
"Elementary Particles" Lecture 3

> Niels Tuning Harry van der Graaf

Plan

Plan

Schedule

- 1) 11 Feb: Accelerators (Harry vd Graaf) + Special relativity (Niels Tuning)
- 2) 18 Feb: Quantum Mechanics (Niels Tuning)
- 3) 25 Feb: Interactions with Matter (Harry vd Graaf)
- 4) 3 Mar: Light detection (Harry vd Graaf)
- 5) 10 Mar: Particles and cosmics (Niels Tuning)
- 6) 17 Mar: Astrophysics and Dark Matter (Ernst-Jan Buis)
- 7) 24 Mar: Forces (Niels Tuning)

break

- 8) 21 Apr: e⁺e⁻ and ep scattering (Niels Tuning)
- 9) 28 Apr: Gravitational Waves (Ernst-Jan Buis)
- 10) 12 May: Higgs and big picture (Niels Tuning)
- 11) 19 May: Charged particle detection (Martin Franse)
- 12) 26 May: Applications: experiments and medical (Martin Franse)

13) 2 Jun: Nikhef excursie

14) 8 Jun: CERN excursie

Plan

	1) Intro: Standard Model & Relativity	11 Feb
1900-1940	2) Basis	18 Feb
	 Atom model, strong and weak force Scattering theory 	
1945-1965	3) Hadrons	10 Mar
	1) Isospin, strangeness	
	2) Quark model, GIM	
1965-1975	4) Standard Model	24 Mar
	1) QED	
	2) Parity, neutrinos, weak inteaction	
	3) QCD	
1975-2000	5) e ⁺ e ⁻ and DIS	21 Apr
2000-2015	6) Higgs and CKM	12 May

Thanks

- Ik ben schatplichtig aan:
 - Dr. Ivo van Vulpen (UvA)
 - Prof. dr. ir. Bob van Eijk (UT)
 - Prof. dr. M. Merk (VU)

1 Celebrating Bohr

One of the "problems" that led to the birth of Quantum Mechanics was the fact that electrons do not spiral onto the nucleus. Let's briefly celebrate the 100^{th} aniversary of Bohr's atom model.

- a) Consider the orbital momentum of the electron, L = mvr, and the classic situation of a stable orbit, $\alpha \frac{q_e q_p}{r^2} = \frac{mv^2}{r}$. Write the expression for L in terms of r (eliminating v).
- b) Niels Bohr stated in his paper (Phil.Mag 26, 1, 1913) that "for a system consisting of a nucleus and an electron rotating round it, ... the angular momentum of the electron round the nucleus is equal to $h/2\pi$ ". What is then the radius of the orbit of the electron? With $E_{kin} = \frac{1}{2}mv^2$ and $E_{pot} = \frac{-\alpha q_e q_p}{r}$, what is the value for the total energy of the orbiting electron?

a)
$$v = \sqrt{(\alpha q_e q_p)/(mr)} \Rightarrow L = mvr = \sqrt{\alpha q_e q_p mr}$$

b) $L = \sqrt{\alpha q_e q_p mr} = \hbar \Rightarrow r = \hbar^2/(\alpha q_e q_p m).$
(I tried SI units: $\alpha qq = k_e qq = (9 \times 10^9 \text{Nm}^2/\text{C}^2) \times (1.6 \times 10^{-19} C)^2)$
 $r = \hbar^2/(\alpha q_e q_p m) = (10^{-34})^2/(9 \times 10^9 \times (1.6 \times 10^{-19})^2 \times 10^{-30}) = 0.4 \times 10^{-10} \text{m}$
 $E_{tot} = E_{kin} + E_{pot} = \frac{\alpha q_e q_p}{2r} - \frac{\alpha q_e q_p}{r} = \frac{\alpha q_e q_p}{2r}$
 $E_{tot} = -\frac{m(\alpha q_e q_p)^2}{2\hbar^2}.$
I tried natural units here:
 $E_{tot} = -\alpha^2 m/2) = -(1/137)^2 \times 0.5 \text{ MeV} / 2 = -13.3 \text{ eV}$

Niels Tuning (7)

2 Yukawa's massive force carrier

Yukawa predicted a massive force carrier. Let's find out the predicted mass.

- a) The strong force acts only at the scale of the nucleus. The nucleus has a size of $\sim 10^{-15}$ m. To what time-scale does this correspond?
- b) To what energy scale, i.e. mass scale, does this correspond?

a)
$$r \sim 10^{-15} m \Rightarrow t = r/c = 10^{-15}/(3 \times 10^8) = 3 \times 10^{-24} \text{ s.}$$

b) $E \sim \hbar/t = 6.6 \times 10^{-22} \text{MeVs}/(3 \times 10^{-24} \text{s}) = 200 \text{ MeV.}$

3 Spinors

We saw that the requirement of a relativistically correct, but linear equation led to the Dirac equation, $(i\gamma^{\mu}\partial_{\mu} - m)\psi = 0$, with ψ being a four component spinor.

a) $H\psi = (\vec{\alpha} \cdot \vec{p} + \beta m)\psi$ gives $E^2 = p^2 + m^2$ if the matrices anticommute, $\{\alpha_i, \alpha_j\} = \alpha_i \alpha_j + \alpha_j \alpha_i = 0$. Usually we use the γ matrices, $\gamma = (\beta, \beta \vec{\alpha})$.

Show that indeed $\gamma_1 \gamma_2 = \gamma_2 \gamma_1$, using the Pauli-Dirac representation,

 $\beta = \left(\begin{array}{cc} \mathbb{1} & 0\\ 0 & -\mathbb{1} \end{array}\right); \quad \vec{\alpha} = \left(\begin{array}{cc} 0 & \vec{\sigma}\\ \vec{\sigma} & 0 \end{array}\right).$

a)
$$\gamma_1\gamma_2 = -\gamma_2\gamma_1$$
:

$$\gamma_1 = \beta\alpha_1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix}$$

$$\gamma_2 = \beta\alpha_2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & -i & 0 & 0 \\ i & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & i & 0 & 0 \\ -i & 0 & 0 & 0 \end{pmatrix}$$

$$\gamma_1\gamma_2 = \begin{pmatrix} -i & 0 & 0 & 0 \\ 0 & i & 0 & 0 \\ 0 & 0 & -i & 0 \\ 0 & 0 & -i & 0 \\ 0 & 0 & 0 & i \end{pmatrix}$$

$$\gamma_2\gamma_1 = \begin{pmatrix} i & 0 & 0 & 0 \\ 0 & -i & 0 & 0 \\ 0 & 0 & i & 0 \\ 0 & 0 & 0 & -i \end{pmatrix}$$

Niels Tuning (9)

Exercises

 $(\vec{\sigma} \cdot \vec{p})u_B = (E - m)u_A \tag{1}$

$$(\vec{\sigma} \cdot \vec{p})u_A = (E+m)u_B, \qquad (2)$$

where u_A and u_B are two-component objects. Let's inspect this two-fold degeneracy, and find the observable that distinguishes the two components.

- b) Consider an electron with the momentum in the z-direction, $\vec{p} = (0, 0, p)$. What do you find for $\vec{\sigma} \cdot \vec{p}$?
- c) What is the eigenvalue of $\frac{1}{2}\vec{\sigma}\cdot\hat{p}$ for the eigenfunction

$$\chi = \left(\begin{array}{c} 0\\1 \end{array}\right)$$

with $\hat{p} = \vec{p}/|\vec{p}|$ the vector in the direction of \vec{p} with unit length. What does this value correspond to, you think?

d) Suppose \hat{p} can point in any direction, what is then the meaning of $\frac{1}{2}\vec{\sigma}\cdot\hat{p}$? What are the possible eigenvalues?

b)

$$\vec{\sigma} \cdot \vec{p} = \sigma_3 p = \begin{pmatrix} p & 0\\ 0 & -p \end{pmatrix}$$

c)
 $(\frac{1}{2}\vec{\sigma} \cdot \hat{p})\chi = \frac{1}{2}\sigma_3\begin{pmatrix} 0\\ 1 \end{pmatrix} = -\frac{1}{2}\begin{pmatrix} 0\\ 1 \end{pmatrix}$
The eigenvalue -1/2 is the z-component of the spin.
d) $\frac{1}{2}\vec{\sigma} \cdot \hat{p}$ is the spin component in the direction of motion.
Possible eigenvalue: $\pm 1/2$.

