V^{+}V = \begin{pmatrix} V^{*}_{ud} & V^{*}_{cd} & V^{*}_{td} \\ V^{*}_{us} & V^{*}_{cs} & V^{*}_{ts} \\ V^{*}_{ub} & V^{*}_{cb} & V^{*}_{tb} \end{pmatrix} \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $V^{*}_{ub}V_{ud} + V^{*}_{cb}V_{cd} + V^{*}_{tb}V_{td} = 0$

Summary

• **p**, **q**: $|B_{H}\rangle = p|B^{0}\rangle + q|\overline{B}^{0}\rangle$ $|B_{L}\rangle = p|B^{0}\rangle - q|\overline{B}^{0}\rangle$

•
$$\Delta m, \Delta \Gamma$$
: $\Delta m = 2\Re \sqrt{\left(M_{12} - \frac{i}{2}\Gamma_{12}\right)\left(M_{12}^* - \frac{i}{2}\Gamma_{12}^*\right)}$
 $\Delta \Gamma = 4\Im \sqrt{\left(M_{12} - \frac{i}{2}\Gamma_{12}\right)\left(M_{12}^* - \frac{i}{2}\Gamma_{12}^*\right)}$

$$q, p, M_{ij}, \Gamma_{ij} \text{ related through:}$$

$$\frac{q}{p} = \sqrt{\frac{M_{12}^* - i\Gamma_{12}^*/2}{M_{12} - i\Gamma_{12}^*/2}}$$

• x,y: mixing often quoted in *scaled* parameters:

$$=\frac{\Delta m}{\Gamma}$$
 y

X

 $\frac{\Delta\Gamma}{2\Gamma}$

$$\cos(\Delta mt) = \cos\left(\frac{\Delta m}{\Gamma}\frac{t}{\tau}\right) = \cos\left(x\frac{t}{\tau}\right)$$

Time dependence (if $\Delta\Gamma \sim 0$, like for B⁰):

$$|B^{0}(t)\rangle = g_{+}(t)|B^{0}\rangle + \frac{q}{p}g_{-}(t)|\overline{B^{0}}\rangle$$
with
$$g_{+}(t) = e^{-imt}e^{-\Gamma t/2}\cos\frac{\Delta mt}{2}$$

$$|\overline{B^{0}}(t)\rangle = g_{+}(t)|\overline{B^{0}}\rangle + \frac{p}{q}g_{-}(t)|B^{0}\rangle$$

$$g_{-}(t) = e^{-imt}e^{-\Gamma t/2}i\sin\frac{\Delta mt}{2}$$

Meson Decays

• Formalism of meson *oscillations*:

$$\left|P^{0}(t)\right\rangle = \frac{1}{2} \left(e^{-im_{H}t - \frac{1}{2}\Gamma_{H}t} + e^{-im_{L}t - \frac{1}{2}\Gamma_{L}t}\right) \left|P^{0}\right\rangle + \frac{q}{2p} \left(e^{-im_{H}t - \frac{1}{2}\Gamma_{H}t} - e^{-im_{L}t - \frac{1}{2}\Gamma_{L}t}\right) \left|\bar{P}^{0}\right\rangle$$

$$|\langle \bar{P}^0(t) | P^0 \rangle|^2 = |g_-(t)|^2 \left(\frac{p}{q}\right)^2$$
$$|g_{\pm}(t)|^2 = \frac{e^{-\Gamma t}}{2} \left(\cosh\frac{1}{2}\Delta\Gamma t \pm \cos\Delta mt\right)$$

• Subsequent: <u>decay</u>

$$P^0 \rightarrow f$$

$P^0 \rightarrow f$

Notation: Define A_f and λ_f

$$A(f) = \langle f|T|P^{0} \rangle \qquad \bar{A}(f) = \langle f|T|\bar{P}^{0} \rangle A(\bar{f}) = \langle \bar{f}|T|P^{0} \rangle \qquad \bar{A}(\bar{f}) = \langle \bar{f}|T|\bar{P}^{0} \rangle$$

and define the complex parameter λ_f (not be confused with the Wolfenstein parameter λ !):

$$\lambda_f = \frac{q}{p} \frac{\bar{A}_f}{A_f}, \qquad \bar{\lambda}_f = \frac{1}{\lambda_f}, \qquad \lambda_{\bar{f}} = \frac{q}{p} \frac{\bar{A}_{\bar{f}}}{A_{\bar{f}}}, \qquad \bar{\lambda}_{\bar{f}} = \frac{1}{\lambda_{\bar{f}}}$$
(3.14)

The general expression for the time dependent decay rates, $\Gamma_{P^0 \to f}(t) = |\langle f|T|P^0(t)\rangle|^2$,

