Precision Flavour Physics: Scrutiny of the SM

III.III

23 Nov 2022 - Genova

Niels Tuning (Nikhef)

Historical record of indirect discoveries

GIM mechanism in $K^0 \rightarrow \mu \mu$	CP violation, $K_L^0 \rightarrow \Pi \Pi$	$B^0 \leftarrow \rightarrow B^0$ mixing		
Weak Interactions with Lepton-Hadron Symmetry* S. L. GLASHOW, J. LILOPOULOS, AND L. MALANIȚ Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02139 (Received 5 March 1970) We propose a model of weak interactions in which the currents are constructed out of four basic quark fields and interact with a charged massive vector boson. We show, to all orders in perturbation theory, that the leading divergences do not violate any strong-interaction symmetry and the next to the leading divergences respect all observed weak-interaction selection rules. The model features a remarkable symmetry between leptons and quarks. The extension of our model to a complete Yang-Millis theory is discussed.	27 JULY 1964 EVIDENCE FOR THE 2π DECAY OF THE K_2^{0} MESON* [†] J. H. Christenson, J. W. Cronin, [‡] V. L. Fitch, [‡] and R. Turlay [§] Princeton University, Princeton, New Jersey (Received 10 July 1964)	DESY 87-029 April 1987 OBSERVATION OF B ⁰ - B ⁰ MIXING The ARGUS Collaboration		
splitting, beginning at order $G(G\Lambda^2)$, as well as con- tributions to such unobserved decay modes as $K_2 \rightarrow \mu^+ + \mu^-$, $K^+ \rightarrow \pi^+ + l + \bar{l}$, etc., involving neutral lepton We wish to propose a simple model in which the divergences are properly ordered. Our model is founded	This Letter reports the results of experimental studies designed to search for the 2π decay of the K_2^0 meson. Several previous experiments have	In summary, the combined evide and B ⁰ meson-lepton events on the been observed and is substantial. Parameters	nce of the investigation of B^0 meson pairs, lepton pairs Y(4S) leads to the conclusion that $B^0 \cdot \overline{B}^0$ mixing has Comments	
in a quark model, but one involving four, not three, fundamental fermions; the weak interactions are medi- new quantum number C for charm.	Progress of Theoretical Physics, Vol. 49, No. 2, February 1973 CP-Violation in the Renormalizable Theory of Weak Interaction Makoto KOBAYASHI and Toshihide MASKAWA Department of Physics, Kyoto University, Kyoto (Received September 1, 1972) doublet with the same charge assignment. This is because all phases of elements of a 3×3 unitary matrix cannot be absorbed into the phase convention of six fields. This possibility of CP-violation will be discussed later on.	$\begin{split} r &> 0.09 \; 90\% CL \\ x &> 0.44 \\ B^{\frac{1}{2}} f_B \approx f_\pi < 160 \; MeV \\ m_b &< 5 GeV/c^2 \\ \tau_b &< 1.4 \cdot 10^{-12} s \\ V_{td} &< 0.018 \\ \eta_{OCD} &< 0.86 \\ m_t &> 50 GeV/c^2 \end{split}$	This experiment This experiment B meson (≈ pion) decay constant b-quark mass B meson lifetime Kobayashi-Maskawa matrix element QCD correction factor [17] t quark mase	
Glashow, Iliopoulos, Maiani, Phys.Rev. D2 (1970) 1285	Christenson, Cronin, Fitch, Turlay, Phys.Rev.Lett. 13 (1964) 138 Kobayashi, Maskawa, Prog.Theor. Phys. 49 (1973) 652	ARGUS Coll. Phys.Lett.B192 (19	87) 245	

"Discovery" of charm

"Discovery" of beauty

"Discovery" of top

Historical record of indirect discoveries

Particle	Indirect			Direct		
ν	β decay	Fermi	1932	Reactor v-CC	Cowan, Reines	1956
W	β decay	Fermi	1932	W→ev	UA1, UA2	1983
С	$K^0 \rightarrow \mu \mu$	GIM	1970]/ψ	Richter, Ting	1974
b	СРV <i>К</i> ⁰ →пп	CKM, 3 rd gen	1964/72	Y	Ledermann	1977
Z	ν -NC	Gargamelle	1973	$Z \rightarrow e^+e^-$	UA1	1983
t	B mixing	ARGUS	1987	t→Wb	D0, CDF	1995
Н	e+e-	EW fit, LEP	2000	Η→4μ/γγ	CMS, ATLAS	2012
?	What's next ?		?			?

Outline

• CKM elements

- $sin 2\beta$
- $-\gamma$
- $-\Delta m_s$
- $-V_{ub}$
- Flavour Anomalies
 - $b \rightarrow c \ \tau \nu$
 - $\quad b \to s \ \ell^{\scriptscriptstyle +} \ \ell^{\scriptscriptstyle -}$
- Prospects
 - Upgrade
 - Upgrade II

(CKM: a quick reminder_)

1) Matrix to transform weak- and mass-eigenstates:

(CKM: a quick reminder_)

1) Matrix to transform weak- and mass-eigenstates:

CKM: (1995) LHCb Letter-of-Intent

• LHC-B Letter-of-Intent 1995

CKM: recent results

Outline

• CKM elements

- sin2β
- $-\gamma$
- $-\Delta m_s$
- $-V_{ub}$
- Flavour Anomalies
 - $b \rightarrow c \tau v$
 - $b \rightarrow s \ell^{\scriptscriptstyle +} \ell^{\scriptscriptstyle -}$

• Prospects

- Upgrade
- Upgrade II

Disclaimer:

Physics programme of LHCb is much broader!

- Exotic Hadrons: tetra- and pentaquarks
- Heavy Ion and Fixed Target physics
- Electroweak: Z-production & W-mass

$sin2\beta$

- CP violation:
 - Two interfering amplitudes
 - Two relative phases
 - Different amplitude under CP conjugation
- $B^0 \rightarrow J/\psi K^0_S$: The golden mode!

