Detecting CP violation with B decays

Lecture 2: Detecting

N. Tuning

Niels Tuning (1)

Detecting CP violation with B decays

- 1) CP violation: CKM and the SM
- 2) Detecting: Detector requirements
- 3) B-decays: $sin 2\beta$, ϕ_s , $B_s^0 \rightarrow D_s^+ K^-$

Detector requirements?

- Known:
 - B mass
 - B lifetime
- Production: Accelerator?
 - ee: B-factories
 - pp: LHCb
- Decay: Choice of Detectors?
 - B decay flight time: vertexing
 - Tracking
 - Particle identification of final state products

So?

- Backgrounds
- Trigger

B physics: where?

• The golden decay $B^0 \rightarrow J/\Psi K_s$

= 1.96 LeV t = 1.96 LeV t = 1.96 LeV t = 1.96 LeV t = 1.96 LeV

 $0.58 \,\,\mathrm{GeV}$

• B mesons at rest? Difficult to measure the decay time...

PEP-II accelerator schematic and tunnel view

Coherent Time Evolution at the $\Upsilon(4S)$

Coherent Time Evolution at the $\Upsilon(4S)$

Coherent Time Evolution at the $\Upsilon(4S)$

Intermezzo: Time-dependent CP asymmetry

Niels Tuning (10)

LHCb: the Detector

- LHC energy
 - B_s produced in large quantities

Large acceptance

• b's produced forward

Small multiple scattering

• Large boost of b's

Trigger

- \downarrow Low p_T
- Leptons + <u>hadrons</u> (MUON, CALO)
- Particle identification (RICH)

LHCb: the Detector

High cross section

- LHC energy
 - B_s produced in large quantities

Large acceptance

• b's produced forward

Small multiple scattering

• Large boost of b's

Trigger

- \downarrow Low p_T
- Leptons + <u>hadrons</u> (MUON, CALO)
- Particle identification (RICH)

LHCb: the Detector

High cross section

- LHC energy
 - B_s produced in large quantities

Large acceptance

• b's produced forward

Small multiple scattering

• Large boost of b's

Trigger

- \downarrow Low p_T
- Leptons + <u>hadrons</u> (MUON, CALO)
- Particle identification (RICH)

B hadron production

- Dominant production mechanism is through gluon fusion
- Momenta of the incoming partons are strongly asymmetric
- Center of mass energy of the produced bb pair is boosted
- Both b hadrons are produced in the same forward (or backward) direction

Detector requirements?

- Known:

 - B massB lifetime
- So?
- Production: Accelerator?
 - ee: B-factories
 - pp: LHCb
- Decay: Choice of Detectors? \bullet
 - B decay flight time: vertexing
 - Tracking
 - Particle identification of final state products —
 - Backgrounds
 - Trigger —

Bottottot goornotiy

Different detectors

- Impact parameter resolution is mandatory for reconstruction of heavy flavour vertices.
- Secondary vertex reconstruction depends on impact parameter resolution
- lifetimes of $\sim 10^{-13}$ s (100 fs) require IP precision <10 μ m

 Impact parameter resolution depends on 3 main factors

- 1. Intrinsic hit position resolution
- 2. Extrapolation distance between hits and vertex
- 3. Multiple scattering between collision point and measured points from detector material

Distance to the vertex

Fig.: Minimum radius of silicon vertex detectors at hadron and lepton colliders, up to start of LHC Run 3.

Courtesy: K.Akiba

Vertexing: detector choice

LHCb secondary vertex performance: Decay time

- Estimate decay time uncertainty from track parameters
- Measure the resolution: *calibration*

Niels Tuning (23)

Tracking

Outer Tracker Station

Tracking

- Find tracks
 - Efficiency
 - Tag-and-probe
- Momentum measurement
 - Mass resolution

Effect of multiple scattering not considered yet

Courtesy: N. Neri, IDPASC School of Flavor Physics Valencia 2-7 May 2013

A quick example: how to design your tracker?

- Momentum measurement:
 - P[GeV] = 0.3 B [T] R[m]
 - Sagitta: $s = \frac{L^2}{8R}$
- So, let's say
 - L = 4 m
 - B = 1 T
 - p = 100 GeV
- Then
 - Bending radius: R = 100/0.3 = 330 m
 - Sagitta: s = 16/8*330 = 6 mm
- If we want a 1% error on P then we need approximately:

$$-\frac{\sigma_p}{p} \approx \frac{\sigma_s}{s} = 1\% = 60 \ \mu m$$

Tracking: detector choice

- Important criteria:
 - Resolution: technology!
 - Occupancy: cell size!

Tracking: detector choice

- Important criteria:
 - Resolution: technology!
 - Occupancy: cell size!
 - Cost...
- 2011-2018: Gas detector
 - Resolution: <200 μ m
- 2022-2030: Scintillating Fiber tracker
 - Resolution: <200 μ m

Tracking: gaseous straw tube detector

Tracking: gaseous straw tube detector

Tracking: gaseous straw tube detector

Scintillating fibers

- Core of polystyrene
- Thin cladding layers with lower refractive indices
- Light transport: internal reflection between core and cladding structure
 - Only few photons per fiber per track detected by SiPM !