Some algebra for the decay $P^0 \rightarrow f$

$$\left| P^{0}(t) \right\rangle = \frac{1}{2} \left(e^{-im_{H}t - \frac{1}{2}\Gamma_{H}t} + e^{-im_{L}t - \frac{1}{2}\Gamma_{L}t} \right) \left| P^{0} \right\rangle + \frac{q}{2p} \left(e^{-im_{H}t - \frac{1}{2}\Gamma_{H}t} - e^{-im_{L}t - \frac{1}{2}\Gamma_{L}t} \right) \left| \bar{P}^{0} \right\rangle$$

$$\Gamma_{P^{0} \to f}(t) = |A_{f}|^{2} \left(|g_{+}(t)|^{2} + \lambda_{f}|^{2} |g_{-}(t)|^{2} + 2\Re[\lambda_{f}g_{+}^{*}(t)g_{-}(t)] \right)$$

$$A(f) = \langle f|T|P^{0} \rangle \qquad \overline{A}(f) = \langle f|T|\overline{P}^{0} \rangle \qquad \overline{A}(f) = \langle f|T|\overline{P}^{0} \rangle \qquad \overline{A}_{f} = \frac{q}{p} \frac{\overline{A}_{f}}{A_{f}} \qquad \overline{A}_{f} = \frac{q}{p} \frac{\overline{A}_{f}}{A_{f}} \qquad \overline{A}_{f} = \frac{q}{p} \frac{\overline{A}_{f}}{p} \frac{\overline{A}_{f}}{p} = \frac{q}{p} \frac{\overline{A}_{f}}{p} \frac{\overline{A}_{f}}{p} = \frac{q}{p} \frac{\overline{A}_{f}}{p} \frac{\overline{A}_{f}}{p} = \frac{q}{p} \frac{\overline{A}_{f}}{p} \frac{\overline{A}_$$

Some algebra for the decay $P^0 \rightarrow f$

$$\Gamma_{P^{0} \to f}(t) = |A_{f}|^{2} \left(|g_{+}(t)|^{2} + |\lambda_{f}|^{2} |g_{-}(t)|^{2} + 2\Re[\lambda_{f}g_{+}^{*}(t)g_{-}(t)] \right)$$

$$\Gamma_{P^{0} \to \bar{f}}(t) = |\bar{A}_{\bar{f}}|^{2} \left| \frac{q}{p} \right|^{2} \left(|g_{-}(t)|^{2} + |\bar{\lambda}_{\bar{f}}|^{2} |g_{+}(t)|^{2} + 2\Re[\bar{\lambda}_{\bar{f}}g_{+}(t)g_{-}^{*}(t)] \right)$$

$$\Gamma_{\bar{P}^{0} \to f}(t) = |A_{f}|^{2} \left| \frac{p}{q} \right|^{2} \left(|g_{-}(t)|^{2} + |\lambda_{f}|^{2} |g_{+}(t)|^{2} + 2\Re[\lambda_{f}g_{+}(t)g_{-}^{*}(t)] \right)$$

$$\Gamma_{\bar{P}^{0} \to \bar{f}}(t) = |\bar{A}_{\bar{f}}|^{2} \left(|g_{+}(t)|^{2} + |\bar{\lambda}_{\bar{f}}|^{2} |g_{-}(t)|^{2} + 2\Re[\bar{\lambda}_{\bar{f}}g_{+}^{*}(t)g_{-}(t)] \right)$$

$$(3.15)$$

$$|g_{\pm}(t)|^{2} = \frac{e^{-\Gamma t}}{2} \left(\cosh \frac{1}{2} \Delta \Gamma t \pm \cos \Delta m t \right)$$
$$g_{+}^{*}(t)g_{-}(t) = \frac{e^{-\Gamma t}}{2} \left(\sinh \frac{1}{2} \Delta \Gamma t + i \sin \Delta m t \right)$$
$$g_{+}(t)g_{-}^{*}(t) = \frac{e^{-\Gamma t}}{2} \left(\sinh \frac{1}{2} \Delta \Gamma t - i \sin \Delta m t \right)$$

(3.16)

Niels Tuning (11)

The 'master equations'

The sinh- and sin-terms are associated to the interference between the decays with and without oscillation. Commonly, the master equations are expressed as:

The 'master equations'

The sinh- and sin-terms are associated to the interference between the decays with and without oscillation. Commonly, the master equations are expressed as:

$$\Gamma_{P^{0} \to f}(t) = |A_{f}|^{2} \qquad (1 + |\lambda_{f}|^{2}) \frac{e^{-\Gamma t}}{2} \left(\cosh \frac{1}{2} \Delta \Gamma t + D_{f} \sinh \frac{1}{2} \Delta \Gamma t + C_{f} \cos \Delta m t - S_{f} \sin \Delta m t \right)$$

$$\Gamma_{\bar{P}^{0} \to f}(t) = |A_{f}|^{2} \left| \frac{p}{q} \right|^{2} (1 + |\lambda_{f}|^{2}) \frac{e^{-\Gamma t}}{2} \left(\cosh \frac{1}{2} \Delta \Gamma t + D_{f} \sinh \frac{1}{2} \Delta \Gamma t - C_{f} \cos \Delta m t + S_{f} \sin \Delta m t \right)$$

$$(3.18)$$

with

$$D_f = \frac{2\Re\lambda_f}{1+|\lambda_f|^2} \qquad C_f = \frac{1-|\lambda_f|^2}{1+|\lambda_f|^2} \qquad S_f = \frac{2\Im\lambda_f}{1+|\lambda_f|^2}.$$
 (3.19)