- Relative phase: $arg(V_{td}^2)=2\beta$ (and $\pi/2$)

sin2β

$$\mathcal{A}_{[c\overline{c}]K^0_{\mathrm{S}}}(t) \equiv \frac{\Gamma(\overline{B}^0(t) \to [c\overline{c}]K^0_{\mathrm{S}}) - \Gamma(B^0(t) \to [c\overline{c}]K^0_{\mathrm{S}})}{\Gamma(\overline{B}^0(t) \to [c\overline{c}]K^0_{\mathrm{S}}) + \Gamma(B^0(t) \to [c\overline{c}]K^0_{\mathrm{S}})}$$
$$= \frac{S\sin(\Delta m t) - C\cos(\Delta m t)}{\cosh(\Delta\Gamma t/2) + A_{\Delta\Gamma}\sinh(\Delta\Gamma t/2)} \approx S\sin(\Delta m t)$$

Flavour tagging essential

- Which B^0 was a $\overline{B^0}$?

sin2β

sin2β

Constraints on angle γ

- Different yields for B^+ and B^- decays
 - two amplitudes contribute with different relative phase: $V_{ub} = |V_{ub}|e^{-i\gamma}$

Constraints on angle γ - with $B^{\pm} \rightarrow D^{(*)}K^{\pm}$ and $D^{0} \rightarrow h^{\pm}h^{\pm}$

• Full run-2 ADS/GLW analysis, many final states

- $B^{\pm} \rightarrow D^{0} K^{\pm}, B^{\pm} \rightarrow D^{0} \pi^{\pm}, B^{\pm} \rightarrow D^{0^{*}} K^{\pm}, B^{\pm} \rightarrow D^{0^{*}} \pi^{\pm}$
- $D^0 \rightarrow K^+ K^-$, $D^0 \rightarrow K^+ \pi^-$, $D^0 \rightarrow \pi^+ \pi^-$
- Very precise input for gamma

LHCb, arXiv:2012.09903, JHEP 04(2021) 081

Constraints on angle γ - with $B^{\pm} \rightarrow D^0 h^{\pm}$ and $D^0 \rightarrow h^{\pm} h^{\pm} \pi^0$

- Different yields for B^+ and B^- decays
 - two amplitudes contribute with different relative phase: $V_{ub} = |V_{ub}|e^{-i\gamma}$

Constraints on angle γ - with $B^{\pm} \rightarrow D^{0}K^{\pm}$ and $D^{0} \rightarrow K^{\mp} \pi^{\pm} \pi^{\pm} \pi^{\mp}$

- Different yields for *B*⁺ and *B*⁻ decays
 - two amplitudes contribute with different relative phase: $V_{ub} = |V_{ub}|e^{-i\gamma}$

CKM angle *γ*: Combination

- Different yields for *B* and anti-*B* decays
 - two amplitudes contribute with different relative phase: $V_{ub} = |V_{ub}|e^{-i\gamma}$
 - many $D^{(*)}_{(s)}$ final states:

B decay	D decay	Ref.	Dataset	Status since Ref. [14]
$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow h^+h^-$	[29]	Run 1&2	As before
$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow h^+ \pi^- \pi^+ \pi^-$	[30]	Run 1	As before
$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow K^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$	[18]	Run 1&2	New
$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow h^+ h^- \pi^0$	[19]	Run 1&2	Updated
$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow K_s^0 h^+ h^-$	[31]	Run 1&2	As before
$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow K_S^0 K^{\pm} \pi^{\mp}$	[32]	Run 1&2	As before
$B^{\pm} \rightarrow D^* h^{\pm}$	$D \rightarrow h^+ h^-$	[29]	Run 1&2	As before
$B^{\pm} \rightarrow DK^{*\pm}$	$D \rightarrow h^+ h^-$	[33]	Run 1&2(*)	As before
$B^{\pm} \rightarrow DK^{*\pm}$	$D \rightarrow h^+ \pi^- \pi^+ \pi^-$	[33]	Run 1&2(*)	As before
$B^{\pm} \rightarrow Dh^{\pm}\pi^{+}\pi^{-}$	$D \rightarrow h^+ h^-$	[34]	Run 1	As before
$B^0 \rightarrow DK^{*0}$	$D \rightarrow h^+ h^-$	[35]	Run 1&2(*)	As before
$B^0 \rightarrow DK^{*0}$	$D \rightarrow h^+ \pi^- \pi^+ \pi^-$	[35]	Run 1&2(*)	As before
$B^0 \rightarrow DK^{*0}$	$D \rightarrow K_s^0 \pi^+ \pi^-$	[36]	Run 1	As before
$B^0 \rightarrow D^{\mp} \pi^{\pm}$	$D^+ \rightarrow K^- \pi^+ \pi^+$	[37]	Run 1	As before
$B^0_* \rightarrow D^{\mp}_* K^{\pm}$	$D^+_* \rightarrow h^+ h^- \pi^+$	[38]	Run 1	As before
$B_s^0 \rightarrow D_s^{\mp} K^{\pm} \pi^+ \pi^-$	$D_s^+ \rightarrow h^+h^-\pi^+$	[39]	Run 1&2	As before
D decay	Observable(s)	Ref.	Dataset	Status since Ref [14]
$D^0 \rightarrow h^+ h^-$	ΛA_{CP}	[24 40 41]	Run 1&2	As before
$D^0 \rightarrow K^+ K^-$	$A_{CP}(K^+K^-)$	[16 24 25]	Run 2	New
$D^0 \rightarrow h^+h^-$	$u_{CP} = u_{CP}^{K^- \pi^+}$	[42]	Run 1	As before
$D^0 \rightarrow h^+h^-$	$y_{CP} - u_{CP}^{K^-\pi^+}$	[15]	Run 2	New
$D^0 \rightarrow h^+h^-$	ΔY	[43-46]	Run 1&2	As before
$D^0 \rightarrow K^+ \pi^-$ (Single	Tag) R^{\pm} , $(x'^{\pm})^2$, u'^{\pm}	[47]	Run 1	As before
$D^0 \rightarrow K^+\pi^-$ (Double	e Tag) R^{\pm} , $(x'^{\pm})^2$, y'^{\pm}	[48]	Run 1&2(*)	As before
$D^0 \rightarrow K^{\pm} \pi^{\mp} \pi^+ \pi^-$	$(x^2 + y^2)/4$	[49]	Run 1	As before
$D^0 \rightarrow K_s^0 \pi^+ \pi^-$	x, y	[50]	Run 1	As before
$D^0 \rightarrow K_s^0 \pi^+ \pi^-$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	[51]	Run 1	As before
$D^0 \rightarrow K_s^0 \pi^+ \pi^-$	$x_{CP}, y_{CP}, \Delta x. \Delta y$	[52]	Run 2	As before
$D^0 \rightarrow K_0^0 \pi^+ \pi^- (\mu^- t)$	$ran u cn \Delta r \Delta u$	[17]	Bun 2	New

