Detecting CP violation with B decays

Lecture 2: Detecting

N. Tuning

Detecting CP violation with B decays

1) $C P$ violation: CKM and the $S M$
2) Detecting: Detector requirements
3) B-decays: $\sin 2 \beta, \phi_{s}, B_{s}{ }^{0} \rightarrow D_{s}{ }^{+} K^{-}$

Detector requirements?

- Known:
- B mass
- B lifetime

So?

- Production: Accelerator?
- ee: B-factories
- pp: LHCb
- Decay: Choice of Detectors?
- B decay flight time: vertexing
- Tracking
- Particle identification of final state products
- Backgrounds
- Trigger

B physics: where?

- The golden decay $B^{0} \rightarrow J / \Psi K_{s}$

Production of B mesons: B-factories

- Center-of-mass energy of 10.58 GeV

- B mesons at rest? Difficult to measure the decay time...

Coherent Time Evolution at the $\Upsilon(4 \mathrm{~S})$

Coherent Time Evolution at the $\Upsilon(4 \mathrm{~S})$

Coherent Time Evolution at the $\Upsilon(4 \mathrm{~S})$

> Vertexing \& Time Difference Determination

$$
\begin{gathered}
\Delta t \approx \Delta z / c\langle\beta \gamma\rangle_{\Upsilon(4 S)} \\
\langle\Delta z\rangle_{B \bar{B}} \approx 260 \mu \mathrm{~m}
\end{gathered}
$$

Intermezzo: Time-dependent CP asymmetry

$$
B^{0} \rightarrow J / \psi K_{s}
$$

$$
A_{C P}(t)=\frac{N_{\overline{B^{0}} \rightarrow f}-N_{B^{0} \rightarrow f}}{N_{B^{0} \rightarrow f}+N_{\overline{B^{0}} \rightarrow f}}=\sin (2 \beta) \sin (\Delta m t)
$$

BaBar (2002)

B hadron production

- Dominant production mechanism is through gluon fusion
- Momenta of the incoming partons are strongly asymmetric
- Center of mass energy of the produced bb pair is boosted
- Both b hadrons are produced in the same forward (or backward) direction

Detector requirements?

- Known:
$\left.\begin{array}{l}\text { - B mass } \\ \text { - B lifetime }\end{array}\right\}$ So?
- Production: Accelerator?
- ee: B-factories
- pp: LHCb
- Decay: Choice of Detectors?
- B decay flight time: vertexing
- Tracking
- Particle identification of final state products
- Backgrounds
- Trigger

Different detectors

What is the key physical parameter?

- Impact parameter resolution is mandatory for reconstruction of heavy flavour vertices.
- Secondary vertex reconstruction depends on impact parameter resolution
- lifetimes of $\sim 10^{-13} \mathrm{~s}$ (100 fs) require IP precision $<10 \mu \mathrm{~m}$

IP resolution

- Impact parameter resolution depends on 3 main factors

1. Intrinsic hit position resolution
2. Extrapolation distance between hits and vertex
3. Multiple scattering between collision point and measured points from detector material

50ㄴ․․ ANNIVERSARY EDITION

IP resolution

- Impact parameter resolution depends on 3 main factors

$$
\sigma_{\mathrm{d}_{0}}^{2}=\frac{\pi}{2} \sigma_{I P}^{2}=\frac{\pi}{2}\left[\frac{\Delta_{0 n}^{2} \sigma_{1}^{2}+\Delta_{01}^{2} \sigma_{n}^{2}}{\Delta_{1 n}^{2}}+\theta_{0}^{2} \Delta_{01}^{2}\right]
$$

1. Intrinsic hit position resolution
2. Extrapolation distance between hits and vertex
3. Multiple scattering between collision point and measured points from detector material

$$
\theta_{0}=\frac{13.6}{p} \sqrt{x / X_{0}}\left[1+0.038 \ln \left(x / X_{0}\right)\right]
$$

Distance to the vertex

Fig.: Minimum radius of silicon vertex detectors at hadron and lepton colliders, up to start of LHC Run 3.

