

Precision Flavour Physics: Serutiny of the SM

23 Nov-2022-Genova

Niels runing (Nkhei)

Historical record of indirect discoveries

GIM mechanism in $\mathrm{K}^{0} \rightarrow \mu \mu$

Weak Interactions with Lepton-Hadron Symmetry*
S. L. Glashow, J. Iliopoulos, and L. Maianif

Lyman Laboratory of Physics, Harrard University, Cambridge, Massachuseits 02139 (Received 5 March 1970)

We propose a model of weak interactions in which the currents are constructed out of four basic quark
fields and interact with a charged massive vector boson. We show, to all orders in perturbation theory, fields and interact with a charged massive vector boson. We show, to all orders in perturbation theory,
that the leading divergences do not violate any strong-interaction symmetry and the next to the leading that the leading divergences do not violate any strong-interaction symmetry and the next to the leading
divergences respect all observed weak-interaction selection rules. The model features a remarkable symmetry between leptons and quarks. The extension of our model to a complete Yang-Milis theory is discussed.
splitting, beginning at order $G\left(G \Lambda^{2}\right)$, as well as contributions to such unobserved decay modes as $K_{2} \rightarrow$ $\mu^{+}+\mu^{-}, K^{+} \rightarrow \pi^{+}+l+\bar{l}$, etc., involving neutral lepton

We wish to propose a simple model in which the divergences are properly ordered. Our modol ic fnumdod in a quark model, but one involving four, not three, fundamental fermions; the weak interactions are medı-

Glashow, Iliopoulos, Maiani,
Phys.Rev. D2 (1970) 1285

CP violation, $\mathrm{K}_{\mathrm{L}}{ }^{0} \rightarrow \Pi$ ח

27 July 1964

EVIDENCE FOR THE 2π DECAY OF THE $K_{2}{ }^{0}$ MESON* \dagger
J. H. Christenson, J. W. Cronin, \ddagger V. L. Fitch, \ddagger and R. Turlay ${ }^{\S}$ Princeton University, Princeton, New Jersey (Received 10 July 1964)

This Letter reports the results of experimental studies designed to search for the 2π decay of the $K_{2}{ }^{0}$ meson. Several previous experiments have

Progress of Theoretical Physics, Vol. 49, No. 2, February 1973
CP-Violation in the Renormalizable Theory of Weak Interaction

Makoto Kobayashi and Toshihide Maskawa
Department of Physics, Kyoto University, Kyoto
(Received September 1, 1972)
doublet with the same charge assignment. This is because all phases of elements of a 3×3 unitary matrix cannot be absorbed into the phase convention of six fields. This nossibilitv of $C P$-violation will be discussed later on.

Christenson, Cronin, Fitch, Turlay,
Phys.Rev.Lett. 13 (1964) 138
Kobayashi, Maskawa,
Prog.Theor. Phys. 49 (1973) 652
$B^{0} \leftarrow \rightarrow \bar{B}^{0}$ mixing

DESY 87-029

April 1987
OBSERVATION OF $\mathrm{B}^{0} \cdot \bar{B}^{0}$ MIXING
The ARGUS Colldboration
In summary, the combined evidence of the investigation of B^{0} meson pairs, lepton pairs and B^{0} meson-lepton events on the $\Upsilon(4 S)$ leads to the conclusion that $B^{0} \cdot \vec{B}^{0}$ mixing has been observed and is substantial.

Parameters	Comments
$\begin{aligned} & r>0.0990 \% C L \\ & x>0.44 \\ & B^{\frac{1}{2} f_{B} \approx f_{R}<160 \mathrm{MeV}} \\ & m_{b}<5 \mathrm{GcV} / \mathrm{c}^{2} \\ & \mathrm{t}_{\mathrm{b}}<1.4 \cdot 10^{-12_{\mathrm{g}}} \\ & \mid \mathrm{Y}_{\mathrm{td}}<0.018 \\ & m_{0 \mathrm{C}}<0<0.86 \end{aligned}$	This experiment This experiment B meson (\approx pion) decay constant b-quark mass B meson lifetime Kobayashi-Maskawa matrix element QCD correction factor [17]
$\mathrm{m}_{1}>50 \mathrm{GeV} / \mathrm{c}^{2}$	t Quark mass

ARGUS Coll.
Phys.Lett.B192 (1987) 245

Historical record of indirect discoveries

Outline

- CKM elements
- $\sin 2 \beta$
$-\gamma$
- Δm_{s}
- V_{ub}
- Flavour Anomalies
$-\mathrm{b} \rightarrow \mathrm{c} \tau \nu$
- $\mathrm{b} \rightarrow \mathrm{s} \ell^{+} \ell^{-}$
- Prospects
- Upgrade
- Upgrade II

(CKM: a quick reminder...)