LHCb-CONF-2022-002, Oct 2022

CKM angle γ

- Different yields for *B* and anti-*B* decays
 - two amplitudes contribute with different relative phase: $V_{ub} = |V_{ub}|e^{-i\gamma}$
 - many $D^{(*)}_{(s)}$ final states:

	B decay	D decay	Ref.	Dataset	Status since Ref. [14]
	$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow h^+ h^-$	[29]	Run 1&2	As before
	$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow h^+ \pi^- \pi^+ \pi^-$	[30]	Run 1	As before
	$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow K^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$	[18]	Run 1&2	New
	$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow h^+ h^- \pi^0$	[19]	Run 1&2	Updated
	$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow K_s^0 h^+ h^-$	[31]	Run 1&2	As before
	$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow K_S^0 K^{\pm} \pi^{\mp}$	[32]	Run 1&2	As before
	$B^{\pm} \rightarrow D^* h^{\pm}$	$D \rightarrow h^{+}h^{-}$	[29]	Run 1&2	As before
	$B^{\pm} \rightarrow DK^{*\pm}$	$D ightarrow h^+ h^-$	[33]	Run 1&2(*)	As before
	$B^{\pm} \rightarrow DK^{*\pm}$	$D \rightarrow h^+ \pi^- \pi^+ \pi^-$	[33]	Run 1&2(*)	As before
	$B^{\pm} \rightarrow Dh^{\pm}\pi^{+}\pi^{-}$	$D ightarrow h^+ h^-$	[34]	Run 1	As before
	$B^0 \rightarrow DK^{*0}$	$D \rightarrow h^+ h^-$	[35]	Run 1&2(*)	As before
	$B^0 \rightarrow DK^{*0}$	$D \to h^+ \pi^- \pi^+ \pi^-$	[35]	Run 1&2(*)	As before
	$B^0 \rightarrow DK^{*0}$	$D \rightarrow K_s^0 \pi^+ \pi^-$	[36]	Run 1	As before
	$B^0 \rightarrow D^{\mp} \pi^{\pm}$	$D^+ \rightarrow K^- \pi^+ \pi^+$	[37]	Run 1	As before
	$B_s^0 \rightarrow D_s^{\mp} K^{\pm}$	$D_s^+ \rightarrow h^+ h^- \pi^+$	[38]	Run 1	As before
	$B_s^0 \rightarrow D_s^{\mp} K^{\pm} \pi^+ \pi^-$	$D_s^+ \rightarrow h^+ h^- \pi^+$	[39]	Run 1&2	As before
	D decay	Observable(s)	Ref.	Dataset	Status since Ref. [14]
	$D^0 \rightarrow h^+ h^-$	ΔA_{CP}	[24, 40, 41]	Run 1&2	As before
	$D^0 \rightarrow K^+ K^-$	$A_{CP}(K^+K^-)$	[16, 24, 25]	Run 2	New
	$D^0 \rightarrow h^+ h^-$	$u_{CP} - u_{CP}^{K^- \pi^+}$	[42]	Run 1	As before
	$D^0 \rightarrow h^+ h^-$	$y_{CP} - y_{CP}^{K^-\pi^+}$	[15]	Run 2	New
	$D^0 \rightarrow h^+ h^-$	ΔY	[43-46]	Run 1&2	As before
	$D^0 \rightarrow K^+ \pi^-$ (Single Tag)	$R^{\pm}, (x'^{\pm})^2, y'^{\pm}$	[47]	Run 1	As before
	$D^0 \rightarrow K^+\pi^-$ (Double Tag)	$R^{\pm}, (x'^{\pm})^2, y'^{\pm}$	[48]	Run 1&2(*)	As before
	$D^0 \rightarrow K^{\pm} \pi^{\mp} \pi^+ \pi^-$	$(x^2 + y^2)/4$	[49]	Run 1	As before
	$D^0 \rightarrow K_s^0 \pi^+ \pi^-$	x, y	[50]	Run 1	As before
	$D^0 \rightarrow K_S^0 \pi^+ \pi^-$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	[51]	Run 1	As before
	$D^0 \rightarrow K_S^0 \pi^+ \pi^-$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	[52]	Run 2	As before
\sim	$D^0 \rightarrow K_c^0 \pi^+ \pi^- (\mu^- \text{ tag})$	T_{CD} μ_{CD} ΔT $\Delta \mu$	[17]	Run 2	New

	γ (°)
LHCb	63.8 ^{+3.5} -3.7 [°]
CKMfitter	65.6 ^{+1.1} -2.7 [°]
UTFit	65.8 ^{+2.2} -2.2°

Precision Δm_s with $B^0_s \rightarrow D_s^+ \pi^-$

- Legacy "textbook" run-2 measurement
- Flavour specific : final state reveals flavour of the decaying B
- Precision: 3 x 10⁻⁴
- "Standard candle" for run-3
- Analysis
 - 2D mass fit on B_s^0 and D_s^+ mass, followed by decay time fit
 - Detailed study of tagging, decay time resolution and bias

Precision Δm_s with $B^0_s \rightarrow D_s^+ \pi^-$

- Legacy "textbook" run-2 measurement
- Flavour specific : final state reveals flavour of the decaying B
- Precision: 3 x 10⁻⁴
- "Standard candle" for run-3

	Δm _s	Stat	Sys	Ref.
$B^0{}_s \rightarrow D_s^+ \pi^-$	17.7683	0.0051	0.0032	arXiv:2104.04421 Nature Physics 18, (2022) 1-5
$B^0{}_s \rightarrow D_s^+ \pi^- \pi^- \pi^-$	17.757	0.007	0.008	arXiv:2011.12041 JHEP 03(2021)137
Combination	17.7656	0.0057		arXiv:2104.04421 Nature Physics 18, (2022) 1-5

Measurement $|V_{ub}|/|V_{cb}|$ from $B(B_s^0 \rightarrow K^- \mu^+ v)$

• Interesting input to $|V_{ub}|$! (and form factor calculations)

HFLAV, 2021

CKM: recent results

- So far so good, but stay vigilant...
 - V_{ub} and V_{cb} : incl. and excl. measurements differ...
 - V_{us} : too small for unitarity (Cabibbo angle anomaly)
 - $K\pi$ puzzle: CP asymmetries should be related through isospin symmetry...
 - $BR(B \rightarrow Dh)$: Factorisation?