Vertexing: detector choice

LHCb vertex performance

LHCb secondary vertex performance: Decay time

- Estimate decay time uncertainty from track parameters
- Measure the resolution: calibration

Tracking

LHCb Outer Tracker

Tracking

- Find tracks
- Efficiency
- Tag-and-probe
- Momentum measurement
- Mass resolution

Momentum resolution

Momentum resolution

Contribution from measurement error

$$
\frac{\sigma_{p}}{p} \sim \frac{\sigma_{x}}{h} \frac{p}{q B L}
$$

1) Hit error σ_{x}
2) Lever arm h
3) Magnetic field BL

Contribution form multiple scattering

$$
\left(\frac{\sigma_{p}}{p}\right)_{m s} \propto \frac{1}{\sqrt{L X_{0}} B}
$$

$$
\left(\frac{\sigma_{p_{t}}}{p_{t}}\right)^{2}=\mathrm{const} \cdot\left(\frac{p_{t}}{B L^{2}}\right)^{2}+\text { const } \cdot\left(\frac{1}{B \sqrt{L X_{0}}}\right)^{2}
$$

Momentum resolution

$$
\left(\frac{\sigma_{p_{t}}}{p_{t}}\right)^{2}=\text { const } \cdot\left(\frac{p_{t}}{B L^{2}}\right)^{2}+\text { const } \cdot\left(\frac{1}{B \sqrt{L X_{0}}}\right)^{2}
$$

A quick example: how to design your tracker?

- Momentum measurement:
- $\mathrm{P}[\mathrm{GeV}]=0.3 \mathrm{~B}[\mathrm{~T}] \mathrm{R}[\mathrm{m}]$
- Sagitta: $s=\frac{L^{2}}{8 R}$
- So, let's say
- $\mathrm{L}=4 \mathrm{~m}$
- $B=1 T$
- $\mathrm{p}=100 \mathrm{GeV}$

- Then
- Bending radius: $\quad R=100 / 0.3=330 \mathrm{~m}$
- Sagitta:
$\mathrm{s}=16 / 8^{*} 330=6 \mathrm{~mm}$
- If we want a 1% error on P then we need approximately:
$-\frac{\sigma_{p}}{p} \approx \frac{\sigma_{s}}{s}=1 \%=60 \mu m$

Tracking: detector choice

- Important criteria:
- Resolution:
technology!
- Occupancy: cell size!

Tracking: detector choice

- Important criteria:
- Resolution
- Occupancy: cell size!
- Cost...
- 2011-2018: Gas detector
- Resolution: <200 $\mu \mathrm{m}$
- 2022-2030: Scintillating Fiber tracker
- Resolution: <200 $\mu \mathrm{m}$

Tracking: gaseous straw tube detector

Tracking: gaseous straw tube detector

(a)

Tracking: gaseous straw tube detector


```
Tracking: scintillator fiber
```


Detector:

1) SciFi (scintillating fibers)
2) SiPM (silicon photomultiplier)

Material from Ch. Joram, Seminar at CBPF, 2017

Scintillating fibers

- Core of polystyrene
- Thin cladding layers with lower refractive indices
- Light transport: internal reflection between core and cladding structure
- Only few photons per fiber per track detected by SiPM !

Intermezzo: magnet choice?

- first choice that has to be made for a HEP experiment layout
- difficult to replace
- Dipole fields will require a "compensating" dipole for the accelerating/colliding particles
- It consumes a lot of power

Table 5.2: Power supply requirements

Network power	$\prod=6.0 \mathrm{MVA}$
Dissipated power	$\mathrm{P}=100 \mathrm{~kW}$
Total water flow	$\varphi=3.5 \mathrm{~m}^{3} / \mathrm{h}$
Pressure drop	$\Delta \mathrm{p}=5 \mathrm{bar}$ at $\Delta \mathrm{T}=25^{\circ} \mathrm{C}$
Maximum inlet temperature	$\mathrm{T}=20^{\circ} \mathrm{C}$

LHCb tracking performance (p)

Track finding efficiency measured with "tag-and-probe"

High momenta become almost straight: resolution deteriorates

LHCb tracking performance: "tag-and-probe"

LHCb tracking performance (m)

- Mass resolution measured from resonances:

Particle identification

- Many different B-decays!
- "BtooKstarpipiDsgamma"
- Need to distinguish:
- e, $\mu, \gamma, \pi, K, p, \ldots$