1) Matrix to transform weak- and mass-eigenstates:

(CKM: a quick reminder...)

1) Matrix to transform weak- and mass-eigenstates:

2) Matrix has complex phases:

$$
\left(\begin{array}{lll}
\left|V_{u d}\right| & \left|V_{u s}\right| & \left|V_{u b}\right| e^{-i \gamma} \\
-\left|V_{c d}\right| & \left|V_{c s}\right| & \left|V_{c b}\right| \\
\left|V_{t d}\right| e^{-i \beta} & -\left|V_{t s}\right| e^{i \beta_{s}} & \left|V_{t b}\right|
\end{array}\right)
$$

3) Matrix is unitary:

$$
\begin{aligned}
& V^{+} V=\left(\begin{array}{lll}
V_{u d}^{*} & V^{*}{ }_{c d} & V^{*} \\
V_{u s}^{*} & V_{c s}^{*} & V^{*} \\
\hline V_{u b}^{*} & V_{c b}^{*} & V^{*}
\end{array}\right)\left(\begin{array}{lll}
V_{b d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& V_{u b}^{*} V_{u d}+V_{c b}^{*} V_{c d}+V_{t b}^{*} V_{t d}=0
\end{aligned}
$$

CKM: (1995) LHCb Letter-of-Intent LHC-B

- LHC-B Letter-of-Intent 1995

Figure 2.1: Limits on the CKM parameters (1σ) ρ and η for $m_{t}=174 \mathrm{GeV}$. The annular region cen-

CKM: (1995) LHCb Letter-of-Intent

- LHC-B Letter-of-Intent 1995

Figure 2.1: Limits on the CKM parameters (1σ) ρ and η for $m_{t}=174 \mathrm{GeV}$. The annular region cen-

Figure 2.2: The Unitarity Triangle

CKM: recent results

Outline

- CKM elements
- $\sin 2 \beta$
$-\gamma$
- Δm_{s}
- V_{ub}
- Flavour Anomalies
$-b \rightarrow c \tau v$
$-\mathrm{b} \rightarrow \mathrm{s} \ell^{+} \ell^{-}$
- Prospects
- Upgrade
- Upgrade II

Disclaimer:

Physics programme of LHCb is much broader!

- Exotic Hadrons: tetra- and pentaquarks
- Heavy Ion and Fixed Target physics
- Electroweak: Z-production \& W-mass
- CP violation:
- Two interfering amplitudes
- Two relative phases

- Different amplitude under CP conjugation
- $B^{0} \rightarrow \mathrm{~J} / \psi K_{S}^{0}$: The golden mode!
- Relative phase: $\arg \left(\mathrm{V}_{\mathrm{td}}{ }^{2}\right)=2 \beta$ (and $\pi / 2$)

$\sin 2 \beta$

$$
\begin{aligned}
\mathcal{A}_{[c \bar{c}] K_{\mathrm{S}}^{0}}(t) & \equiv \frac{\Gamma\left(\bar{B}^{0}(t) \rightarrow[c \bar{c}] K_{\mathrm{S}}^{0}\right)-\Gamma\left(B^{0}(t) \rightarrow[c \bar{c}] K_{\mathrm{S}}^{0}\right)}{\Gamma\left(\bar{B}^{0}(t) \rightarrow[c \bar{c}] K_{\mathrm{S}}^{0}\right)+\Gamma\left(B^{0}(t) \rightarrow[c \bar{c}] K_{\mathrm{S}}^{0}\right)} \\
& =\frac{S \sin (\Delta m t)-C \cos (\Delta m t)}{\cosh (\Delta \Gamma t / 2)+A_{\Delta \Gamma} \sinh (\Delta \Gamma t / 2)} \approx S \sin (\Delta m t)
\end{aligned}
$$

- Flavour tagging essential
- Which B^{0} was a $\overline{\mathrm{B}^{0}}$?

$\sin 2 \beta$

$$
\begin{aligned}
\mathcal{A}_{[c \bar{c}] K_{\mathrm{S}}^{0}}(t) & \equiv \frac{\Gamma\left(\bar{B}^{0}(t) \rightarrow[c \bar{c}] K_{\mathrm{S}}^{0}\right)-\Gamma\left(B^{0}(t) \rightarrow[c \bar{c}] K_{\mathrm{S}}^{0}\right)}{\Gamma\left(\bar{B}^{0}(t) \rightarrow[c \bar{c}] K_{\mathrm{S}}^{0}\right)+\Gamma\left(B^{0}(t) \rightarrow[c \bar{c}] K_{\mathrm{S}}^{0}\right)} \\
& =\frac{S \sin (\Delta m t)-C \cos (\Delta m t)}{\cosh (\Delta \Gamma t / 2)+A_{\Delta \Gamma} \sinh (\Delta \Gamma t / 2)} \approx S \sin (\Delta m t)
\end{aligned}
$$