4.6 4.4 4.4 $\Delta \chi^2 = 1.0$ contours Exclusive |V Exclusive |V_ |V_h|: GGOU |V_{cb}|: global fit $|\mathbf{V}_{ub}|/|\mathbf{V}_{cb}|$ $\geq_{4.2}$ HFLAV Average 3.8 3.6 3.4 3.2 HFLAV 3 2.8 $P(\gamma^2) = 8.99$ 36 38 40 42 $|V_{cb}| [10^{-3}]$ Belfatto, Berezhiani, arXiv:2103.0554 Marciano '06 Czarnecki '19 B-decays Seng '18 Nr=2+1 FLAG 17 K_L₂ FLAG 19 Nr=2+1 FLAG 17 KI3 FLAG 19 + MILC 19 0.222 0.224 0.226 0.228 0.230 V_{us} Fleischer, Jaarsma, Malami, Vos, arXiv:1806.08783 0.8 Current data STR Sum ruk endiction -8.2 0.1 Skidmore, 2 Jun 2022, Siegen Workshop $\mathcal{B}(\bar{B^0} \rightarrow D^+K^-)$ (Belle 2111.04978) Theo. predictio (2103.04138v2) Theo. prediction (2007.10338) $\mathcal{B}(\bar{B^0} \rightarrow D^+K^-)$ Current exp. (PDG) $\mathcal{B}(\bar{B^0} \rightarrow D^{*+}K^-)$ LHCb Run 3 $\mathcal{B}(\bar{B}^0_s \rightarrow D^+_s \pi^-)$ $\mathcal{B}(\bar{B}^0_s \rightarrow D^{*+}_s \pi^{-1})$ $\mathcal{B}(\bar{B^0} \rightarrow D^+\pi^-)$ $\mathcal{B}(\bar{B^0} \rightarrow D^{*+}\pi^-)$ $\mathcal{B}(\bar{B}^0_* \rightarrow D^+_* K^-)$ 3 Branching fraction (Units of 10^{-3} for $b \rightarrow c\bar{u}d$ and 10^{-4} for $b \rightarrow c\bar{u}s$ decays)

Outline

- CKM elements
 - $sin 2\beta$
 - γ
 - $-\Delta m_s$
 - $-V_{ub}$
- Flavour Anomalies
 - $b \rightarrow c \ \tau \nu$
 - $b \rightarrow s \ell^{\scriptscriptstyle +} \ell^{\scriptscriptstyle -}$
- Prospects
 - Upgrade
 - Upgrade II

Semileptonic CC $b \rightarrow cl^{-}v$ "Semileptonic" FCNC EWP Penguin $b \rightarrow sl^+l^-$

New measurement of $R(D^*)$ vs R(D) !

- Signal
 - $B \rightarrow D^* l^- v$ $\rightarrow (D^{*+} \mu)$ sample
 - $B^+ \rightarrow D^0 l^- v$ $\rightarrow (D^0 \mu)$ sample
- Main backgrounds:
 - $B \rightarrow DDX$

New measurement of R(D*) vs R(D) !

• Simultaneous 3D-fit (m_{miss} , E_{μ} , q^2) to 2x4 samples

Courtesy: P.Hamilton, Impl.Workshop, 19 Oct 2022, LHCb-PAPER-2022-039, in preparation

Courtesy: P.Hamilton, Impl.Workshop, 19 Oct 2022 LHCb-PAPER-2022-039, in preparation

New measurement of $B \rightarrow D^{\nu} \mu \nu$ B $\rightarrow D^{\nu} \mu \nu$ B $\rightarrow D^{\nu} \mu \nu$ vs R(D) ! *) $\dot{B} \rightarrow D^0 \dot{D} X$ Fit was checked on specifies amples: 85 GeV2/c4LHC 0.40 < q² < 2.85 GeV²/c⁴LHCb I $| (\Lambda_b \rightarrow D^0 \mu p X) enriched$ $(\eta \rightarrow \pi^+ \pi^- \pi^0)$ enriched Missing mass2 (GeV / c2)2 Missing mass² (GeV / c²)² Missing mass² (GeV / c²)² Missing mass2 (GeV / c2)2 Missing mass² (GeV / c²) Missing mass2 (GeV / c2)2 Missing mass2 (GeV / c2)2 Missing mass² (GeV / c²)² $9.35 < q^2 < 12.6 \text{ GeV}^2$ -0.40 < q² < 2.85 GeV²/c⁴LHCb pro $B \rightarrow D^0 \mu \nu$ $B \rightarrow D$ $B \rightarrow D^{*0} \mu \nu$ $B \rightarrow D$ Comb. + Fake $B \rightarrow D^{**} \mu \nu$ $B \rightarrow D^0 D X$ ᠊ᡆᠧᡗᢑᢧᠧᡗᡀᠬᠣ →Dτν ALC - COLOR $B \rightarrow D \tau v$ Template stats Templat E_u (MeV) E. (MeV) E_u (MeV) E_u (MeV 9.35 < q² < 12.6 GeV²/c⁴ LHCb F 2.85 GeV²/c⁴LHCb pr -0.40 < q2 < 2.85 GeV2/c4LHC 6.10 < q2 < 9.35 GeV2/ $(D^* non-\mu)$ enriched $(\phi \rightarrow KK)$ enriched Missing mass² (GeV / c²)² Missing mass² (GeV / c²)² Missing mass2 (GeV / c2)2 Missing mass² (GeV / c²)² Missing mass² (GeV / c²)² Missing mass² (GeV / c²)² Missing mass2 (GeV / c2) Missing mass² (GeV / c²) 0.40 x n² x 2.85 GeV²/c¹LHCb prelin 6.10 GeV²/c⁴ LHCb preli →D⁰ u ν $B \rightarrow D$ $B \rightarrow D^{*0} \mu \nu$ $B \rightarrow D^*$ → D^{*+} ս չ $B \rightarrow D^*$ omb. + Fake Comb. + →D̃uν $B \rightarrow D$ • D⁰ D X ┍┰┍┛╟╖╹┶╦┍╼┚╼ _nalla_l →Dτv $B \rightarrow D^{\dagger} \tau \nu$ $B \rightarrow D^*$ E_a (MeV) Template stats E, (MeV) E_u (MeV) E_{μ} (MeV) Template 6.10 GeV²/c⁴ LHCb $9.35 < q^2 < 12.6 \text{ GeV}^2/c^4 \frac{LHO}{3.05}$ eV²/c⁴ LHC $35 < a^2 < 12.6 \text{ GeV}^2/c$ $(D^*\mu + 3\pi)$ enriched (DD WS-K) enriched Missing mass2 (GeV / c2)2 Missing mass2 (GeV / c2)2 Missing mass2 (GeV / c2)2 Missing mass2 (GeV / c2) Missing mass2 (GeV / c2)2 $6.10 < a^2 < 9.35 \text{ GeV}^2/c^4 \text{ LHCb}$ $9.35 < q^2 < 12.6 \text{ GeV}^2/c^4 \frac{\text{LHCb}}{3.0 \text{c}^3} \text{P}$ 9.35 < q² < 12.6 GeV²/c⁴ LHCb pr ᢩᠳᢙᡀᡘ᠘