Classification of CP Violating effects

1. CP violation in decay

$$\Gamma(P^0 \to f) \neq \Gamma(\bar{P}^0 \to \bar{f})$$

This is obviously satisfied (see Eq. (3.15)) when

$$\left. \frac{\bar{A}_{\bar{f}}}{A_f} \right| \neq 1.$$

2. CP violation in mixing

$$\operatorname{Prob}(P^0 \to \bar{P}^0) \neq \operatorname{Prob}(\bar{P}^0 \to P^0)$$

$$\left. \frac{q}{p} \right| \neq 1.$$

3. CP violation in interference

$$\Gamma(P^0({\scriptstyle \leadsto}\bar{P}^0)\to f)(t)\neq \Gamma(\bar{P}^0({\scriptstyle \leadsto}P^0)\to f)(t)$$

$$\Im \lambda_f = \Im \left(\frac{q}{p} \frac{\bar{A}_f}{A_f} \right) \neq 0$$
Niels Tuning (14)

Meson Decays

- Formalism of meson <u>oscillations</u>: $\left| P^{0}(t) \right\rangle = \frac{1}{2} \left(e^{-im_{H}t - \frac{1}{2}\Gamma_{H}t} + e^{-im_{L}t - \frac{1}{2}\Gamma_{L}t} \right) |P^{0}\rangle + \frac{q}{2p} \left(e^{-im_{H}t - \frac{1}{2}\Gamma_{H}t} - e^{-im_{L}t - \frac{1}{2}\Gamma_{L}t} \right) |\bar{P}^{0}\rangle$
- Subsequent: <u>decay</u>

$$\begin{split} \Gamma_{P^{0} \rightarrow f}(t) &= |A_{f}|^{2} \qquad (|g_{+}(t)|^{2} + |\lambda_{f}|^{2}|g_{-}(t)|^{2} + 2\Re[\lambda_{f}g_{+}^{*}(t)g_{-}(t)]) \\ P^{0} \rightarrow f \qquad P^{0} \rightarrow f \\ \hline A(f) &= \langle f|T|P^{0} \rangle \\ A(f) &= \langle f|T|P^{0} \rangle \\ \lambda_{f} &= \frac{q}{p}\frac{\bar{A}_{f}}{A_{f}} \end{split} \qquad \textbf{Interference} \\ \Gamma_{P^{0} \rightarrow f}(t) &= |A_{f}|^{2} \qquad \frac{e^{-\Gamma t}}{2} \qquad \textbf{(direct') Decay} \qquad \textbf{Interference} \\ (1 + |\lambda_{f}|^{2})\cosh\frac{1}{2}\Delta\Gamma t + 2\Re\lambda_{f}\sinh\frac{1}{2}\Delta\Gamma t + (1 - |\lambda_{f}|^{2})\cos\Delta mt - 2\Im\lambda_{f}\sin\Delta mt) \end{split}$$

CP violation: type 3

$$\Im \lambda_f = \Im \left(\frac{q}{p} \frac{\bar{A}_f}{A_f} \right) \neq 0$$

$$\Gamma(P^0(\rightsquigarrow\bar{P}^0)\to f)(t)\neq\Gamma(\bar{P}^0(\rightsquigarrow\bar{P}^0)\to f)(t)$$

$$A_{CP}(t) = \frac{\Gamma_{P^0(t) \to f} - \Gamma_{\bar{P}^0(t) \to f}}{\Gamma_{P^0(t) \to f} + \Gamma_{\bar{P}^0(t) \to f}}$$

$$\Gamma_{P^{0} \to f}(t) = |A_{f}|^{2} \qquad (1+|\lambda_{f}|^{2})\frac{e^{-\Gamma t}}{2} \left(\cosh \frac{1}{2}\Delta\Gamma t + D_{f} \sinh \frac{1}{2}\Delta\Gamma t + C_{f} \cos \Delta mt - S_{f} \sin \Delta mt\right)$$

$$\Gamma_{\bar{P}^{0} \to f}(t) = |A_{f}|^{2} \left|\frac{p}{q}\right|^{2} (1+|\lambda_{f}|^{2})\frac{e^{-\Gamma t}}{2} \left(\cosh \frac{1}{2}\Delta\Gamma t + D_{f} \sinh \frac{1}{2}\Delta\Gamma t - C_{f} \cos \Delta mt + S_{f} \sin \Delta mt\right)$$

$$D_{f} = \frac{2\Re\lambda_{f}}{1+|\lambda_{f}|^{2}} \qquad C_{f} = \frac{1-|\lambda_{f}|^{2}}{1+|\lambda_{f}|^{2}} \qquad S_{f} = \frac{2\Im\lambda_{f}}{1+|\lambda_{f}|^{2}}$$

$$A_{CP}(t) = \frac{\Gamma_{P^{0}(t) \to f} - \Gamma_{\bar{P}^{0}(t) \to f}}{\Gamma_{P^{0}(t) \to f} + \Gamma_{\bar{P}^{0}(t) \to f}} = \frac{2C_{f} \cos \Delta mt - 2S_{f} \sin \Delta mt}{2\cosh \frac{1}{2}\Delta\Gamma t + 2D_{f} \sinh \frac{1}{2}\Delta\Gamma t}$$