- Flavour tagging essential
- Wrong tag fraction w~35\%
- $D=(1-2 w) \sim 0.3$

$\boldsymbol{A}_{\boldsymbol{C P}}(\boldsymbol{t})=\boldsymbol{D} \sin (2 \beta) \sin (\Delta m t)$

$\sin 2 \beta$

$\sin (2 \beta) \equiv \sin \left(2 \phi_{1}\right) \underset{2021}{\text { HFLAV }}$

BaBar: $\sin 2 \beta=0.691 \pm 0.031$

Belle: $\sin 2 \beta=0.667 \pm 0.026$

LHCb: $\sin 2 \beta=0.760 \pm 0.034$

Avg: $\quad \sin 2 \beta=0.699 \pm 0.017$

Constraints on angle γ

- Different yields for B^{+}and B^{-}decays
- two amplitudes contribute with different relative phase: $V_{u b}=\left|V_{u b}\right| e^{-i \gamma}$

Constraints on angle γ - with $B^{ \pm} \rightarrow D^{(*)} K^{ \pm}$and $D^{0} \rightarrow h^{ \pm} h^{ \pm}$

- Full run-2 ADS/GLW analysis, many final states
$-B^{ \pm} \rightarrow D^{0} K^{ \pm}, B^{ \pm} \rightarrow D^{0} \Pi^{ \pm}, B^{ \pm} \rightarrow D^{0 *} K^{ \pm}, B^{ \pm} \rightarrow D^{0 *} \Pi^{ \pm}$
$-D^{0} \rightarrow K^{+} K^{-}, D^{0} \rightarrow K^{+} \Pi^{-}, D^{0} \rightarrow \Pi^{+} \Pi^{-}$
- Very precise input for gamma

Constraints on angle γ - with $B^{ \pm} \rightarrow D^{0} h^{ \pm}$and $D^{0} \rightarrow h^{ \pm} h^{ \pm} \Pi^{0}$

- Different yields for B^{+}and B^{-}decays
- two amplitudes contribute with different relative phase: $V_{u b}=\left|V_{u b}\right| e^{-i \gamma}$

Constraints on angle γ - with $\mathrm{B}^{ \pm} \rightarrow D^{0} K^{ \pm}$and $D^{0} \rightarrow K^{\mp} \Pi^{ \pm} \Pi^{ \pm} \Pi^{\mp}$

- Different yields for B^{+}and B^{-}decays
- two amplitudes contribute with different relative phase: $V_{u b}=\left|V_{u b}\right| e^{-i \gamma}$

Constraints on angle γ - with $\mathrm{B}^{ \pm} \rightarrow D^{0} K^{ \pm}$and $D^{0} \rightarrow K^{\mp} \Pi^{ \pm} \Pi^{ \pm} \Pi^{\mp}$

- Different yields for B^{+}and B^{-}decays
- two amplitudes contribute with different relative phase: $V_{u b}=\left|V_{u b}\right| e^{-i \gamma}$

(Split in 4 regions of
$\mathrm{K}^{\mp} \Pi^{ \pm} \Pi^{ \pm} \Pi^{\mp}$ Dalitz space:)

$$
\begin{gathered}
\mathcal{A}_{K}^{1}=-0.469 \pm 0.088 \pm 0.009, \\
\mathcal{A}_{K}^{2}=-0.852 \pm 0.077 \pm 0.012, \\
\mathcal{A}_{K}^{3}=-0.284 \pm 0.080 \pm 0.009 \\
\mathcal{A}_{K}^{4}=+0.107 \pm 0.083 \pm 0.009,
\end{gathered}
$$

CKM angle γ : Combination

- Different yields for B and anti- B decays
- two amplitudes contribute with different relative phase: $V_{u b}=\left|V_{u b}\right| e^{-i \gamma}$
- many $D^{(*)}{ }_{(s)}$ final states:

LHCb-CONF-2022-002, Oct 2022

CKM angle γ

- Different yields for B and anti- B decays
- two amplitudes contribute with different relative phase: $V_{u b}=\left|V_{u b}\right| e^{-i \gamma}$
- many $D^{(*)}(s)$ final states:

Precision Δm_{s} with $B^{0}{ }_{s} \rightarrow D_{s}{ }^{+} \Pi^{-}$

- Legacy "textbook" run-2 measurement
- Flavour specific : final state reveals flavour of the decaying B
- Precision: 3×10^{-4}
- "Standard candle" for run-3
- Analysis
- 2D mass fit on $B_{s}{ }^{0}$ and $D_{s}{ }^{+}$mass, followed by decay time fit
- Detailed study of tagging, decay time resolution and bias