New measurement of $R(D^*)$ vs R(D) !

• World average 3.3σ to 3.2σ

New measurement of $R(D^*)$ vs R(D) !

• World average 3.3σ to 3.2σ

Semileptonic CC $b \rightarrow cl^{-}v$ "Semileptonic" FCNC EWP Penguin $b \rightarrow sl^+l^-$

$B_s^0 \rightarrow \mu^+ \mu^-$

• Purely leptonic $b \rightarrow sl^+l^-$

+ $B_s^0 \rightarrow e^+e^-$ (LHCb, arXiv:2003.03999) + $B_s^0 \rightarrow T^+T^-$ (LHCb, arXiv:1703.02508)

$$B_s^0 \rightarrow \mu^+ \mu^-$$
 (LHCb)

LHCb Coll. arXiv:2108.09284

Theory:

$$B(B_s^0 \to \mu^+ \mu^-) = (3.66 \pm 0.14) \times 10^{-9}$$
 $B(B^0 \to \mu^+ \mu^-) = (1.03 \pm 0.05) \times 10^{-10}$
 \mathcal{B}

Beneke, Bobeth, Szafron, arXiv:1908.07011

$$\begin{array}{c|c}
\mathcal{B}(B_s^0 \to \mu^+ \mu^-) &= \left(3.09 \substack{+0.46 + 0.15 \\ -0.43 - 0.11}\right) \times 10^{-9} \\
\mathcal{B}(B^0 \to \mu^+ \mu^-) < 2.6 \times 10^{-10} \\
\mathcal{B}(B_s^0 \to \mu^+ \mu^- \gamma)_{m_{\mu\mu} > 4.9 \, \text{GeV}/c^2} < 2.0 \times 10^{-9}
\end{array}$$

• Relative production of B_s^0 wrt B^0 mesons, f_s/f_d :

LHCb Coll. arXiv:2108.09284

 $\begin{array}{lll} f_s/f_d \left(7 \,\text{TeV}\right) &=& 0.2390 \pm 0.0076 \\ f_s/f_d \left(8 \,\text{TeV}\right) &=& 0.2385 \pm 0.0075 \\ f_s/f_d \left(13 \,\text{TeV}\right) &=& 0.2539 \pm 0.0079 \end{array} \left| \begin{array}{ll} f_s/f_d & \left(p_{\rm T}, 7 \,\text{TeV}\right) &=& \left(0.244 \pm 0.008\right) + \left(\left(-10.3 \pm 2.7\right) \times 10^{-4}\right) \cdot p_{\rm T} \\ f_s/f_d & \left(p_{\rm T}, 8 \,\text{TeV}\right) &=& \left(0.240 \pm 0.008\right) + \left(\left(-3.4 \pm 2.3\right) \times 10^{-4}\right) \cdot p_{\rm T} \\ f_s/f_d & \left(p_{\rm T}, 13 \,\text{TeV}\right) &=& \left(0.263 \pm 0.008\right) + \left(\left(-17.6 \pm 2.1\right) \times 10^{-4}\right) \cdot p_{\rm T} \end{array}$

(Integrated, p_{T} [0.5,40] GeV/c, η [2.6,4])

LHCb Coll, arXiv:2103.06810

$$\begin{aligned} \mathcal{B}(\mathrm{B}^{0}_{\mathrm{s}} \to \mu^{+}\mu^{-}) &= \left[3.83^{+0.38}_{-0.36} \,\, (\mathrm{stat}) \, {}^{+0.19}_{-0.16} \, (\mathrm{syst}) \, {}^{+0.14}_{-0.13} \, (f_{\mathrm{s}} \, / \, f_{\mathrm{u}}) \right] \times 10^{-9} \\ \mathcal{B}(\mathrm{B}^{0} \to \mu^{+}\mu^{-}) &= \left[0.37^{+0.75}_{-0.67} \,\, (\mathrm{stat}) \, {}^{+0.08}_{-0.09} \, (\mathrm{syst}) \right] \times 10^{-10}. \end{aligned}$$

July tes 2022Kovalskyi (CMS), ICHEP, 9 July 2022, [CMS-PAS-BPH-21-006]

Decay rates

39

$b \rightarrow s|^+|^-$

Rich laboratory:

- 1) Purely leptonic
- 2) Decay rates
- 3) Angular asymmetries
- 4) Ratio of decay rates

Decay rates

Decay rate with muons in final state consistently low:

Decay rates

Decay rate with muons in final state consistently low:

Angular asymmetries

Angular asymmetries: eg. P₅'

• Compilation:

Angular asymmetries

• Interesting to compare angular asymmetries for μ and e

$B^0 \rightarrow K^0 * \mu^+ \mu^-$: more than just P_5'

• Many measurements:

• Historical example

• Both are correct, depending on the energy scale you consider

• Historical example

• Analog: Flavour-changing neutral current

- Effective coupling can be of various "kinds"
 - Vector coupling: C₉
 - Axial coupling: C₁₀
 - Left-handed coupling (V-A): C₉-C₁₀
 - Right-handed (to quarks): C_9' , C_{10}' , ...