Classification of CP Violating effects - Nr. 3:

Consider $f=\overline{f}$:

$$A_{CP}(t) = \frac{\Gamma_{P^0(t) \to f} - \Gamma_{\bar{P}^0(t) \to f}}{\Gamma_{P^0(t) \to f} + \Gamma_{\bar{P}^0(t) \to f}} = \frac{2C_f \cos \Delta mt - 2S_f \sin \Delta mt}{2\cosh \frac{1}{2}\Delta\Gamma t + 2D_f \sinh \frac{1}{2}\Delta\Gamma t}$$

If one amplitude dominates the decay, then $A_f = \overline{A}_f$

$$A_{CP}(t) = \frac{-\Im \lambda_f \sin \Delta m t}{\cosh \frac{1}{2} \Delta \Gamma t + \Re \lambda_f \sinh \frac{1}{2} \Delta \Gamma t}$$

3. CP violation in interference

$$\Gamma(P^0(\rightsquigarrow\bar{P}^0)\to f)(t)\neq\Gamma(\bar{P}^0(\rightsquigarrow\bar{P}^0)\to f)(t)$$

$$\Im \lambda_f = \Im \left(\frac{q}{p} \frac{\bar{A}_f}{A_f} \right) \neq 0$$
Niels Tuning (17)

Relax: $B^0 \rightarrow J/\Psi K_s$ simplifies...

$$D_f = \frac{2\Re\lambda_f}{1+|\lambda_f|^2} \qquad C_f = \frac{1-|\lambda_f|^2}{1+|\lambda_f|^2} \qquad S_f = \frac{2\Im\lambda_f}{1+|\lambda_f|^2}.$$
$$A_{CP}(t) = \frac{\Gamma_{P^0(t)\to f} - \Gamma_{\bar{P}^0(t)\to f}}{\Gamma_{P^0(t)\to f} + \Gamma_{\bar{P}^0(t)\to f}} = \frac{2C_f \cos\Delta mt - 2S_f \sin\Delta mt}{2\cosh\frac{1}{2}\Delta\Gamma t + 2D_f \sinh\frac{1}{2}\Delta\Gamma t}$$

$$A_{CP}(t) = -\Im\lambda_f \sin(\Delta m t)$$

$$\lambda_{\rm f}$$
 for $B^0 \rightarrow J/\psi K^0_S$

$$\lambda_{J/\psi K_s} = -\left(\frac{V_{tb}^* V_{td}}{V_{tb} V_{td}^*}\right) \left(\frac{V_{cb} V_{cs}^*}{V_{cb}^* V_{cs}}\right) \left(\frac{V_{cs} V_{cd}^*}{V_{cs}^* V_{cd}}\right)$$

 $=-e^{-2i\beta}$

Time-dependent *CP* asymmetry $A_{CP}(t) = -\sin 2\beta \sin(\Delta m t)$

- Theoretically clean way to measure β
- Clean experimental signature
- Branching fraction: O(10⁻⁴)
 - "Large" compared to other CP modes!

CP eigenvalue of final state $J/\psi K_{S}^{0}$

- CP $|J/\psi> = +1 |J/\psi>$
- CP $|K_{S}^{0}\rangle = +1 |K_{S}^{0}\rangle$
- CP $|J/\psi K^0_S > = (-1)^{-1} |J/\psi K^0_S >$

 $(S(B)=0 \rightarrow L(J/\psi K^0_S)=1 !)$

$$\lambda_{J/\psi K_s} = \underbrace{\left(\frac{V_{tb}^* V_{td}}{V_{tb} V_{td}^*} \right) \left(\frac{V_{cb} V_{cs}^*}{V_{cb}^* V_{cs}} \right) \left(\frac{V_{cs} V_{cd}^*}{V_{cs}^* V_{cd}} \right)}_{V_{cb}^* V_{cd}}$$

Relative minus-sign between state and CP-conjugated state:

$$A_{CP}(t) = \frac{\Gamma_{\bar{B} \to f}(t) - \Gamma_{B \to f}(t)}{\Gamma_{\bar{B} \to f}(t) + \Gamma_{B \to f}(t)} = \operatorname{Im}(\lambda_{f}) \sin \Delta m t$$
$$A_{CP}(t) = -\sin 2\beta \sin(\Delta m t)$$

Niels Tuning (21)

Sum of 2 amplitudes: sensitivity to phase

- Now also look at CP-conjugate process
- Investigate situation at time t, such that $|A_1| = |A_2|$:

 Directly observable result (essentially just from counting) measure CKM phase β directly!

$$A_{CP}(t = \pi / 2\Delta m) = \frac{N_{\overline{B^0} \to f} - N_{B^0 \to f}}{N_{B^0 \to f} + N_{\overline{B^0} \to f}} = \sin(2\beta)$$

Necessary ingredients for CP violation:

- 1) Two (interfering) amplitudes
- 2) Phase difference between amplitudes
 - one CP conserving phase ('strong' phase)
 - one CP violating phase ('weak' phase)

Remember!