Niels Tuning (10)

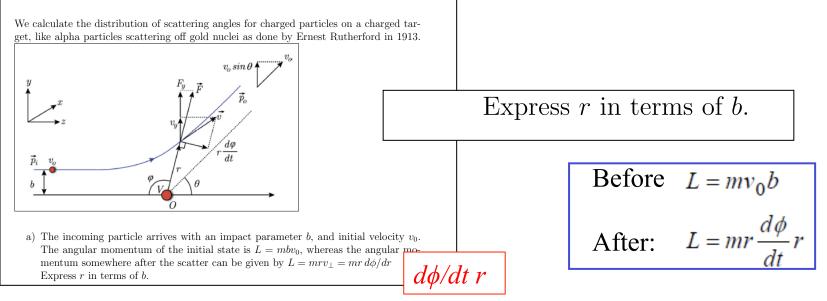
e) Let's consider the operator

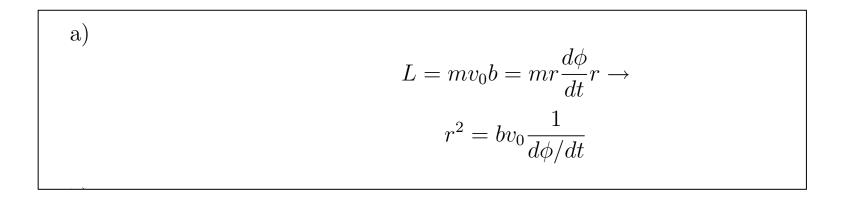
$$\vec{\Sigma} \cdot \hat{p} \equiv \begin{pmatrix} \vec{\sigma} \cdot \hat{p} & 0\\ 0 & \vec{\sigma} \cdot \hat{p} \end{pmatrix},$$

What are its eigenvalues for

$$u^{(1)} = \begin{pmatrix} u_A^{(1)} \\ u_B^{(1)} \end{pmatrix} , \ u^{(2)} = \begin{pmatrix} u_A^{(2)} \\ u_B^{(2)} \end{pmatrix}$$

where:


$$u_A^{(1)} = \begin{pmatrix} 1\\0 \end{pmatrix} , \ u_B^{(1)} = \vec{\sigma} \cdot \vec{p}/(E+m) \begin{pmatrix} 1\\0 \end{pmatrix} \qquad u_A^{(2)} = \begin{pmatrix} 0\\1 \end{pmatrix} , \ u_B^{(2)} = \vec{\sigma} \cdot \vec{p}/(E+m) \begin{pmatrix} 0\\1 \end{pmatrix}$$


(Hint: rotate your frame such that \vec{p} points along the z-axis, such that you only need to worry about p_3 .)

e) Positive and negative helicity:

$$(\vec{\Sigma} \cdot \hat{p})u^{(1)} = \begin{pmatrix} \sigma_3 & 0 \\ 0 & \sigma_3 \end{pmatrix} \begin{pmatrix} u_A^{(1)} \\ u_B^{(1)} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ p_z/(E+m) \\ 0 \end{pmatrix} = +u^{(1)}$$
$$(\vec{\Sigma} \cdot \hat{p})u^{(2)} = -u^{(2)}$$

4 Rutherford scattering

b) The force perpendicular to the direction of the incoming particle is given by $F_y = m dv_y/dt$, and $F_y = F \sin \phi = (Z_1 Z_2 \alpha/r^2) \sin \phi$. Give the expression for dv_y/dt , as a function of b (using the result from a).

c) We now multiply both sides with dt, and perform the integral from the start until the end, so the velocity on the left-hand side ranges from $v_y = 0$ to $v_y = v_0 \sin \theta$, and the angle on the right-hand side ranges from $\phi = 0$ to $\phi = \theta$. Show that

$$\frac{\sin(\theta/2)}{\cos(\theta/2)} = \frac{Z_1 Z_2 \alpha}{m v_0^2} \frac{1}{b}$$

$\tan(\frac{1}{2}x)$	=	$\sin x$
$\tan(\frac{1}{2}x)$		$\overline{1 + \cos x}$

b)

$$F_{y} = m \frac{dv_{y}}{dt} = F \sin \phi = \frac{Z_{1}Z_{2}\alpha}{r^{2}} \sin \phi = \frac{Z_{1}Z_{2}\alpha}{bv_{0}} \sin \phi \frac{d\phi}{dt}$$
c)

$$\int_{0}^{v_{0}\sin\theta} dv_{y} = \frac{Z_{1}Z_{2}\alpha}{mbv_{0}} \int_{\cos\pi}^{\cos\theta} d\cos\theta$$

$$v_{0}\sin\theta = \frac{Z_{1}Z_{2}\alpha}{mbv_{0}} (\cos\theta + 1)$$

$$\frac{\sin\theta}{\cos\theta - 1} = \frac{Z_{1}Z_{2}\alpha}{mbv_{0}^{2}}$$

Niels Tuning (13)

$$\frac{\sin(\theta/2)}{\cos(\theta/2)} = \frac{Z_1 Z_2 \alpha}{m v_0^2} \frac{1}{b}$$

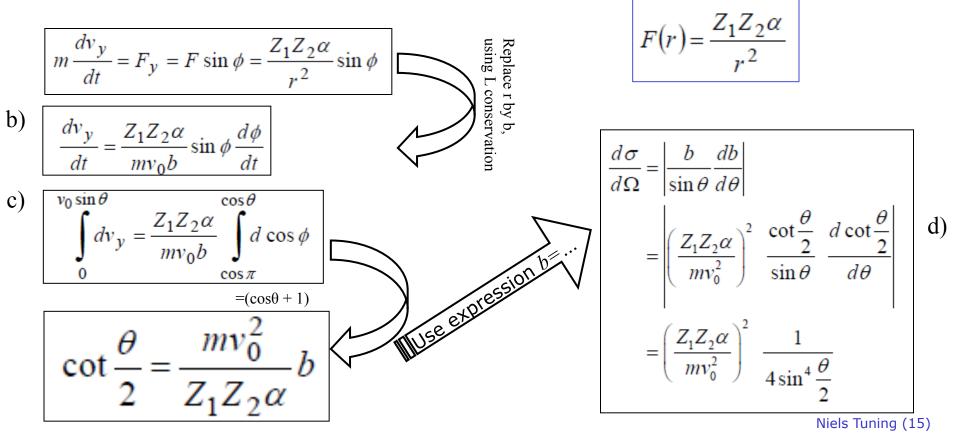
d) For a given surface (ring) of possible incoming particles, $d\sigma = b \, db \, d\phi$, the particle is scattered in a certain solid angle $d\Omega = \sin \theta d\theta d\phi$. Show that the expression for the differential cross section is given by,

$$\frac{d\sigma}{d\Omega} = \frac{b}{\sin\theta} \frac{db}{d\theta} = \left(\frac{Z_1 Z_2 \alpha}{m v_0^2}\right)^2 \frac{1}{4 \sin^4 \frac{\theta}{2}}$$

$$= \left(\frac{Z_1 Z_2 \alpha}{m v_0^2}\right)^2 \frac{\cot \frac{\theta}{2}}{\sin \theta} \frac{d \cot \frac{\theta}{2}}{d\theta}$$
$$= \left(\frac{Z_1 Z_2 \alpha}{m v_0^2}\right)^2 \frac{1}{4 \sin^4 \frac{\theta}{2}}$$

 $\cot\frac{\theta}{2} = \frac{mv_0^2}{Z_1 Z_2 \alpha}$

Rutherford


> 3d: incoming particle "sees" surface $d\sigma$, and scatters off solid angle $d\Omega$ Before $L = mv_0 b$

a)

L = mr

After:

- Conservation of angular momentum:
- Force:

$$\frac{d\sigma}{d\Omega} = \frac{b}{\sin\theta} \frac{db}{d\theta} = \left(\frac{Z_1 Z_2 \alpha}{m v_0^2}\right)^2 \frac{1}{4 \sin^4 \frac{\theta}{2}}$$

e) Use the 4-vectors $p_i = (E, 0, 0, mv_0)$ and $p_o = (E, 0, mv_0 \sin \theta, mv_0 \cos \theta)$ for the incoming and outgoing particle, respectively, and express the differential cross section in terms of the 4-momentum transfer $q = p_o - p_i$, instead of θ .

e)

$$\frac{d\sigma}{d\Omega} = \left(\frac{Z_1 Z_2 \alpha}{m v_0^2}\right)^2 \frac{1}{4 \sin^4 \frac{\theta}{2}} = (2m Z_1 Z_2 \alpha)^2 \left(\frac{1}{4m^2 v_0^2 \sin^2 \frac{\theta}{2}}\right)^2$$

$$-q^2 = -\left(\begin{array}{c}0\\0\\-m v_0 \sin \theta\\m v_0 (1 - \cos \theta)\end{array}\right)^2 = (m v_0)^2 (\sin^2 \theta + (1 - \cos \theta)^2) = 2(m v_0)^2 (1 - \cos \theta) = 4m^2 v_0^2 \sin^2 \frac{\theta}{2}$$
b) $\pi R^2 = 60 \text{mb} = 60 \times 10^{-3} \times 10^{-28} \text{m}^2 = 6 \times 10^{-30} \text{m}^2 \Rightarrow R \sim 10^{-15} \text{ m.}$
So, the total proton-proton cross section is similar to the surface of the proton.

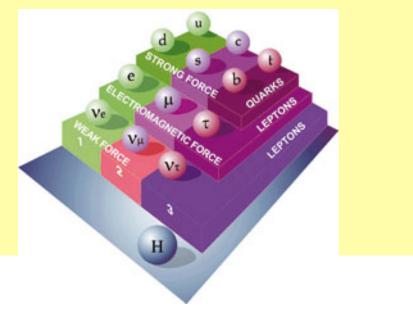
5 Cross section

Let's juggle a bit with cross sections and luminosities.