Analog: <u>Flavour-changing neutral current</u>

• C_7 (photon), C_9 (vector) and C_{10} (axial) couplings hide everywhere:

$$\begin{split} A_{\perp}^{L,R} \propto \begin{pmatrix} C_{9}^{eff} \end{pmatrix} + C_{9}^{efff} \end{pmatrix} &= \begin{pmatrix} C_{10}^{eff} \end{pmatrix} + C_{10}^{efff} \end{pmatrix} \frac{V(q^{2})}{m_{B} + m_{K^{*}}} + \frac{2m_{t}}{q^{2}} \begin{pmatrix} C_{7}^{eff} \end{pmatrix} + C_{7}^{efff} \end{pmatrix} T_{1}(q^{2})] \\ A_{\parallel}^{L,R} \propto \begin{pmatrix} C_{9}^{eff} \end{pmatrix} - C_{9}^{efff} \end{pmatrix} &= \begin{pmatrix} C_{10}^{eff} \end{pmatrix} - C_{10}^{efff} \end{pmatrix} \frac{A_{1}(q^{2})}{m_{B} + m_{K^{*}}} + \frac{2m_{t}}{q^{2}} \begin{pmatrix} C_{7}^{efff} \end{pmatrix} - C_{7}^{efff} \end{pmatrix} T_{2}(q^{2})] \\ A_{0}^{L,R} \propto \begin{pmatrix} C_{9}^{eff} \end{pmatrix} - C_{9}^{efff} \end{pmatrix} = \begin{pmatrix} C_{10}^{efff} \end{pmatrix} - C_{10}^{effff} \end{pmatrix} \\ &= \begin{pmatrix} M_{L}^{L2} - A_{\parallel}^{L2} \\ A_{\perp}^{L2} + A_{\parallel}^{L2} + A_{0}^{L2} + L \rightarrow R \\ A_{0}^{L,R} \propto \begin{pmatrix} C_{9}^{eff} \end{pmatrix} - C_{9}^{efff} \end{pmatrix} \\ &= \begin{pmatrix} C_{10}^{efff} \end{pmatrix} - C_{10}^{effff} \end{pmatrix} \\ &= \begin{pmatrix} C_{10}^{efff} \end{pmatrix} \\ &= \begin{pmatrix} C_{10}^{efff} \end{pmatrix} + C_{10}^{effff} \end{pmatrix} \\ &= \begin{pmatrix} C_{10}^{efff} \end{pmatrix} \\ \\ &= \begin{pmatrix} C_{10}^{efff} \end{pmatrix} \\ &= \begin{pmatrix} C_{10}^{efff} \end{pmatrix} \\ &= \begin{pmatrix} C_{10}^{efff} \end{pmatrix} \\ &= \begin{pmatrix} C_{1$$

Coherent pattern

Coherent pattern

Model independent fits:

- C_9^{NP} deviates from 0 by >4 σ
- Independent fits by many groups favour:
 - C₉^{NP}=-1 or
 - C₉^{NP}=-C₁₀^{NP}

>All measurements (175) agree with a single (simple?) shift...

	all rare <i>B</i> decay			
Wilson coefficient	best fit	pull		
$C_9^{bs\mu\mu}$	$-0.82^{+0.14}_{-0.14}$	6.2σ		
$C_{10}^{bs\mu\mu}$	$+0.56^{+0.12}_{-0.12}$	4.9σ		
$C_9^{\prime bs\mu\mu}$	$-0.09^{+0.13}_{-0.13}$	0.7σ		
$C_{10}^{\prime bs\mu\mu}$	$+0.01^{+0.10}_{-0.09}$	0.1σ		
$C_9^{bs\mu\mu} = C_{10}^{bs\mu\mu}$	$-0.06^{+0.11}_{-0.11}$	0.5σ		
$C_9^{bs\mu\mu} = -C_{10}^{bs\mu\mu}$	$-0.43^{+0.07}_{-0.07}$	6.2σ		

h

Similar improvement of fit for both scenario's

NB: p-value SM hypothesis ~0.5%

S

 μ^+

Coherent pattern

• Charm loop effects could also cause a shift in C₉

From: Martino Borsato, Flavour Anomaly Workshop, 20 Oct 2021, https://indico.cern.ch/event/1055780/

Ratio of decay rates

$$R_{K} = \frac{\mathcal{B}(B^{+} \to K^{+} \mu^{+} \mu^{-})}{\mathcal{B}(B^{+} \to K^{+} J/\psi(\mu^{+} \mu^{-}))} \Big/ \frac{\mathcal{B}(B^{+} \to K^{+} e^{+} e^{-})}{\mathcal{B}(B^{+} \to K^{+} J/\psi(e^{+} e^{-}))}$$

- Theoretically "clean"
- Experimentally
 - Signal yields
 - Backgrounds
 - Electron reconstruction
 - Efficiencies cancel in ratio
 - Belle II: good electron reconstruction
 - LHCb: large B sample

Analyses – where are we?

Analysis	Run 1 2011-2012	Run 2015-2016	2 2017-2018
$B_{(s)} \to \!\! \mu \mu$	✓	v	v
B⁰→K ⁰ *µµ (ang)	\checkmark	\checkmark	
Β+ _{/(s)} →K*+/φμμ (ang)	\checkmark	V	~
R _K	v	 ✓ 	v
$R_{K^*}(R_X)$	v		
R _{pK}	v	v	
R _{KS,RK*+}	v	~	v
$R_{\phi,Knn,n,\Lambda}$			
R(D*)	v		
R(D)	v		
$R(\Lambda_c)$	v	v	v
+ many others			

- We are working on a unified analysis of $B^+ \rightarrow K^+ l^+ l^-$ and $B^0 \rightarrow K^{*0} l^+ l^-$ decay ratios with electron and muon final states
 - Final Run-1 and 2 results on these key $b \rightarrow sll$ LFNU observables
 - Important checks in the absence of competitive results from other experiments
- Will lead to a deeper understanding of our LFNU measurements and will be reflected in our final results