Precision $\Delta \mathrm{m}_{\mathrm{s}}$ with $B^{0}{ }_{s} \rightarrow D_{s}{ }^{+} \Pi^{-}$

- Legacy "textbook" run-2 measurement
- Flavour specific : final state reveals flavour of the decaying B
- Precision: 3×10^{-4}
- "Standard candle" for run-3

	Δm_{s}	Stat	Sys	Ref.
$B^{0}{ }_{s} \rightarrow D_{s}{ }^{+} \Pi^{-}$	17.7683	0.0051	0.0032	arXiv:2104.04421 Nature Physics 18, (2022) $1-5$
$B^{0}{ }_{s} \rightarrow D_{s}{ }^{+} \Pi^{-} \Pi^{-} \Pi^{-}$	17.757	0.007	0.008	arXiv:2011.12041 JHEP 03(2021)137
Combination	$\mathbf{1 7 . 7 6 5 6}$	$\mathbf{0 . 0 0 5 7}$		arXiv:2104.04421 Nature Physics 18, (2022) 1-5

Measurement $\left|V_{u b}\right| /\left|V_{c b}\right|$ from $B\left(B_{s}{ }^{0} \rightarrow K^{-} \mu^{+} v\right)$

LHCb, arXiv:2012.05143 PRL126(2021)8, 081804

$$
\begin{aligned}
R_{B F} & =\mathcal{B}\left(B_{s} \rightarrow K \mu \nu\right) / \mathcal{B}\left(B_{s} \rightarrow D_{s} \mu \nu\right)=\frac{N_{K}}{N_{D_{s}}} \frac{\epsilon_{D_{s}}}{\epsilon_{K}} \times \mathcal{B}\left(D_{s} \rightarrow K K \pi\right) \\
\mathcal{B}\left(B_{s} \rightarrow K \mu \nu\right) & =(1.06 \pm 0.05(\text { stat })) \pm 0.04(\text { syst }) \pm 0.06(\mathrm{ext}) \pm 0.04(\mathrm{FF})) \times 10^{-4}
\end{aligned}
$$

- First observation of $B_{s}{ }^{0} \rightarrow K^{-} \mu^{+} v$

$$
R_{B F}=\left|V_{u b}\right|^{2} /\left|V_{c b}\right|^{2} \times \mathrm{FF}_{K} / \mathrm{FF}_{D_{s}}
$$

- Interesting input to $\left|\mathrm{V}_{\mathrm{ub}}\right|$! (and form factor calculations)

CKM: recent results

- So far so good, but stay vigilant...
- V_{ub} and V_{cb} : incl. and excl. measurements differ...
- $\mathrm{V}_{\text {us }}$: too small for unitarity (Cabibbo angle anomaly)
- K π puzzle: CP asymmetries should be related through isospin symmetry...
- $\mathrm{BR}(B \rightarrow D h)$: Factorisation?

Fleischer, Jaarsma, Malami, Vos, arXiv:1806.08783

Skidmore, 2 Jun 2022, Siegen Workshop

Outline

- CKM elements
- $\sin 2 \beta$
- v
- Δm_{s}
- $V_{u b}$
- Flavour Anomalies
- $b \rightarrow c \tau$
$-\mathrm{b} \rightarrow \mathrm{s} \ell^{+} \ell^{-}$
- Prospects
- Upgrade
- Upgrade II

CC and FCNC

Semileptonic
CC
$b \rightarrow \mathrm{Cl}^{-} v$
"Semileptonic"
FCNC EWP Penguin
$b \rightarrow$ Sl $^{+/-}$

New measurement of $R\left(D^{*}\right)$ vs $R(D)$!

- Signal
- $\left.B \rightarrow D^{*}\right|^{-} v$
$\rightarrow\left(D^{*+} \mu\right)$ sample
- $B^{+} \rightarrow D^{\circ-v}$
$\rightarrow\left(D^{0} \mu\right)$ sample
- Main backgrounds:

$$
\begin{aligned}
& \text { - } B \rightarrow D D X \\
& -B \rightarrow D^{* *} \mu^{-} v
\end{aligned}
$$

New measurement of $R\left(D^{*}\right)$ vs $R(D)$!

- Simultaneous 3D-fit ($m_{\text {miss }}, E_{\mu \mu} q^{2}$) to 2×4 samples

$$
D^{(*)} \mu+\pi-\left(D^{* *} \mu\right) \text { enriched }
$$

10/19/2022

New measurement of $R\left(D^{*}\right)$ vs $R(D)$!