2 amplitudes 2 phases

Time dependent CP violation

B-system - Time-dependent CP asymmetry

Niels Tuning (26)

$sin2\beta$ in LHCb

• Flavour tagging: *to* "*B*⁰" *or not to* "*B*⁰"?

The Tragedie of HAMLET, Prince of Denmarke. Actus Secundus, Scena Secunda. TO BE, or not to be, that is the Question : Whether 'tis Nobler in the minde to fuffer

$sin2\beta$ in LHCb

- Flavour tagging: *to* "*B*⁰" *or not to* "*B*⁰"?
- Various algorithms
 - Not perfect event-by-event, but statistically useful!
 - Key parameters: efficiency and wrong-tag fraction $\rightarrow \epsilon(1-2\omega)^2$
 - Measure perfromance with $B^0 \rightarrow J/\psi K^{*0}$, $B^+ \rightarrow J/\psi K^+$, $B_s^0 \rightarrow D_s^+ \pi^-$

	5 5		
Tagger	ɛ [%]	ω [%]	$\epsilon \langle D^2 angle = \epsilon (1 - 2\omega)^2 [\%]$
ΟSμ	0.915 ± 0.053	30.713 ± 0.434	1.361 ± 0.062

$sin2\beta$ in LHCb

- Flavour tagging: *to* "*B*⁰" *or not to* "*B*⁰"?
- Various algorithms
 - Not perfect event-by-event, but statistically useful!
 - Key parameters: efficiency and wrong-tag fraction $\rightarrow \epsilon(1-2\omega)^2$
 - Measure perfromance with $B^0 \rightarrow J/\psi K^{*0}_{\prime} B^+ \rightarrow J/\psi K^{+}_{\prime} B_s^0 \rightarrow D_s^+ \pi^-$

Tagger	ε [%]	ω [%]	$\epsilon \langle D^2 \rangle = \epsilon (1 - 2\omega)^2 [\%]$
ΟSμ	0.915 ± 0.053	30.713 ± 0.434	1.361 ± 0.062
OSe	4.451 ± 0.038	34.038 ± 0.604	0.454 ± 0.035
OS <i>K</i>	19.600 ± 0.073	37.557 ± 0.315	1.214 ± 0.061
OS <i>Vtx</i>	20.834 ± 0.075	36.994 ± 0.308	1.410 ± 0.067
OS <i>c</i>	5.025 ± 0.040	34.062 ± 0.620	0.511 ± 0.040
OScomb	40.154 ± 0.090	35.123 ± 0.211	3.555 ± 0.101
SS <i>K</i>	68.190 ± 0.177	39.667 ± 0.507	2.912 ± 0.286
$SS\pi$	83.486 ± 0.068	42.561 ± 0.145	1.848 ± 0.072
SSp	37.767 ± 0.089	43.645 ± 0.221	0.610 ± 0.042
SScomb	87.590 ± 0.061	41.787 ± 0.142	2.364 ± 0.081

sin2β

$$\mathcal{A}_{[c\overline{c}]K^0_{\mathrm{S}}}(t) \equiv \frac{\Gamma(\overline{B}^0(t) \to [c\overline{c}]K^0_{\mathrm{S}}) - \Gamma(B^0(t) \to [c\overline{c}]K^0_{\mathrm{S}})}{\Gamma(\overline{B}^0(t) \to [c\overline{c}]K^0_{\mathrm{S}}) + \Gamma(B^0(t) \to [c\overline{c}]K^0_{\mathrm{S}})}$$
$$= \frac{S\sin(\Delta m t) - C\cos(\Delta m t)}{\cosh(\Delta\Gamma t/2) + A_{\Delta\Gamma}\sinh(\Delta\Gamma t/2)} \approx S\sin(\Delta m t)$$

Flavour tagging essential

- Which B^0 was a $\overline{B^0}$?

sin2β

$$\beta_{s}: B_{s}^{0} \rightarrow J/\psi \phi: B_{s}^{0} \text{ analogue of } B^{0} \rightarrow J/\psi K^{0}_{s}$$

• Replace spectator quark d \rightarrow s

$\beta_s: B_s^0 \rightarrow J/\psi \phi: B_s^0 \text{ analogue of } B^0 \rightarrow J/\psi K^0_s$