Outline

- CKM elements
 - $sin 2\beta$
 - γ
 - $-\Delta m_s$
 - $-V_{ub}$
- Anomalies
 - $\ b \to c \ \tau \nu$
 - $\quad b \to s \ \ell^+ \ \ell^-$
- Prospects
 - Upgrade
 - Upgrade II

Future Plans

2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035-	F
			Run III	[Rur	ו IV					Ru	n V
LS2						LS3						LS4			
LHCb 4 UPGRA	O MHZ	L	$= 2 \times 10^{\circ}$)33	LHCb Consol	idate		L	$= 2 x 10^{-1}$)33		LHCb UPGRA	ADE II	L=1-2 300	2x10 ³⁴ fb ⁻¹
ATLAS Phase I	Upgr	L	$= 2 \times 10^{\circ}$)34	ATLAS Phase	II UPG	RADE	L	$\mathbf{HL-LH} = 5 \times 10^{-1}$	C)34				$\begin{array}{l} \textbf{HL-L} \\ L = 5 \end{array}$.HC x10 ³⁴
CMS Phase I	Upgr		300 fb ⁻¹		CMS Phase	II UPG	RADE							3000) fb ⁻¹
Belle I	I	L = 3	$x \ 10^{35}$			7 ab-1					L = 6 :	$x 10^{35}$	50 a	ab-1	

LHC schedule:

https://lhc-commissioning.web.cern.ch/schedule/LHC-long-term.htm

You are here!

Where do we go from here?

Ring Imaging Cherenkov

Calorimeter & Muon detector

New CALO frontend and control boards

MUON Station 2 Hit map

... and beyond!

2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	÷
			Run II	I				Rui	n IV					Ru	n V
LS2						LS3						LS4			
LHCb 4 UPGRA	10 MHz ADE I	L	= 2 x 10	<u>)</u> 33	LHCb Consol	idate		L	$= 2 x 10^{-1}$	<u>)</u> 33		LHCb UPGR/	ADE II	L=1-2 300	2x10 ³⁴ fb ⁻¹
ATLAS Phase I	Upgr	L	= 2 x 10)34	ATLAS Phase	II UPG	RADE	L	$= 5 \times 10^{-1}$	C) ³⁴				$\begin{array}{l} \textbf{HL-L} \\ L = 5 \end{array}$	HC x10 ³⁴
CMS Phase I	Upgr		300 fb ⁻¹		CMS Phase	II UPG	RADE							3000	0 fb ⁻¹
Belle I	I	L=3	$x 10^{35}$			7 ab-1					L = 6	x 10 ³⁵	50 0	<i>ab-1</i>	

Liverpool – 7 Nov 2022 64

Planning for Upgrade II: many analyses stat. limited

Observable	Current	LHCb	$_{ m Upgr}$	ade I
	(up to s	$9\mathrm{fb}^{-1}$)	$(23{ m fb}^{-1})$	$(50{ m fb}^{-1})$
CKM tests				
$\gamma~(B ightarrow DK,~etc.)$	4°	[9, 10]	1.5°	1°
$\phi_s \; \left(B^0_s ightarrow J\!/\psi \phi ight)$	$49\mathrm{mrac}$	1 [8]	$14\mathrm{mrad}$	$10\mathrm{mrad}$
$ V_{ub} / V_{cb} ~(\Lambda^0_b o p\mu^-\overline{ u}_\mu)$	6%	[30]	3%	
$a^d_{ m sl}~(B^0 o D^- \mu^+ u_\mu)$	36×10^{-1}	$^{-4}$ [34]	8×10^{-4}	$5 imes 10^{-4}$
$a^{\overline{s}}_{ m sl}~(B^0_s ightarrow D^s\mu^+ u_\mu)$	$33 imes 10^{-1}$	$^{-4}$ [35]	$10 imes 10^{-4}$	$7 imes 10^{-4}$
<u>Charm</u>				
$\Delta A_{C\!P}~(D^0 ightarrow K^+ K^-, \pi^+ \pi^-)$	29×10^{-1}	$^{-5}$ [5]	$17 imes 10^{-5}$	
$A_{\Gamma}~(D^0 ightarrow K^+ K^-, \pi^+ \pi^-)$	13×10^{-1}	$^{-5}$ [38]	$4.3 imes 10^{-5}$	
$\Delta x \left(D^0 ightarrow K^0_{ m s} \pi^+ \pi^- ight)$	18×10^{-1}	$^{-5}$ [37]	$6.3 imes10^{-5}$	$4.1 imes 10^{-5}$
Rare Decays				
$\overline{\mathcal{B}(B^0 o \mu^+ \mu^-)}/\mathcal{B}(B^0_s o \mu^+ \mu^-)$	(-) 71%	[40, 41]	34%	
$S_{\mu\mu} \left(B^0_s ightarrow \mu^+ \mu^- ight)$				_
$A_{ m T}^{(2)}~(B^0 o K^{*0} e^+ e^-)$	0.10	[52]	0.060	0.043
$A_{ m T}^{ m Im}~(B^0 ightarrow K^{st 0} e^+ e^-)$	0.10	[52]	0.060	0.043
${\cal A}^{ar \Delta \Gamma}_{\phi\gamma}(B^0_s o \phi\gamma)$	$^{+0.41}_{-0.44}$	[51]	0.124	0.083
$S_{\phi\gamma}(B^0_s o \phi\gamma)$	0.32	[51]	0.093	0.062
$lpha_\gamma(\Lambda^0_b o\Lambda\gamma)$	$^{+0.17}_{-0.29}$	[53]	0.148	0.097
Lepton Universality Tests				
$R_K \ (B^+ o K^+ \ell^+ \ell^-)$	0.044	[12]	0.025	0.017
$R_{K^*} \; (B^0 o K^{*0} \ell^+ \ell^-)$	0.10	[61]	0.031	0.021
$R(D^*) \ (B^0 o D^{*-} \ell^+ u_\ell)$	0.026	[62, 64]	0.007	

Planning for Upgrade II

- Increase instantaneous luminosity to 1.5 x 10³⁴ cm⁻²s⁻¹
- Increase integrated luminosity to 300 fb⁻¹

