Detecting CP violation with B decays

Lecture 1: CP violation

N. Tuning

Detecting CP violation with B decays

1) $C P$ violation: CKM and the $S M$
2) Detecting: Detector requirements
3) B-decays: $\sin 2 \beta, \phi_{s}, B_{s}{ }^{0} \rightarrow D_{s}{ }^{+} K^{-}$

Grand picture....

These lectures

Jargon

EDM	Flavour physics		
	quarks	quarks	
	CP violation	Ra dec	
	neutrinos	T,	
	Leptons		g-2

Today

Flavour physics

quarks quarks
CP Rare
violation decays
neutrinos
$\boldsymbol{T}, \boldsymbol{\mu}$
\section*{Leptons}

Flavour physics has a track record...

GIM mechanism in $K^{0} \rightarrow \mu \mu$

Weak Interactions with Lepton-Hadron Symmetry*

> S. L. Glashow, J. Ihopoulos, and L. Maiani†

Lyman Laboratory of Physics, Harrard Universily, Cambridge, Massachuseits 02139 (Received 5 March 1970)

We propose a model of weak interactions in which the currents are constructed out of four basic quark fields and interact with a charged massive vector boson. We show, to all orders in perturbation theory,
that the leading divergences do not violate any strong-interaction symmetry and the next to the leading divergences respect all observed weak-interaction selection rules. The model features a remarkable symmetry between leptons and quarks. The extension of our model to a complete Yang-Milis theory is discussed.
splitting, beginning at order $G\left(G \Lambda^{2}\right)$, as well as contributions to such unobserved decay modes as $K_{2} \rightarrow$ $\mu^{+}+\mu^{-}, K^{+} \rightarrow \pi^{+}+l+\bar{l}$, etc., involving neutral lepton

We wish to propose a simple model in which the divergences are properly ordered. Our modol ic fnumdod in a quark model, but one involving four, not three, fundamental fermions; the weak interactions are medi-

Glashow, Iliopoulos, Maiani,

Phys.Rev. D2 (1970) 1285

CP violation, $K_{L}{ }^{0} \rightarrow \boldsymbol{\square} \boldsymbol{\square}$

$B^{0} \longleftrightarrow \bar{B}^{0}$ mixing

27 July 1964

EVIDENCE FOR THE 2π DECAY OF THE $K_{2}{ }^{0}$ MESON* \dagger
J. H. Christenson, J. W. Cronin ${ }^{\ddagger}$ V. L. Fitch ${ }^{\ddagger}$ and R. Turlay ${ }^{\S}$ Princeton University, Princeton, New Jersey (Received 10 July 1964)

This Letter reports the results of experimental studies designed to search for the 2π decay of the $K_{2}{ }^{0}$ meson. Several previous experiments have
three-body decays of the $K_{2}{ }^{0}$. The presence of a two-pion decav mode implies that the $K_{2}{ }^{0}$ meson is not a pure eigenstate of $C P$. Expressed as $K_{2}{ }^{0}=2^{-1 / 2}\left[\left(K_{0}-K_{0}\right)+\epsilon\left(K_{0}+K_{0}\right)\right]$ then $|\epsilon|^{2} \cong R_{T}{ }^{\tau} 1^{\tau} 2$

Christenson, Cronin, Fitch, Turlay, Phys.Rev.Lett. 13 (1964) 138-140

DESY 87-029
 April 1987

ARGUS Coll.

Phys.Lett.B192:245,1987

Flavour physics has a track record...

Motivation

- CP-violation (or flavour physics) is about charged current interactions
- Interesting because:

1) Standard Model: in the heart of quark interactions

2) Cosmology: related to matter - anti-matter asymetry

3) Beyond Standard Model: measurements are sensitive to new particles

Grand picture....

These lectures

Personal impression:

- People think it is a complicated part of the Standard Model (me too:-). Why?

1) Non-intuitive concepts?

- Imaginary phase in transition amplitude, $T \sim e^{i \varphi}$
- Different bases to express quark states, d' $=0.97 \mathrm{~d}+0.22 \mathrm{~s}+0.003 \mathrm{~b}$
- Oscillations (mixing) of mesons: $\left|K^{0}>\leftrightarrow\right| \bar{K}^{0}>$

2) Complicated calculations?

$$
\begin{aligned}
& \Gamma\left(B^{0} \rightarrow f\right) \propto \mid A_{f} /\left[\left[\left.g_{-}(t)\right|^{2}+|\lambda|^{2}\left|g_{-}(t)\right|^{2}+2 \mathfrak{R}\left(\lambda g_{+}^{*}(t) g_{-}(t)\right)\right]\right. \\
& \Gamma\left(\bar{B}^{0} \rightarrow f\right) \propto\left|\bar{A}_{f}\right|\left[\left|g_{+}(t)\right|^{2}+\frac{1}{|\lambda|^{2}}\left|g_{-}(t)\right|^{2}+\frac{2}{|\lambda|^{2}} \mathfrak{B}\left(\lambda^{0} g_{+}^{*}(t) g_{-}(t)\right)\right]
\end{aligned}
$$

3) Many decay modes? "Beetopaipaigamma..."

- PDG reports 347 decay modes of the B^{0}-meson:
- Γ_{1} I v_{l} anything

$$
\begin{aligned}
& (10.33 \pm 0.28) \times 10^{-2} \\
& <4.7 \times 10^{-5} \quad C L=90 \%
\end{aligned}
$$

- And for one decay there are often more than one decay amplitudes...

CP violation in the SM Lagrangian

- Focus on charged current interaction $\left(W^{ \pm}\right)$: let's trace it

The Standard Model Lagrangian

$L_{S M}=L_{\text {Kinetic }}+L_{H i g g s}+L_{Y u k a w a}$

- $\mathbf{L}_{\text {Kinetic }}$: - Introduce the massless fermion fields
- Require local gauge invariance \rightarrow gives rise to existence of gauge bosons

- $\mathbf{L}_{\text {Yukawa }}$: •Ad hoc interactions between Higgs field \& fermions

Fermions: $\quad \psi_{L}=\left(\frac{1-\gamma_{5}}{2}\right) \psi \quad ; \quad \psi_{R}=\left(\frac{1+\gamma_{5}}{2}\right) \psi \quad$ with $\quad \psi=Q_{L}, u_{R}, d_{R}, L_{L}, l_{R}, v_{R}$
Quarks:

Under SU2:
Left handed doublets Right bander singlets

$$
\cdot\binom{u^{I}(3,2,1 / 6)}{d^{I}(3,2,1 / 6)}_{L i}
$$

- $u_{R i}^{I}(3,1,2 / 3)$
- $d_{R i}^{I}(3,1,-1 / 3)$

Leptons: $\cdot\binom{v^{I}(1,2,-1 / 2)}{l^{I}(1,2,-1 / 2)}_{L i} \equiv L_{L i}^{I}(1,2,-1 / 2)$

- $l_{R i}^{I}(1,1,-1)$
- $\left(v_{R i}^{I}\right)$

Scalar field: - $\phi(1,2,1 / 2)=\binom{\varphi^{+}}{\varphi^{0}}$

Note:
Interaction representation: standard model interaction is independent of generation number

Explicitly:

