"Elementary Particles" Theory Lecture 6

Niels Tuning

Thanks

- Ik ben schatplichtig aan:
- Dr. Ivo van Vulpen (UvA)
- Prof. dr. ir. Bob van Eijk (UT)
- Prof. dr. Marcel Merk (VU)

Plan

Theory
Detection and sensor techn.

Plan

Schedule

1) 11 Feb: Accelerators (Harry vd Graaf) + Special relativity (Niels Tuning)
2) 18 Feb: Quantum Mechanics (Niels Tuning)
3) 25 Feb: Interactions with Matter (Harry vd Graaf)
4) 3 Mar: Light detection (Harry vd Graaf)
5) 10 Mar: Particles and cosmics (Niels Tuning)
6) 17 Mar: Forces (Niels Tuning)
7) 24 Mar: Astrophysics and Dark Matter (Ernst-Jan Buis)
break
8) 21 Apr: $\mathrm{e}^{+} \mathrm{e}^{-}$and ep scattering (Niels Tuning)
9) 28 Apr: Gravitational Waves (Ernst-Jan Buis)
10) 12 May: Higgs and big picture (Niels Tuning)
11) 19 May: Charged particle detection (Martin Franse)
12) 26 May: Applications: experiments and medical (Martin Franse)
13) 2 Jun: Nikhef excursie
14) 8 Jun: CERN excursie CANCELLED \rightarrow We try to organize special lecture(s) Tue 9 June

Homework

Homework Lecture 5

1 The J / ψ meson

The J / ψ meson is the lightest ($c \bar{c}$) bound state, and was discovered in Novemeber 1974, independently and almost at the same time, at the Stanford Linear Accelerator Center (SLAC, close to San Francisco) and at Brookhaven National Laboratories (BNL, close to New York).
a) At SLAC, the J / ψ was created in $6+6 \mathrm{GeV} e^{+} e^{-}$collissions, using the SPEAR accelerator. Draw a (Feynman) diagram of the production of the J / ψ in $e^{+} e^{-}$ collissions.
b) (EXTRA, not easy...) At Brookhaven, the J / ψ was created by shooting 30 GeV protons from the AGS accelerator, on a $B e$ target. Given the large energy of the protons, the production of the J / ψ in fact occurred through quark-quark collissions. Draw a (Feynman) diagram of the production of the J / ψ in $p+p$ collissions.
c) The J / ψ decays for about 88% to hadrons, 6% to $e^{+} e^{-}$, and 6% to $\mu^{+} \mu^{-}$. The decay to two leptons has the cleanest experimental signature, and that is how the J / ψ was discovered at both laboratories. Draw a (Feynman) diagram of the decay of $J / \psi \rightarrow \mu^{+} \mu^{-}$.
a) $e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow c \bar{c} \rightarrow J / \psi$
b) $q \bar{q} \rightarrow g g g \rightarrow c \bar{c} \rightarrow J / \psi$
c) $J / \psi \rightarrow \gamma^{*} \rightarrow \mu^{+} \mu^{-}$

Homework Lecture 5

d) Why does the J / ψ not decay to two τ-leptons?
e) Since the strong interactions is so much stronger than the electro-magnetic interaction, it is surprising that the branching fraction to leptons is still as large as 12%. Let's see why. What is the spin and color of the J / ψ meson?
f) e) What is the spin and color of a gluon?
g) f) Through the exchange of how many gluons does the hadronic decay of J / ψ mesons occur? (Now you know why question b) was difficult...)
d) The decay to two τ-leptons is kinematically not allowed, because the mass of two τ-leptons is larger than the mass of the J / ψ meson.
e) $S_{J / \psi}=1$, and all hadrons are colorless.
f) $S_{\text {gluon }}=1$, and all gluons have color.
g) $J / \psi \rightarrow 1 g$ violates color, 2 gluons add up to spin 0 , or spin- 2 , so the minimum is 3 gluons...

Homework Lecture 5

$2 R$

a) Explain why the jump in R does not seem to happen at $c \bar{c}$ threshold of 3.1 GeV , but higher.
b) Predict R for a center-of-mass energy $>10 \mathrm{GeV}$.
a) Open charm threshold starts at twice the D^{0} mass, $2 \times 1860 \mathrm{MeV}$.
b) b-quarks contribute: $R=N_{c}\left(q_{u}^{2}+q_{d}^{2}+q_{s}^{2}+q_{c}^{2}+q_{b}^{2}\right)=3(2 \times 4 / 9+3 \times 1 / 9)=33 / 9$

Homework Lecture 5

c) Explain why you see a jump above 4 GeV , but no jump above 10 GeV , on Fig.46.6 http://pdg.lbl.gov/2012/reviews/rpp2012-rev-cross-section-plots.pdf
d) What is the value of R above the $t \bar{t}$ threshold? To what value of the center-of-mass does the $t \bar{t}$ threshold correspond?
c) R changes from $3(4 / 9+1 / 9+1 / 9)=18 / 9$ to $30 / 9$ at the charm threshold, whereas it only changes from 30/9 to $33 / 9$ at the bottom threshold.
d) Above $\sqrt{s}=2 m_{t}=360 \mathrm{GeV} t$-quarks contribute: $R=N_{c}\left(q_{u}^{2}+q_{d}^{2}+q_{s}^{2}+q_{c}^{2}+q_{b}^{2}+q_{t}^{2}\right)=$ $3(3 \times 4 / 9+3 \times 1 / 9)=45 / 9=5$

Homework Lecture 5

3 Three generations

a) What are the possible final states of the decay of the Z-boson? Hint 1 : the Z decays only to fermions; not to photons, as that couples to electric charge, and not to two W particles as they are too heavy. Hint 2: remember that electric charge is conserved.
b) Write down the total decay width, as the sum of partial widths. Remember that quarks come in three types (ie. three colors)! We call the partial width to neutrinos the invisible partial width $\Gamma_{\text {inv }}$, as the neutrinos escape the detector undetected.
c) The total width of the Z is determined by measuring the total cross section of $e^{+} e^{-}$ scattering for various value of the center-of-mass, around the Z-mass. This is called the Z lineshape. The total width is measured as $\Gamma_{Z}=2495 \mathrm{MeV}$. The partial width to one lepton pair is measured as $\Gamma_{l^{+} l^{-}}=84 \mathrm{MeV}$. The partial width to all hadrons is measured as $\Gamma_{\text {had }}=1744 \mathrm{MeV}$. Calculate the invisible partial width $\Gamma_{\text {inv }}$.
d) Write an expression for the number of neutrino types in terms of the total decay width, and the partial widths.

e) Estimate the number of neutrino types in the Standard Model, assuming the following input from the Standard Model, $\Gamma_{\nu} / \Gamma_{\text {chargedlepton }}=1.991$.
a) The Z can decay to $e^{+} e^{-}, \mu^{+} \mu^{-}, \tau^{+} \tau^{-}, u \bar{u}, d d, s \bar{s}, c \bar{c}, b b$, and to $\nu \bar{\nu}$.
b) $\Gamma_{Z}=\Gamma_{e e}+\Gamma_{\mu \mu}+\Gamma_{\tau \tau}+3\left(\Gamma_{u u}+\Gamma_{d d}+\Gamma_{s s}+\Gamma_{c c}+\Gamma_{b b}\right)+\Gamma_{i n v}$.
c)

$$
\Gamma_{i n v}=\Gamma_{Z}-\Gamma_{h a d}-3 \Gamma_{l^{++l^{-}}}=2495-1744-252=499 \mathrm{MeV}
$$

d)

$$
N_{\nu}=\frac{\Gamma_{Z}-\Gamma_{h a d}-3 \Gamma_{l^{+} l^{-}}}{\Gamma_{\nu}}=\frac{\Gamma_{i n v}}{\Gamma_{\nu}}
$$

e)

$$
N_{\nu}=499 /(1.991 \times 84)=2.984
$$

Outline for today:

1) Higgs mechanism
2) Higgs discovery at ATLAS
3) CKM-mechanism
4) CP violations at LHCb

Summary Lects. 1-5

Lecture 1: Relativity

- Theory of relativity
- Lorentz transformations ("boost")
- Calculate energy in collissions

$$
\begin{array}{rlrl}
x^{\prime 0} & =\gamma\left(x^{0}-\beta x^{1}\right) & & \\
x^{\prime 1}=\gamma\left(x^{1}-\beta x^{0}\right) & \text { met } & \beta \frac{v}{c} \\
x^{\prime 2}=x^{2} & & \equiv \frac{1}{\sqrt{1-\beta^{2}}} \\
x^{\prime 3} & =x^{3} & &
\end{array}
$$

- 4-vector calculus

$$
p_{\mu} p^{\mu}=(E / c)^{2}-|\vec{p}|^{2}=\left(E^{2}-c^{2}|\vec{p}|^{2}\right) / c^{2}=\left(m_{0} c^{4}\right) / c^{2}
$$

$$
x^{\mu}=\left(\begin{array}{c}
x^{0} \\
x^{1} \\
x^{2} \\
x^{3}
\end{array}\right), \quad(\mu=0,1,2,3)
$$

- High energies needed to make (new) particles

$$
\begin{aligned}
s & =\left(p_{1}+p_{2}\right)^{2}=2 m^{2}+2\left(E^{2}+\vec{p}^{2}\right) \\
& =2 m^{2}+2 E^{2}+2\left(E^{2}-m^{2}\right)=4 E^{2}
\end{aligned}
$$

Lecture 1: 4-vector examples

- 4-vectors:

$$
x^{\mu}=\left(\begin{array}{l}
x^{0} \\
x^{1} \\
x^{2} \\
x^{3}
\end{array}\right), \quad(\mu=0,1,2,3)
$$

- Space-time
- Energie-momentum p^{μ}
- 4-potential
- Derivative ∂^{μ}
- Covariant derivative D^{μ}

$$
\partial_{\mu}\left(\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}\right)=j^{\nu}
$$

- Gamma matrices γ^{μ}

$$
p_{\mu} p^{\mu}=(E / c)^{2}-|\vec{p}|^{2}=\left(E^{2}-c^{2}|\vec{p}|^{2}\right) / c^{2}=\left(m_{0} c^{4}\right) / c^{2}
$$

$$
\partial_{\mu} \rightarrow D_{\mu} \equiv \partial_{\mu}+i q A_{\mu}
$$

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0
$$

- Tensors
- Metric

$$
\begin{aligned}
& \begin{array}{l}
x_{\mu}=g_{\mu \nu} x^{v} \\
x_{0}=x^{0}, x_{1}=-x^{1}, x_{2}=-x^{2}, x_{3}=-x^{3}
\end{array} \\
& \quad g^{\mu \nu} \\
& \quad F^{\mu \nu}
\end{aligned}
$$

- Electromagnetic tensor

$$
g_{\mu v} \equiv\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

$$
F^{\mu \nu}=\partial^{\mu} A^{\nu}(x)-\partial^{\nu} A^{\mu}(x)=\left(\begin{array}{cccc}
0 & -E_{x} & -E_{y} & -E_{z} \\
E_{x} & 0 & -B_{z} & B_{y} \\
E_{y} & B_{z} & 0 & -B_{x} \\
E_{z} & -B_{y} & B_{x} & 0
\end{array}\right)
$$