- Fit was checked on specific subsamples:

New measurement of $R\left(D^{*}\right)$ vs $R(D)$!

- World average 3.3σ to 3.2σ

New measurement of $R\left(D^{*}\right)$ vs $R(D)$!

- World average 3.3σ to 3.2σ

CC and FCNC

Semileptonic
CC
$b \rightarrow \mathrm{Cl}^{-} v$
"Semileptonic"
FCNC EWP Penguin
$b \rightarrow$ Sl $^{+/-}$
$B_{s}{ }^{0} \rightarrow \mu^{+} \mu^{-}$

- Purely leptonic $\mathrm{b} \rightarrow \mathrm{sl}^{+I^{-}}$
$+B_{s}{ }^{0} \rightarrow e^{+} e^{-}($LHCb, arXiv: $\underline{2003.03999)}$)

$+B_{S}{ }^{0} \rightarrow T^{+} T^{-}($LHCb, arXiv:1703.02508)

LHCb Coll. arXiv:2108.09284

Theory:
$B\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}\right)=(3.66 \pm 0.14) \times 10^{-9}$ $B\left(B^{0} \rightarrow \mu^{+} \mu^{-}\right)=(1.03 \pm 0.05) \times 10^{-10}$
$\mathcal{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}\right)=\left(3.09_{-0.43}^{+0.46+0.11}+0.15\right) \times 10^{-9}$
$\mathcal{B}\left(B^{0} \rightarrow \mu^{+} \mu^{-}\right)<2.6 \times 10^{-10}$
$\mathcal{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-} \gamma\right)_{m_{\mu \mu}>4.9 \mathrm{GeV} / c^{2}}<2.0 \times 10^{-9}$
$B_{(s)}{ }^{0} \rightarrow \mu^{+} \mu^{-}(2020)$

- Including B^{0} :

$B_{(s)}{ }^{0} \rightarrow \mu^{+} \mu^{-}$
- Including B^{0} :
- NB: new result from CMS at ICHEP not included here

LHCb Coll. arXiv:2108.09284

- Relative production of $B_{s}{ }^{0}$ wrt B^{0} mesons, f_{s} / f_{d} :

$$
\begin{aligned}
f_{s} / f_{d}(7 \mathrm{TeV}) & =0.2390 \pm 0.0076 \\
f_{s} / f_{d}(8 \mathrm{TeV}) & =0.2385 \pm 0.0075 \\
f_{s} / f_{d}(13 \mathrm{TeV}) & =0.2539 \pm 0.0079
\end{aligned}
$$

f_{s} / f_{d}	$\left(p_{\mathrm{T}}, 7 \mathrm{TeV}\right)$	$=(0.244 \pm 0.008)+\left((-10.3 \pm 2.7) \times 10^{-4}\right) \cdot p_{\mathrm{T}}$
f_{s} / f_{d}	$\left(p_{\mathrm{T}}, 8 \mathrm{TeV}\right)=(0.240 \pm 0.008)+\left((-3.4 \pm 2.3) \times 10^{-4}\right) \cdot p_{\mathrm{T}}$	
f_{s} / f_{d}	$\left(p_{\mathrm{T}}, 13 \mathrm{TeV}\right)=(0.263 \pm 0.008)+\left((-17.6 \pm 2.1) \times 10^{-4}\right) \cdot p_{\mathrm{T}}$	

LHCb Coll, arXiv: $\underline{2103.06810}$

Decay rates

- Study same process with different hadrons:

Rich laboratory:

T.Blake et al. arXiv:1606.00916

1) Purely leptonic
2) Decay rates

\section*{| 웅 |
| :--- |
| 5 |}

3) Angular asymmetries
4) Ratio of decay rates

Decay rates

- Decay rate with muons in final state consistently low:

Decay rates

- Decay rate with muons in final state consistently low:

Angular asymmetries

Angular asymmetries: eg. $\mathrm{P}_{5}{ }^{\prime}$

- Compilation:

Angular asymmetries

- Interesting to compare angular asymmetries for μ and e

$B^{0} \rightarrow K^{0}{ }^{*} \mu^{+} \mu^{-}$: more than just $\mathrm{P}_{5}{ }^{\prime}$

- Many measurements:

Intermezzo: Effective couplings

- Historical example

$$
\frac{G_{F}}{\sqrt{2}}=\frac{g^{2}}{8 M_{W}^{2}}
$$

- Both are correct, depending on the energy scale you consider

Intermezzo: Effective couplings

- Historical example

- Analog: Flavour-changing neutral current

Intermezzo: Effective couplings

- Effective coupling can be of various "kinds"
- Vector coupling:

$$
\mathcal{H}_{\mathrm{eff}}=\frac{G_{\mathrm{F}}}{\sqrt{2}} V_{\mathrm{CKM}} \sum_{i} C_{i}(\mu) Q_{i}
$$