- The left handed quark doublet:

$$
Q_{L i}^{I}(3,2,1 / 6)=\binom{u_{r}^{I}, u_{g}^{I}, u_{b}^{I}}{d_{r}^{I}, d_{g}^{I}, d_{b}^{I}}_{L},\binom{c_{r}^{I}, c_{g}^{I}, c_{b}^{I}}{s_{r}^{I}, s_{g}^{I}, s_{b}^{I}}_{L},\binom{t_{r}^{I}, t_{g}^{I}, t_{b}^{I}}{b_{r}^{I}, b_{g}^{I}, b_{b}^{I}}_{L} \quad \begin{aligned}
& T_{3}=+1 / 2 \\
& T_{3}=-1 / 2
\end{aligned} \quad(Y=1 / 6)
$$

- Similarly for the quark singlets:
$u_{R i}^{I}(3,1,2 / 3)=\left(u_{r}^{I}, u_{r}^{I}, u_{r}^{I}\right)_{R},\left(c_{r}^{I}, c_{r}^{I}, c_{r}^{I}\right)_{R},\left(t_{r}^{I}, t_{r}^{I}, t_{r}^{I}\right)_{R}$
$d_{R i}^{I}(3,1,-1 / 3)=\left(d_{r}^{I}, d_{r}^{I}, d_{r}^{I}\right)_{R},\left(s_{r}^{I}, s_{r}^{I}, s_{r}^{I}\right)_{R},\left(b_{r}^{I}, b_{r}^{I}, b_{r}^{I}\right)_{R}$
$(Y=-1 / 3)$
- The left handed leptons: $L_{L i}^{I}(1,2,-1 / 2)=\binom{v_{e}^{I}}{e^{I}}_{L},\binom{v_{\mu}^{I}}{\mu^{I}}_{L},\binom{v_{\tau}^{I}}{\tau^{I}}_{L} \quad \begin{aligned} & T_{3}=+1 / 2 \\ & T_{3}=-1 / 2\end{aligned} \quad(Y=-1 / 2)$
- And similarly the (charged) singlets: $\quad l_{R i}^{I}(1,1,-1)=e_{R}^{I}, \mu_{R}^{I}, \tau_{R}^{I}$

$$
(Y=-1)
$$

$\mathrm{L}_{\text {SM }}=\mathrm{L}_{\text {Kinetic }}+\mathrm{L}_{\text {Higgs }}+\mathrm{L}_{\text {Yukawa }}$:The Kinetic Part

$L_{\text {Kinetic }}$
: Fermions + gauge bosons + interactions

Procedure:
Introduce the Fermion fields and demand that the theory is local gauge invariant under $S U(3)_{C} x S U(2)_{L} x U(1)_{Y}$ transformations.

Start with the Dirac Lagrangian: $\quad \mathrm{L}=i \bar{\psi}\left(\partial^{\mu} \gamma_{\mu}\right) \psi$

Replace: $\quad \partial^{\mu} \rightarrow D^{\mu} \equiv \partial^{\mu}+i g_{s} G_{a}^{\mu} L_{a}+i g W_{b}^{\mu} T_{b}+i g^{\prime} B^{\mu} Y$
Fields: $\quad G_{a^{\mu}}{ }^{\mu}: 8$ gluons
$W_{b^{\mu}}$: weak bosons: $\mathrm{W}_{1}, \mathrm{~W}_{2}, \mathrm{~W}_{3}$
B^{μ} : hypercharge boson

Generators: $\quad L_{a}$: Gell-Mann matrices: $\quad 1 / 2 \lambda_{a} \quad(3 \times 3) \quad \mathrm{SU}(3)_{\mathrm{c}}$ T_{b} : Pauli Matrices: $\quad 1 / 2 \tau_{b} \quad(2 \times 2) \quad \mathrm{SU}(2) \mathrm{L}$
Y : Hypercharge:
$\mathrm{U}(1)_{\mathrm{Y}}$
For the remainder we only consider Electroweak: $S U(2)_{L} x U(1)_{Y}$

$\mathrm{L}_{S M}=\mathrm{L}_{\text {Kinetic }}+\mathrm{L}_{\text {Figs }}+\mathrm{L}_{\text {Yukawa }}$: The Kinetic Part

$L_{\text {kinetic }}: i \bar{\psi}\left(\partial^{\mu} \gamma_{\mu}\right) \psi \rightarrow i \bar{\psi}\left(D^{\mu} \gamma_{\mu}\right) \psi$
with $\quad \psi=Q_{L i}^{I}, \quad u_{R i}^{I}, \quad d_{R i}^{I}, \quad L_{L i}^{I}, \quad l_{R i}^{I}$

For example, the term with $Q_{L i}{ }^{I}$ becomes:
$L_{\text {kinetic }}\left(Q_{L i}^{I}\right)=\overline{i Q_{L i}^{I}} \gamma_{\mu} D^{\mu} Q_{L i}^{I}$

$$
=\overline{i Q_{L i}^{I}} \gamma_{\mu}\left(\partial^{\mu}+\frac{i}{2} g_{s} G_{a}^{\mu} \lambda_{a}+\frac{i}{2} g W_{b}^{\mu} \tau_{b}+\frac{i}{6} g^{\prime} B^{\mu}\right) Q_{L i}^{I}
$$

Writing out only the weak part for the quarks:
$\mathrm{L}_{\text {kinetic }}^{\text {Weak }}(u, d)_{L}^{I}=\overline{i(u, d)_{L}^{I}} \gamma_{\mu}\left(\partial^{\mu}+\frac{i}{2} g\left(W_{1}^{\mu} \tau_{1}+W_{2}^{\mu} \tau_{2}+W_{3}^{\mu} \tau_{3}\right)\right)\binom{u}{d}_{L}^{I}$

$$
\begin{aligned}
& \tau_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
& \tau_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \\
& \tau_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

$=\overline{i u_{L}^{I}} \gamma_{\mu} \partial^{\mu} u_{L}^{I}+\overline{i d_{L}^{I}} \gamma_{\mu} \partial^{\mu} d_{L}^{I}-\frac{g}{\sqrt{2}} \overline{u_{L}^{I}} \gamma_{\mu} W^{-\mu} d_{L}^{I}-\frac{g}{\sqrt{2}} \overline{d_{L}^{I}} \gamma_{\mu} W^{+\mu} u_{L}^{I} \quad-\quad \ldots$

$$
\begin{array}{ll}
\mathrm{L}=J_{\mu} W^{\mu} & W^{+}=(1 / \sqrt{ } 2)\left(W_{1}+i W_{2}\right) \\
& W^{-}=(1 / \sqrt{ } 2)\left(W_{1}-i W_{2}\right)
\end{array}
$$

$\mathrm{L}_{S M}=\mathrm{L}_{\text {Kinetic }}+\mathrm{L}_{\text {Higgs }}+\mathrm{L}_{\text {Yukava }}$: The Higgs Potential

$$
\mathrm{L}_{\text {Higgs }}=D_{\mu} \phi^{\dagger} D^{\mu} \phi-V_{\text {Higgs }} \quad V_{\text {Higgs }}=\frac{1}{2} \mu^{2}\left(\phi^{\dagger} \phi\right)+|\lambda|\left(\phi^{\dagger} \phi\right)^{2}
$$

Symmetry
$\mu^{2}>0:$
$\langle\varphi>=0$

Spontaneous Symmetry Breaking: The Higgs field adopts a non-zero vacuum expectation value
Procedure: $\quad \phi=\binom{\varphi^{+}}{\varphi^{0}}=\binom{\mathfrak{R e} \varphi^{+}+i \mathfrak{I} m \phi^{+}}{\mathfrak{R e} \varphi^{0}+i \mathfrak{I} m \phi^{0}} \quad$ Substitute: $\quad \mathfrak{R e} \varphi^{0}=\frac{v+H^{0}}{\sqrt{2}}$

And rewrite the Lagrangian (tedious):
(The other 3 Higgs fields are "eaten" by the W, Z bosons)

1. $G_{S M}:\left(S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y}\right) \rightarrow\left(S U(3)_{C} \times U(1)_{E M}\right)$
2. The W^{+}, W^{-}, Z^{0} bosons acquire mass
3. The Higgs boson H appears

$$
\mathrm{L}_{S M}=\mathrm{L}_{\text {Kinetic }}+\mathrm{L}_{\text {Higgs }}+\mathrm{L}_{\text {Yukawa }} \quad \text { : The Yukawa Part }
$$

Since we have a Higgs field we can (should?) add (ad-hoc) interactions between ϕ and the fermions in a gauge invariant way.