Lecture 2: Quantum Mechanics \& Scattering

- Schrödinger equation
- Time-dependence of wave function

$$
i \frac{\partial}{\partial t} \psi=\frac{-1}{2 m} \nabla^{2} \psi
$$

- Klein-Gordon equation
- Relativistic equation of motion of scalar particles

$$
-\frac{\partial^{2}}{\partial t^{2}} \phi=-\nabla^{2} \phi+m^{2} \phi
$$

> Dirac equation

- Relativistically correct, and linear
- Equation of motion for spin-1/2 particles
- Described by 4-component spinors
- Prediction of anti-matter

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0
$$

Lecture 2: Quantum Mechanics \& Scattering

- Scattering Theory
- (Relative) probability for certain process to happen
- Cross section

$$
\frac{d \sigma}{d \Omega}=D(\theta, \varphi)
$$

$\frac{d \sigma}{d \Omega}=\left(\frac{Z_{1} Z_{2} \alpha}{m v_{0}^{2}}\right)^{2} \frac{1}{4 \sin ^{4} \frac{\theta}{2}} \frac{d \sigma}{d \Omega}=\left(\frac{2 m Z_{1} Z_{2} \alpha}{q^{2}}\right)^{2}$

Scattering amplitude in Quantum Field Theory

- Fermi's Golden Rule

$$
\text { transition rate }=\frac{2 \pi}{\hbar}|\mathcal{M}|^{2} \times(\text { phase space })
$$

- Decay:
- Scattering:

"decay width"	Γ	$\boxed{a} \rightarrow \mathrm{~b}+\mathrm{c}$
"cross section"	σ	$\mathrm{a}+\mathrm{b} \rightarrow \mathrm{c}+\mathrm{d}$

Lecture 3: Quarkmodel \& Isospin

- "Partice Zoo" not elegant

- Hadrons consist of quarks
> Observed symmetries
- Same mass of hadrons:
isospin
- Slow decay of K, Λ :
strangeness
- Fermi-Dirac statistics Δ^{++}, Ω :
color
- Combining/decaying particles with (iso)spin
- Clebsch-Gordan coefficients

$\begin{array}{r} 1 / 2 \times 1 / 2 \text { r } \\ \hline+1 / 2+1 / 2 \\ \hline \end{array}$	$\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}$
$\left\lvert\, \begin{aligned} & +1 / 2-1 / 2 \\ & -1 / 2\end{aligned}\right.$	$\begin{array}{lll}1 / 2 & 1 / 2 \\ 1 / 2 & 1 / 2 & 1 \\ -1\end{array}$
	1/2-1/2 1

Lecture 4: Gauge symmetry and Interactions

- Arbitrary "gauge"
- Physics invariant
- Introduce "gauge" fields in derivative

$$
A_{\mu}(x) \rightarrow A_{\mu}^{\prime}(x)=A_{\mu}(x)-\frac{1}{q} \partial_{\mu} \alpha(x)
$$

$$
\psi(x) \rightarrow \psi^{\prime}(x)=e^{i \alpha(x)} \psi(x)
$$

$$
\partial_{\mu} \rightarrow D_{\mu} \equiv \partial_{\mu}+i q A_{\mu}
$$

> Interactions!

- QED

$$
\psi(x) \rightarrow \psi^{\prime}(x)=e^{i \alpha(x)} \psi(x) \quad 1 \text { photon }
$$

- Weak interactions

$$
\psi \rightarrow \psi^{\prime}=\exp \left(i \frac{\vec{\tau} \cdot \vec{\alpha}}{2}\right) \psi
$$

3 weak bosons

$$
\psi \rightarrow \psi^{\prime}=\exp \left(\sum_{a=1,8} \frac{i}{2} \theta_{a}(x) \lambda_{a}\right) \psi \quad 8 \text { gluons }
$$

Feynman rules: Example

- Process: $e^{-} \mu^{-} \rightarrow \mu^{-} e^{-}$

Spin $\frac{1}{2}$ fermion (in, out)
antifermion (in, out)
Massless spin 1 photon
(Feynman gauge)

Photon-spin $\frac{1}{2}($ charge $-e)$

$$
-i \mathcal{M}=
$$

Remember the 4-component spinors in Dirac-space:

$$
-i \mathcal{M}=-e^{2} \bar{u}_{C} \gamma^{\mu} u_{A} \frac{-i}{q^{2}} \bar{u}_{D} \gamma_{\mu} u_{B}
$$

$$
|\mathcal{M}|^{2}=e^{4}\left[\left(\bar{u}_{C} \gamma^{\mu} u_{A}\right) \frac{1}{q^{2}}\left(\bar{u}_{D} \gamma_{\mu} u_{B}\right)\right]\left[\left(\bar{u}_{C} \gamma^{\nu} u_{A}\right) \frac{1}{q^{2}}\left(\bar{u}_{D} \gamma_{\nu} u_{B}\right)\right]^{*}
$$

QED and QCD

QED

- Local U(1) gauge transformation

$$
\psi(x) \rightarrow \psi^{\prime}(x)=e^{i \alpha(x)} \psi(x)
$$

- Introduce $1 A_{\mu}$ gauge field
- "Abelian" theory,

$$
F^{\mu \nu}=\partial^{\mu} A^{\nu}(x)-\partial^{\nu} A^{\mu}(x)
$$

- No self-interacting photon
- Photons do not have (electric) charge
- Different "running"

QCD

- Local SU(3) gauge transformation

$$
\psi \rightarrow \psi^{\prime}=\exp \left(\sum_{a=1,8} \frac{i}{2} \theta_{a}(x) \lambda_{a}\right) \psi
$$

- Introduce $8 A_{\mu}{ }^{a}$ gauge fields
- Non-"Abelian" theory,

$$
G_{\mu \nu}^{a}(x)=\partial_{\mu} A_{\nu}^{a}(x)-\partial_{\nu} A_{\mu}^{a}(x)+g f_{a b c} A_{\mu}^{b}(x) A_{\nu}^{c}(x)
$$

- Self-interacting gluons
- Gluons have (color) charge
- Different "running"

Lecture 5: Running couplings

> EM coupling α

$$
\alpha\left(Q^{2}\right)=\frac{\alpha\left(\mu^{2}\right)}{1-\frac{\alpha\left(\mu^{2}\right)}{3 \pi} \log \left(\frac{Q^{2}}{\mu^{2}}\right)}
$$

$>$ Strong coupling α_{S}

$$
\alpha_{s}\left(Q^{2}\right)=\frac{\alpha_{s}\left(\mu^{2}\right)}{1+\frac{\alpha_{s}\left(\mu^{2}\right)}{12 \pi}\left(33-2 n_{f}\right) \log \left(Q^{2} / \mu^{2}\right)}
$$

- Confinement
- Asymptotic freedom

Lecture 5: $\mathrm{e}^{+} \mathrm{e}^{-}$scattering and DIS

- $\mathrm{e}^{+} \mathrm{e}^{-}$scattering: QED at work: \mathbf{R}
$-\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}$
$-\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \mathbf{c c}$
$-\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \mathbf{q q} \mathbf{g}$
$-\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \mathbf{Z}$
$-\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \mathbf{W W}$
- ${ }^{+}$p scattering: QCD at work: $\mathbf{F}_{\mathbf{2}}$
- Quarkmodel: do quarks exist??
- Substructure
- Bjorken-x, sum rules
- Scaling
- 'Parton density functions' (pdf) and 'structure functions'
- Scaling violations: more quarks at higher Q^{2} due to QCD

Deep Inelastic Scattering

Lepton - proton scattering or:
Hitting something big, using something small

Scattering

- Rutherford scattering
(scattering off static point charge)

$$
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2}}{4 E^{2} \sin ^{4}\left(\frac{1}{2} \theta\right)}
$$

- $\quad \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-}$scattering (s-channel)
- $\mathrm{e}^{-} \mu^{+} \rightarrow \mathrm{e}^{-} \mu^{+}$scattering (t-channel)

$$
\left.\frac{d \sigma}{d \Omega}\right|_{c m}=\frac{\alpha^{2}}{4 s}\left(1+\cos ^{2} \theta\right)
$$

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\frac{\alpha^{2}}{2 s} e^{2} \frac{4+(1+\cos \vartheta)^{2}}{(1-\cos \vartheta)^{2}}
$$

$\mathbf{e}^{+} \mathbf{q} \rightarrow \mathbf{e}^{+} \mathbf{q}$

- Point cross section

$$
\begin{array}{r}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\frac{\alpha^{2}}{2 s} e_{q}^{2} \frac{4+(1+\cos \vartheta)^{2}}{(1-\cos \vartheta)^{2}} \tag{S}\\
Q^{2}=2 E_{e}^{2}(1-\cos \theta) \\
y=\sin ^{2} \frac{\theta}{2}
\end{array}
$$

$$
\frac{\mathrm{d} \sigma^{e q \rightarrow e q}}{\mathrm{~d} Q^{2}}=\frac{2 \pi \alpha^{2}}{Q^{4}} e_{q}^{2}\left[2(1-y)+y^{2}\right]
$$

DIS experiments

- Easiest: fixed target
- ep scattering
$-\mu p$ scattering
- vp scattering

Experiment	Accel	Lab	lepton	$E_{\text {ep }}$	$E_{\text {had }}$	Year
SLAC-MIT		SLAC	e	20	fixed	1967-1973
Gargamelle		CERN	v		fixed	
E80-	SLC	SLAC			fixed	
CHORUS	SPS	CERN	v	10-200	fixed	1998
CCFR	Tevatron	Fermilab	v	30-360	fixed	
NMC	SPS	CERN	μ	90-280	fixed	1986-1989
EMC/SMC	SPS	CERN	μ	100-190	fixed	1984-1994
BCDMS	SPS	CERN	μ	100-280	fixed	
ZEUS, H1	HERA	DESY	e	27.5	920	1992-2007

NB: Table not complete

- 1990's: ep collider

Fig. 9. Electron scattering from the proton at an incident energy of 188 MeV . Curve (a) shows the theoretical Mott curve for a spinless point proton. Curve (b) shows the theoretical curve for a point proton with a Dirac magnetic moment alone. Curve (c) shows the theoretical behavior of a point proton having the anomalous Pauli contribution in addition to the Dirac value of the magnetic moment. The deviation of the experimental curve from the Curve (c) represents the effect of form factors for the proton and indicates structure within the proton. The best fit in this figure indicates an rms radius close to $0.7 \cdot 10^{-13} \mathrm{~cm}$.

Sub-structure

- Remember Rutherford
- Back-scatter of α from nucleus
- Now:
- Back-scatter of e from quarks

Scaling

J.D. Bjorken "scaling hypothesis" (1967):

- If scattering is caused by pointlike constituents structure functions must be independent of Q^{2}
> Would you expect a Q^{2} dependence?

R. Feynmans "parton model" (1969):

- Proton consists of 'constituents'
- "Physicists were reluctant to identify these objects with quarks at the time, instead calling them "partons" - a term coined by Richard Feynman."