Core

- first choice that has to be made for a HEP experiment layout
- difficult to replace
- Dipole fields will require a "compensating" dipole for the accelerating/colliding particles
- It consumes a lot of power

Table 5.2: Power supply requirements

Network power	$\prod = 6.0 \text{ MVA}$
Dissipated power	P = 100 kW
Total water flow	$\phi = 3.5 \text{ m}^{3}/\text{h}$
Pressure drop	$\Delta p = 5$ bar at $\Delta T = 25$ °C
Maximum inlet temperature	$T = 20 \ ^{\circ}C$

LHCb tracking performance: "tag-and-probe"

Niels Tuning (40)

Particle identification

Many different B-decar	ys!					
– "BtooKstarpipiDsgamma	a″					
	B^0 Decay Modes \bullet Ca \overline{B}^0 modes are charge conjugates of the modes below. Reactions indicate the weak decay vertex and do not include mixing. Modes which do not identify the state of the <i>B</i> are listed in the B^{\pm}/B^0 ADMXTURE section. The branching fractions listed below assume 50% $B^0\overline{B}^0$ and 50% B^+B^- production at the $\Upsilon(4S)$. We have attempted to bring older measurements up to rescaling their assumed $\Upsilon(4S)$ production ratio to 50:50 and their assumed <i>D</i> , <i>D_s</i> , <i>D[*]</i> , and ψ branching ratios to current values whenever this would af averages and best limits significantly. Indentation is used to indicate a subchannel of a previous reaction. All resonant subchannels have been corrected for resonance branching fractions to the state so the sum of the subchannel branching fractions can exceed that of the final state. For inclusive branching fractions, <i>e. g.</i> , $B \to D^{\pm}X$, the values usually are multiplicities, not branching fractions. They can be greater than one.					
• Need to distinguish:	Γ_1	Mode $\ell^+ u_\ell X$	$egin{array}{ccc} Scale Factor, Fraction (\Gamma_i \ / \Gamma) & Conf. Leve (10.33 \pm 0.28)\% \end{array}$./ P(MeV/c) el		
	Γ_2	$e^+ u_e X_c$	$(10.1 \pm 0.4)\%$			
– e, μ, γ, π, Κ, p,	Γ_3	$\ell^+ u_\ell X_u$	$(1.51\pm0.19) imes10^{-3}$			
	Γ_4	$D\ell^+ u_\ell X$	$(9.3\pm0.8)\%$			
	Γ_5	$D^-\ell^+ u_\ell$	$(2.24 \pm 0.09)\%$	2309		
	Γ_6	$D^- au^+ u_ au$	$(1.05 \pm 0.23)\%$	1909		
	Γ_7	$D^*(2010)^-\ell^+ u_\ell$	$(4.97 \pm 0.12)\%$	2257		

Γ_{535}	$\pi^0 u \overline{ u}$	$< 9 imes 10^{-6}$	CL=90%	2638
Γ_{536}	$K^0\ell^+\ell^-$	$(3.3\pm0.6) imes10^{-7}$		2616
Γ_{537}	$K^0 e^+ e^-$	$(2.5^{+1.1}_{-0.9}) imes 10^{-7}$	S=1.3	2616
Γ_{538}	$K^0\mu^+\mu^-$	$(3.39\pm0.35) imes10^{-7}$	S=1.1	2612
Γ_{539}	$K^0 u \overline{ u}$	$< 2.6 imes 10^{-5}$	CL=90%	2616
Γ_{540}	$ ho^0 u \overline{ u}$	$< 4.0 imes 10^{-5}$	CL=90%	2583
Γ_{541}	$K^*(892)^0\ell^+\ell^-$	$(9.9^{+1.2}_{-1.1}) imes 10^{-7}$		2565
Γ_{542}	$K^*(892)^0 e^+ e^-$	$(1.03^{+0.19}_{-0.17}) imes 10^{-6}$		2565
Γ_{543}	$K^*(892)^0 \mu^+ \mu^-$	$(9.4\pm0.5) imes10^{-7}$		2560

Particle identification: detector choice

Particle identification

Niels Tuning (43)

Particle identification

Particle identification: detector choice

- 1) Time-of-flight ?
- 2) dE/dx ?
- 3) Cherenkov effect ?

Particle identification: detector choice

1) Time-of-flight ?

Niels Tuning (47)

Particle identification: detector choice

2) dE/dx ?

- Charged particles passing through matter: *ionization*
- Energy loss velocity dependent Bethe-Bloch formula: $dE/dx \propto \log(\beta^2 \gamma^2) / \beta^2$
- *dE/dx* varies rapidly at low momenta
- Advantage: uses existing detectors needed (but requires accurate measurement of the charge)
- Note: signals for all charged particles But $m_{\mu} \approx m_{\pi}$, so they are not well separated (dedicated detectors do a better job)

Particle identification: detector choice

- 3) Cherenkov effect ?
 - when the velocity of charged particle in a dielectric medium exceeds the light speed in that medium
 - The angle depends on the speed
 - Measuring the angle is measuring the speed

$$\cos(\theta_c) = \frac{1}{\beta n}$$

Particle identification: detector choice: RICH

n

Efficiency

• $B_s^0 \rightarrow D_s^+ K^-$ much more rare than $B_s^0 \rightarrow D_s^+ \pi^- \dots$

π ,K,p identification: indispensable for flavour physics

Detecting CP violation with B decays

- 1) CP violation: CKM and the SM
- 2) Detecting: Detector requirements
- 3) B-decays: $sin 2\beta$, ϕ_s , $B_s^0 \rightarrow D_s^+ K^-$