$Y_{i j}^{d}, \quad Y_{i j}^{u}, \quad Y_{i j}^{l}$
are arbitrary complex matrices which operate in family space (3×3)
\rightarrow Flavour physics!

$\mathrm{L}_{S M}=\mathrm{L}_{\text {Kinetic }}+\mathrm{L}_{\text {Higss }}+\mathrm{L}_{\text {Yukawa }}$

: The Yukawa Part

Writing the first term explicitly:

$$
\begin{aligned}
& Y_{i j}^{d}\left(\overline{u_{L}^{I}}, \overline{d_{L}^{I}}\right)_{i}\binom{\varphi^{+}}{\varphi^{0}} d_{R j}^{I}= \\
& \left(\begin{array}{l}
Y_{11}^{d}\left(\overline{u_{L}^{I}}, \overline{d_{L}^{I}}\right)\binom{\varphi^{+}}{\varphi^{0}} \quad Y_{12}^{d}\left(\overline{u_{L}^{I}}, \overline{d_{L}^{I}}\right)\binom{\varphi^{+}}{\varphi^{0}} \quad Y_{13}^{d}\left(\overline{u_{L}^{I}}, \overline{d_{L}^{I}}\right)\binom{\varphi^{+}}{\varphi^{0}} \\
Y_{21}^{d}\left(\overline{c_{L}^{I}}, \overline{s_{L}^{I}}\right)\binom{\varphi^{+}}{\varphi^{0}} \quad Y_{22}^{d}\left(\overline{c_{L}^{I}} \overline{s_{L}^{I}}\right)\binom{\varphi^{+}}{\varphi^{0}} \\
Y_{13}^{d}\left(\overline{c_{L}^{I}}, \overline{s_{L}^{I}}\right)\binom{\varphi^{+}}{\varphi^{0}} \\
Y_{31}^{d}\left(\overline{t_{L}^{I}}, \overline{b_{L}^{I}}\right)\left(\begin{array}{c}
\varphi^{+} \\
\varphi_{R}^{I} \\
b_{R}^{I}
\end{array}\right) \\
Y_{32}^{d}\left(\overline{t_{L}^{I}}, \overline{b_{L}^{I}}\right)\binom{\varphi^{+}}{\varphi^{0}} \\
Y \\
Y_{33}^{d}\left(\overline{t_{L}^{I}}, \overline{b_{L}^{I}}\right)\binom{\varphi^{+}}{\varphi^{0}}
\end{array}\right)
\end{aligned}
$$

$$
\mathrm{L}_{S M}=\mathrm{L}_{\text {Kinetic }}+\mathrm{L}_{\text {Higss }}+\mathrm{L}_{\text {Yukava }} \quad \text { : The Yukawa Part }
$$

There are 3 Yukawa matrices (in the case of massless neutrino's):

$$
Y_{i j}^{d} \quad, \quad Y_{i j}^{u} \quad, \quad Y_{i j}^{l}
$$

Each matrix is 3×3 complex:

- 27 real parameters
- 27 imaginary parameters ("phases")
> many of the parameters are equivalent, since the physics described by one set of couplings is the same as another
$>$ It can be shown (see ref. [Nir]) that the independent parameters are:
- 12 real parameters
- 1 imaginary phase
$>$ This single phase is the source of all CP violation in the Standard Model
$L_{\text {Yukawa }} \xrightarrow{\text { S.S.B }} L_{\text {Mass }} \quad:$ The Fermion Masses

Start with the Yukawa Lagrangian

$$
\begin{aligned}
-L_{Y u k} & =Y_{i j}^{d}\left(\overline{u_{L}^{I}}, \overline{d_{L}^{I}}\right)_{i}\binom{\varphi^{+}}{\varphi^{0}} d_{R j}^{I}+Y_{i j}^{u}(\ldots)+Y_{i j}^{l}(\ldots) \\
\text { S.S.B. } & : \Re e\left(\varphi^{0}\right) \rightarrow \frac{v+H}{\sqrt{2}}
\end{aligned}
$$

After which the following mass term emerges:

$$
\begin{aligned}
-L_{Y u k} \rightarrow-L_{\text {Mass }} & =\overline{d_{L i}^{I}} M_{i j}^{d} d_{R j}^{I}+\overline{u_{L i}^{I}} M_{i j}^{u} u_{R j}^{I} \\
& +\overline{l_{L i}^{I}} M_{i j}^{l} l_{R j}^{I}+h . c . \\
\text { with } \quad M_{i j}^{d} \equiv & \frac{v}{\sqrt{2}} Y_{i j}^{d} \quad, \quad M_{i j}^{u} \equiv \frac{v}{\sqrt{2}} Y_{i j}^{u} \quad, \quad M_{i j}^{l} \equiv \frac{v}{\sqrt{2}} Y_{i j}^{l}
\end{aligned}
$$

$\mathrm{L}_{\text {Mass }}$ is CP violating in a similar way as $\mathrm{L}_{\text {Yuk }}$

$L_{\text {Yukawa }} \xrightarrow{\text { S.S.B }} L_{\text {Mass }} \quad:$ The Fermion Masses
 Writing in an explicit form:
 $-L_{\text {Mass }}=\left(\overline{d^{l}, s^{\prime},}, \overline{b^{\prime}}\right)_{L} \cdot\left(M^{d}\right) \cdot\left(\begin{array}{l}d^{\prime} \\ s^{\prime} \\ b^{\prime}\end{array}\right)_{R}+\left(\overline{u^{l},}, \overline{c^{\prime},}, \bar{t}^{t^{\prime}}\right)_{L} \cdot\left(M^{u}\right) \cdot\left(\begin{array}{c}u^{\prime} \\ c^{\prime} \\ t^{\prime}\end{array}\right)_{R}+\left(\overline{\left.e^{\bar{l}}, \overline{\mu^{\prime}}, \overline{\tau^{l}}\right)_{L}} \cdot\left(M^{l}\right) \cdot\left(\begin{array}{l}e^{u^{\prime}} \\ \mu^{\prime} \\ \tau^{\prime}\end{array}\right)_{R}+\right.$ h.c.