- Axial coupling:
C_{10}
- Left-handed coupling (V-A): $\mathrm{C}_{9}-\mathrm{C}_{10}$
- Right-handed (to quarks): $\mathrm{C}_{9}{ }^{\prime}, \mathrm{C}_{10}{ }^{\prime}, \ldots$
- Analog: Flavour-changing neutral current

Intermezzo: Effective couplings

- C_{7} (photon), C_{9} (vector) and C_{10} (axial) couplings hide everywhere:

$$
\begin{aligned}
& \frac{1}{\bar{\Gamma}} \frac{\mathrm{~d}^{3}(\Gamma+\bar{\Gamma})}{\mathrm{d} \cos \theta_{\ell} \mathrm{d} \cos \theta_{K} \mathrm{~d} \phi}=\frac{9}{32 \pi}\left[\frac{3}{4}\left(1-F_{L}\right) \sin ^{2} \theta_{K}+F_{L} \cos ^{2} \theta_{K}+\frac{1}{4}\left(1-F_{L}\right) \sin ^{2} \theta_{K} \cos 2 \theta_{\ell} \quad S_{7}=\frac{\Im\left(A_{0}^{L *} A_{\mid}^{L}\right)}{\left|A_{0}^{L}\right|^{2}+\mid A_{\|\left.^{2}\right|^{2}+\left|A_{0}^{L}\right|^{2}}^{2}}+L \rightarrow R\right. \\
& -\quad \cos ^{2} \theta_{K} \cos 2 \theta_{\ell}+ \\
& \sin ^{2} \theta_{K} \sin ^{2} \theta_{\ell} \cos 2 \phi+5 \sin 2 \theta_{K} \sin 2 \theta_{\ell} \cos \phi+ \\
& \sin 2 \theta_{K} \sin \theta_{\ell} \cos \phi+5 \sin ^{2} \theta_{K} \cos \theta_{\ell}+ \\
& \sin 2 \theta_{K} \sin \theta_{\ell} \sin \phi+ \\
& \sin 2 \theta_{K} \sin 2 \theta_{\ell} \sin \phi+5 \sin ^{2} \theta_{K} \sin ^{2} \theta_{\ell} \sin 2 \phi \\
& \left\{\begin{aligned}
S_{8} & =\frac{\Im\left(A_{0}^{L *} A_{\perp}^{L}\right)}{\left|A_{0}^{L}\right|^{2}+\left|A_{\|}^{L}\right|^{2}+\left|A_{0}^{L}\right|^{2}}+L \rightarrow R \\
S_{9} & =\frac{\Im\left(A_{\perp}^{L *} A_{\|}^{L}\right)}{\left|A_{\perp}^{L}\right|^{2}+\left|A_{\|}^{L}\right|^{2}+\left|A_{0}^{L}\right|^{2}}-L \rightarrow R
\end{aligned}\right.
\end{aligned}
$$

Coherent pattern

arXiv:2003.04831: $\mathrm{B}^{0} \rightarrow \mathrm{~K}^{*}{ }^{0} \mu^{+} \mu^{-}$
arXiv:2012.13241: $\mathrm{B}^{+} \rightarrow \mathrm{K}^{*+} \mu^{+} \mu^{-}$
$\underline{\text { arXiv: } 2107.13428: ~} \mathrm{~B}_{\mathrm{s}} \rightarrow \varphi \mu^{+} \mu^{-}$

Coherent pattern

Model independent fits:

- $\mathrm{C}_{9}{ }^{\mathrm{NP}}$ deviates from 0 by $>4 \sigma$
- Independent fits by many groups favour:
- $\quad C_{9}{ }^{N P}=-1 \quad$ or
- $\mathrm{C}_{9}{ }^{\mathrm{NP}}=-\mathrm{C}_{10}{ }^{\mathrm{NP}}$
>All measurements (175) agree with a single (simple?) shift...