Γ_{535}	$\pi^{0} \nu \bar{\nu}$	$<9 \times 10^{-6}$	$\mathrm{CL}=90 \%$	2638
Γ_{536}	$K^{0} \ell^{+} \ell^{-}$	$(3.3 \pm 0.6) \times 10^{-7}$	2616	
Γ_{537}	$K^{0} e^{+} e^{-}$	$\left(2.5_{-0.9}^{+1.1}\right) \times 10^{-7}$	$\mathrm{~S}=1.3$	
Γ_{538}	$K^{0} \mu^{+} \mu^{-}$	$(3.39 \pm 0.35) \times 10^{-7}$	$\mathrm{~S}=1.1$	
Γ_{539}	$K^{0} \nu \bar{\nu}$	$<2.6 \times 10^{-5}$	2612	
Γ_{540}	$\rho^{0} \nu \bar{\nu}$	$<4.0 \times 10^{-5}$	$\mathrm{CL}=90 \%$	2616
Γ_{541}	$K^{*}(892)^{0} \ell^{+} \ell^{-}$	$\left(9.9_{-1.1}^{+1.2}\right) \times 10^{-7}$	$\mathrm{CL}=90 \%$	2583
Γ_{542}	$K^{*}(892)^{0} e^{+} e^{-}$	$\left(1.03_{-0.17}^{+0.19}\right) \times 10^{-6}$	2565	
Γ_{543}	$K^{*}(892)^{0} \mu^{+} \mu^{-}$	$(9.4 \pm 0.5) \times 10^{-7}$	2565	

Particle identification: detector choice

Particle identification

Particle identification

Particle identification: detector choice

1) Time-of-flight ?
2) $d E / d x$?
3) Cherenkov effect ?

Particle identification: detector choice

1) Time-of-flight ?

Particle identification: detector choice

2) $d E / d x$?

- Charged particles passing through matter: ionization
- Energy loss velocity dependent BetheBloch formula: $d E / d x \propto \log \left(\beta^{2} \gamma^{2}\right) / \beta^{2}$
- $d E / d x$ varies rapidly at low momenta
- Advantage: uses existing detectors needed (but requires accurate measurement of the charge)
- Note: signals for all charged particles But $m_{\mu} \approx m_{\pi}$, so they are not well separated (dedicated detectors do a better job)

Particle identification: detector choice

3) Cherenkov effect ?

- when the velocity of charged particle in a dielectric medium exceeds the light speed in that medium
- The angle depends on the speed
- Measuring the angle is measuring the speed

$$
\cos \left(\theta_{c}\right)=\frac{1}{\beta n}
$$

$$
\beta_{\mathrm{thr}}=1 / \mathrm{n}
$$

Particle identification: detector choice: RICH

Particle identification performance

	RHCH1	RHCH2
Radiator	$\mathrm{C}_{4} \mathrm{~F}_{10}$	CF_{4}
n	1.0014	1.0005
P (GeV)	$2-40$	$15-100$
Acc (mrad)	$25-300$	$15-120$

- Detector optimized with two different radiators

Particle identification performance

- Performance measured
- π with $\mathrm{K}_{S}{ }^{0} \rightarrow \pi \pi$
- p with $\Lambda \rightarrow p \pi$
- K, π with $\mathrm{D}^{*} \rightarrow \mathrm{D}^{0}(\rightarrow \mathrm{~K} \pi)$

Particle identification performance

Particle identification performance

- $\mathrm{B}_{\mathrm{s}}{ }^{0} \rightarrow \mathrm{D}_{\mathrm{s}}{ }^{+} \mathrm{K}^{-}$much more rare than $\mathrm{B}_{\mathrm{s}}{ }^{0} \rightarrow \mathrm{D}_{\mathrm{s}}{ }^{+} \pi^{-} \ldots$

π, K, p identification: indispensable for flavour physics

Detecting CP violation with B decays

1) $C P$ violation: CKM and the $S M$
2) Detecting: Detector requirements
3) B-decays: $\sin 2 \beta, \phi_{s}, B_{s}{ }^{0} \rightarrow D_{s}{ }^{+} K^{-}$