The matrices M can always be diagonalised by unitary matrices $V_{L}{ }^{f}$ and $V_{R}{ }^{f}$ such that:

$$
V_{L}^{f} M^{f} V_{R}^{f \dagger}=M_{\text {diagonal }}^{f} \quad\left[\left(\overline{d^{I}, \overline{s^{I}}, \overline{b^{I}}}\right)_{L} V_{L}^{f \dagger} V_{L}^{f} M^{f} V_{R}^{f \dagger} V_{R}^{f}\left(\begin{array}{c}
d^{l} \\
s^{t} \\
b^{\prime}
\end{array}\right)_{R}\right]
$$

Then the real fermion mass eigenstates are given by:

$$
\begin{array}{ll}
d_{L i}=\left(V_{L}^{d}\right)_{i j} \cdot d_{L j}^{I} & d_{R i}=\left(V_{R}^{d}\right)_{i j} \cdot d_{R j}^{I} \\
u_{L i}=\left(V_{L}^{u}\right)_{i j} \cdot u_{L j}^{I} & u_{R i}=\left(V_{R}^{u}\right)_{i j} \cdot u_{R j}^{I} \\
l_{L i}=\left(V_{L}^{l}\right)_{i j} \cdot l_{L j}^{I} & l_{R i}=\left(V_{R}^{l}\right)_{i j} \cdot l_{R j}^{I} \\
\hline
\end{array}
$$

$d_{L}{ }^{I}, u_{L}{ }^{I}, l_{L}^{I} \quad$ are the weak interaction eigenstates $d_{L}, u_{L}, l_{L} \quad$ are the mass eigenstates ("physical particles")

LYukawa $^{\text {S.S.B }}$ L $_{\text {Mass }} \quad:$ The Fermion Masses

$$
\begin{aligned}
\text { In terms of the mass eigenstates: } \\
\qquad \begin{array}{rlll}
-L_{\text {Mass }} & =(\bar{d}, \bar{s}, \bar{b})_{L} \cdot\left(\begin{array}{lll}
m_{d} & & \\
& m_{s} & \\
& & m_{b}
\end{array}\right) \cdot\left(\begin{array}{l}
d \\
s \\
b
\end{array}\right)_{R}+(\bar{u}, \bar{c}, \bar{t})_{L} \cdot\left(\begin{array}{lll}
m_{u} & & \\
& m_{c} & \\
& & m_{t}
\end{array}\right) \cdot\left(\begin{array}{l}
u \\
c \\
t
\end{array}\right)_{R} \\
& +(\bar{e}, \bar{\mu}, \bar{\tau})_{L} \cdot\left(\begin{array}{lll}
m_{e} & & \\
& m_{\mu} & \\
& & m_{\tau}
\end{array}\right) \cdot\left(\begin{array}{c}
e \\
\mu \\
\tau
\end{array}\right)_{R}+h . c . \\
-L_{\text {Mass }} & =m_{u} \bar{u} u+m_{c} \bar{c} c+m_{t} \bar{t} \\
& +m_{d} \bar{d} d+m_{s} \bar{s} s+m_{b} \bar{b} b \\
& +m_{e} \bar{e} e+m_{\mu} \bar{\mu} \mu+m_{\tau} \bar{\tau} \tau
\end{array}
\end{aligned}
$$

In flavour space one can choose:
Weak basis: The gauge currents are diagonal in flavour space, but the flavour mass matrices are non-diagonal
Mass basis: The fermion masses are diagonal, but some gauge currents (charged weak interactions) are not diagonal in flavour space

> In the weak basis: $\mathrm{L}_{\text {Yukawa }}$ In the mass basis: $\mathrm{L}_{\text {Yukawa }} \rightarrow \mathrm{L}_{\text {Mass }}=\mathrm{CP}$ violating conserving
\rightarrow What happened to the charged current interactions (in $\left.\mathrm{L}_{\text {Kinetic }}\right) ?$

$\mathrm{L}_{\mathrm{w}} \rightarrow \mathrm{L}_{C K M}$: The Charged Current

The charged current interaction for quarks in the interaction basis is:

$$
-L_{W^{+}}=\frac{g}{\sqrt{2}} \overline{u_{L i}^{I}} \quad \gamma^{\mu} \quad d_{L i}^{I} \quad W_{\mu}^{+}
$$

The charged current interaction for quarks in the mass basis is:

$$
-L_{W^{+}}=\frac{g}{\sqrt{2}} \overline{u_{L i}} V_{L}^{u} \quad \gamma^{\mu} \quad V_{L}^{d \dagger} d_{L i} \quad W_{\mu}^{+}
$$

The unitary matrix: $\quad V_{\text {CKM }}=\left(V_{L}^{u} \cdot V_{L}^{d \dagger}\right) \quad$ With: $\quad V_{C K M} \cdot V_{C K M}^{\dagger}=1$
is the Cabibbo Kobayashi Maskawa mixing matrix:

$$
-L_{W^{+}}=\frac{g}{\sqrt{2}}(\bar{u}, \bar{c}, \bar{t})_{L}\left(V_{C K M}\right)\left(\begin{array}{l}
d \\
s \\
b
\end{array}\right)_{L} \gamma^{\mu} W_{\mu}^{+}
$$

Lepton sector: similarly $\quad V_{M N S}=\left(V_{L}^{V} \cdot V_{L}^{l \dagger}\right)$
However, for massless neutrino's: $V_{L^{\nu}}=$ arbitrary. Choose it such that $V_{M N S}=1$
\rightarrow There is no mixing in the lepton sector

Charged Currents

The charged current term reads:

$$
\begin{aligned}
L_{C C} & =\frac{g}{\sqrt{2}} \overline{u_{L i}^{I}} \gamma^{\mu} W_{\mu}^{-} d_{L i}^{I}+\frac{g}{\sqrt{2}} \overline{d_{L i}^{I}} \gamma^{\mu} W_{\mu}^{+} u_{L i}^{I}=J_{C C}^{\mu-} W_{\mu}^{-}+J_{C C}^{\mu+} W_{\mu}^{+} \\
& =\frac{g}{\sqrt{2}} \overline{u_{i}}\left(\frac{1-\gamma^{5}}{2}\right) \gamma^{\mu} W_{\mu}^{-} V_{i j}\left(\frac{1-\gamma^{5}}{2}\right) d_{j}+\frac{g}{\sqrt{2}} \overline{d_{j}}\left(\frac{1-\gamma^{5}}{2}\right) \gamma^{\mu} W_{\mu}^{+} V_{j i}^{\dagger}\left(\frac{1-\gamma^{5}}{2}\right) u_{i} \\
& =\frac{g}{\sqrt{2}} \overline{u_{i}} \gamma^{\mu} W_{\mu}^{-} V_{i j}\left(1-\gamma^{5}\right) d_{j}+\frac{g}{\sqrt{2}} \overline{d_{j}} \gamma^{\mu} W_{\mu}^{+} V_{i j}^{*}\left(1-\gamma^{5}\right) u_{i}
\end{aligned}
$$

Under the CP operator this gives:

$$
L_{C C} \xrightarrow{C P} \frac{g}{\sqrt{2}} \overline{d_{j}} \gamma^{\mu} W_{\mu}^{+} V_{i j}\left(1-\gamma^{5}\right) u_{i}+\frac{g}{\sqrt{2}} \overline{u_{i}} \gamma^{\mu} W_{\mu}^{i} V_{i j}^{*}\left(1-\gamma^{5}\right) d_{j}
$$

A comparison shows that CP is conserved only if $V_{i j}=V_{i j}{ }^{*}$
In general the charged current term is CP violating

The Standard Model Lagrangian (recap)

$$
\mathrm{L}_{S M}=\mathrm{L}_{\text {Kinetic }}+\mathrm{L}_{\text {Higgs }}+\mathrm{L}_{\text {Yukawa }}
$$