[^0]QCD: deep in the proton
sea quarks
Proton
valence quarks

QCD: deep in the proton

Deep Inelastic Scattering

- eq scattering:

$$
\frac{\mathrm{d} \sigma^{e q \rightarrow e q}}{\mathrm{~d} Q^{2}}=\frac{2 \pi \alpha^{2}}{Q^{4}} e_{q}^{2}\left[2(1-y)+y^{2}\right]
$$

- ep scattering:

$$
\frac{\mathrm{d}^{2} \sigma^{e p \rightarrow e} X}{\mathrm{~d} x \mathrm{~d} Q^{2}}=\frac{2 \pi \alpha^{2}}{x Q^{4}}\left(1+(1-y)^{2} F_{2}(x)\right)
$$

Form factor

$$
\begin{aligned}
\hline Q^{2} & \equiv-q^{2}=\left(k-k^{\prime}\right)^{2} & & : \text { Virtuality of the photon } \\
x & \equiv \frac{-q^{2}}{2 P \cdot q} & & : \text { 4-Momentum fraction carried by the struck quark } \\
y & \equiv \frac{P \cdot q}{P \cdot k} & & : \text { Inelasticity } \\
W^{2} & \equiv(P+q)^{2} & & : \text { Square of the invariant mass of the hadronic final state }
\end{aligned}
$$

Deep Inelastic Scattering

- ep scattering:

$$
\frac{\mathrm{d}^{2} \sigma^{e p \rightarrow e X}}{\mathrm{~d} x \mathrm{~d} Q^{2}}=\frac{2 \pi \alpha^{2}}{x Q^{4}}\left(1+(1-y)^{2}\right) F_{2}(x)
$$

- $F_{2}(x)$: proton structure function
- $q(x)$: parton density function

$$
F_{2}(x)=\sum_{q} e_{q}^{2}(x q(x)+x \bar{q}(x))
$$

Parton Densities

- ep scattering:

$$
\frac{\mathrm{d}^{2} \sigma^{e p \rightarrow e X}}{\mathrm{~d} x \mathrm{~d} Q^{2}}=\frac{2 \pi \alpha^{2}}{x Q^{4}}\left(1+(1-y)^{2}\right) F_{2}(x)
$$

- $F_{2}(x)$: proton structure function
- $q(x)$: parton density function

$$
F_{2}(x)=\sum_{q} e_{q}^{2}(x q(x)+x \bar{q}(x))
$$

- But... the proton had 3 quarks?!
> Sum rules:

$$
\begin{aligned}
& \int_{0}^{1}(u(x)-\bar{u}(x)) \mathrm{d} x=2 \\
& \int_{0}^{1}(d(x)-\bar{d}(x)) \mathrm{d} x=1 \\
& \int_{0}^{1}(s(x)-\bar{s}(x)) \mathrm{d} x=0,
\end{aligned}
$$

Proton: x

- What is
'momentum
fraction' distribution of quarks??
- Quarks:
> "Valence"
> "Sea"

Proton: x

- What is
'momentum
fraction' distribution of quarks??
- Quarks:
> "Valence"
> "Sea"
> Dynamic, QCD!

Proton: x

- What is
'momentum
fraction' distribution of quarks??
- Quarks:
> "Valence"
> "Sea"
> Dynamic, QCD!

(a)

Proton: \mathbf{Q}^{2}

- The "deeper" one looks into the proton, the more quarks and gluons

Proton: x, Q^{2}

low Q^{2} :

high Q^{2} :
(a)

Proton: x, Q^{2}

- The "deeper" one looks into the proton, the more quarks and gluons
- "QCD evolution"
- Describes quark-gluon splitting

$$
\frac{\mathrm{d} \sigma^{\gamma^{*} q \rightarrow q g}}{\mathrm{~d} p_{T}^{2}}=\frac{4 \pi \alpha^{2}}{s} e_{q}^{2} \frac{1}{p_{T}^{2}} \frac{\alpha_{s}}{2 \pi} P_{q q}(z)
$$

$$
\sigma^{\gamma^{*} q \rightarrow q g}=\frac{4 \pi \alpha^{2}}{s} e_{q}^{2} \frac{\alpha_{s}}{2 \pi} P_{q q}(z) \log \frac{Q^{2}}{\mu^{2}}
$$

$$
\begin{aligned}
\frac{\mathrm{d} q\left(x, Q^{2}\right)}{\mathrm{d} \ln Q^{2}} & =\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} \frac{\mathrm{~d} y}{y}\left(q\left(y, Q^{2}\right) P_{q q}\left(\frac{x}{y}\right)+g\left(y, Q^{2}\right) P_{q g}\left(\frac{x}{y}\right)\right) \\
\frac{\mathrm{d} g\left(x, Q^{2}\right)}{\mathrm{d} \ln Q^{2}} & =\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} \frac{\mathrm{~d} y}{y}\left(\sum_{q} q\left(y, Q^{2}\right) P_{g q}\left(\frac{x}{y}\right)+g\left(y, Q^{2}\right) P_{g g}\left(\frac{x}{y}\right)\right)
\end{aligned}
$$

low Q^{2} :

high Q^{2} :

(a)

At high-enough energies, protons are gggguggggggggggggggggggggggggggggggggggggggg gggggggggggggggggggggggggggggggggggggguggggg gg $\operatorname{g} g d g g g g g g$ gg ddggggggggggggggggggggggssgg

[^1]7:59 AM • May 10, $2020 \cdot$ Twitter for iPhone

Scaling violations

J.D. Bjorken "scaling hypothesis" (1967):

- If scattering is caused by pointlike constituents structure functions must be independent of Q^{2}
- Would you expect a Q^{2} dependence?
> Yes, due to QCD, ie. quark/gluon splitting !
- Matured in mid '70s
- The proton is "dynamic" !
> Measurement of $F_{2}\left(x, Q^{2}\right)$ very accurate test of $Q C D$

Scaling violations

> Measurement of $F_{2}\left(x, Q^{2}\right)$ very accurate test of QCD

Proton Structure

> The deeper you look, the more low-x quarks

Proton Structure

> The deeper you look, the more low-x quarks

Proton Structure: knowledge needed for predictions

Proton Structure

Standard Model

$$
\mathcal{L}=\bar{\psi}\left(i \gamma_{\mu} D^{\mu}-m\right) \psi-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}
$$

Todo-list:

- No masses for W, Z !?
- (LHC/ATLAS) Higgs mechanism, Yukawa couplings
- Interactions between the three families !?
- (LHC/LHCb) CKM-mechanism, CP violation

Higgs mechanism

Higgs mechanism

- Let's give the photon a mass!
- Not realized in Nature
- But is a simpler example

Higgs mechanism

- Let's give the photon a mass!
- Introduce a complex scalar field:

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\left(D_{\mu} \phi\right)^{\dagger}\left(D^{\mu} \phi\right)-V(\phi)
$$

- with:

$$
V(\phi)=-\mu^{2} \phi^{\dagger} \phi+\lambda\left(\phi^{\dagger} \phi\right)^{2}
$$

- and the Lagrangian is invariant under:

$$
\begin{gathered}
A_{\mu}(x) \rightarrow A_{\mu}(x)-\partial_{\mu} \eta(x) \\
\phi(x) \rightarrow e^{i e \eta(x)} \phi(x)
\end{gathered}
$$

Scalar potential $\mathrm{V}(\varphi)$

$$
V(\phi)=-\mu^{2} \phi^{\dagger} \phi+\lambda\left(\phi^{\dagger} \phi\right)^{2}
$$

> Question: what is on the x - and y-axis...?

Scalar potential $\mathrm{V}(\varphi)$
What if $\mu^{2}>0$??

$$
V(\phi)=-\mu^{2} \phi^{\dagger} \phi+\lambda\left(\phi^{\dagger} \phi\right)^{2}
$$

Scalar potential $\mathrm{V}(\varphi)$

If $\mu^{2}>0$:

- φ will acquire a vaccum expectation value v,
-"spontaneously"!
- System not any more
"spherical" symmetric
> Spontaneous Symmetry Breaking

$$
V(\phi)=-\mu^{2} \phi^{\dagger} \phi+\lambda\left(\phi^{\dagger} \phi\right)^{2}
$$

$$
\langle\phi\rangle=\sqrt{\frac{\mu^{2}}{2 \lambda}} \equiv \frac{v}{\sqrt{2}}
$$

Complex scalar field φ
If $\mu^{2}>0$:

- φ will acquire a vaccum expectation value v
- Parameterize φ as:
- h: Higgs boson
- χ : Goldstone boson
- Both real scalar fields

$$
V(\phi)=-\mu^{2} \phi^{\dagger} \phi+\lambda\left(\phi^{\dagger} \phi\right)^{2}
$$

Higgs mechanism

- Let's give the photon a mass!
- Introduce a complex scalar field:

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\left(D_{\mu} \phi\right)^{\dagger}\left(D^{\mu} \phi\right)-V(\phi)
$$

- with:
- and:

Then:

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-e v A_{\mu} \partial^{\mu} \chi+\frac{e^{2} v^{2}}{2} A_{\mu} A^{\mu}+\frac{1}{2}\left(\partial_{\mu} h \partial^{\mu} h-2 \mu^{2} h^{2}\right)+\frac{1}{2} \partial_{\mu} \chi \partial^{\mu} \chi+(h, \chi) \mathrm{int} .
$$

Highs mechanism

- Let's give the photon a mass!
- Introduce a complex scalar field:

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\left(D_{\mu} \phi\right)^{\dagger}\left(D^{\mu} \phi\right)-V(\phi)
$$

- with:

$$
V(\phi)=-\mu^{2} \phi^{\dagger} \phi+\lambda\left(\phi^{\dagger} \phi\right)^{2}
$$

- and:
> Then:

Higgs mechanism

Higgs mechanism

- What about this field χ ?

Higgs mechanism
$\mathcal{L}=-\frac{1}{4} F_{\mu v} F^{\mu \nu}$
$+\frac{e^{2} v^{2}}{2} A_{\mu} A^{\mu}+\frac{1}{2}\left(\partial_{\mu} h \partial^{\mu} h-2 \mu^{2} h^{2}\right)+$
$(h \quad$)int.

- Unitary gauge:

$$
A_{\mu} \rightarrow A_{\mu}^{\prime}=A_{\mu}-\frac{1}{e v} \partial_{\mu} \chi
$$

$>$ Goldstone boson has been "eaten" by the photon mass

Higgs mechanism

$\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}$
$+\frac{e^{2} v^{2}}{2} A_{\mu} A^{\mu}+\frac{1}{2}\left(\partial_{\mu} h \partial^{\mu} h-2 \mu^{2} h^{2}\right)+$
(h) int.