- a) The total cross section for proton-proton scattering at the LHC is about $\sigma_{tot} = 60 \text{ mb.}$ To what surface does this cross section correspond? (1 barn = 10^{-28}m^2 .) What is the size of an object with similar surface?
- b) The cross section for Higgs production at the LHC is approximately $\sigma_{pp\to H+X} = 30 \text{ pb}$. The "luminosity" is the number of particles produced for a given cross-section, and is an important characteristic of the performance of an accelerator. How many Higgs particles are then produced for a total luminosity of $\mathcal{L}_{tot} = 10 \text{ fb}^{-1}$?
- c) The "instantaneous" luminosity at the LHC is about $\mathcal{L}_{inst} = 10^{34} \mathrm{s}^{-1} \mathrm{cm}^{-2}$. How many Higgs particles are thus produced per hour?
- d) Compare the total proton-proton cross section with the cross section for Higgs production. In what fraction of the proton-proton collisions is a Higgs particle produced?
- b) $\pi R^2 = 60 \text{mb} = 60 \times 10^{-3} \times 10^{-28} \text{m}^2 = 6 \times 10^{-30} \text{m}^2 \Rightarrow R \sim 10^{-15} \text{ m.}$ So, the total proton-proton cross section is similar to the surface of the proton.
- c) $N = \sigma \times \mathcal{L}_{tot} = 30 \times 10^{-12} \times 10 \times 10^{15} = 3 \times 10^5.$

However, we will see that not all Higgs particles are detected. Only a fraction of the Higgs particles decay to a final state that is easy to detect. Furthermore, out of the visible final states, a fraction passes the selection criteria.

d)
$$N = \sigma \times \mathcal{L}_{inst} = 30 \times 10^{-40} \text{m}^2 \times 10^{38} \, \text{s}^{-1} \text{m}^{-2} = 0.3 \, \text{s}^{-1} \Rightarrow \sim 1000 \, \text{h}^{-1}.$$


e) This is a very small number, compared to the fact that about 20 proton-proton collisions occur every 25 ns: 1 out of $3 \times 10^9 pp$ collisions produces a Higgs particle.

Lecture 1: Standard Model & Relativity

• Standard Model Lagrangian

$$\begin{aligned} \chi &= -\frac{1}{4} F_{AL} F^{AL} \\ &+ i F D F + h.c. \\ &+ F Y_{ij} F_{j} p + h.c. \\ &+ |P_{A} p|^{2} - V(p) \end{aligned}$$

• Standard Model Particles

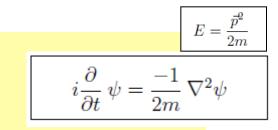
Lecture 1: Accelerators & Relativity

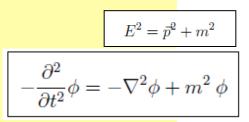
- Theory of relativity
 - Lorentz transformations ("boost")
 - Calculate energy in collissions

4-vector calculus

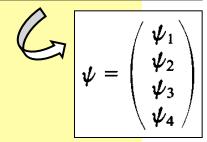
$$p_{\mu}p^{\mu} = (E/c)^2 - |\vec{p}|^2 = (E^2 - c^2|\vec{p}|^2)/c^2 = (m_0c^4)/c^2$$

$$x^{\mu} = \begin{pmatrix} x^{0} \\ x^{1} \\ x^{2} \\ x^{3} \end{pmatrix}, \quad (\mu = 0, 1, 2, 3)$$

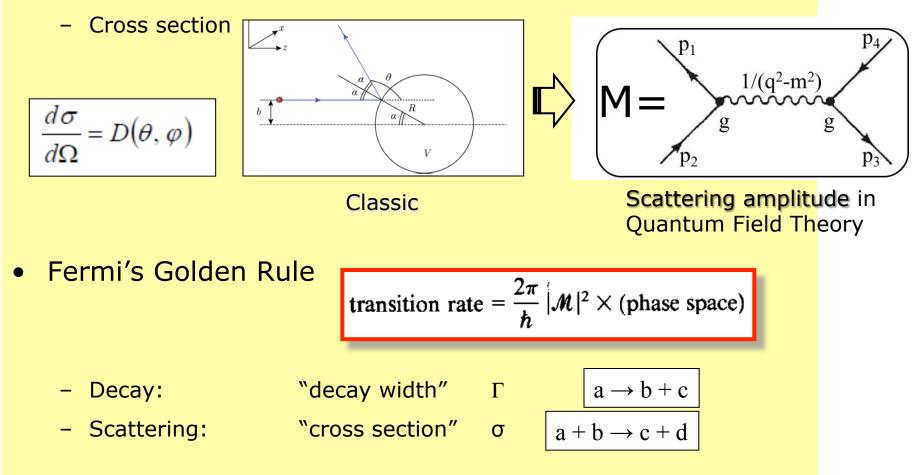

• High energies needed to make (new) particles



$$\begin{split} s &= \left(\, p_1 + p_2 \, \right)^2 = 2m^2 + 2 \Big(E^2 + \vec{p}^2 \, \Big) \\ &= 2m^2 + 2E^2 + 2 \Big(E^2 - m^2 \, \Big) = 4E^2 \end{split}$$

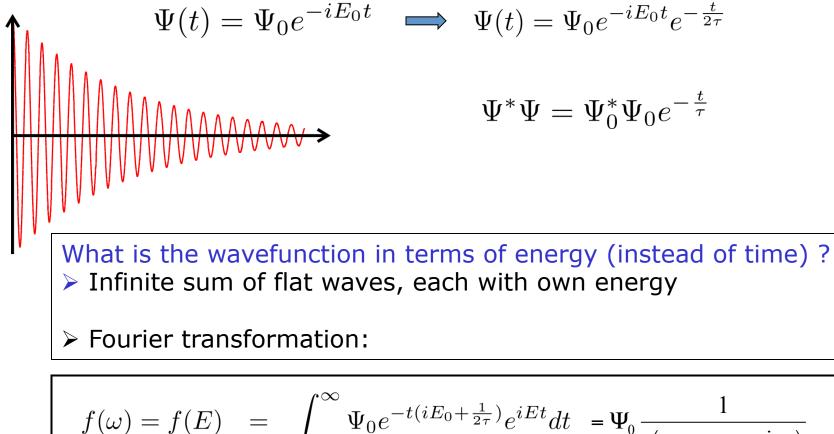

Lecture 2: Quantum Mechanics & Scattering

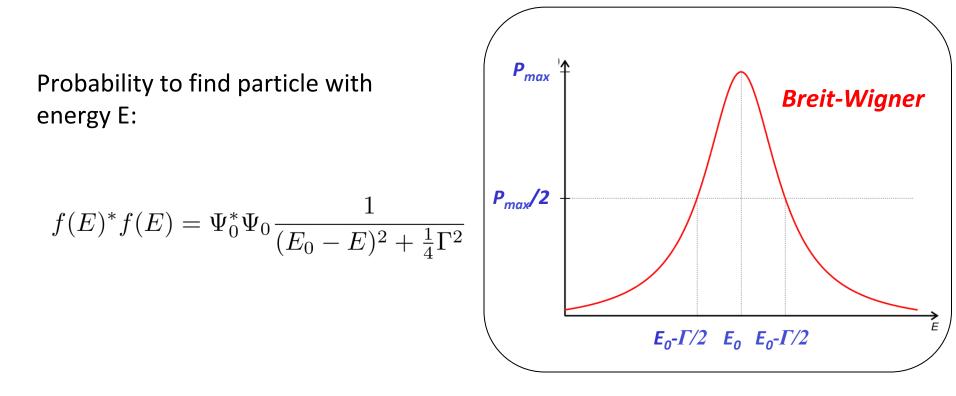
- Schrödinger equation
 - Time-dependence of wave function
- Klein-Gordon equation
 - Relativistic equation of motion of scalar particles
- Dirac equation
 - Relativistically correct, and linear
 - Equation of motion for spin-1/2 particles
 - Prediction of anti-matter



$$(i\gamma^{\mu}\partial_{\mu} - m) \psi = 0$$

Lecture 2: Quantum Mechanics & Scattering


- Scattering Theory
 - (Relative) probability for certain process to happen

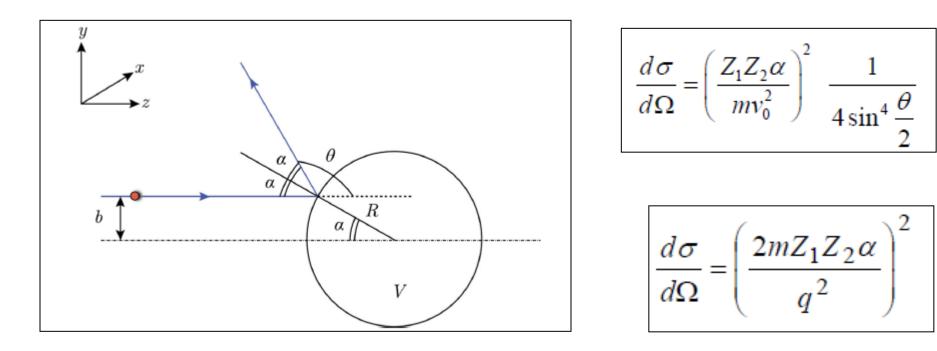

Quantum mechanical description of decay

State with energy $E_0(\hbar\omega)$ and lifetime τ To allow for decay, we need to change the time-dependence:

$$\omega) = f(E) = \int_{0}^{1} \Psi_{0} e^{-t(iE_{0} + \frac{1}{2\tau})} e^{iEt} dt = \Psi_{0} \frac{1}{i\left((E_{0} - E) - \frac{i}{2}\Gamma\right)}$$

Resonance

Resonance-structure contains information on:


- Mass
- Lifetime
- Decay possibilities

Rutherford

- 3d: incoming particle "sees" surface dσ, and scatters off solid angle dΩ
- Calculate:

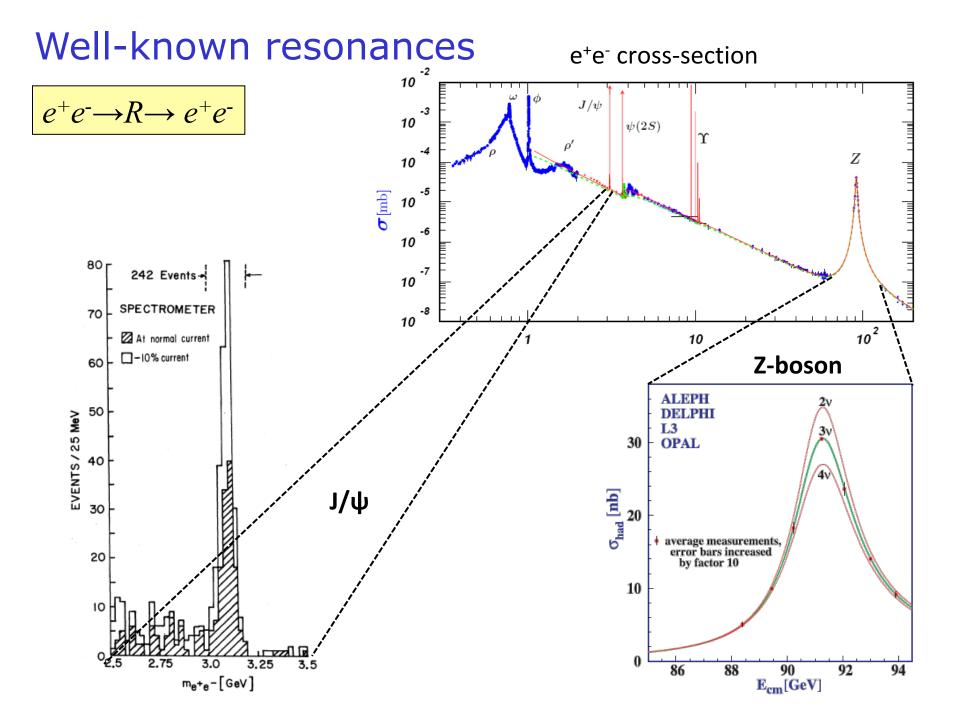
$$\frac{d\sigma}{d\Omega} = D(\theta, \varphi)$$

$$d\sigma = \left| b \ db \ d\varphi \right|$$
$$d\Omega = \left| \sin \theta \ d\theta \ d\varphi \right|$$

Scattering Theory

Let's try some potentials

$$\Phi(\vec{\mathbf{r}}) = \phi_a(\vec{\mathbf{r}}) - \frac{m}{2\pi\hbar^2} \int \frac{e^{ik|\vec{\mathbf{r}} - \vec{\mathbf{r}}'|}}{|\vec{\mathbf{r}} - \vec{\mathbf{r}}'|} V(\vec{\mathbf{r}}') \phi_a(\vec{\mathbf{r}}') \, \mathrm{d}^3 r'$$
$$f^{[1]}(\vec{\mathbf{k}_a}, \vec{\mathbf{k}_b}) = \frac{m}{2\pi\hbar^2} \int e^{i(\vec{\mathbf{k}_a} - \vec{\mathbf{k}_b}) \cdot \vec{\mathbf{r}}'} V(\vec{\mathbf{r}}') \, \mathrm{d}^3 r'$$


• Yukawa:
(Pion exchange)
$$V(r) = \frac{Z_1 Z_2 e^2}{r} e^{-ar} \left[\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = |f|^2 = \frac{m^2}{(2\pi\hbar^2)^2} \left[\frac{4\pi Z_1 Z_2 e^2}{q^2 + a^2} \right]^2 \right]$$

• Coulomb: (Elastic scattering)

$$V(r) = \frac{Z_1 Z_2 e^2}{r} \left[\frac{d\sigma}{d\Omega} = \frac{m^2}{(2\pi\hbar^2)^2} \left[\frac{4\pi Z_1 Z_2 e^2}{q^2} \right]^2 = \left[\frac{Z_1 Z_2 e^2}{2mv^2 \sin^2 \frac{\theta}{2}} \right]^2$$

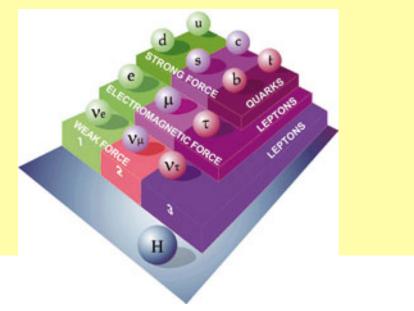
• Centrifugal Barier:
(Resonances)
$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = |f^{res}(\theta)|^2$$

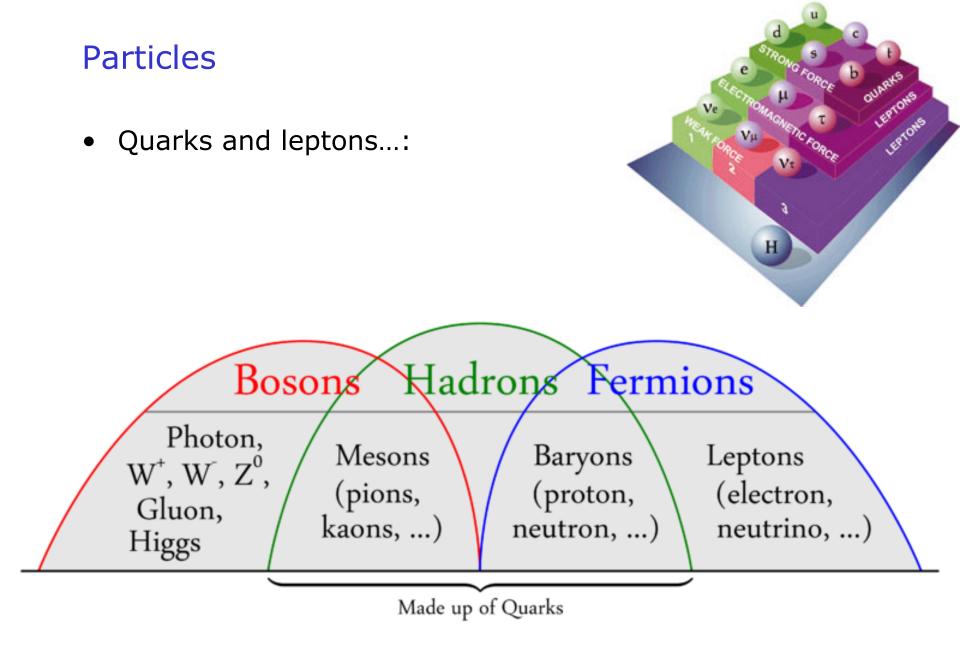
$$= \frac{(2l+1)^2}{k^2} \frac{\frac{\Gamma^2}{4}}{(E_r - E)^2 + \frac{\Gamma^2}{4}} |P_l(\cos \theta)|^2$$

Outline for today

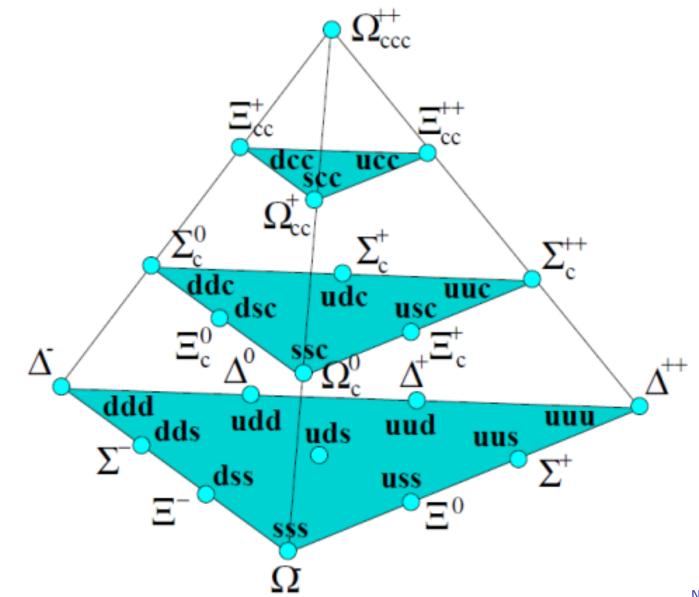
- Resonances
- Quarkmodel
 - Strangeness
 - Color

• Symmetries

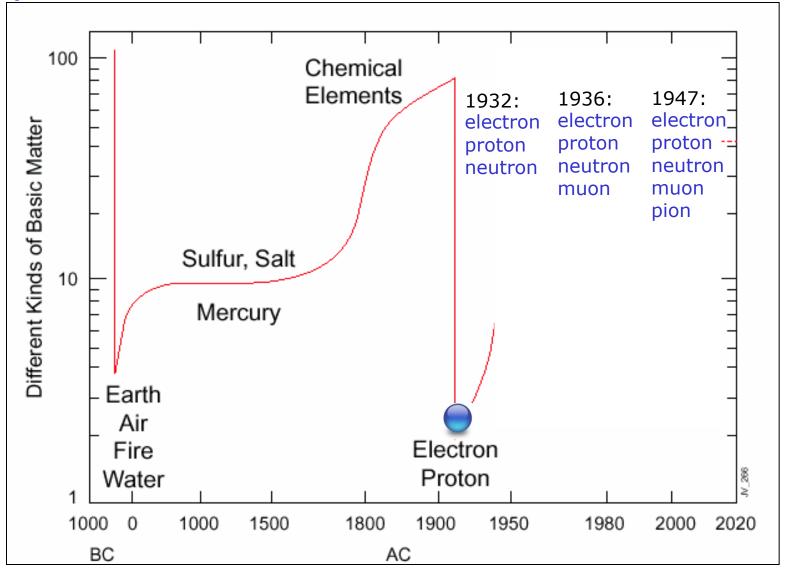

- Isospin
- Adding spin
- Clebsch Gordan coefficients


Lecture 1: Standard Model & Relativity

• Standard Model Lagrangian


$$\begin{aligned} \chi &= -\frac{1}{4} F_{AL} F^{AL} \\ &+ i F D F + h.c. \\ &+ F Y_{ij} F_{j} p + h.c. \\ &+ |P_{A} p|^{2} - V(p) \end{aligned}$$

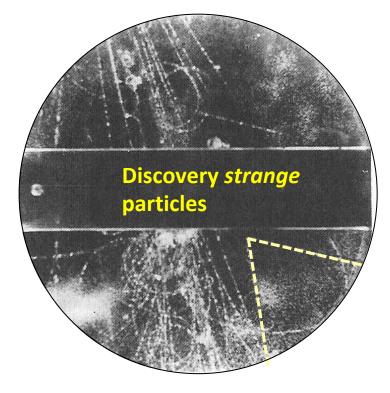
• Standard Model Particles



Particles...