$\beta_s: B_s^0 \rightarrow J/\psi \phi: B_s^0 \text{ analogue of } B^0 \rightarrow J/\psi K_s^0$

Differences:

	B ⁰	B ⁰ s
СКМ	V _{td}	V _{ts}
ΔΓ	~0	~0.1
Final state (spin)	K ⁰ : s=0	φ: s=1
Final state (K)	K ⁰ mixing	-

Niels Tuning (34)

 $B_s^0 \rightarrow J/\psi \Phi$ $\mathbf{3}_{\mathbf{s}}$:

$$A_{CP}(t) = \frac{\Gamma_{B_s^0(t) \to J/\psi\phi} - \Gamma_{\bar{B}_s^0(t) \to J/\psi\phi}}{\Gamma_{B_s^0(t) \to J/\psi\phi} + \Gamma_{\bar{B}_s^0(t) \to J/\psi\phi}} = \frac{\Im\lambda_{J/\psi\phi} \sin \Delta mt}{\cosh \frac{1}{2}\Delta \Gamma t + \Re\lambda_{J/\psi\phi} \sinh \frac{1}{2}\Delta \Gamma t}$$

$$\lambda_{J/\psi\phi} = \left(\frac{q}{p}\right)_{B_s^0} \left(\eta_{J/\psi\phi} \frac{\bar{A}_{J/\psi\phi}}{A_{J/\psi\phi}}\right) = \left(-1\right)^l \left(\frac{V_{tb}^* V_{ts}}{V_{tb} V_{ts}^*}\right) \left(\frac{V_{cb} V_{cs}^*}{V_{cb}^* V_{cs}}\right)$$

$$\Im \lambda_{J/\psi\phi} = (-1)^l \sin(-2\beta_s)$$
$$CP|J/\psi\phi\rangle_l = (-1)^l J/\psi\phi\rangle_l$$

V_{ts} large, oscilations fast, need good vertex detector 3 amplitudes

$\varphi_{\rm s}$ with $B_s^0 \rightarrow J/\psi \varphi$

- Some challenges:
 - 1) Rapid B_s⁰ oscillations: decay time resolution
 - 2) "Same side" kaon-tagging: calibration with hadronic final state
 - 3) Mix of CP eigenstates:

angular analysis

Phys. Rev. D84, 033005 (2011), updated with Summer 2019 results

https://hflav-eos.web.cern.ch/hflav-eos/osc/PDG_2021/HFLAV_phis_inputs.pdf

Measure γ : $B_s^0 \rightarrow D_s^{\pm}K^{-/+}$: both λ_f and $\lambda_{\overline{f}}$

NB: In addition $\overline{B}_{s} \rightarrow D_{s^{\pm}}K^{-/+}$: both $\overline{\lambda}_{f}$ and $\overline{\lambda}_{\overline{f}}$

Niels Tuning (39)

Formalism: $B_s^0 \rightarrow D^+_s K^-$

• Time-dependent decay rates:

$$\frac{\mathrm{d}\Gamma_{B_s^0 \to f}(t)}{\mathrm{d}t} = \frac{1}{2} |A_f|^2 (1 + |\lambda_f|^2) e^{-\Gamma_s t} \left[\cosh\left(\frac{\Delta\Gamma_s t}{2}\right) + A_f^{\Delta\Gamma} \sinh\left(\frac{\Delta\Gamma_s t}{2}\right) \right. \\ \left. + C_f \cos\left(\Delta m_s t\right) - S_f \sin\left(\Delta m_s t\right) \right], \\ \frac{\mathrm{d}\Gamma_{\overline{B}_s^0 \to f}(t)}{\mathrm{d}t} = \frac{1}{2} |A_f|^2 \left| \frac{p}{q} \right|^2 (1 + |\lambda_f|^2) e^{-\Gamma_s t} \left[\cosh\left(\frac{\Delta\Gamma_s t}{2}\right) + A_f^{\Delta\Gamma} \sinh\left(\frac{\Delta\Gamma_s t}{2}\right) \right. \\ \left. - C_f \cos\left(\Delta m_s t\right) + S_f \sin\left(\Delta m_s t\right) \right],$$

$$C_f = \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2} = -C_{\overline{f}} = -\frac{1 - |\lambda_{\overline{f}}|^2}{1 + |\lambda_{\overline{f}}|^2}$$
$$S_f = \frac{2\mathcal{I}m(\lambda_f)}{1 + |\lambda_f|^2}, \quad A_f^{\Delta\Gamma} = \frac{-2\mathcal{R}e(\lambda_f)}{1 + |\lambda_f|^2}$$
$$S_{\overline{f}} = \frac{2\mathcal{I}m(\lambda_{\overline{f}})}{1 + |\lambda_{\overline{f}}|^2}, \quad A_{\overline{f}}^{\Delta\Gamma} = \frac{-2\mathcal{R}e(\lambda_{\overline{f}})}{1 + |\lambda_{\overline{f}}|^2}$$