- Unitary gauge:

$$
A_{\mu} \rightarrow A_{\mu}^{\prime}=A_{\mu}-\frac{1}{e v} \partial_{\mu} \chi
$$

- Degrees of freedom
- Before: massless photon: 2, complex scalar field φ : 2
- After: massive photon: 3, one real scalar field h : 1
\rightarrow Total: 4
\rightarrow Total: 4
> Goldstone boson has been "eaten" by the photon mass

Higgs mechanism

- Let's give the photon a mass?
- Not realized in Nature

Higgs mechanism in the Standard Model

- Let's give the W, Z a mass!
- Introduce a doublet of complex scalar fields:

$$
\phi=\binom{\phi^{+}}{\phi^{0}}
$$

$$
\begin{aligned}
\mathcal{L}_{\text {Higgs }} & =\left(D^{\mu} \phi\right)^{\dagger}\left(D_{\mu} \phi\right)-V(\phi) \\
D_{\mu} \phi & =\left(\partial_{\mu}+i g T^{i} W_{\mu}^{i}+i \frac{1}{2} g^{\prime} B_{\mu}\right) \phi \\
V(\phi) & =-\mu^{2} \phi^{\dagger} \phi+\lambda\left(\phi^{\dagger} \phi\right)^{2}
\end{aligned}
$$

Spontaneous symmetry breaking

$$
\phi=\binom{\phi^{+}}{\phi^{0}} \quad \square \quad \phi=\frac{1}{\sqrt{2}}\binom{0}{v+h}
$$

Spontaneous symmetry breaking

$$
\begin{aligned}
& \left(D^{\mu} \phi\right)^{\dagger}\left(D_{\mu} \phi\right)=\left|\left(\partial_{\mu}+\frac{i}{2} g \tau^{k} W_{\mu}^{k}+\frac{i}{2} g^{\prime} B_{\mu}\right) \frac{1}{\sqrt{2}}\binom{0}{v}\right|^{2} \\
& =\frac{v^{2}}{8}\left|\left(g \tau^{k} W_{\mu}^{k}+g^{\prime} B_{\mu}\right)\binom{0}{1}\right|^{2} \\
& =\frac{v^{2}}{8}\left|\binom{g W_{\mu}^{1}-i g W_{\mu}^{2}}{-g W_{\mu}^{3}+g^{\prime} B_{\mu}}\right|^{2} \\
& =\frac{v^{2}}{8}\left[g^{2}\left(\left(W_{\mu}^{1}\right)^{2}+\left(W_{\mu}^{2}\right)^{2}\right)+\left(g W_{\mu}^{3}-g^{\prime} B_{\mu}\right)^{2}\right] \\
& \phi=\frac{1}{\sqrt{2}}\binom{0}{v+h}
\end{aligned}
$$

> Mass terms!

- How about the physical fields?

Rewriting in terms of physical gauge bosons

1) $W_{1}, W_{2}: W_{\mu}^{ \pm} \equiv \frac{1}{\sqrt{2}}\left(W_{\mu}^{1} \mp i W_{\mu}^{2}\right)$
2) $\mathrm{W}_{3}, \mathrm{~B}:\left(-g W_{3}+g^{\prime} \quad B_{\mu}\right)^{2}$
> Let's do a 'trick' and 'rotate' the W_{3} and B fields to get the Z and A fields

Rewriting in terms of physical gauge bosons

1) $W_{1}, W_{2}: W_{\mu}^{ \pm} \equiv \frac{1}{\sqrt{2}}\left(W_{\mu}^{1} \mp i W_{\mu}^{2}\right)$
2) $\mathbf{W}_{3}, \mathrm{~B}: \quad\left(-g W_{3}+g^{\prime} \quad B_{\mu}\right)^{2}=\left(W_{3}, B_{\mu}\right)\left(\begin{array}{rr}g^{2} & -g g^{\prime} \\ -g g^{\prime} & g^{\prime 2}\end{array}\right)\binom{W_{3}}{B_{\mu}}$

Diagonalize the matrix $\leftrightarrow \leftrightarrow \quad$ find eigenstates +

$$
\left(-g W_{3}+g^{\prime} \quad B_{\mu}\right)^{2}=\left(g^{2}+g^{\prime 2}\right) Z_{\mu}^{2}+0 \cdot A_{\mu}^{2}
$$

Rewriting in terms of physical gauge bosons

W^{+}and W^{-}bosons $\underbrace{W_{1} \quad W_{2}}_{\text {Z-boson and } \gamma}$

1) $W_{1}, W_{2}: W_{\mu}^{ \pm} \equiv \frac{1}{\sqrt{2}}\left(W_{\mu}^{1} \mp i W_{\mu}^{2}\right)$
2) $\mathrm{W}_{3}, \mathrm{~B}: \quad\left(-g W_{3}+g^{\prime} \quad B_{\mu}\right)^{2}=\left(W_{3}, B_{\mu}\right)\left(\begin{array}{cc}g^{2} & -g g^{\prime} \\ -g g^{\prime} & g^{\prime 2}\end{array}\right)\binom{W_{3}}{B_{\mu}}$
eigenvalue
eigenvector
$\begin{array}{ll}\lambda=0 & \rightarrow \frac{1}{\sqrt{g^{2}+g^{\prime 2}}}\binom{g^{\prime}}{g}=\frac{1}{\sqrt{g^{2}+g^{\prime 2}}}\left(g^{\prime} W_{3}+g B_{\mu}\right)=A_{\mu}\end{array} \quad$ photon $(\gamma) ~ 子 \begin{gathered} \\ \lambda=\left(g^{2}+g^{\prime 2}\right) \rightarrow \frac{1}{\sqrt{g^{2}+g^{\prime 2}}}\binom{g}{-g^{\prime}}=\frac{1}{\sqrt{g^{2}+g^{\prime 2}}}\left(g W_{3}-g^{\prime} B_{\mu}\right)=Z_{\mu}\end{gathered} \quad$ Z-boson (Z)

Rewriting in terms of physical gauge bosons

W^{+}and W^{-}bosons $\underbrace{W_{1} \quad W_{2}}_{\text {Z-boson and } \gamma} \underbrace{W_{3}}_{W_{3} \quad B}$

1) $W_{1}, W_{2}: W_{\mu}^{ \pm} \equiv \frac{1}{\sqrt{2}}\left(W_{\mu}^{1} \mp i W_{\mu}^{2}\right)$

eigenvector
$\begin{array}{ll}\lambda=0 & \rightarrow \frac{1}{\sqrt{g^{2}+g^{\prime 2}}}\binom{g^{\prime}}{g}=\frac{1}{\sqrt{g^{2}+g^{\prime 2}}}\left(g^{\prime} W_{\mu}^{3}+g B_{\mu}\right)=\sin \theta_{W} W_{\mu}^{3}+\cos \theta_{W} B_{\mu}=A_{\mu} \quad \text { (photon) } \\ \lambda=\left(g^{2}+g^{\prime 2}\right) \rightarrow \frac{1}{\sqrt{g^{2}+g^{\prime 2}}}\binom{g}{-g^{\prime}}=\frac{1}{\sqrt{g^{2}+g^{\prime 2}}}\left(g W_{\mu}^{3}-g^{\prime} B_{\mu}\right)=\cos \theta_{W} W_{\mu}^{3}-\sin \theta_{W} B_{\mu}=Z_{\mu} \quad \text { (Z-boson) }\end{array}$ Weak mixing angle (or Weinberg angle): θ_{w}

Rewriting in terms of physical gauge bosons

1) $W_{1}, W_{2}: W_{\mu}^{ \pm} \equiv \frac{1}{\sqrt{2}}\left(W_{\mu}^{1} \mp i W_{\mu}^{2}\right)$
2) $\mathrm{W}_{3}, \mathrm{~B}: \quad\left(-g W_{3}+g^{\prime} \quad B_{\mu}\right)^{2}=\left(W_{3}, B_{\mu}\right)\left(\begin{array}{cc}g^{2} & -g g^{\prime} \\ -g g^{\prime} & g^{\prime 2}\end{array}\right)\binom{W_{3}}{B_{\mu}}$

$$
\left(-g W_{3}+g^{\prime} \quad B_{\mu}\right)^{2}=\left(g^{2}+g^{\prime 2}\right) Z_{\mu}^{2}+0 \cdot A_{\mu}^{2}
$$

Electro-weak unification

> Electromagnetic and weak forces intricately connected!

$$
\left(-g W_{3}+g^{\prime} \quad B_{\mu}\right)^{2}=\left(g^{2}+g^{\prime 2}\right) Z_{\mu}^{2}+0 \cdot A_{\mu}^{2}
$$

Spontaneous symmetry breaking

$$
\begin{aligned}
\left(D^{\mu} \phi\right)^{\dagger}\left(D_{\mu} \phi\right) & =\left|\left(\partial_{\mu}+\frac{i}{2} g \tau^{k} W_{\mu}^{k}+\frac{i}{2} g^{\prime} B_{\mu}\right) \frac{1}{\sqrt{2}}\binom{0}{v}\right|^{2} \\
& =\frac{v^{2}}{8}\left|\left(g \tau^{k} W_{\mu}^{k}+g^{\prime} B_{\mu}\right)\binom{0}{1}\right|^{2} \\
& =\frac{v^{2}}{8}\left|\binom{g W_{\mu}^{1}-i g W_{\mu}^{2}}{-g W_{\mu}^{3}+g^{\prime} B_{\mu}}\right|^{2} \\
& =\frac{v^{2}}{8}\left[g^{2}\left(\left(W_{\mu}^{1}\right)^{2}+\left(W_{\mu}^{2}\right)^{2}\right)+\left(g W_{\mu}^{3}-g^{\prime} B_{\mu}\right)^{2}\right]
\end{aligned}
$$

$$
\phi=\frac{1}{\sqrt{2}}\binom{0}{v+h}
$$

> Mass terms!

- How about the physical fields?

$$
\left(D^{\mu} \phi\right)^{\dagger}\left(D_{\mu} \phi\right)=\frac{1}{8} v^{2}\left[g^{2}\left(W^{+}\right)^{2}+g^{2}\left(W^{-}\right)^{2}+\left(g^{2}+g^{\prime 2}\right) Z_{\mu}^{2}+0 \cdot A_{\mu}^{2}\right]
$$

Spontaneous symmetry breaking

$$
\begin{aligned}
\left(D^{\mu} \phi\right)^{\dagger}\left(D_{\mu} \phi\right) & =\left|\left(\partial_{\mu}+\frac{i}{2} g \tau^{k} W_{\mu}^{k}+\frac{i}{2} g^{\prime} B_{\mu}\right) \frac{1}{\sqrt{2}}\binom{0}{v}\right|^{2} \\
& =\frac{v^{2}}{8}\left|\left(g \tau^{k} W_{\mu}^{k}+g^{\prime} B_{\mu}\right)\binom{0}{1}\right|^{2} \\
& =\frac{v^{2}}{8}\left|\binom{g W_{\mu}^{1}-i g W_{\mu}^{2}}{-g W_{\mu}^{3}+g^{\prime} B_{\mu}}\right|^{2} \\
& =\frac{v^{2}}{8}\left[g^{2}\left(\left(W_{\mu}^{1}\right)^{2}+\left(W_{\mu}^{2}\right)^{2}\right)+\left(g W_{\mu}^{3}-g^{\prime} B_{\mu}\right)^{2}\right]
\end{aligned}
$$

$$
\phi=\frac{1}{\sqrt{2}}\binom{0}{v+h}
$$

Physical fields:
Mass term
Mass

$$
W_{\mu}^{ \pm} \equiv \frac{1}{\sqrt{2}}\left(W_{\mu}^{1} \mp i W_{\mu}^{2}\right)
$$

$$
\frac{1}{2}\left(\frac{g v}{2}\right)^{2} W_{\mu}^{\dagger} W^{\mu}
$$

$$
m_{W}=\frac{g v}{2}
$$

$$
\left(W_{3}, B_{\mu}\right)\left(\begin{array}{rr}
g^{2} & -g g^{\prime} \\
-g g^{\prime} & g^{\prime 2}
\end{array}\right)\binom{W_{3}}{B_{\mu}}
$$

$$
\left(g^{2}+g^{\prime 2}\right) Z_{\mu}^{2}+0 \cdot A_{\mu}^{2}
$$

$$
M_{Z}=\frac{1}{2} v \sqrt{\left(g^{2}+g^{\prime 2}\right)}
$$

Summary:

1) Introduce doublet of scalar fields:

$$
\phi=\binom{\phi^{+}}{\phi^{0}}
$$

2) With potential:

$$
V(\phi)=-\mu^{2} \phi^{\dagger} \phi+\lambda\left(\phi^{\dagger} \phi\right)^{2}
$$

3) S.S.B.:

$$
\phi=\frac{1}{\sqrt{2}}\binom{0}{v+h}
$$

4) Mass terms for gauge fields:

$$
D_{\mu} \phi=\left(\partial_{\mu}+i g T^{i} W_{\mu}^{i}+i \frac{1}{2} g^{\prime} B_{\mu}\right) \phi
$$

$$
\left(D^{\mu} \phi\right)^{\dagger}\left(D_{\mu} \phi\right)=\frac{1}{8} v^{2}\left[g^{2}\left(W^{+}\right)^{2}+g^{2}\left(W^{-}\right)^{2}+\left(g^{2}+g^{\prime 2}\right) Z_{\mu}^{2}+0 \cdot A_{\mu}^{2}\right]
$$

Value of boson masses

$$
\begin{aligned}
& A_{\mu}=\sin \theta_{W} W_{\mu}^{3}+\cos \theta_{W} B_{\mu} \text { (photon) } \\
& Z_{\mu}=\cos \theta_{W} W_{\mu}^{3}-\sin \theta_{W} B_{\mu} \text { (Z-boson) }
\end{aligned}
$$

- Photon couples to e:

$$
e=g \sin \left(\theta_{\mathrm{W}}\right)=g^{\prime} \cos \left(\theta_{\mathrm{W}}\right)
$$

- Prediction for ratio of masses:

$$
\frac{M_{W}}{M_{Z}}=\frac{\frac{1}{2} v g}{\frac{1}{2} v \sqrt{g^{2}+g^{\prime 2}}}=\cos \left(\theta_{\mathrm{W}}\right)
$$

- Veltman parameter:
- Higgs mass:

$$
\rho=\frac{M_{W}^{2}}{M_{Z}^{2} \cos ^{2}\left(\theta_{W}\right)}=1
$$

Fermion masses?

- Add ad-hoc (!?) term to Lagrangian:

$$
\mathcal{L}_{\text {fermion-mass }}=-\lambda_{f}\left[\bar{\psi}_{L} \phi \psi_{R}+\bar{\psi}_{R} \bar{\phi} \psi_{L}\right]
$$

First: Higgs discovery

How are discoveries made?

Higgs \Rightarrow ZZ $\rightarrow 4$ leptons

 small number of beautiful events
120.000 Higgs bosons

Only 1 in 1000 Higgs bosons decays to 4 leptons

50\% chance that ATLAS detector finds them
\square
60 (Higgs $\rightarrow 4$ lepton) events

'other' with Higgs	52 events 68 events

Higgs -72 photons

Interpretation of excess

Claim discovery if:

Probability of observing excess smaller than 1 in 1 milion

Throwing 8 times 6 in a row

Discovery in slow-motion

Time-line higgs discovery

EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

CERN-PH-EP-2012-218 Accaplad by: Pryesica Lettiors B Tul impact and significance of their contritutions to the experimert.

A search tor the Standerd Modal Hgge bosen in proton protion coliciore whit the ATLAS datactor at the UHC is preeerisad. The dataeeats used corrospond to integratod luminositiee of approximately

 This observation, whict has a signkicance of 5.9 standard doevatione, corresponding to a bacigroung Higes bowon.

Discovery of Higgs particle on July 4, 2012

What is mass ?? Anno 1687

Mass is de 'exchange rate' between force and acceleration:

$F=m x a$

Does not describe what mass is ...

Newton

What is mass ?? Anno 1905

Mass is energy

$E=m x c^{2}$

Describes what mass is !
But not where it comes from ...

Einstein

```
13. Ist die Tragheit eines Körpers von soinom
    Energieinhatt abhängig
```

Die Resultate einer jüngst in diesen Annalen von mir
publizierten elektrodynamischen Untersuchung ${ }^{1}$) fuhren zu einer publizierten elektrodynamischen Untersuchung ${ }^{1}$) fuhren zu einer
schr interessanten Folgerung, die hier abgeleitet werden sell sehr intersssanton Folgerang, die hier abgeleitet werden soll. den leoren Raum nebst dem Maxwellschen Ausdruck für die
elektromagnetische Energie des Raumes zugrunde und dem das Prinzip:
Die Gesetze, nach denen sich die Zustände der physikalischen Systeme ändern, sind unabhängig davon, auf welches
von zwei relativ zueinander in von ε weci relativ zueinander in gleichformiger Parallel-Trans-
lationsbewegung befindlichen Koordinatensystemen diese Zustandsänderungen bezogen werden (Relativitätsprinzip). Gestutzt auf diese Grundlagen ${ }^{2}$) leitete ich unter anderem Ein System vos ebenen Lichtwellen besitze, auf das Ko-
ordinatensystem $(x, y, z$ bezogen, die Energie l; die Strahlordinatenssstem (x, y, z) bezogen, die Energie l, die Strahb-
richtung (Wellennormale) bilde den Winker o mit der . richtung (Wellennormale) bilde den Winkel φ mit der x-Achse
des Systems. Führt man ein neues, gegen das System (x, y, z) des Systems. Fuhrt man ein neues, gogen das System (x, y, z)
in gleichformiger Paralleltranslation begriftenes Koordinaten
system system ($k, \eta, 7$ ein, dessen Ursprung sich mit der Geschwindig.
leeit v lings der x-Achise bewegt, so besitzt die genannte Lichtmenge - im System $(\mathrm{s}, \eta, 7$) gemessen - die Energie:

What is mass ?? Anno 1964

Mass of elementary particles is due to
"friction" of ubiquitous 'Higgs field'

m: $\psi \psi H$

Higgs

What is mass ?? Anno 1964

Mass of elementary particles is due to
"friction" of ubiquitous 'Higgs field'

Next: Higgs' properties as expected?

prediction

Standard Model
\downarrow
measurement

Philosophy?

Higgs: Particle? Field?

Particle
Photon (light particle)

Field
Electrical field

Why is the Higgs particle so special?

Particle

As if the fish discovered the water he's in...

What is mass?

Mass of elementary particles is due to
"friction" of ubiquitous 'Higgs field'