The number of 'elementary' particles

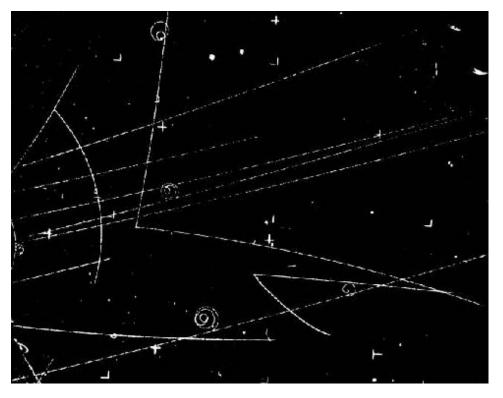
1947


- 1932: the *positron* had been observed to confirm Dirac's theory,
- 1947: and the *pion* had been identified as Yukawa's strong force carrier,
- So, things seemed under control!?

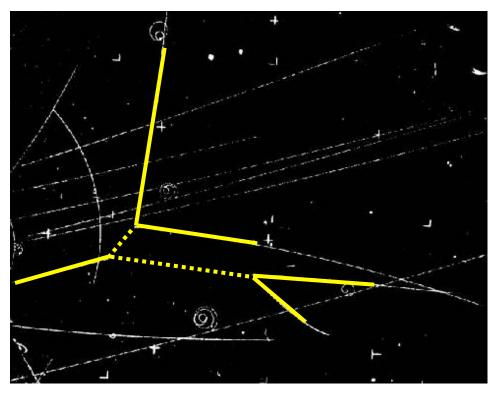
- Ok, the *muon* was a bit of a mystery...
 - Rabi: "Who ordered *that*?"

Quark model

Discovery *strange* particles

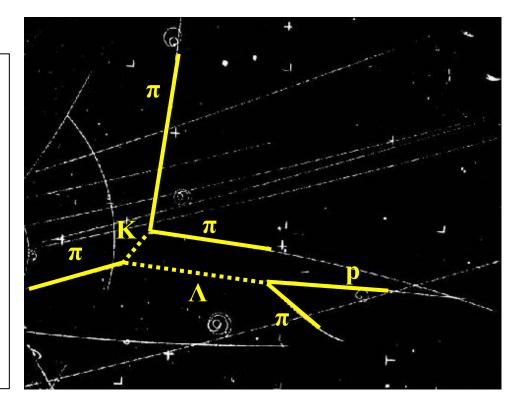

Discovery strange particles

- Why were these particles called *strange*?
- > Large production cross section (10^{-27} cm^2)
- > Long lifetime (corresponding to process with cross section 10^{-40} cm²)


- Why were these particles called strange?
- Large production cross section (10⁻²⁷ cm²)
- > Long lifetime (corresponding to process with cross section 10^{-40} cm²)

• Associated production!

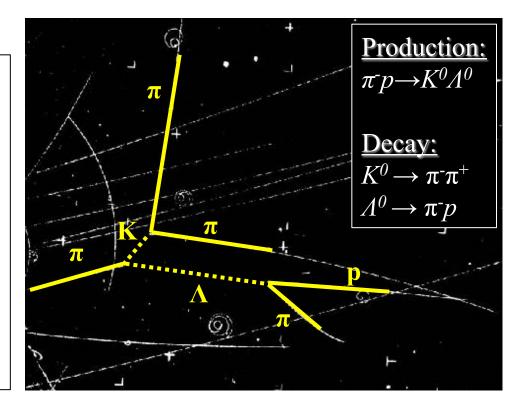
- Why were these particles called *strange*?
- Large production cross section (10⁻²⁷ cm²)
- > Long lifetime (corresponding to process with cross section 10^{-40} cm²)



- Why were these particles called *strange*?
- Large production cross section (10⁻²⁷ cm²)
- > Long lifetime (corresponding to process with cross section 10^{-40} cm²)

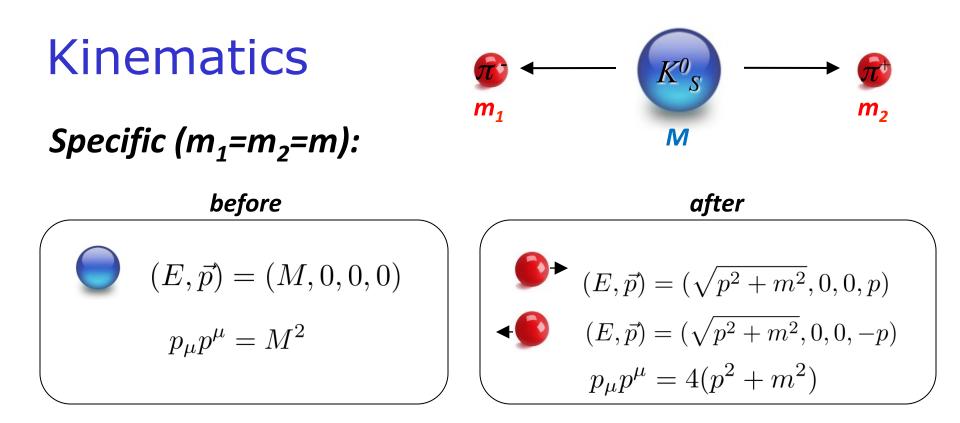
New quantum number:

- Strangeness, S
- Conserved in the strong interaction, ΔS=0
 - Particles with S=+1 and S=-1 simultaneously produced
- Not conserved in individual decay, ΔS=1

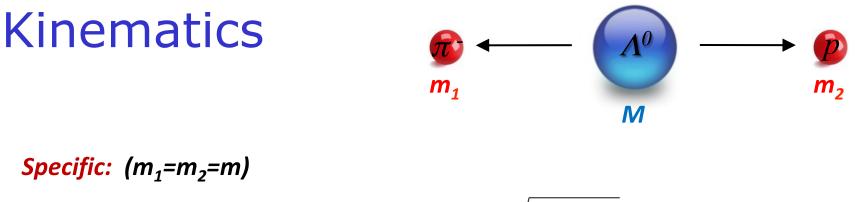


- Why were these particles called *strange*?
- Large production cross section (10⁻²⁷ cm²)
- > Long lifetime (corresponding to process with cross section 10^{-40} cm²)

New quantum number:


- Strangeness, S
- Conserved in the strong interaction, ΔS=0
 - Particles with S=+1 and S=-1 simultaneously produced
- Not conserved in individual decay, ΔS=1

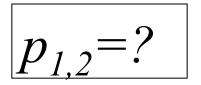
Intermezzo: conserved quantities


- What is conserved in interactions?
 - Decays & Scattering
- Energy, momentum
- Electric charge
- Total angular momentum (not just spin)
- Strangeness?
- Baryon number
- Lepton flavour
- Colour?
- Parity?
- CP ?

. . .

What is the energy of final-state particles?

$$M^{2} = 4(p^{2} + m^{2}) \longrightarrow p = \frac{1}{2}M\sqrt{1 - \frac{4m^{2}}{M^{2}}} \qquad E = \frac{1}{2}M$$



$$E_1 = \frac{1}{2}M \qquad \qquad p_1 = \frac{1}{2}M\sqrt{1 - \frac{4m^2}{M^2}}$$

What if masses of final-state particles differ, $m_1 \neq m_2$?

General:

$$E_{1,2} = \frac{M^2 \pm \Delta(m^2)}{2M}$$

Mesons

Particle	Mass	S
K ⁰	497.7	+1
K+	493.6	+1
K⁻	493.6	-1
κ ₀	497.7	-1

Strangeness

Particle	Mass	S
Σ^+	1189.4	-1
Σ^0	1192.6	-1
Σ-	1197.4	-1
Λ^0	1115.6	-1
Ξ ⁰	1314.9	-2
Ξ-	1321.3	-2

Baryons

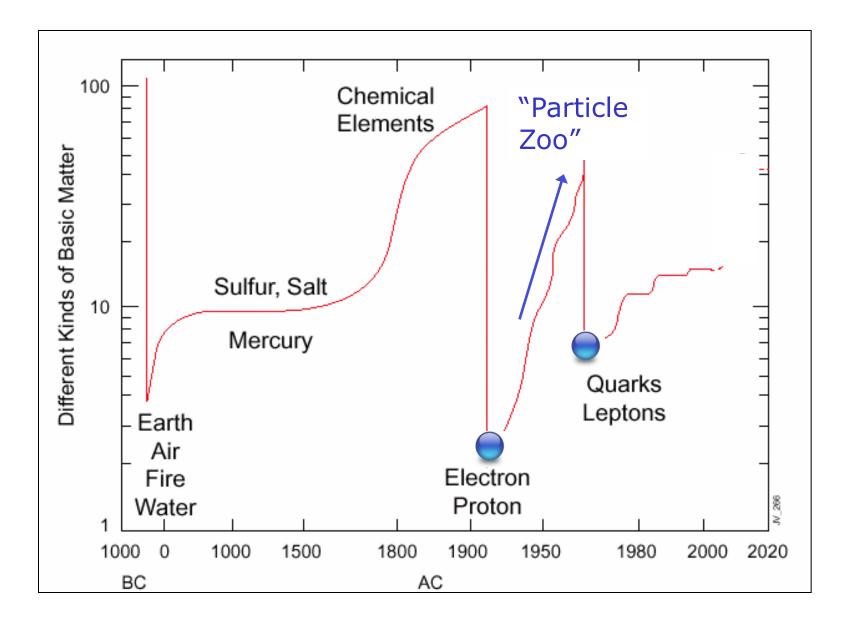
What is different...