- $L_{\text {Kinetic }}$: •Introduce the massless fermion fields
-Require local gauge invariance \rightarrow gives rise to existence of gauge bosons
\rightarrow CP Conserving
- $\mathrm{L}_{\text {Higgs }}:$ •Introduce Higgs potential with $\left.<\phi>\neq 0\right\} G_{S M}=S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y} \rightarrow S U(3)_{C} \times U(1)_{Q}$ -Spontaneous symmetry breaking The $\mathrm{W}^{+}, \mathrm{W}^{-}, \mathrm{Z}^{0}$ bosons acquire a mass \rightarrow CP Conserving
- $L_{\text {Yukawa }}$: •Ad hoc interactions between Higgs field \& fermions
$\rightarrow \mathrm{CP}$ violating with a single phase
- $\mathrm{L}_{\text {Yukawa }} \rightarrow \mathrm{L}_{\text {mass }}$: - fermion weak eigenstates:
- mass matrix is (3x3) non-diagonal
- fermion mass eigenstates:
- mass matrix is (3x3) diagonal
\rightarrow CP-violating
\rightarrow CP-conserving!
- $L_{\text {Kinetic }}$ in mass eigenstates: $C K M$ - matrix \rightarrow CP violating with a single phase

$L_{S M}=L_{\text {Kinetic }}+L_{\text {figs }}+L_{\text {Yukawa }}$
 Recap

$$
\begin{aligned}
-L_{\text {Yuk }} & =Y_{i j}^{d}\left(\overline{u_{L}^{I}}, \overline{d_{L}^{I}}\right)_{i}\binom{\varphi^{+}}{\varphi^{0}} d_{R j}^{I}+\ldots \\
L_{\text {Kinetic }} & =\frac{g}{\sqrt{2}} \overline{u_{L i}^{I}} \gamma^{\mu} W_{\mu}^{-} d_{L i}^{I}+\frac{g}{\sqrt{2}} \overline{d_{L i}^{I}} \gamma^{\mu} W_{\mu}^{+} u_{L i}^{I}+\ldots
\end{aligned}
$$

Diagonalize Yukawa matrix Y_{ij}

- Mass terms
- Quarks rotate
- Off diagonal terms in charged current couplings

$$
\begin{aligned}
-L_{\text {Mass }} & =(\bar{d}, \bar{s}, \bar{b})_{L} \cdot\left(\begin{array}{lll}
m_{d} & & \\
& m_{s} & \\
& & m_{b}
\end{array}\right) \cdot\left(\begin{array}{l}
d \\
s \\
b
\end{array}\right)_{R}+(\bar{u}, \bar{c}, \bar{t})_{L} \cdot\left(\begin{array}{lll}
m_{u} & & \\
& m_{c} & \\
& & m_{t}
\end{array}\right) \cdot\left(\begin{array}{l}
u \\
c \\
t
\end{array}\right)_{R}+\ldots \\
L_{C K M} & =\frac{g}{\sqrt{2}} \overline{u_{i}} \gamma^{\mu} W_{\mu}^{-} V_{i j}\left(1-\gamma^{5}\right) d_{j}+\frac{g}{\sqrt{2}} \bar{d}_{j} \gamma^{\mu} W_{\mu}^{+} V_{i j}^{*}\left(1-\gamma^{5}\right) u_{i}+\ldots
\end{aligned}
$$

$$
L_{S M}=L_{C K M}+L_{\text {Higgs }}+L_{\text {Mass }}
$$

Ok.... We've got the CKM matrix, now what?

$$
\left(\begin{array}{c}
d^{\prime} \\
s^{\prime} \\
b^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)\left(\begin{array}{c}
d \\
s \\
b
\end{array}\right)
$$

- It's unitary
- "probabilities add up to 1":
$-d^{\prime}=0.97 d+0.22 s+0.003 b \quad\left(0.97^{2}+0.22^{2}+0.003^{2}=1\right)$
- How many free parameters?
- How many real/complex?
- How do we normally visualize these parameters?

What do we know about the CKM matrix?

- Magnitudes of elements have been measured over time
- Result of a large number of measurements and calculations

$$
\left(\begin{array}{l}
d^{\prime} \\
s^{\prime} \\
b^{\prime}
\end{array}\right)=\left(\begin{array}{lll}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)\left(\begin{array}{l}
d \\
s \\
b
\end{array}\right)
$$

$$
\left(\left.\begin{array}{cc}
\left|V_{u d}\right| & \left|V_{u s}\right| \\
\left|V_{u b}\right| \\
\left|V_{c d}\right| & \left|V_{c s}\right| \\
\left|V_{c b}\right| \\
\left|V_{t d}\right| & \left|V_{t s}\right|
\end{array} \right\rvert\, \begin{array}{|lll}
V_{t b} \mid
\end{array}\right)=\left(\begin{array}{lll}
0.97446 & 0.22452 & 0.00365 \\
0.22438 & 0.97359 & 0.04214 \\
0.00896 & 0.04133 & 0.99911
\end{array}\right) \pm\left(\begin{array}{ccc}
0.00010 & 0.00044 & 0.00012 \\
0.00044 & 0.00011 & 0.00076 \\
0.00024 & 0.00974 & 0.00003
\end{array}\right)
$$

Magnitude of elements shown only, no information of phase

What do we know about the CKM matrix?

- Magnitudes of elements have been measured over time
- Result of a large number of measurements and calculations

$$
\left(\begin{array}{l}
d^{\prime} \\
s^{\prime} \\
b^{\prime}
\end{array}\right)=\left(\begin{array}{lll}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)\left(\begin{array}{l}
d \\
s \\
b
\end{array}\right)
$$

$$
\left(\begin{array}{ccc}
\left|V_{u d}\right| & \left|V_{u s}\right| & \left|V_{u b}\right| \\
\left|V_{c d}\right| & \left|V_{c s}\right| & \left|V_{c b}\right| \\
\left|V_{t d}\right| & \left|V_{t s}\right| & \left|V_{t b}\right|
\end{array}\right) \approx\left(\begin{array}{ccc}
1 & \lambda & \lambda^{3} \\
\lambda & 1 & \lambda^{2} \\
\lambda^{3} & \lambda^{2} & 1
\end{array}\right)
$$

$$
\lambda \approx \sin \theta_{C}=\sin \theta_{12} \approx 0.24
$$

Magnitude of elements shown only, no information of phase

Intermezzo: How about the leptons?

- We now know that neutrinos also have flavour oscillations
- Neutrinos have mass
- Diagonalizing Y_{ij} doesn't come for free any longer

$$
\begin{aligned}
\mathcal{L}_{\text {Yukawa }} & =Y_{i j} \overline{\psi_{L i}} \phi \psi_{R j}+\text { h.c. } \\
& =Y_{i j}^{d} \overline{Q_{L i}^{I}} \phi d_{R j}^{I}+Y_{i j}^{u} \overline{Q_{L i}^{I}} \tilde{\phi} u_{R j}^{I}+Y_{i j}^{l} \overline{L_{L i}^{I}} \phi l_{R j}^{I}
\end{aligned}
$$

- thus there is the equivalent of a CKM matrix for them:
- Pontecorvo-Maki-Nakagawa-Sakata matrix

$$
\left[\begin{array}{c}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right]=\left[\begin{array}{ccc}
U_{e 1} & U_{e 2} & U_{e 3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{array}\right]\left[\begin{array}{c}
\nu_{1} \\
\nu_{2} \\
\nu_{3}
\end{array}\right] \quad \text { vs }\left[\begin{array}{c}
\left|d^{\prime}\right\rangle \\
\left|s^{\prime}\right\rangle \\
\left|b^{\prime}\right\rangle
\end{array}\right]=\left[\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right]\left[\begin{array}{c}
|d\rangle \\
|s\rangle \\
|b\rangle
\end{array}\right] .
$$

Intermezzo: How about the leptons?