Einstein: proton mass = binding energy

Elementary particle

 in empty space: no rest-energy= no mass```
Elementary particle
in Higgs field:
rest energy =
interaction with Higgs field
= mass!
```



Revolutionary - with spectaculair consequences : space is not empty, but filled with sort of 'ether'

## Another field: the Big Bang

## One of Higgs' properties match that of another field...

The inflaton that inflated the Universe between $10^{-33}$ and $10^{-32}$ seconds after the Big Bang


## Another field: the Big Bang




## Couplings across generations: CKM

$$
\mathcal{L}_{\mathrm{SM}}=\mathcal{L}_{\text {Kinetic }}+\mathcal{L}_{\text {Higgs }}+\mathcal{L}_{\text {Yukawa }}
$$

$\mathcal{L}_{\text {Kinetic }}$ Introduce the massless fermion fields Require local gauge invariance $\rightarrow$ existence of gauge bosons
$\left.\mathcal{L}_{\text {Higgs }} \begin{array}{l}\text { Introduce Higgs potential with }\langle\varphi\rangle \neq 0 \\ \text { Spontaneous symmetry breaking }\end{array}\right\} \begin{aligned} & G_{s u l}=S U(3)_{C} \times S U()_{2} \times U()_{r} \rightarrow S U(3)^{\prime} \times U(1)_{e} \\ & \mathrm{~W}^{+}, \mathrm{W}-\mathrm{Z}^{0} \text { bosons acquire a mass }\end{aligned}$
$\mathcal{L}$ Yukawa Ad hoc interactions between Higgs field \& fermions

Fermions: $\quad \psi_{L}=\left(\frac{1-\gamma_{5}}{2}\right) \psi \quad ; \quad \psi_{R}=\left(\frac{1+\gamma_{5}}{2}\right) \psi \quad$ with $\quad \psi=Q_{L}, u_{R}, d_{R}, L_{L}, l_{R}, v_{R}$
Quarks:

Under SU2:
Left handed doublets Right handed singlets

$$
\left(u^{I}(3,2,1 / 3) d^{I}(3,2,1 / 3)\right) \longrightarrow Q_{L i}^{I}(3,2,1 / 3) \quad Q=I_{3}+\frac{Y}{2}
$$

$$
u_{R i}^{I}(3,1,4 / 3) \quad d_{R i}^{I}(3,1,-2 / 3)
$$

Leptons:

$$
\begin{array}{ll}
\binom{\nu^{I}(1,2,-1)}{l^{I}(1,2,-1)} \\
l_{L i}
\end{array} \longrightarrow \quad L_{L i}^{I}(1,2,-1), ~\left(\nu_{R i}^{I} .\right.
$$

Scalar field: $\quad \phi(1,2,1)\binom{\phi^{+}}{\phi^{0}}$

Interaction representation: standard model

## Fields: explicitly

## Explicitly:

- The left handed quark doublet:

$$
Q_{L i}^{I}(3,2,1 / 3)=\binom{u_{r}^{I}, u_{g}^{I}, u_{b}^{I}}{d_{r}^{I}, d_{g}^{I}, d_{b}^{I}}_{L},\binom{c_{r}^{I}, c_{g}^{I}, c_{b}^{I}}{s_{r}^{I}, s_{g}^{I}, s_{b}^{I}}_{L},\binom{t_{r}^{I}, t_{g}^{I}, t_{b}^{I}}{b_{r}^{I}, b_{g}^{I}, b_{b}^{I}}_{L}
$$

- Similarly for the quark singlets:

$$
\begin{aligned}
u_{R i}^{I}(3,1,4 / 3) & =\left(u_{r}^{I}, u_{r}^{I}, u_{r}^{I}\right)_{R},\left(c_{r}^{I}, c_{r}^{I}, c_{r}^{I}\right)_{R},\left(t_{r}^{I}, t_{r}^{I}, t_{r}^{I}\right)_{R} \\
d_{R i}^{I}(3,1,-2 / 3) & =\left(d_{r}^{I}, d_{r}^{I}, d_{r}^{I}\right)_{R},\left(s_{r}^{I}, s_{r}^{I}, s_{r}^{I}\right)_{R},\left(b_{r}^{I}, b_{r}^{I}, b_{r}^{I}\right)_{R}
\end{aligned}
$$

- The left handed leptons: $L_{L i}^{I}(1,2,-1)=\binom{\boldsymbol{v}_{e}^{I}}{e^{I}}_{L},\binom{\boldsymbol{v}_{\mu}^{I}}{\mu^{I}}_{L},\binom{\boldsymbol{v}_{\tau}^{I}}{\tau^{I}}_{L}$
- And similarly the (charged) singlets: $l_{R i}^{I}(1,1,-2)=e_{R}^{I}, \mu_{R}^{I}, \tau_{R}^{I}$
$\mathcal{L}_{\mathrm{SM}}=\mathcal{L}_{\text {Kinetic }}+\mathcal{L}_{\text {Higgs }}+\mathcal{L}_{\text {Yukawa }}$
$\mathcal{L}_{\text {Kinetic }}$ : Fermions + gauge bosons + interactions

Procedure: Introduce the fermion fields and demand that the theory is local gauge invariant under $S U(3)_{C} x S U(2)_{L} x U(1)_{Y}$ transformations.

Start with the Dirac Lagrangian: $L=i \bar{\psi}\left(\partial^{\mu} \gamma_{\mu}\right) \psi$
Replace: $\quad \partial^{\mu} \rightarrow D^{\mu}=\partial^{\mu}+i g_{s} G_{a}^{\mu} L_{a}+\frac{1}{2} i g W_{i}^{\mu} \tau_{i}+\frac{1}{2} i g^{\prime} B^{\mu} Y$
Fields: $\quad G_{a}{ }^{\mu}: 8$ gluons
$W_{b}{ }^{4}$ : weak bosons: $\mathrm{W}_{1}, \mathrm{~W}_{2}, \mathrm{~W}_{3}$
$B^{u}$ : hypercharge boson

Generators: $\quad L_{a}$ : Gell-Mann matrices: $\quad 1 / 2 \lambda_{a} \quad(3 \times 3) \quad \mathrm{SU}(3)_{\mathrm{c}}$
$\sigma_{b}$ : Pauli Matrices: $\quad 1 / 2 \tau_{b} \quad(2 \times 2) \quad \mathrm{SU}(2)_{\mathrm{L}}$
$Y$ : Hypercharge:
$\mathrm{U}(1)_{Y}$

## $\mathcal{L}_{\mathrm{SM}}=\mathcal{L}_{\text {Kinetic }}+\mathcal{L}_{\text {Figs }}+\mathcal{L}_{\text {Yukawa }}$

$L_{\text {kinetic }}: i \bar{\psi}\left(\partial^{\mu} \gamma_{\mu}\right) \psi \rightarrow i \bar{\psi}\left(D^{\mu} \gamma_{\mu}\right) \psi$

$$
\text { with } \quad \psi=Q_{L i}^{I}, \quad u_{R i}^{I}, \quad d_{R i}^{I}, \quad L_{L i}^{I}, \quad l_{R i}^{I}
$$

$\theta$ Example: the term with $Q_{L i}{ }^{I}$ becomes:

$$
\begin{array}{rlr}
L_{\text {kinetic }}\left(Q_{L i}^{I}\right) & =i \overline{Q_{L i}^{I}} \gamma_{\mu} D^{\mu} Q_{L i}^{I} & \\
& =i \overline{Q_{L i}^{I}} \gamma_{\mu}\left(\partial^{\mu}\right. & \left.+\frac{i}{2} g W_{b}^{\mu} \tau_{b}+\frac{i}{6} g^{\prime} B^{\mu}\right) Q_{L i}^{I}
\end{array}
$$

- Writing out only the weak part for the quarks:

$$
\mathrm{L}_{\text {kinetic }}^{\text {Weal, }}(u, d)_{L}^{I}=\overline{i(u, d)_{L}^{I}} \gamma_{\mu}\left(\partial^{\mu}+\frac{i}{2} g\left(W_{1}^{\mu} \tau_{1}+W_{2}^{\mu} \tau_{2}+W_{3}^{\mu} \tau_{3}\right)\right)\binom{u}{d}_{L}^{I}
$$

$$
\begin{aligned}
& \tau_{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \\
& \tau_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \\
& \tau_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

$$
=\overline{i u_{L}^{I}} \gamma_{\mu} \partial^{\mu} u_{L}^{I}+\overline{d_{L}^{I}} \gamma_{\mu} \partial^{\mu} d_{L}^{I}-\frac{g}{\sqrt{2}} \overline{u_{L}^{I}} \gamma_{\mu} W^{-\mu} d_{L}^{I}-\frac{g}{\sqrt{2}} \overline{d_{L}^{I}} \gamma_{\mu} W^{+\mu} u_{L}^{I}-
$$


$\mathrm{L}=J_{\mu} W^{\mu}$

$$
W^{ \pm}=\frac{1}{\sqrt{2}}\left(W_{1} \mp W_{2}\right)_{\text {Iva van vulpen (108) }}
$$

$\mathcal{L}_{\mathrm{SM}}=\mathcal{L}_{\text {Kinetic }}+\mathcal{L}_{\text {Higgs }}+\mathcal{L}_{\text {Yukawa }}$
$\mathcal{L}_{\text {Higgs }}=D_{\mu} \phi^{\dagger} D^{\mu} \phi-V_{\text {Higgs }}$,with $V_{\text {Higgs }}=\frac{1}{2} \mu^{2}\left(\phi^{\dagger} \phi\right)+\lambda\left(\phi^{\dagger} \phi\right)^{2}$

$$
\begin{gathered}
\text { Symmetry } \\
\mu^{2}>0 \\
\left\langle\phi_{0}\right\rangle=0
\end{gathered}
$$



$v=-\mu^{2} / \lambda \sim 246 \mathrm{GeV}$

Spontaneous Symmetry Breaking: The Higgs field adopts a non-zero vacuum expectation value
Procedure: $\phi=\binom{\phi^{+}}{\phi^{0}}=\binom{\mathcal{R} e\left(\phi^{+}\right)+\mathcal{I} m\left(\phi^{+}\right)}{\mathcal{R} e\left(\phi^{0}\right)+\mathcal{I} m\left(\phi^{0}\right)} \quad$ Substitute: $\quad \mathcal{R} e\left(\phi^{0}\right)=\frac{1}{\sqrt{2}}(v+h)$
And rewrite the Lagrangian (tedious):

1. $G_{S M}:\left(S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y}\right) \rightarrow\left(S U(3)_{C} \times U(1)_{E M}\right)$
2. The $W^{+}, W^{-}, Z^{0}$ bosons acquire mass
3. The Higgs boson $H$ appears

$$
\mathcal{L}_{\text {SM }}=\mathcal{L}_{\text {Kinetic }}+\mathcal{L}_{\text {Higgs }}+\mathcal{L}_{\text {Yukawa }}
$$

Since we have a Higgs field we can add (ad-hoc) interactions between Higgs field and the fermions in a gauge invariant way

(The CP conjugate of $\varphi$ )

| $Y_{i j}{ }^{d}$ | $Y_{i j}{ }^{\boldsymbol{u}}$ | $\boldsymbol{Y}_{i j}{ }^{l}$ | $\begin{array}{l}\text { are arbitrary complex matrices which operate } \\ \text { in family space }(3 \times 3) \rightarrow \text { flavour physics }\end{array}$ |