50's – 60's

Many particles discovered → `particle zoo'

• Will Lamb:

"The finder of a new particle used to be awarded the Nobel Prize, but such a discovery now ought to be punished with a \$10,000 fine."


• Enrico Fermi:

"If I could remember the names of all these particles, I'd be a botanist."

• Wolfgang Pauli:

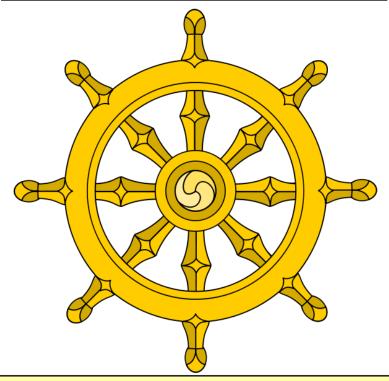
"Had I foreseen that, I would have gone into botany."

The number of 'elementary' particles

The 8 lightest strange baryons: baryon octet

Particle	Mass	S
n	938.3	0
р	939.6	0
Σ+	1189.4	-1
Σ ⁰	1192.6	-1
Σ-	1197.4	-1
Λ ⁰	1115.6	-1
Ξ0	1314.9	-2
Ē	1321.3	-2

Breakthrough in 1961 (Murray Gell-Mann): <u>"The eight-fold way"</u> (Nobel prize 1969)

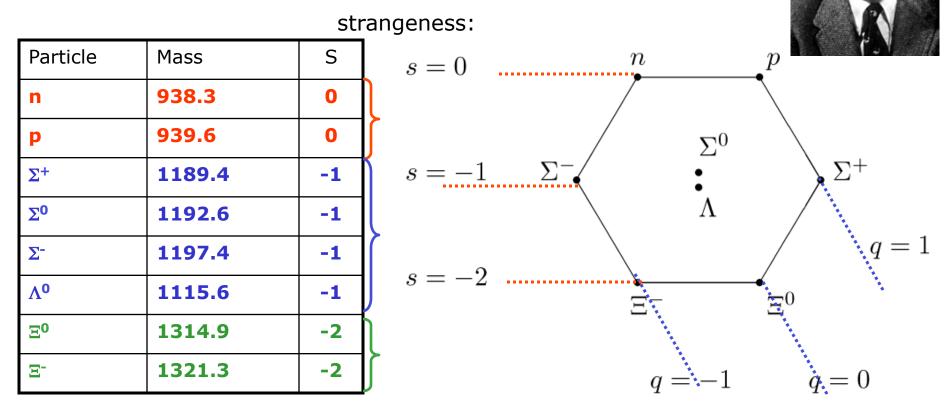

Also works for: Eight lightest mesons Other baryons - meson octet

- baryon decuplet

The 8 lightest strange baryons: baryon octet

Particle	Mass	S
n	938.3	0
р	939.6	0
Σ+	1189.4	-1
Σ0	1192.6	-1
Σ-	1197.4	-1
Λ ⁰	1115.6	-1
Ξo	1314.9	-2
É.	1321.3	-2

The Noble Eightfold Path is one of the principal teachings of the Buddha, who described it as the way leading to the cessation of suffering and the achievement of self-awakening.

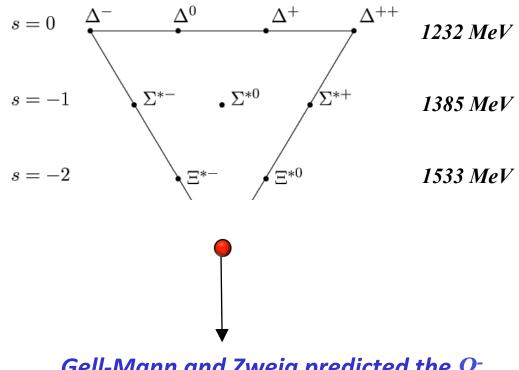


Breakthrough in 1961 (Murray Gell-Mann): <u>"The eight-fold way"</u> (Nobel prize 1969)

Also works for: Eight lightest mesons Other baryons

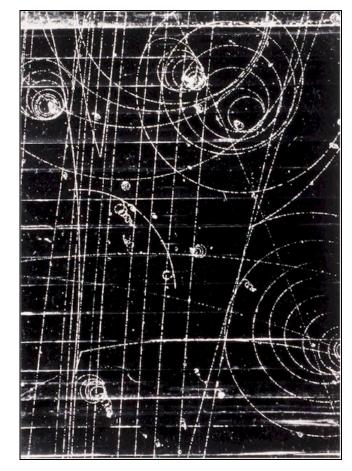
- meson octet
- baryon decuplet

The 8 lightest strange baryons: baryon octet

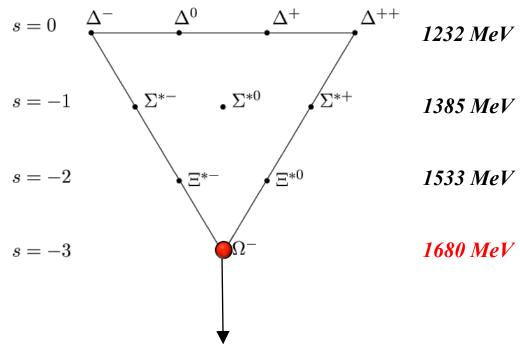

Breakthrough in 1961 (Murray Gell-Mann): <u>"The eight-fold way"</u> (Nobel prize 1969)

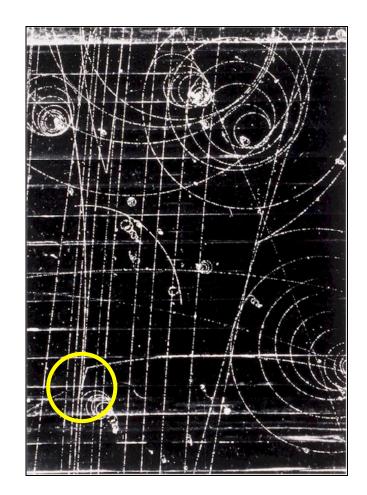
Also works for: Eight lightest mesons Other baryons

- meson octet
- baryon decuplet


Discovery of $\Omega^{\scriptscriptstyle -}$

Not all multiplets complete...

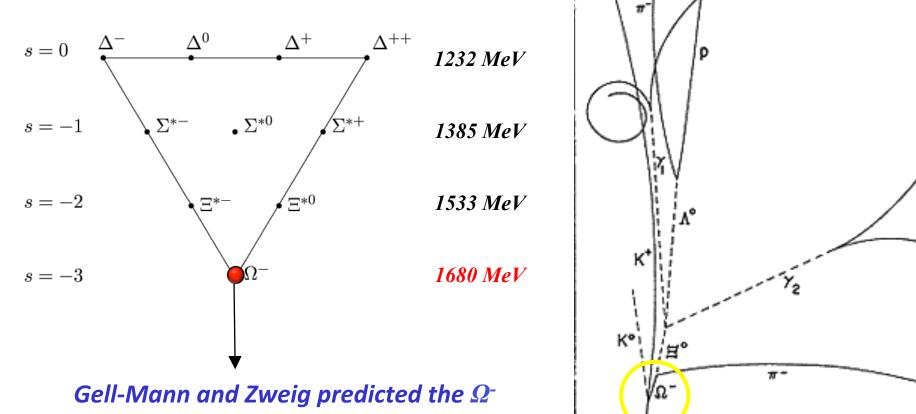

Gell-Mann and Zweig predicted the $\varOmega^{\text{-}}$... and its properties



Discovery of Ω^-

Not all multiplets complete...

Gell-Mann and Zweig predicted the $\varOmega^{\text{-}}$... and its properties


Discovery of Ω^{-}

Not all multiplets complete...