Planning for Upgrade II: Physics Reach

Observable	Current LHCb	$_{\mathrm{Upgr}}$	ade I	Upgrade II
	$(up to 9 fb^{-1})$	$(23{ m fb}^{-1})$	$(50{ m fb}^{-1})$	$(300{ m fb}^{-1})$
CKM tests				
$\gamma~(B ightarrow DK,~etc.)$	4° [9,10]	1.5°	1°	0.35°
$\phi_s \; \left(B^0_s ightarrow J\!/\psi \phi ight)$	$49 \mathrm{mrad}$ [8]	$14\mathrm{mrad}$	$10\mathrm{mrad}$	$4\mathrm{mrad}$
$ V_{ub} / V_{cb} ~(\Lambda^0_b o p\mu^-\overline{ u}_\mu)$	6% [30]	3%		1%
$a^d_{ m sl}~(B^0 o D^- \mu^+ u_\mu)$	$36 imes 10^{-4}$ [34]	$8 imes 10^{-4}$	$5 imes 10^{-4}$	$2 imes 10^{-4}$
$a^{s}_{ m sl} \; (B^0_s o D^s \mu^+ u_\mu)$	$33 imes 10^{-4}$ [35]	$10 imes 10^{-4}$	$7 imes 10^{-4}$	$3 imes 10^{-4}$
<u>Charm</u>				
$\Delta A_{C\!P}~(D^0 ightarrow K^+ K^-, \pi^+ \pi^-)$	29×10^{-5} [5]	$17 imes 10^{-5}$		$3.0 imes10^{-5}$
$A_{\Gamma} \ (D^0 ightarrow K^+ K^-, \pi^+ \pi^-)$	13×10^{-5} [38]	$4.3 imes 10^{-5}$		$1.0 imes 10^{-5}$
$\Delta x ~(D^0 ightarrow K_{ m s}^0 \pi^+ \pi^-)$	18×10^{-5} [37]	$6.3 imes 10^{-5}$	$4.1 imes 10^{-5}$	$1.6 imes 10^{-5}$
Rare Decays				
$\overline{\mathcal{B}(B^0 \to \mu^+ \mu^-)}/\mathcal{B}(B^0_s \to \mu^+ \mu)$	$^{-}$) 71% [40,41]	34%	_	10%
$S_{\mu\mu} \; (B^0_s o \mu^+ \mu^-)$			—	0.2
$A_{ m T}^{(2)}~(B^0 o K^{*0} e^+ e^-)$	0.10 [52]	0.060	0.043	0.016
$A_{\mathrm{T}}^{\mathrm{Im}}~(B^0 ightarrow K^{*0} e^+ e^-)$	0.10 [52]	0.060	0.043	0.016
${\cal A}^{ar\Delta\Gamma}_{\phi\gamma}(B^0_s o \phi\gamma)$	$^{+0.41}_{-0.44}$ [51]	0.124	0.083	0.033
$S_{\phi\gamma}(B^0_s o \phi\gamma)$	0.32 [51]	0.093	0.062	0.025
$lpha_{\gamma}(\Lambda^0_b o \Lambda \gamma)$	$^{+0.17}_{-0.29}$ [53]	0.148	0.097	0.038
Lepton Universality Tests				
$R_K (B^+ \to K^+ \ell^+ \ell^-)$	0.044 [12]	0.025	0.017	0.007
$R_{K^*} \ (B^0 o K^{*0} \ell^+ \ell^-)$	0.10 [61]	0.031	0.021	0.008
$R(D^*)~(B^0 ightarrow D^{*-}\ell^+ u_\ell)$	0.026 [62, 64]	0.007	—	0.002

Planning for Upgrade II: Physics Reach

Observable CKM tests	Current (up to	$ m t~LHCb$ $ m 9fb^{-1})$	$\begin{array}{c} {\rm Upgr}\\ (23{\rm fb}^{-1}) \end{array}$	ade I $(50\mathrm{fb}^{-1})$	$\begin{array}{c} \text{Upgrade II} \\ (300\text{fb}^{-1}) \end{array}$
$\gamma \ (B \to DK, \ etc.)$	4°	[9, 10]	1.5°	1°	0.35°
$ V_{ub} / V_{cb} ~(\Lambda^0_b o p\mu^-\overline{ u}_\mu)$	6%	[30]	3%		1%
Rare Decays		īī			
$\mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	-) 71%	[40, 41]	34%		10%
Lepton Universality Tests					
$R_K \; (B^+ o K^+ \ell^+ \ell^-)$	0.044	[12]	0.025	0.017	0.007
$R_{K^*} (B^0 \to K^{*0} \ell^+ \ell^-)$	0.10	[61]	0.031	0.021	0.008
 $R(D^*) \ (B^0 o D^{*-} \ell^+ u_\ell)$	0.026	[62, 64]	0.007		0.002

Planning for Upgrade II: started in 2017

Expression of Interest	Physics Case	Accelerator Study	Luminosity Scenarios	
LHCC-2017-003	LHCC-2018-027	CERN-ACC-2018-038	LHCb-PUB-2019-001	

- LHCC and CERN Research Board (Sep 2019)
 - "The recommendation to prepare a framework TDR for the LHCb Upgrade-II was endorsed, noting that LHCb is expected to run throughout the HL-LHC era."
- European Strategy Update (Jun 2020)
 - "The flavour physics programme made possible with the proton collisions delivered by the LHC is very rich, and will be enhanced with the ongoing and proposed future upgrade of the LHCb detector."
 - "The full potential of the LHC and the HL-LHC, including the study of flavour physics, should be exploited"

Planning for Upgrade II: Tracking

Planning for Upgrade II: PID detectors

Planning for Upgrade II: Testbeam

- Activities for RICH, VELO, ECAL, MUON
- Lots of opportunities for R&D in coming decade!

Conclusions

- Precision measurements to scrutin
- Precision measurements reach ver
- Precision measurements are not ye

 $\Delta m_d \& \Delta m_s$

CKM fitter

73

_I N /

0.7

0.6

0.5

0.4 IΩ 0.3 sin 2β

The LHCb Detector

The LHCb Detector

- Genoa - 23 Nov 2022

The LHCb Detector

7

23 sep 2010 Run 79646 Ev

19:49:24 Event 143858637

- Genoa - 23 Nov 2022

LHCD