| :--- | :--- | :--- | :--- |


: The Yukawa Part

Writing the first term explicitly:

$$
\begin{aligned}
& Y_{i j}^{d}\left(\overline{u_{L}^{I}}, \overline{d_{L}^{I}}\right)_{i}\binom{\varphi^{+}}{\varphi^{0}} d_{R j}^{I}= \\
& \left(\begin{array}{l}
Y_{11}^{d}\left(\overline{u_{L}^{I}}, \overline{d_{L}^{I}}\right)\binom{\varphi^{+}}{\varphi^{0}} \quad Y_{12}^{d}\left(\overline{u_{L}^{I}}, \overline{a_{L}^{I}}\right)\binom{\varphi^{+}}{\varphi^{0}} \\
Y_{13}^{d}\left(\overline{u_{L}^{I}}, \overline{d_{L}^{I}}\right)\binom{\varphi^{+}}{\varphi^{0}} \\
Y_{21}^{d}\left(\overline{c_{L}^{I}}, \overline{s_{L}^{I}}\right)\binom{\varphi^{+}}{\varphi^{0}} \quad Y_{22}^{d}\left(\overline{c_{L}^{I}} \overline{s_{L}^{I}}\right)\binom{\varphi^{+}}{\varphi^{0}} \\
Y_{13}^{d}\left(\overline{c_{L}^{I}}, \overline{s_{L}^{I}}\right)\binom{\varphi^{+}}{\varphi^{0}} \\
Y_{31}^{d}\left(\overline{t_{L}^{I}}, \overline{b_{L}^{I}}\right)\left(\begin{array}{c}
\varphi^{+} \\
s_{R}^{I} \\
\varphi_{R}^{I}
\end{array}\right) \\
Y_{32}^{d}\left(\overline{t_{L}^{I}}, \overline{b_{L}^{I}}\right)\binom{\varphi^{+}}{\varphi^{0}} \\
Y_{33}^{d}\left(\overline{t_{L}^{I}}, \overline{b_{L}^{I}}\right)\binom{\varphi^{+}}{\varphi^{0}}
\end{array}\right)
\end{aligned}
$$



## $\mathcal{L}_{\text {Yukawa }} \quad \xrightarrow{\text { SSB }} \quad \mathcal{L}_{\text {mass }}$

- Start with the Yukawa Lagrangian

Spontaneous symmetry breaking $\rightarrow \mathcal{R} e\left(\phi^{0}\right)=\frac{1}{\sqrt{2}}(v+h)$
$\theta$ After which the following mass term emerges:
$\mathcal{L}_{\text {Yukawa }} \rightarrow \mathcal{L}_{\text {mass }}=\overline{d_{L i}^{I}} M_{i j}^{d} d_{R j}^{I}+\overline{u_{L i}^{I}} M_{i j}^{u} u_{R j}^{I}+\overline{l_{L i}^{I}} M_{i j}^{l} l_{R j}^{I}+$ h.c.

$$
\text { , with } M_{i j}^{d}=\frac{1}{\sqrt{2}} Y_{i j}^{d}, \quad M_{i j}^{u}=\frac{1}{\sqrt{2}} Y_{i j}^{u}, M_{i j}^{l}=\frac{1}{\sqrt{2}} Y_{i j}^{l}
$$

## $\mathcal{L}_{\text {Yukawa }} \xrightarrow{\text { SSB }} \quad \mathcal{L}_{\text {mass }}$

Writing in an explicit form:

The matrices $M$ can always be diagonalised by unitary matrices $V_{L}^{f}$ and $V_{R}{ }^{f}$ such that:

$$
V_{L}^{f} M^{f} V_{R}^{f \dagger}=M_{\text {diagonal }}^{f} \quad\left[\left(\overline{d^{I}, \overline{s^{I}}, \overline{b^{\prime}}}\right)_{L} V_{L}^{f \dagger} V_{L}^{f} M^{f} V_{R}^{f \dagger} V_{R}^{f}\left(\begin{array}{l}
d^{I} \\
s^{I} \\
b^{I}
\end{array}\right)_{R}\right]
$$

Then the real fermion mass eigenstates are given by:

$$
\begin{array}{ll}
d_{L i}=\left(V_{L}^{d}\right)_{i j} \cdot d_{L j}^{I} & d_{R i}=\left(V_{R}^{d}\right)_{i j} \cdot d_{R j}^{I} \\
u_{L i}=\left(V_{L}^{u}\right)_{i j} \cdot u_{L j}^{I} & u_{R i}=\left(V_{R}^{u}\right)_{i j} \cdot u_{R j}^{I} \\
l_{L i}=\left(V_{L}^{l}\right)_{i j} \cdot l_{L j}^{I} & l_{R i}=\left(V_{R}^{l}\right)_{i j} \cdot l_{R j}^{I}
\end{array}
$$

$d_{L}{ }^{I}, u_{L}^{I}, l_{L}^{I} \quad$ are the weak interaction eigenstates
$d_{L}, u_{L}, l_{L} \quad$ are the mass eigenstates ("physical particles")

$$
\mathcal{L}_{\text {Yukawa }} \quad \stackrel{\boldsymbol{s s B}}{\longrightarrow} \quad \mathcal{L}_{\text {mass }}
$$

In terms of the mass eigenstates:

$$
\begin{aligned}
& \mathcal{L}_{\text {mass }}=(\bar{d}, \bar{s}, \bar{b})_{L} \mathrm{~g}\left(\begin{array}{lll}
m_{d} & & \\
& m_{s} & \\
& & m_{b}
\end{array}\right)\left(\begin{array}{l}
d \\
s \\
b
\end{array}\right)_{R}+(\bar{u}, \bar{c}, \bar{t})_{L} \mathrm{~g}\left(\begin{array}{lll}
m_{u} & & \\
& m_{c} & \\
& & m_{t}
\end{array}\right)\left(\begin{array}{l}
u \\
c \\
c \\
t
\end{array}\right)_{R} \\
& \left.\left.+(\bar{e}, \bar{\mu}, \bar{\tau})_{L} \mathrm{~g}^{m_{e}} \begin{array}{lll} 
& & \\
& m_{\mu} & \\
& & m_{\tau}
\end{array}\right) \mathrm{g} \begin{array}{l}
e \\
\mu \\
\tau
\end{array}\right)_{R}+\text { h.c. } \\
& \mathcal{L}_{\mathrm{mass}}=m_{u} \bar{u} u+m_{c} \bar{c} c+m_{t} \overline{t t} \\
& +m_{d} \bar{d} d+m_{s} \bar{s} s+m_{b} \bar{b} b \\
& +m_{e} \bar{e} e+m_{\mu} \bar{\mu} \mu+m_{\tau} \bar{\tau} \tau
\end{aligned}
$$

## In flavour space one can choose:

Weak basis: The gauge currents are diagonal in flavour space, but the flavour mass matrices are non-diagonal

Mass basis: The fermion masses are diagonal, but some gauge currents (charged weak interactions) are not diagonal in flavour space
$\rightarrow$ What happened to the charged current interactions (in $\mathrm{L}_{\text {Kinetic }}$ ) ?
$\mathcal{L}_{\mathrm{W}} \quad \rightarrow \quad \mathcal{L}_{\mathrm{CKM}} \quad:$ The Charged Current
The charged current interaction for quarks in the interaction basis is:

$$
\mathcal{L}_{\mathrm{W}_{n}+}=\frac{g}{\sqrt{2}} \overline{u_{L i}^{I}} \quad \gamma^{\mu} \quad d_{L i}^{I} \quad W_{\mu}^{+}
$$

The charged current interaction for quarks in the mass basis is:

$$
\mathcal{L}_{\mathrm{W}+}=\frac{g}{\sqrt{2}} \overline{u_{L i}} V_{L}^{u} \quad \gamma^{\mu} \quad V_{L}^{d \dagger} d_{L i} \quad W_{\mu}^{+}
$$

The unitary matrix: $\quad V_{\text {CKM }}=\left(V_{L}^{u} \cdot V_{L}^{d \dagger}\right) \quad$ with: $\quad V_{\text {CKM }} \cdot V_{C K M}^{\dagger}=1$
is the Cabibbo Kobayashi Maskawa mixing matrix:

$$
\mathcal{L}_{\mathrm{W}^{+}}=\frac{g}{\sqrt{2}}(\bar{u}, \bar{c}, \bar{t})_{L}\left(V_{C K M}\right)\left(\begin{array}{l}
d \\
s \\
b
\end{array}\right)_{L} \gamma^{\mu} W_{\mu}^{+}
$$

Lepton sector: similarly $\quad V_{\text {MNS }}=\left(V_{L}^{v} \cdot V_{L}^{l \dagger}\right)$
However, for massless neutrino's: $V_{L}{ }^{\nu}=$ arbitrary.
Choose it such that $V_{M N S}=l \boldsymbol{\rightarrow}$ no mixing in the lepton sector

## Charged Currents

$\theta$ The charged current term reads:

$$
\begin{aligned}
\mathcal{L}_{\mathrm{CC}} & =\frac{g}{\sqrt{2}} \overline{u_{L i}^{I}} \gamma^{\mu} W_{\mu}^{-} d_{L i}^{I}+\frac{g}{\sqrt{2}} \overline{d_{L i}^{I}} \mu^{u} W_{\mu}^{+} u_{L i}^{I}=J_{C C}^{\mu-} W_{\mu}^{-}+J_{C C}^{u+} W_{\mu}^{+} \\
& =\frac{g}{\sqrt{2}} \overline{u_{i}}\left(\frac{1-\gamma^{5}}{2}\right) \gamma^{\mu} W_{\mu}^{-} V_{i j}\left(\frac{1-\gamma^{5}}{2}\right) d_{j}+\frac{g}{\sqrt{2}} \overline{d_{j}}\left(\frac{1-\gamma^{5}}{2}\right) \gamma^{\mu} W_{\mu}^{+} V_{j i}^{\dagger}\left(\frac{1-\gamma^{5}}{2}\right) u_{i} \\
& =\frac{g}{\sqrt{2}} \overline{u_{i}} \gamma^{\mu} W_{\mu}^{-} V_{i j}\left(1-\gamma^{5}\right) d_{j}+\frac{g}{\sqrt{2}} \overline{d_{j}} \gamma^{\mu} W_{\mu}^{+} V_{i j}^{*}\left(1-\gamma^{5}\right) u_{i}
\end{aligned}
$$

## How do you measure those numbers?

- Magnitudes are typically determined from ratio of decay rates
- Example 1 - Measurement of $\mathrm{V}_{\mathrm{ud}}$
- Compare decay rates of neutron decay and muon decay
- Ratio proportional to $\mathrm{Vud}^{2}$
- $\left|\mathrm{V}_{\text {ud }}\right|=0.9735 \pm 0.0008$
- $V_{\text {ud }}$ of order 1



## What do we know about the CKM matrix?

- Magnitudes of elements have been measured over time
- Result of a large number of measurements and calculations

$$
\left(\begin{array}{l}
d^{\prime} \\
s^{\prime} \\
b^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)\left(\begin{array}{l}
d \\
s \\
b
\end{array}\right)
$$