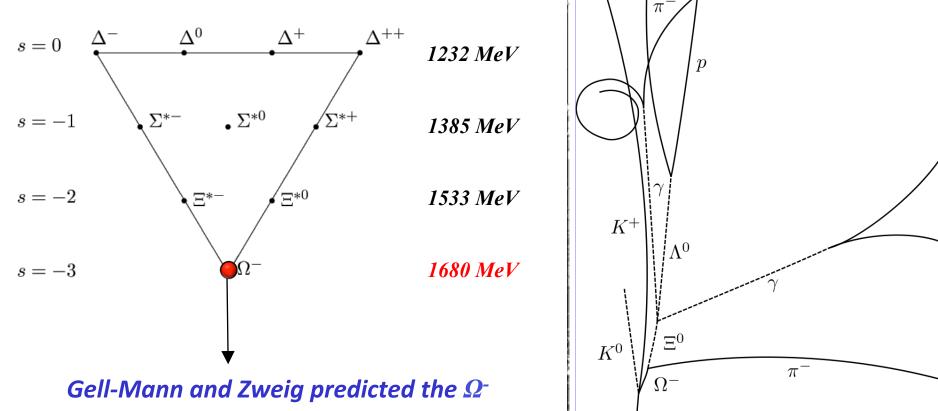
Discovered in 1964:

 $K^- + p \rightarrow \Omega^- + K^+ + K^0$

κ-

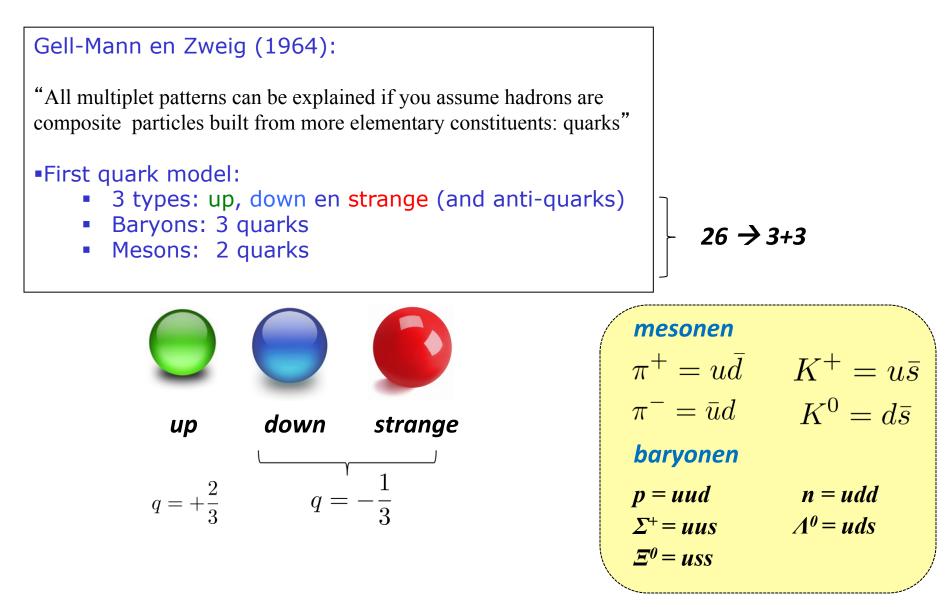
... and its properties

Discovery of Ω^{-}

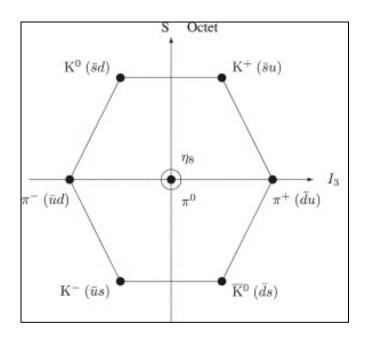

Not all multiplets complete...

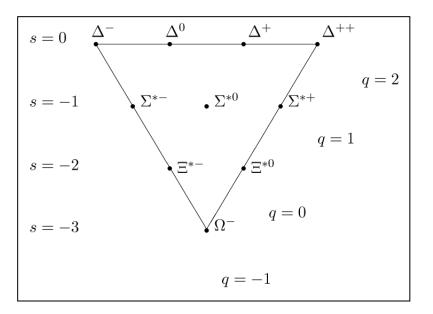
Discovered in 1964:

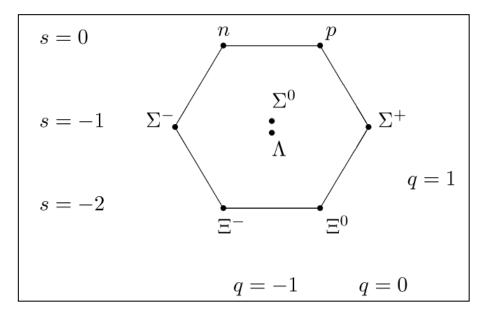
 $K^- + p \rightarrow \Omega^- + K^+ + K^0$


 K^{-}

10 cm

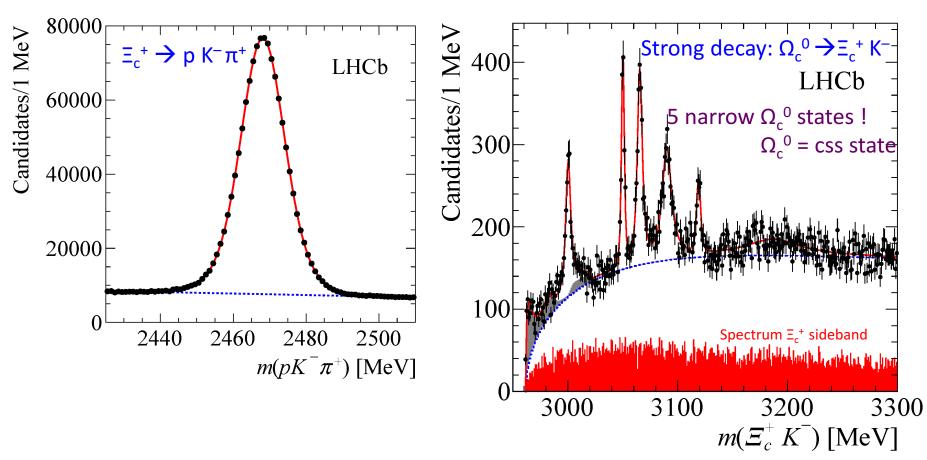

... and its properties

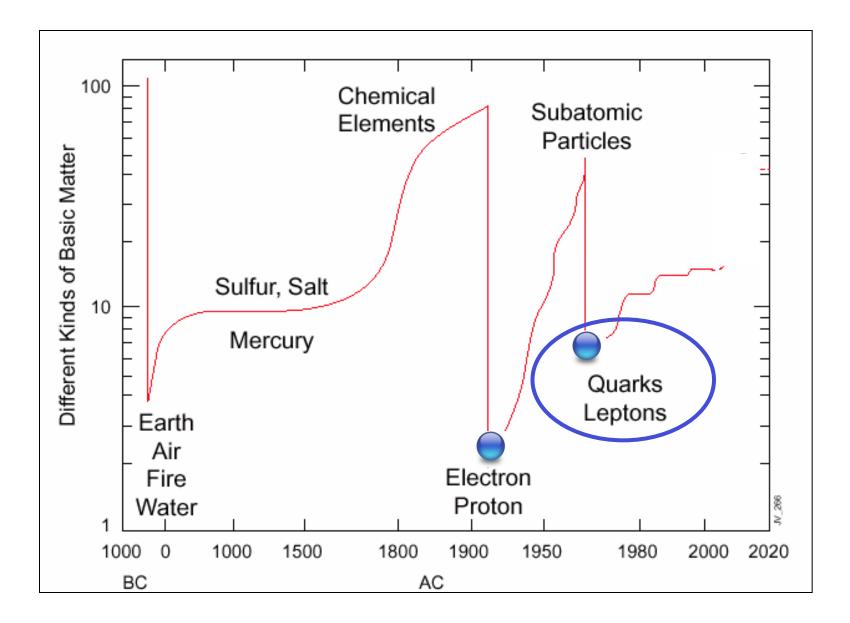

Quark model



Quark model

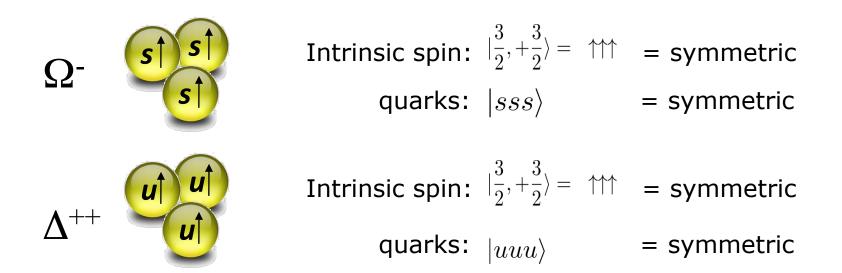
- Mesons:
 - Octet
- Baryons:
 - Octet
 - Decuplet

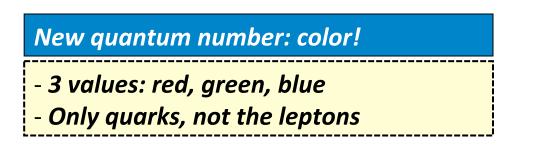


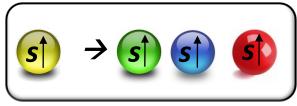

New last year: Ω_c^0 (css)

- Just discovered 5 excited (ccs) states
- Still active research!
- 1. Reconstruct $\Xi_c^+ = csu$ state

2. Combine Ξ_c^+ with K^- :


The number of 'elementary' particles

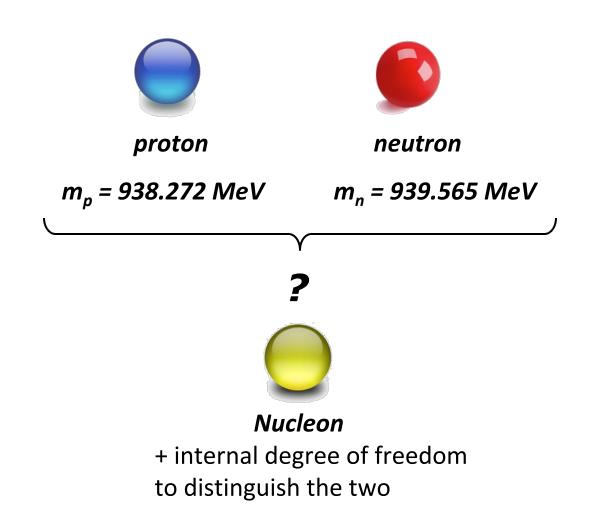



- 1) Are quarks 'real' or a mathematical tric?
- 2) How can a baryon exist, like Δ^{++} with $(u\uparrow u\uparrow u\uparrow)$, given the Pauli exclusion principle?