Wilson coefficient	all rare B decays best fit	pull
$C_{9}^{b s \mu \mu}$	$-0.82_{-0.14}^{+0.14}$	6.2σ
$C_{10}^{b s \mu \mu}$	$+0.56_{-0.12}^{+0.12}$	4.9σ
$C_{9}^{\prime b s \mu \mu}$	$-0.09_{-0.13}^{+0.13}$	0.7σ
$C_{10}^{\text {bsu }}$	$+0.01_{-0.09}^{+0.10}$	0.1σ
$C_{9}^{b s \mu \mu}=C_{10}^{b s \mu \mu}$	$-0.06_{-0.11}^{+0.11}$	0.5σ
$C_{9}^{b s \mu \mu}=-C_{10}^{b s \mu \mu}$	$-0.43_{-0.07}^{+0.07}$	6.2σ

Similar improvement of fit for both scenario's

Coherent pattern

- Charm loop effects could also cause a shift in C_{9}

Ratio of decay rates

$$
R_{K}=\frac{\mathcal{B}\left(B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}\right)}{\mathcal{B}\left(B^{+} \rightarrow K^{+} J / \psi\left(\mu^{+} \mu^{-}\right)\right)} / \frac{\mathcal{B}\left(B^{+} \rightarrow K^{+} e^{+} e^{-}\right)}{\mathcal{B}\left(B^{+} \rightarrow K^{+} J / \psi\left(e^{+} e^{-}\right)\right)}
$$

- Theoretically "clean"
- Experimentally
- Signal yields
- Backgrounds
- Electron reconstruction
- Efficiencies cancel in ratio
- Belle II: good electron reconstruction
- LHCb: large B sample

Ratio of decay rates

Analyses - where are we?

Analysis	$\begin{array}{r} \text { Run } 1 \\ 2011-2012 \end{array}$	$2015-2016^{\text {Run }}$	$\begin{aligned} & 2 \\ & 2017-2018 \end{aligned}$
$\mathrm{B}_{(\mathrm{s})} \rightarrow \mu \mu$	\checkmark	\checkmark	\checkmark
$\mathrm{B}^{0} \rightarrow \mathrm{~K}^{0}{ }^{\prime} \mu \mu$ (ang)	\checkmark	\checkmark	
$\begin{aligned} & \mathrm{B}^{+} /(\mathrm{s}) \rightarrow \mathrm{K}^{*+} / \varphi \mu \mu \\ & (\mathrm{ang}) \end{aligned}$	\checkmark	\checkmark	\checkmark
R_{K}	\checkmark	\checkmark	\checkmark
$\mathrm{R}_{\mathrm{K} *}\left(\mathrm{R}_{\mathrm{X}}\right)$	\checkmark		
R_{pk}	\checkmark	\checkmark	
$\mathrm{R}_{\text {KS, RK*+ }}$	\checkmark	\checkmark	\checkmark
$\mathrm{R}_{\varphi, К п п, \Pi, \wedge}$			
R(D*)	\checkmark		
R (D)	\checkmark		
$\mathrm{R}\left(\wedge_{\mathrm{c}}\right)$	\checkmark	\checkmark	\checkmark
+ many others	\ldots	...	\ldots
...	...	\cdots	\cdots

- We are working on a unified analysis of $B^{+} \rightarrow K^{+} I^{+} I^{-}$and $B^{0} \rightarrow K^{* 0} I^{+} l^{-}$decay ratios with electron and muon final states
- Final Run-1 and 2 results on these key $b \rightarrow$ sll LFNU observables
- Important checks in the absence of competitive results from other experiments
- Will lead to a deeper understanding of our LFNU measurements and will be reflected in our final results

Outline

- CKM elements
- $\sin 2 \beta$
- V
- Δm_{s}
- $V_{u b}$
- Anomalies
$-b \rightarrow c \tau \nu$
$-b \rightarrow s e^{+}$
- Prospects
- Upgrade
- Upgrade II

Future Plans

You are here!

Where do we go from here?

VELO

Tracker

Ring Imaging Cherenkov

Calorimeter \& Muon detector

New CALO frontend and control boards

MUON Station 2 Hit map

... and beyond!

Planning for Upgrade II: many analyses stat. limited

Planning for Upgrade II

- Increase instantaneous luminosity to $1.5 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- Increase integrated luminosity to $300 \mathrm{fb}^{-1}$