- the equivalent of the CKM matrix
- Pontecorvo-Maki-Nakagawa-Sakata matrix

$$
\left[\begin{array}{l}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right]=\left[\begin{array}{ccc}
U_{e 1} & U_{e 2} & U_{e 3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{array}\right]\left[\begin{array}{l}
\nu_{1} \\
\nu_{2} \\
\nu_{3}
\end{array}\right] \text { vs }\left[\begin{array}{l}
\left|d^{\prime}\right\rangle \\
\left|s^{\prime}\right\rangle \\
\left|b^{\prime}\right\rangle
\end{array}\right]=\left[\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right]\left[\begin{array}{l}
|d\rangle \\
|s\rangle \\
|b\rangle
\end{array}\right]
$$

- a completely different hierarchy!

$$
U_{M N S P} \approx\left(\begin{array}{ccc}
0.82 & 0.55 & 0.15 \\
0.37 & 0.57 & 0.70 \\
0.39 & 0.59 & 0.69
\end{array}\right)
$$

$$
V_{C K M}=\left(\begin{array}{lll}
0.97446 & 0.22452 & 0.00365 \\
0.22438 & 0.97359 & 0.04214 \\
0.00896 & 0.04133 & 0.99911
\end{array}\right)
$$

From 2 to 3 generations

- 2 generations: $d^{\prime}=0.97 \mathrm{~d}+0.22 \mathrm{~s} \quad\left(\theta_{\mathrm{c}}=13^{\circ}\right)$

$$
\binom{d^{\prime}}{s^{\prime}}=\left(\begin{array}{cc}
\cos \theta_{c} & \sin \theta_{c} \\
-\sin \theta_{c} & \cos \theta_{c}
\end{array}\right)\binom{d}{s}
$$

- 3 generations: $d^{\prime}=0.97 \mathrm{~d}+0.22 \mathrm{~s}+0.003 \mathrm{~b}$

Parameterization used by Particle Data Group (3 Euler angles, 1 phase):

$$
\begin{aligned}
V_{C K M}= & \left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{-i \delta_{13}} \\
0 & 1 & 0 \\
-s_{13} e^{i \delta_{13}} & 0 & c_{13}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right)= \\
& \left(\begin{array}{ccc}
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta_{13}} & c_{12} c_{23}-s_{12} c_{13} s_{23} s_{13} e^{i \delta_{13}} & s_{13} e^{-i \delta_{13}} \\
-s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta_{13}} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta_{13}} & c_{23} c_{13}
\end{array}\right)
\end{aligned}
$$

Wolfenstein parameterization

$$
\begin{align*}
\sin \theta_{12} & =\lambda \tag{2.7}\\
\sin \theta_{23} & =A \lambda^{2} \tag{2.8}\\
\sin \theta_{13} e^{-i \delta_{13}} & =A \lambda^{3}(\rho-i \eta)
\end{align*}
$$

where A, ρ and η are numbers of order unity. The CKM matrix then becomes $\mathcal{O}\left(\lambda^{3}\right)$:

$$
V_{C K M}=\left(\begin{array}{ccc}
1-\frac{1}{2} \lambda^{2} & \lambda & A \lambda^{3}(\rho \tag{2.10}\\
-\lambda & 1-\frac{1}{2} \lambda^{2} & \left.A \lambda^{2}, \cdots\right) \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)+\delta V
$$

3 real parameters: $\quad A, \lambda, \rho$
1 imaginary parameter: η

Wolfenstein parameterization

$$
\begin{align*}
\sin \theta_{12} & =\lambda \tag{2.7}\\
\sin \theta_{23} & =A \lambda^{2} \tag{2.8}\\
\sin \theta_{13} e^{-i \delta_{13}} & =A \lambda^{3}(\rho-i \eta) \tag{2.9}
\end{align*}
$$

where A, ρ and η are numbers of order unity. The CKM matrix then becomes $\mathcal{O}\left(\lambda^{3}\right)$:

The higher order terms in the Wolfenstein parametrization are of particular importance for the B_{s}-system, as we will see in chapter 4, because the phase in $\left|V_{t s}\right|$ is only apparent at $\mathcal{O}\left(\lambda^{4}\right)$:

$$
\delta V=\left(\begin{array}{ccc}
-\frac{1}{8} \lambda^{4} & 0 & 0 \tag{2.11}\\
\frac{1}{2} A^{2} \lambda^{5}(1-2(\rho+i) \\
\frac{1}{2} A \lambda^{5}(\rho+i \eta) & -\frac{1}{8} \lambda^{4}\left(1+4 A^{2}\right) & 0 \\
\frac{1}{2} A \lambda^{4}\left(1-2(\rho+i \eta) \omega_{0}^{*}\right. & -\frac{1}{2} A^{2} \lambda^{4}
\end{array}\right)+\mathcal{O}\left(\lambda^{6}\right)
$$

3 real parameters: $\quad A, \lambda, \rho$
1 imaginary parameter: η

Deriving the triangle interpretation

- Starting point: the 9 unitarity constraints on the CKM matrix

$$
V^{+} V=\left(\begin{array}{ccc}
V_{u d}^{*} & V_{c d}^{*} & V_{t d}^{*} \\
V_{u s}^{*} & V_{c s}^{*} & V_{t s}^{*} \\
V_{u b}^{*} & V_{c b}^{*} & V_{t b}^{*}
\end{array}\right)\left(\begin{array}{lll}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

- Pick (arbitrarily) orthogonality condition with $(\mathrm{i}, \mathrm{j})=(3,1)$

$$
V_{u b}^{*} V_{u d}+V_{c b}^{*} V_{c d}+V_{t b}^{*} V_{t d}=0
$$

Visualizing the unitarity constraint

- Sum of three complex vectors is zero \rightarrow Form triangle when put head to tail
(Wolfenstein params to order λ^{4})

$$
V_{u b}^{*} V_{u d}=A \lambda^{3}(\rho+i \eta)
$$

Visualizing the unitarity constraint

- Divide all sides by length of base

- Constructed a triangle with apex (ρ, η)

"The" Unitarity triangle

- We can visualize the CKM-constraints in (ρ, η) plane

Quarks \rightarrow Mesons

- Quarks:

$$
\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)=\left(\begin{array}{ccc}
1-\frac{1}{2} \lambda^{2} & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\frac{1}{2} \lambda^{2} & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)
$$

- Mesons
- "Oscillations" important ingredient!

Dynamics of Neutral B (or K) mesons...

Time evolution of B^{0} and $\overline{\mathrm{B}}^{0}$ can be described by an effective Hamiltonian:

$$
\begin{gathered}
i \frac{\partial}{\partial t} \Psi=H \Psi \quad \Psi(t)=a(t)\left|B^{0}\right\rangle+b(t)\left|\bar{B}^{0}\right\rangle \equiv\binom{a(t)}{b(t)} \\
H=\underbrace{\left(\begin{array}{cc}
M & 0 \\
0 & M
\end{array}\right)}_{\text {hermitian }} \text { No mixing, no decay... } \\
H=\underbrace{\left(\begin{array}{cc}
M & 0 \\
0 & M
\end{array}\right)}_{\text {hermitian }}-\frac{i}{2} \underbrace{\left(\begin{array}{cc}
\Gamma & 0 \\
0 & \Gamma
\end{array}\right)}_{\text {hermitan }} \quad \begin{array}{c}
\text { No mixing, but with decays... } \\
\text { (i.e.: H is not Hermitian!) }
\end{array}
\end{gathered}
$$

\rightarrow With decays included, probability of observing either B^{0} or B^{0} must go down as time goes by:

$$
\frac{d}{d t}\left(|a(t)|^{2}+|b(t)|^{2}\right)=-\left(\begin{array}{ll}
a(t)^{*} & b(t)^{*}
\end{array}\right)\left(\begin{array}{ll}
\Gamma & 0 \\
0 & \Gamma
\end{array}\right)\binom{a(t)}{b(t)} \quad \Rightarrow \Gamma>0
$$

Describing Mixing...