```
4 \text { parameters}
-3 real
-1 phase
```

$\left(\left.\begin{array}{c|c}\left|V_{u d}\right| & \left|V_{u s}\right| \\ \left|V_{u b}\right| \\ \left|V_{c d}\right| & \left|V_{c s}\right| \\ \left|V_{c b}\right| \\ \left|V_{t d}\right| & \left|V_{t s}\right|\end{array} \right\rvert\, \begin{array}{|l}V_{t b} \mid\end{array}\right)=\left(\begin{array}{ccc}0.9738 \pm 0.0002 & 0.227 \pm 0.001 & 0.00396 \pm 0.00009 \\ 0.227 \pm 0.001 & 0.9730 \pm 0.0002 & 0.0422 \pm 0.0005 \\ 0.0081 \pm 0.0005 & 0.0416 \pm 0.0005 & 0.99910 \pm 0.00004\end{array}\right)$

Magnitude of elements shown only, no information of phase

## Approximately diagonal form

- Values are strongly ranked:
- Transition within generation favored
- Transition from $1^{\text {st }}$ to $2^{\text {nd }}$ generation suppressed by $\sin \left(\theta_{c}\right)$
- Transition from $2^{\text {nd }}$ to $3^{\text {rd }}$ generation suppressed bu $\sin ^{2}\left(\theta_{c}\right)$
- Transition from $1^{\text {st }}$ to $3^{\text {rd }}$ generation suppressed by $\sin ^{3}\left(\theta_{c}\right)$


LHCb experiment: study the $B$ particle

1) Find differences between matter and anti-matter

2) Find new particles



LHCb experiment: study the $B$ particle

1) Find differences between matter and anti-matter

CP violation



## Final remarks: How about the leptons?

- We now know that neutrinos also have flavour oscillations
- Neutrinos have mass
- Diagonalizing $\mathrm{Y}_{\mathrm{ij}}$ doesn't come for free any longer
$\mathcal{L}_{\text {Yukawa }}=Y_{i j} \overline{\psi_{L i}} \phi \psi_{R j}+$ h.c.

$$
=Y_{i j}^{d} \overline{Q_{L i}^{I}} \phi d_{R j}^{I}+Y_{i j}^{u} \overline{Q_{L i}^{I}} \tilde{\phi} u_{R j}^{I}+Y_{i j}^{l} \overline{L_{L i}^{I}} \phi l_{R j}^{I}
$$

- thus there is the equivalent of a CKM matrix for them:
- Pontecorvo-Maki-Nakagawa-Sakata matrix

$$
\left[\begin{array}{l}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right]=\left[\begin{array}{ccc}
U_{e 1} & U_{e 2} & U_{e 3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{array}\right]\left[\begin{array}{c}
\nu_{1} \\
\nu_{2} \\
\nu_{3}
\end{array}\right] \quad \text { vs }\left[\begin{array}{l}
\left|d^{\prime}\right\rangle \\
\left|s^{\prime}\right\rangle \\
\left|b^{\prime}\right\rangle
\end{array}\right]=\left[\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right]\left[\begin{array}{l}
|d\rangle \\
|s\rangle \\
|b\rangle
\end{array}\right]
$$

Final remarks : How about the leptons?

- the equivalent of the CKM matrix
- Pontecorvo-Maki-Nakagawa-Sakata matrix

$$
\left[\begin{array}{l}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right]=\left[\begin{array}{ccc}
U_{e 1} & U_{e 2} & U_{e 3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{array}\right]\left[\begin{array}{c}
\nu_{1} \\
\nu_{2} \\
\nu_{3}
\end{array}\right] \quad \text { vs }\left[\begin{array}{l}
\left|d^{\prime}\right\rangle \\
\left|s^{\prime}\right\rangle \\
\left|b^{\prime}\right\rangle
\end{array}\right]=\left[\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right]\left[\begin{array}{l}
|d\rangle \\
|s\rangle \\
|b\rangle
\end{array}\right]
$$

- a completely different hierarchy!

$$
U_{M N S P} \approx\left(\begin{array}{rrr}
0.85 & 0.53 & 0 \\
-0.37 & 0.60 & 0.71 \\
-0.37 & 0.60 & -0.71
\end{array}\right)
$$

$$
V_{C K M}=\left(\begin{array}{lll}
0.97428 & 0.2253 & 0.00347 \\
0.2252 & 0.97345 & 0.0410 \\
0.00862 & 0.0403 & 0.999152
\end{array}\right)
$$

Final remarks: How about the leptons?

- the equivalent of the CKM matrix
- Pontecorvo-Maki-Nakagawa-Sakata matrix

$$
\left[\begin{array}{l}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right]=\left[\begin{array}{ccc}
U_{e 1} & U_{e 2} & U_{e 3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{array}\right]\left[\begin{array}{l}
\nu_{1} \\
\nu_{2} \\
\nu_{3}
\end{array}\right] \quad \text { vs }\left[\begin{array}{l}
\left|d^{\prime}\right\rangle \\
\left|s^{\prime}\right\rangle \\
\left|b^{\prime}\right\rangle
\end{array}\right]=\left[\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right]\left[\begin{array}{l}
|d\rangle \\
|s\rangle \\
|b\rangle
\end{array}\right]
$$

- a completely different $\left(\begin{array}{lll}\left|U_{e 1}\right|^{2} & \left|U_{e 2}\right|^{2} & \left|U_{e 3}\right|^{2} \\ \left|U_{\mu 1}\right|^{2} & \left|U_{\mu 2}\right|^{2} & \left|U_{\mu 3}\right|^{2} \\ \left|U_{\tau 1}\right|^{2} & \left|U_{\tau 2}\right|^{2} & \left|U_{\tau 3}\right|^{2}\end{array}\right) \approx\left(\begin{array}{ccc}\frac{2}{3} & \frac{1}{3} & 0 \\ \frac{1}{6} & \frac{1}{3} & \frac{1}{2} \\ \frac{1}{6} & \frac{1}{3} & \frac{1}{2}\end{array}\right)$



## What's going on??



- ??? Edward Witten, 17 Feb 2009...

In this approach, the ordinary Higgs field is a wavefunction on K , as are the quark and lepton fields


Quark and lepton masses and the CKM matrix are determined by the overlaps of these wavefunctions.

## The picture is a little like this:



Higgs fields and quarks and leptons are supported on the three curves, and the Yukawa couplings that gives masses to down quarks and charged leptons come from the intersection drawn. (Up quark masses come from a similar intersection.)

In the leading approximation, only one particle of each type (i.e. the third generation particles - top, bottom, tau) get masses. The others have wavefunctions that vanish at the intersection point.

## Kabbalah!

- Is 125 GeV coincidental?



David d'Enterria
http://arxiv.org/pdf/1208.1993v1.pdf

## Kabbalah?

$$
\mathcal{L}_{\text {fermion-mass }}=-\lambda_{f}\left[\bar{\psi}_{L} \phi \psi_{R}+\bar{\psi}_{R} \bar{\phi} \psi_{L}\right]
$$

- More serious stuff:


### 3.1.1 Lepton masses

$$
\begin{aligned}
\mathcal{L}_{e} & =-\lambda_{e} \frac{1}{\sqrt{2}}\left[(\bar{\nu}, \bar{e})_{L}\binom{0}{v+h} e_{R}+\bar{e}_{R}(0, v+h)\binom{\nu}{e}_{L}\right] \\
= & -\frac{\lambda_{e}(v+h)}{\sqrt{2}}\left[\bar{e}_{L} e_{R}+\bar{e}_{R} e_{L}\right] \\
= & -\frac{\lambda_{e}(v+h)}{\sqrt{2}} \bar{e} e \\
= & -\underbrace{\frac{\lambda_{e} v}{\sqrt{2}} \bar{e} e}-\quad \underbrace{\frac{\lambda_{e}}{\sqrt{2}} h \bar{e} e} \\
& m_{e}=\frac{\lambda_{e} v}{\sqrt{2}} \quad e^{\frac{\lambda_{e}}{\sqrt{2}} \propto m_{e}}
\end{aligned}
$$

$$
m_{t}=\frac{\lambda_{t} v}{\sqrt{2}} \quad \square \quad \lambda_{t}=\frac{m_{t} \sqrt{2}}{v}=\frac{244.8}{246}=1.00!?
$$

## Kabbalah?

## - More serious stuff!



Figure 1. Higgs self-coupling in the SM as a function of the energy scale. The top plot depicts possible behaviors for the whole Higgs boson mass range Landau pole, stable, or unstable electroweak vacuum. The lower plots show detailed behavior for low Higgs boson masses, with dashed (dotted) line corresponding to the experimental uncertainty in the top mass $M_{t}$ (strong coupling constant $\alpha_{s}$ ), and the shaded yellow (pink) regions correspond to the total experimental error and theoretical uncertainty, with the latter estimated as $1.2 \mathrm{GeV}(2.5 \mathrm{GeV})$, see section 2 for detailed discussion.


Figure 2. Schematic depiction of the SM effective potential $V$ for the Higgs field for $M_{H}>$ $M_{\text {min }}^{\text {stability }}$ (left) and $M_{H}<M_{\text {min }}^{\text {stability }}$ (right)

## Shaposhnikov et al

End

Enough to wonder about...

- Couplings of Higgs to fermions, bosons?
- Why different masses?
- Relation between masses and W-couplings?
- Quark couplings and lepton couplings so different?

From An Introduction to the Standard Model of Particle Physics, 2nd Edition,
W. N. Cottingham and D. A. Greenwood, Cambridge University Press, Cambridge, 2007, Extracted by J.A. Shifflett, updated from Particle Data Group tables at pdg.lbl.gov, 2 Feb 2015.

$$
\begin{align*}
\mathcal{L}= & -\frac{1}{4} B_{\mu \nu} B^{\mu \nu}-\frac{1}{8} \operatorname{tr}\left(\mathbf{W}_{\mu \nu} \mathbf{W}^{\mu \nu}\right)-\frac{1}{2} \operatorname{tr}\left(\mathbf{G}_{\mu \nu} \mathbf{G}^{\mu \nu}\right) & & (\mathrm{U}(1), \mathrm{SU}(2) \text { and } \mathrm{SU}(3) \text { gauge terms) } \\
& +\left(\bar{\nu}_{L}, \bar{e}_{L}\right) \tilde{\sigma}^{\mu} i D_{\mu}\binom{\nu_{L}}{e_{L}}+\bar{e}_{R} \sigma^{\mu} i D_{\mu} e_{R}+\bar{\nu}_{R} \sigma^{\mu} i D_{\mu} \nu_{R}+(\text { h.c. }) & & \text { (lepton dynamical term) } \\
& -\frac{\sqrt{2}}{v}\left[\left(\bar{\nu}_{L}, \bar{e}_{L}\right) \phi M^{e} e_{R}+\bar{e}_{R} \bar{M}^{e} \bar{\phi}\binom{\nu_{L}}{e_{L}}\right] & & \text { (electron, muon, tauon mass term) } \\
& -\frac{\sqrt{2}}{v}\left[\left(-\bar{e}_{L}, \bar{\nu}_{L}\right) \phi^{*} M^{\nu} \nu_{R}+\bar{\nu}_{R} \bar{M}^{\nu} \phi^{T}\binom{-e_{L}}{\nu_{L}}\right] & & \text { (neutrino mass term) } \\
& +\left(\bar{u}_{L}, \bar{d}_{L}\right) \tilde{\sigma}^{\mu} i D_{\mu}\binom{u_{L}}{d_{L}}+\bar{u}_{R} \sigma^{\mu} i D_{\mu} u_{R}+\bar{d}_{R} \sigma^{\mu} i D_{\mu} d_{R}+(\text { h.c. ) } & & \text { (quark dynamical term) } \\
& -\frac{\sqrt{2}}{v}\left[\left(\bar{u}_{L}, \bar{d}_{L}\right) \phi M^{d} d_{R}+\bar{d}_{R} \bar{M}^{d} \bar{\phi}\binom{u_{L}}{d_{L}}\right] & & \text { (down, strange, bottom mass term) } \\
& -\frac{\sqrt{2}}{v}\left[\left(-\bar{d}_{L}, \bar{u}_{L}\right) \phi^{*} M^{u} u_{R}+\bar{u}_{R} \bar{M}^{u} \phi^{T}\binom{-d_{L}}{u_{L}}\right] & & \text { (up, charmed, top mass term) } \\
& +\overline{\left(D_{\mu} \phi\right)} D^{\mu} \phi-m_{h}^{2}\left[\bar{\phi} \phi-v^{2} / 2\right]^{2} / 2 v^{2} . & & \text { (Higgs dynamical and mass term) }
\end{align*}
$$

where (h.c.) means Hermitian conjugate of preceeding terms, $\bar{\psi}=$ (h.c.) $\psi=\psi^{\dagger}=\psi^{* T}$, and the derivative operators are

The problem is that the term above,

$$
i \bar{\psi} \not \supset \psi
$$

already includes its Hermitian conjugate. In physics-speak, we say that the kinetic term is self-conjugate (or Hermitian, or self-adjoint). This just means that there is no additional "+h.c." necessary. In fact, including the "+h.c." means that you are writing the same term twice and the equation is no longer "canonically normalized." This just means that you ought to rescale some of your variables.



[^0]:    A simpler and more elegant scheme can be constructed if we allow non-integral values for the charges. We can dispense entirely with the basic baryon $b$ if we assign to the triplet $t$ the following properties: $\operatorname{spin} \frac{1}{2}, z=-\frac{1}{3}$, and baryon number $\frac{1}{3}$. We then refer to the members $\mathrm{u}^{\frac{2}{3}}, \mathrm{~d}^{-\frac{1}{3}}$, and $\mathrm{s}^{-\frac{1}{3}}$ of the triplet as "quarks" 6) q and the members of the anti-triplet as anti-quarks $\overline{\mathrm{q}}$. Baryons can now be constructed from quarks by using the combinations ( $q q q$ ), ( $q$ qqqq), etc., while mesons are made out of $(q \bar{q})$ ), ( $q q \bar{q} \bar{q})$, etc. It is assuming that the lowest of (qq), (qqqq), etc. It is assuming the represenbaryon configuration (qqq) gives just therved, while
    tations 1, 8, and 10 that have been observed tations 1, 8, and 10 that have been observed, while
    the lowest meson configuration $(\mathrm{q} \overline{\mathrm{q}})$ similarly gives the lowest me
    just 1 and 8 .

    Figure 1.1: Murray Gell-Mann sugqested in 1964

[^1]:    r/particlephysics @rparticles. May 10
    Can I write proton as udu instead of uud? If not then why? dlvr.it/RWLqwY