Planning for Upgrade II: Physics Reach

Observable	Current LHCb	Upg	ade I	Upgrade II$\left(300 \mathrm{fb}^{-1}\right)$$\left(300 \mathrm{fb}^{-1}\right)$
	(up to $9 \mathrm{fb}^{-1}$)	$\left(23 \mathrm{fb}^{-1}\right)$	$\left(50 \mathrm{fb}^{-1}\right)$	
CKM tests				
$\gamma(B \rightarrow D K$, etc.)	$4^{\circ} \quad[9,10]$	$1.5{ }^{\circ}$	1°	$0.35{ }^{\circ}$
$\phi_{s}\left(B_{s}^{0} \rightarrow J / \psi \phi\right)$	49 mrad 8]	14 mrad	10 mrad	4 mrad
$\left\|V_{u b}\right\| /\left\|V_{c b}\right\|\left(\Lambda_{b}^{0} \rightarrow p \mu^{-} \bar{\nu}_{\mu}\right)$	6\% [30]	3%	-	1%
$a_{\text {sl }}^{d}\left(B^{0} \rightarrow D^{-} \mu^{+} \nu_{\mu}\right)$	$36 \times 10^{-4} 34$	8×10^{-4}	5×10^{-4}	2×10^{-4}
$a_{\mathrm{sl}}^{s}\left(B_{s}^{0} \rightarrow D_{s}^{-} \mu^{+} \nu_{\mu}\right) \quad 3$	$33 \times 10^{-4}[35]$	10×10^{-4}	7×10^{-4}	3×10^{-4}
Charm				
$\Delta A_{C P}\left(D^{0} \rightarrow K^{+} K^{-}, \pi^{+} \pi^{-}\right)$	29×10^{-5}	17×10^{-5}	-	3.0×10^{-5}
$A_{\Gamma}\left(D^{0} \rightarrow K^{+} K^{-}, \pi^{+} \pi^{-}\right)$	$13 \times 10^{-5}[38]$	4.3×10^{-5}	-	1.0×10^{-5}
$\Delta x\left(D^{0} \rightarrow K_{\mathrm{s}}^{0} \pi^{+} \pi^{-}\right) \quad 18$	$18 \times 10^{-5}[37]$	6.3×10^{-5}	4.1×10^{-5}	1.6×10^{-5}
Rare Decays				
$\overline{\mathcal{B}}\left(B^{0} \rightarrow \mu^{+} \mu^{-}\right) / \mathcal{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}\right)$) 71% [40,41]	34%	-	10\%
$S_{\mu \mu}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}\right)$	-	-	-	0.2
$A_{\mathrm{T}}^{(2)}\left(B^{0} \rightarrow K^{* 0} e^{+} e^{-}\right)$	0.10 [52]	0.060	0.043	0.016
$A_{\mathrm{T}}^{\mathrm{Im}}\left(B^{0} \rightarrow K^{* 0} e^{+} e^{-}\right)$	0.10 52	0.060	0.043	0.016
$\mathcal{A}_{\phi \gamma}^{\Delta \Gamma}\left(B_{s}^{0} \rightarrow \phi \gamma\right)$	${ }_{-0.44}^{+0.41}$ [51]	0.124	0.083	0.033
$S_{\phi \gamma}\left(B_{s}^{0} \rightarrow \phi \gamma\right)$	0.32 51]	0.093	0.062	0.025
$\alpha_{\gamma}\left(\Lambda_{b}^{0} \rightarrow \Lambda \gamma\right)$	${ }_{-0.29}^{+0.17}$ [53]	0.148	0.097	0.038
Lepton Universality Tests				
$R_{K}\left(B^{+} \rightarrow K^{+} \ell^{+} \ell^{-}\right)$	0.044 [12]	0.025	0.017	0.007
$R_{K^{*}}\left(B^{0} \rightarrow K^{* 0} \ell^{+} \ell^{-}\right)$	0.10 [61]	0.031	0.021	0.008
$R\left(D^{*}\right)\left(B^{0} \rightarrow D^{*-} \ell^{+} \nu_{\ell}\right)$	0.026 [62,64]	0.007	-	0.002

Planning for Upgrade II: Physics Reach

Planning for Upgrade II: started in 2017

Expression of Interest	Physics Case	Accelerator Study	Luminosity Scenarios
LHCC-2017-003	LHCC-2018-027	CERN-ACC-2018-038	LHCb-PUB-2019-001

- LHCC and CERN Research Board (Sep 2019)
- "The recommendation to prepare a framework TDR for the LHCb Upgrade-II was endorsed, noting that LHCb is expected to run throughout the HL-LHC era."
- European Strategy Update (Jun 2020)
- "The flavour physics programme made possible with the proton collisions delivered by the LHC is very rich, and will be enhanced with the ongoing and proposed future upgrade of the LHCb detector."
- "The full potential of the LHC and the HL-LHC, including the study of flavour physics, should be exploited"

Planning for Upgrade II: Tracking

Planning for Upgrade II: PID detectors

RICH1 and RICH 2

- Reduced pixel size
- Add timing information
- SiPM, MCP

Muon

- $\quad \mu$-RWELL for inner regions
- MWPC for outer regions (recycles)

Planning for Upgrade II: Testbeam

- Activities for RICH, VELO, ECAL, MUON
- Lots of opportunities for R\&D in coming decade!

Conclusions

- Precision measurements to scrutinize the Standard Model
- Precision measurements reach very high mass scales
- Precision measurements are not yet precise enough
- Lots of opportunities to contribute to R\&D

More results: CPV