• This time $|A_f| \neq |\overline{A}_f|$, so $|\lambda| \neq 1$!

$$\left(\frac{\bar{A}_{D_s^-K^+}}{A_{D_s^-K^+}}\right) = \left(\frac{V_{ub}V_{cs}^*}{V_{cb}^*V_{us}}\right) \left(\frac{A_2}{A_1}\right) \qquad \lambda_f = \frac{q}{p}\frac{\bar{A}_f}{A_f}$$

In fact, not only magnitude, but also phase difference:

$$\frac{A_{D_s^-K^+}}{\bar{A}_{D_s^-K^+}} = \frac{|A_{D_s^-K^+}|}{|\bar{A}_{D_s^-K^+}|} e^{i(\delta_s - \gamma)}$$

Niels Tuning (41)

Measure γ : $B_s \rightarrow D_s^{\pm}K^{-/+}$

• $B_s^0 \rightarrow D_s^-K^+$ has phase difference $(\delta - \gamma)$:

$$\frac{A_{D_s^-K^+}}{\bar{A}_{D_s^-K^+}} = \frac{|A_{D_s^-K^+}|}{|\bar{A}_{D_s^-K^+}|} e^{i(\delta_s - \gamma)}$$

• Need $B_s^0 \rightarrow D_s^+K^-$ to disentangle δ and γ :

$$\lambda_{D_s^-K^+} = \left(\frac{q}{p}\right)_{B_s^0} \left(\frac{\bar{A}_{D_s^-K^+}}{A_{D_s^-K^+}}\right) = \left|\frac{V_{tb}^*V_{ts}}{V_{tb}V_{ts}^*}\right| \left|\frac{V_{ub}V_{cs}^*}{V_{cb}^*V_{us}}\right| \left|\frac{A_2}{A_1}\right| e^{i(-2\beta_s - \gamma + \delta_s))}$$

$$\lambda_{D_s^+K^-} = \left(\frac{q}{p}\right)_{B_s^0} \left(\frac{\bar{A}_{D_s^+K^-}}{A_{D_s^+K^-}}\right) = \left|\frac{V_{tb}^*V_{ts}}{V_{tb}V_{ts}^*}\right| \left|\frac{V_{us}^*V_{cb}}{V_{cs}V_{ub}^*}\right| \left|\frac{A_1}{A_2}\right| e^{i(-2\beta_s - \gamma - \delta_s))}$$

1)We use: $\Delta \Gamma_s = \Gamma_L - \Gamma_H > 0$

2)Opposite convention is equivalent if at the same time $A^{\Delta\Gamma} \rightarrow - A^{\Delta\Gamma}$

Siegen - 31 May 2022 (2)

$B_s^0 \rightarrow D^{\pm}_s K^{\mp}$ Analysis

- Obtain B_s^0 signal sample:
- B_s^0 or $\overline{B_s}^0$:
- Decay time:
- Result:

3D fit to (m_B, m_{Ds}, PID) Flavour Tagging Resolution & acceptance Decay time fit

$B_s^0 \rightarrow D^{\pm}_s K^{\mp}$ Analysis: mass fit

- Need to (statistically) separate signal from background
- Backgrounds:
 - Combinatorial
 - Partially reconstructed background $(B_s^0 \rightarrow D^*_s K^{\mp}, \text{ etc})$
 - Misidentified background $(B_s^0 \rightarrow D^{\pm}{}_s \pi^{\mp})$

$B_s^0 \rightarrow D^{\pm}_s K^{\mp}$ Analysis: Flavour Tagging

• To B_s^0 or not to B_s^0 :

• Use $B_s^0 \rightarrow D^+{}_s \pi^-$ to calibrate!

$B^0_s \to D^s \pi^+$	$\varepsilon_{\mathrm{tag}}$ [%]	$\varepsilon_{\mathrm{eff}}$ [%]
OS only	$0.12.94 \pm 0.11$	1.41 ± 0.11
SS only	39.70 ± 0.16	1.29 ± 0.13
Both OS and SS	24.21 ± 0.14	3.10 ± 0.18
Total	76.85 ± 0.24	5.80 ± 0.25

$B_s^0 \rightarrow D^{\pm}_s K^{\mp}$ Analysis: Decay time

Use $B_s^0 \rightarrow D^+{}_s \pi^-$ to calibrate!