Time evolution of B^{0} and $\overline{\mathrm{B}}^{0}$ can be described by an effective Hamiltonian:

$$
i \frac{\partial}{\partial t} \Psi=H \Psi \quad \Psi(t)=a(t)\left|B^{0}\right\rangle+b(t)\left|\bar{B}^{0}\right\rangle \equiv\binom{a(t)}{b(t)}
$$

$$
H=\underbrace{\left(\begin{array}{cc}
M & 0 \\
0 & M
\end{array}\right)}_{\text {hemitian }}-\frac{i}{2} \underbrace{\left(\begin{array}{cc}
\Gamma & 0 \\
0 & \Gamma
\end{array}\right)}_{\text {hemmitan }}
$$

Where to put the mixing term?

$$
H=\underbrace{\left(\begin{array}{cc}
M & M_{12} \\
M_{12}^{*} & M
\end{array}\right)}_{\text {hemitian }}-\frac{i}{2} \underbrace{\left(\begin{array}{cc}
\Gamma & \Gamma_{12} \\
\Gamma_{12}^{*} & \Gamma
\end{array}\right)}_{\text {hemitian }}
$$

Solving the Schrödinger Equation

$$
i \frac{\partial}{\partial t} \psi(t)=\left(\begin{array}{cc}
M-\frac{i}{2} \Gamma & M_{12}-\frac{i}{2} \Gamma_{12} \\
M_{12}^{*}-\frac{i}{2} \Gamma_{12}^{*} & M-\frac{i}{2} \Gamma
\end{array}\right) \psi(t)
$$

Eigenvalues:

- Mass and lifetime of physical states: mass eigenstates

$$
\left|\begin{array}{cc}
M-\frac{i}{2} \Gamma-\lambda & M_{12}-\frac{i}{2} \Gamma_{12} \\
M_{12}^{*}-\frac{i}{2} \Gamma_{12}^{*} & M-\frac{i}{2} \Gamma-\lambda
\end{array}\right|=0
$$

notation $F=\sqrt{\left(M_{12}-\frac{i}{2} \Gamma_{12}\right)\left(M_{12}^{*}-\frac{i}{2} \Gamma_{12}^{*}\right)}$

$$
\begin{aligned}
& m_{1}+\frac{i}{2} \Gamma_{1}=M-\Re F-\frac{i}{2} \Gamma-\Im F \\
& m_{2}+\frac{i}{2} \Gamma_{2}=M+\Re F-\frac{i}{2} \Gamma+\Im F
\end{aligned}
$$

$$
\begin{array}{r}
\Delta m=2 \mathfrak{R} \sqrt{\left(M_{12}-\frac{i}{2} \Gamma_{12}\right)\left(M_{12}^{*}-\frac{i}{2} \Gamma_{12}^{*}\right)} \\
\Delta \Gamma=4 \mathfrak{I} \sqrt{\left(M_{12}-\frac{i}{2} \Gamma_{12}\right)\left(M_{12}^{*}-\frac{i}{2} \Gamma_{12}^{*}\right)}
\end{array}
$$

Solving the Schrödinger Equation

$i \frac{\partial}{\partial t} \psi(t)=\left(\begin{array}{cc}M-\frac{i}{2} \Gamma & M_{12}-\frac{i}{2} \Gamma_{12} \\ M_{12}^{*}-\frac{i}{2} \Gamma_{12}^{*} & M-\frac{i}{2} \Gamma\end{array}\right) \psi(t)$
Eigenvectors:

- mass eigenstates

$$
\begin{aligned}
& \left|P_{1}\right\rangle=p\left|P^{0}\right\rangle-q\left|\bar{P}^{0}\right\rangle \\
& \left|P_{2}\right\rangle=p\left|P^{0}\right\rangle+q\left|\bar{P}^{0}\right\rangle
\end{aligned}
$$

find p and q by solving

$$
\left(\begin{array}{cc}
M-\frac{i}{2} \Gamma & M_{12}-\frac{i}{2} \Gamma_{12} \\
M_{12}^{*}-\frac{i}{2} \Gamma_{12}^{*} & M-\frac{i}{2} \Gamma
\end{array}\right)\binom{p}{q}=\lambda_{ \pm}\binom{p}{q}
$$

$$
\left|B_{H}\right\rangle=p|B\rangle+q|\bar{B}\rangle
$$

$$
\left|B_{L}\right\rangle=p|B\rangle-q|\bar{B}\rangle
$$

$$
q / p=\sqrt{\left(M_{12}^{*}-\frac{i}{2} \Gamma_{12}^{*}\right) /\left(M_{12}-\frac{i}{2} \Gamma_{12}\right)}
$$

Time evolution

- With diagonal Hamiltonian, usual time evolution is obtained:

$$
\begin{aligned}
\left|P_{H}(t)\right\rangle & =e^{-i m_{H} t-\frac{1}{2} \Gamma_{H} t}\left|P_{H}(0)\right\rangle \\
\left|P_{L}(t)\right\rangle & =e^{-i m_{L} t-\frac{1}{2} \Gamma_{L} t}\left|P_{L}(0)\right\rangle
\end{aligned}
$$

$$
\left|P^{0}\right\rangle=\frac{1}{2 p}\left[\left|P_{H}\right\rangle+\left|P_{L}\right\rangle\right]
$$

$$
\left|P_{H}\right\rangle=p\left|P^{0}\right\rangle+q\left|\bar{P}^{0}\right\rangle
$$

$$
\underbrace{\left|\bar{P}^{0}\right\rangle=\frac{1}{2 q}\left[\left|P_{H}\right\rangle-\left|P_{L}\right\rangle\right]}
$$

$$
\left|P_{L}\right\rangle=p\left|P^{0}\right\rangle-q\left|\bar{P}^{0}\right\rangle
$$

$$
\begin{align*}
\left|P^{0}(t)\right\rangle & =\frac{1}{2 p}\left\{e^{-i m_{H} t-\frac{1}{2} \Gamma_{H} t}\left|P_{H}(0)\right\rangle+e^{-i m_{L} t-\frac{1}{2} \Gamma_{L} t}\left|P_{L}(0)\right\rangle\right\} \\
& =\frac{1}{2 p}\left\{e^{-i m_{H} t-\frac{1}{2} \Gamma_{H} t}\left(p\left|P^{0}\right\rangle+q\left|\bar{P}^{0}\right\rangle\right)+e^{-i m_{L} t-\frac{1}{2} \Gamma_{L} t}\left(p\left|P^{0}\right\rangle-q\left|\bar{P}^{0}\right\rangle\right)\right\} \\
& =\frac{1}{2}\left(e^{-i m_{H} t-\frac{1}{2} \Gamma_{H} t}+e^{-i m_{L} t-\frac{1}{2} \Gamma_{L} t}\right)\left|P^{0}\right\rangle+\frac{q}{2 p}\left(e^{-i m_{H} t-\frac{1}{2} \Gamma_{H} t}-e^{-i m_{L} t-\frac{1}{2} \Gamma_{L} t}\right)\left|\bar{P}^{0}\right\rangle \\
& =g_{+}(t)\left|P^{0}\right\rangle+\left(\frac{q}{p}\right) g_{-}(t)\left|\bar{P}^{0}\right\rangle \tag{3.6}
\end{align*}
$$