Resolution

•Acceptance

Siegen - 31 May 2022 (2)

$B_s^0 \rightarrow D^{\pm}{}_s K^{\mp} \pi^+ \pi^-$ Analysis:

- Obtain B_s^0 signal sample:
- $B_s^0 \text{ or } B_s^0$:
- Decay time:
- Result:

Fit to m_B Flavour Tagging Resolution & acceptance Decay time fit

• + Amplitude analysis

$B_s^0 \rightarrow D^{\pm}{}_s K^{\mp} \pi^+ \pi^-$ Analysis: mass fit

- Need to (statistically) separate signal from background
- Backgrounds:

0

- Combinatorial
- Partially reconstructed background $(B_s^0 \rightarrow D^*_s K^{\mp}, \text{ etc})$
- Misidentified background $(B_s^0 \rightarrow D^{\pm}_s \pi^{\mp})$

Siegen - 31 May 2022 (2)

$B_s^0 \rightarrow D^{\pm}{}_s K^{\mp} \pi^+ \pi^-$ Analysis:

• Flavour Tagging

(b)	Run	2	data.
-----	-----	---	-------

	$\epsilon_{ m tag}[\%]$	$\langle \omega \rangle [\%]$	$\epsilon_{ m eff}[\%]$
Only OS	11.91 ± 0.04	37.33 ± 0.41	1.11 ± 0.05
Only SS	40.95 ± 0.08	42.41 ± 0.29	1.81 ± 0.10
Both OS-SS	28.96 ± 0.12	35.51 ± 0.32	3.61 ± 0.13
Combined	81.82 ± 0.15	39.23 ± 0.32	6.52 ± 0.17

• Decay time acceptance

Parameter	Model-independent
r	$0.47^{+0.08}_{-0.08}{}^{+0.02}_{-0.03}$
κ	$0.88^{+0.12+0.04}_{-0.19-0.07}$
$\delta~[^\circ]$	$-6 {}^{+10}_{-12} {}^{+2}_{-4}$
$\gamma - 2\beta_s \ [^\circ]$	$42 {}^{+19}_{-13} {}^{+6}_{-2}$

Comparison: $B_s^0 \rightarrow D^{\pm}{}_s K^{\mp} \pi^+ \pi^- \text{vs} B_s^0 \rightarrow D^{\pm}{}_s K^{\mp}$

• Illustration of weak and strong phase:

Siegen - 31 May 2022 (2)

Siegen - 31 May 2022 (2)

γ from $B_s^0 \rightarrow D^{\pm}_s K^{\mp} \pi^+ \pi^-$ and $B_s^0 \rightarrow D^{\pm}_s K^{\mp}$

	Contribution to) ү а	verage	D 0.8 0.6 0.4 0.2	$B^{0} = B^{0}_{s}$ $B^{0} = B^{0}$ $B^{+} = All Model -68.3\%$	des			LHCb
	Measurement	χ^2	No. of obs.		95.4%				
	$B^{\pm} \rightarrow Dh^{\pm}, D \rightarrow h^{\pm}h'^{\mp}$	2.71	8	0					
	$B^{\pm} \rightarrow Dh^{\pm}, D \rightarrow h^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$	7.36	8	-	50	60	70	80	90
	$B^{\pm} \rightarrow Dh^{\pm}, D \rightarrow h^{\pm}h'^{\mp}\pi^{0}$	7.14	11						γ [\circ]
	$B^{\pm} \rightarrow Dh^{\pm}, D \rightarrow K^0_S h^+ h^-$	4.67	6		$B_s^0 \rightarrow L$	$D_s^{\mp}K^{\pm}$	-12	$B_s^0 \rightarrow D_s^0$	${}^{+}K^{\pm}\pi^{+}\pi^{-}$
tor	$B^{\pm} \to Dh^{\pm}, D \to K^0_S K^{\pm} \pi^{\mp}$	7.57	7	ŝ	LHCb		ŝ	LHCb	
sec	$B^{\pm} \rightarrow D^* h^{\pm}, D \rightarrow h^{\pm} h'^{\mp}$	7.31	16	5			1		
ty	$B^{\pm} \rightarrow DK^{*\pm}, D \rightarrow h^{\pm}h^{\prime\mp}(\pi^{+}\pi^{-})$	3.71	12	S			S		
au	$B^0 \rightarrow DK^{*0}, D \rightarrow h^{\pm}h^{\prime\mp}(\pi^+\pi^-)$	9.45	12						
Be	$B^0 \rightarrow DK^{*0}, D \rightarrow K^0_S h^+ h^-$	3.26	4	Ď			Ď		
	$B^{\pm} \rightarrow Dh^{\pm}\pi^{+}\pi^{-}, D \xrightarrow{\sim} h^{\pm}h'^{\mp}$	1.34	11						
	$B_s^0 \to D_s^{\mp} K^{\pm}$	5.71	5	D			D		
	$B_s^0 \rightarrow D_s^{\mp} K^{\pm} \pi^+ \pi^-$	2.88	5	C			C		
	$B^0 \to D^{\mp} \pi^{\pm}$	0.00	2	C			-		A DECK DECK
-					-2 0	2		-2	0 2

LHCb Coll., arXiv:2110.02350

"Simultaneous determination of CKM angle γ and charm mixing parameters" JHEP 12 (2021) 141 Pull

Pull

Detecting CP violation with B decays

- 1) CP violation: CKM and the SM
- 2) Detecting: Detector requirements
- 3) B-decays: $sin 2\beta$, ϕ_s , $B_s^0 \rightarrow D_s^+ K^-$