Measuring B Oscillations

Compare the mesons:

Probability to measure P or $\overline{\mathrm{P}}$, when we start with $100 \% \mathrm{P}$
$-\mathrm{P}^{0} \rightarrow \mathrm{P}^{0}$

D0(ps)

$x=\Delta m / \Gamma$: avg nr of oscillations before decay

Oscillations (1)

- Start with Schrodinger equation:

$$
i \frac{\partial \psi}{\partial t}=H \psi=\left(M-\frac{i}{2} \Gamma\right) \psi=\left(\begin{array}{cc}
M-\frac{i}{2} \Gamma & M_{12}-\frac{i}{2} \Gamma_{12} \\
M_{12}^{*}-\frac{i}{2} \Gamma_{12}^{*} & M-\frac{i}{2} \Gamma
\end{array}\right) \psi
$$

$$
\begin{gathered}
\psi(t)=\binom{a(t)}{b(t)} \\
\\
(2 \text {-component state in } \\
\mathrm{P}^{0} \text { and } \frac{\mathrm{P}^{0}}{} \text { subspace) }
\end{gathered}
$$

- Find eigenvalue:

$$
\left|\begin{array}{cc}
M-\frac{i}{2} \Gamma-\lambda & M_{12}-\frac{i}{2} \Gamma_{12} \\
M_{12}^{*}-\frac{i}{2} \Gamma_{12}^{*} & M-\frac{i}{2} \Gamma-\lambda
\end{array}\right|=0
$$

- Solve eigenstates:

$$
\begin{aligned}
& \left|P_{1}\right\rangle=p\left|P^{0}\right\rangle-q\left|\bar{P}^{0}\right\rangle \\
& \left|P_{2}\right\rangle=p\left|P^{0}\right\rangle+q\left|\bar{P}^{0}\right\rangle
\end{aligned}
$$

$$
\psi_{ \pm}=\binom{p}{ \pm q}
$$

we find p and q by solving

$$
\left(\begin{array}{cc}
M-\frac{i}{2} \Gamma & M_{12}-\frac{i}{2} \Gamma_{12} \\
M_{12}^{*}-\frac{i}{2} \Gamma_{12}^{*} & M-\frac{i}{2} \Gamma
\end{array}\right)\binom{p}{q}=\lambda_{ \pm}\binom{p}{q} \quad \longrightarrow \quad \frac{q}{p}=\sqrt{\frac{M_{12}-\frac{i}{2} \Gamma_{12}}{M_{12}^{*}-\frac{i}{2} \Gamma_{12}^{*}}}
$$

- Eigenstates have diagonal Hamiltonian: mass eigenstates!

Oscillations (2)

- Two mass eigenstates

$$
\begin{aligned}
\left|P_{H}\right\rangle & =p\left|P^{0}\right\rangle+q\left|\bar{P}^{0}\right\rangle \\
\left|P_{L}\right\rangle & =p\left|P^{0}\right\rangle-q\left|\bar{P}^{0}\right\rangle
\end{aligned}
$$

- Time evolution:

$$
\begin{aligned}
&\left|P_{H}(t)\right\rangle=e^{-i m_{H} t-\frac{1}{2} \Gamma_{H} t}\left|P_{H}(0)\right\rangle \\
&\left|P_{L}(t)\right\rangle=e^{-i m_{L} t-\frac{1}{2} \Gamma_{L} t}\left|P_{L}(0)\right\rangle \quad\left|\begin{array}{l}
\left|P^{0}\right\rangle
\end{array} \quad=\frac{1}{2 p}\left[\left|P_{H}\right\rangle+\left|P_{L}\right\rangle\right]\right. \\
&\left|\bar{P}^{0}\right\rangle=\frac{1}{2 q}\left[\left|P_{H}\right\rangle-\left|P_{L}\right\rangle\right]
\end{aligned}
$$

$$
\left|P^{0}(t)\right\rangle=\frac{1}{2}\left(e^{-i m_{H} t-\frac{1}{2} \Gamma_{H} t}+e^{-i m_{L} t-\frac{1}{2} \Gamma_{L} t}\right)\left|P^{0}\right\rangle+\frac{q}{2 p}\left(e^{-i m_{H} t-\frac{1}{2} \Gamma_{H} t}-e^{-i m_{L} t-\frac{1}{2} \Gamma_{L} t}\right)\left|\bar{P}^{0}\right\rangle
$$

- Probability for $\left|\mathrm{P}^{0}\right\rangle \rightarrow\left|\overline{\mathrm{P}^{0}}\right\rangle$!
- Express in $M=m_{H}+m_{L}$ and $\Delta m=m_{H}-m_{L} \rightarrow \Delta m$ dependence

Oscillations: summary

- p, q: $\left|B_{H}\right\rangle=p\left|B^{0}\right\rangle+q\left|\bar{B}^{0}\right\rangle$

$$
\left|B_{L}\right\rangle=p\left|B^{0}\right\rangle-q\left|\bar{B}^{0}\right\rangle
$$

- $\Delta \mathrm{m}, \Delta \Gamma: \quad \Delta m=2 \Omega \sqrt{\left(M_{12}-\frac{i}{2} \Gamma_{12}\right)\left(M_{12}^{*}-\frac{i}{2} \Gamma_{12}^{*}\right)}$

$$
\Delta \Gamma=4 \Im \sqrt{\left(M_{12}-\frac{i}{2} \Gamma_{12}\right)\left(M_{12}^{*}-\frac{i}{2} \Gamma_{12}^{*}\right)}
$$

$\mathrm{q}, \mathrm{p}, \mathrm{M}_{\mathrm{ij}}, \Gamma_{\mathrm{ij}}$ related through:

$$
\frac{q}{p}=\sqrt{\frac{M_{12}^{*}-i \Gamma_{12}^{*} / 2}{M_{12}-i \Gamma_{12} / 2}}
$$

- x, y : mixing often quoted in scaled parameters:

$$
x=\frac{\Delta m}{\Gamma} \quad y=\frac{\Delta \Gamma}{2 \Gamma}
$$

$$
\cos (\Delta m t)=\cos \left(\frac{\Delta m}{\Gamma} \frac{t}{\tau}\right)=\cos \left(x \frac{t}{\tau}\right)
$$

Time dependence (if $\Delta \Gamma \sim 0$, like for B^{0}):

$$
\begin{array}{ll}
\left|B^{0}(t)\right\rangle=g_{+}(t)\left|B^{0}\right\rangle+\frac{q}{p} g_{-}(t)\left|\overline{B^{0}}\right\rangle & \text { with } \\
\left|\overline{B^{0}}(t)\right\rangle=g_{+}(t)\left|\overline{B^{0}}\right\rangle+\frac{p}{q} g_{-}(t)\left|B^{0}\right\rangle & g_{-}(t)=e^{-i m t} e^{-\Gamma t / 2} \cos \frac{\Delta m t}{2} \\
\end{array}
$$

$B_{s}{ }^{0}$ mixing $\left(\Delta m_{s}\right)$: New: LHCb

Mixing \rightarrow CP violation?

- NB: Just mixing is not necessarily CP violation!
- However, by studying certain decays with and without mixing, CP violation is observed
- Next: Measuring CP violation...

Detecting CP violation with B decays

1) $C P$ violation: CKM and the $S M$
2) Detecting: Detector requirements
3) B-decays: $\sin 2 \beta, \phi_{s}, B_{s}{ }^{0} \rightarrow D_{s}{ }^{+} K^{-}$