"Problem" of quark model

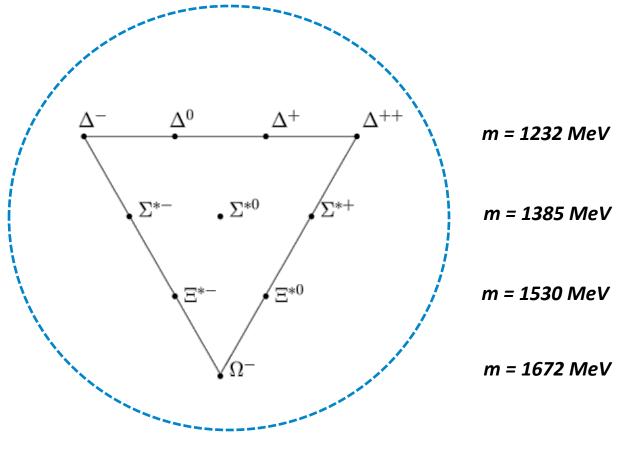
J=3/2, ie. fermion, ie. obey Fermi-Dirac statistics: anti-symmetric wavefunction

The Particle Zoo


mass

Force carier: γ		<1x 10 ⁻¹⁸ eV
Leptons: e ⁻	$\bar{\mu}, \mu, \tau, \nu_e, \nu_\mu, \nu_\tau$	~0 - 1.8 GeV
Mesons: π^+	$^{+},\pi^{0},\pi^{-},K^{+},K^{-},K^{0},\rho^{+},\rho^{0},\rho^{-}$	0.1-1 GeV
Baryons: p,	$, n, \Lambda, \Sigma^+, \Sigma^-, \Sigma^0, \Delta^{++}, \Delta^+, \Delta^0, \Delta^-, \Omega, \dots$	1-few GeV

	00	PDGLive	
http://pdg.lbl.gov/	+ Shttp://pdglive.lbl.gov/list	ings1.brl?exp=Y	🖒 🔍 🗘 🗘 🗘
neep 177 pagnongo 17	💭 🇰 Apple Yahoo! Google Maps Y	/ouTube Wikipedia News (1218)▼ Popular	v
	PDGLive	Taking Screenshots in Mac OS X	
	POPE POPE Summary Tables Review	we, Tables, Plots Particle Listings	Help Send feedback
	Please use this CITA	from the 2010 Review of Particle Phys TION: K. Nakamura <i>et al.</i> (Particle Data Grou	
	GAUGE & HIGGS BOSONS Reviews on Gauge & Higgs Bosons Y gluon graviton W Z Higgs Bosons Heavy Dosons Axions	LEPTONS ▶ Reviews on Leptons ▶ e, µ, τ > Heavy Charged Lepton ▶ Neutrino Properties ▶ Number of Neutrino Types ▶ Double β-Decay ▶ Neutrino Mixing ▶ Heavy Neutral Leptons	QUARKS Reviews on Quarks Light quarks (u, d, s) c b t b t b' t Free quark
	 Axions MESONS Reviews on Mesons Light Unflavored Further States Strange Charmed Charmed, Strange Bottom, Strange Bottom, Charmed c b b Non q 	 BARYONS Reviews on Baryons N Baryons Δ Baryons Δ Baryons Λ Baryons Σ Baryons Ξ Baryons Charmed Baryons Doubly-Charmed Bottom Baryons 	OTHER SEARCHES Reviews on Other Searches Magnetic Monopole Supersymmetric Particles Technicolor Quark and Lepton Compositeness Extra Dimensions WIMPs CONSERVATION LAWS Reviews on Conservation Laws Discrete Space-Time Symm. Number Conservation Laws


Protons and neutrons

Proton and neutron *identical* under strong interaction

Multiplets

Pattern (mass degeneracy) suggest internal degree of freedom

Baryon decuplet

Eightfold way

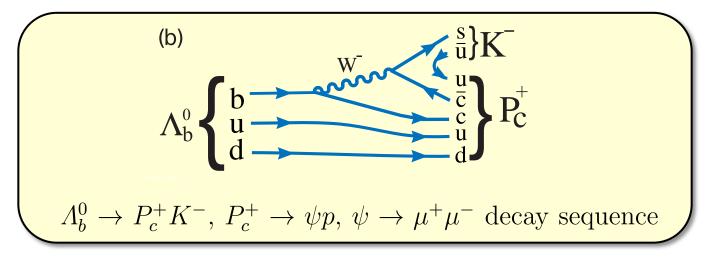
- Introduction of quarks
- Introduction of quantum numbers
 - Strangeness
 - Isospin

	d	u	s
Q – electric charge	$-\frac{1}{3}$	$+\frac{2}{3}$	$-\frac{1}{3}$
I – isospin	$\frac{1}{2}$	$\frac{1}{2}$	0
I_z – isospin z-component	$-\frac{1}{2}$	$+\frac{1}{2}$	0
$S - \mathrm{strangeness}$	0	0	-1

A simpler and more elegant scheme can be constructed if we allow non-integral values for the charges. We can dispense entirely with the basic baryon b if we assign to the triplet t the following properties: spin $\frac{1}{2}$, $z = -\frac{1}{3}$, and baryon number $\frac{1}{3}$. We then refer to the members u^2_3 , $d^{-\frac{1}{3}}$, and $s^{-\frac{1}{3}}$ of the triplet as "quarks" 6) q and the members of the anti-triplet as anti-quarks \bar{q} . Baryons can now be constructed from quarks by using the combinations (qqq), (qqqq \bar{q}), etc., while mesons are made out of (q \bar{q}), (qq $\bar{q}q\bar{q}$), etc. It is assuming that the lowest baryon configuration (qqq) gives just the representations 1, 8, and 10 that have been observed, while the lowest meson configuration (q \bar{q}) similarly gives just 1 and 8.

Figure 1.1: Murray Gell-Mann suggested in 1964 that the proton consists of three "quarks" ⁶ [1].

M. Gell-Mann, A schematic model of baryons and mesons. Phys. Lett. 8, 214 (1964).


Tetra- and pentaquarks ??

- Tetraquark discovered in 2003
 - X(3872)
 - Also *charged* cc and bb states...

 $B^+ \rightarrow X(3872)K^+$ decays, where $X(3872) \rightarrow \pi^+ \pi^- J/\psi$ and $J/\psi \rightarrow \mu^+ \mu^-$.

• Pentaquark discovered in 2016

$$- P_{c}^{+}(4450)$$

Timeline

• Active research...:

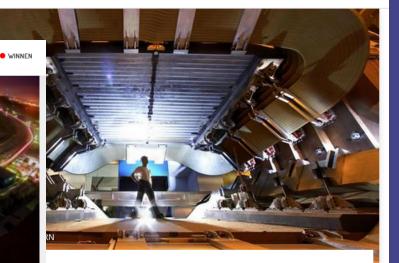
IN THE NEWS

Nieuws

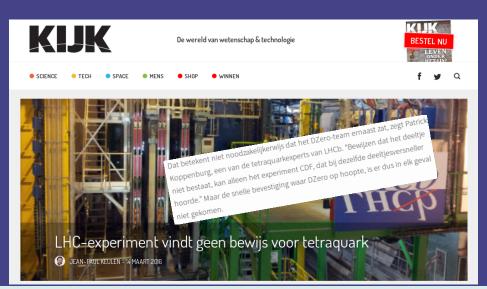
Cultuur & Leven

deVolkskrant

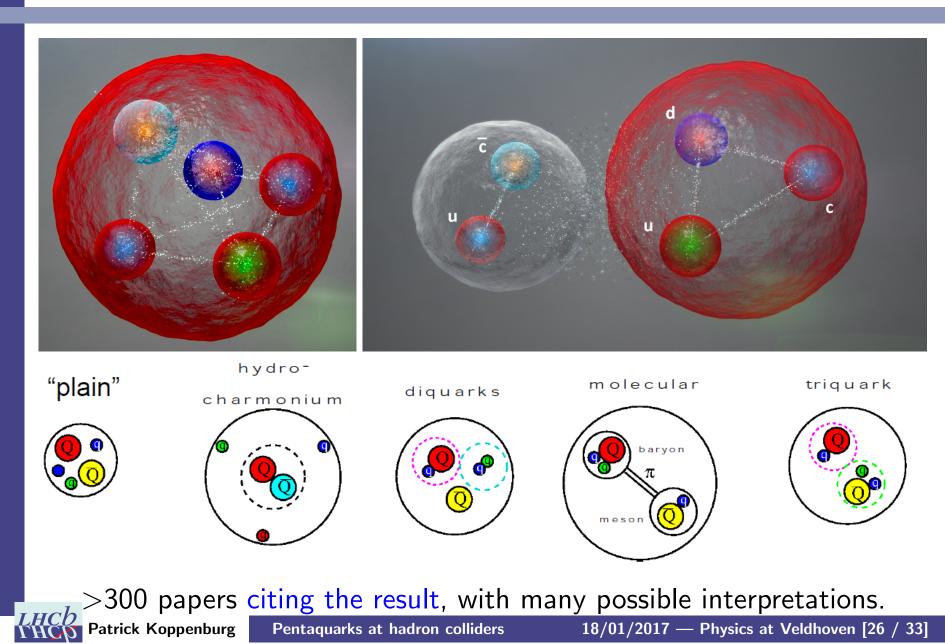
Wetenschap


TECH

SPACE


Maar áls LHCb het deeltje ziet, zal ook gelijk kunnen worden bepaald wat precies de quark-samenstelling is, zegt Koppenburg.

de guarksame deeltje ontdekt dankzij afgedankte versneller? JEAN-PAUL KEULEN - 29 FEBRUARI 2016


CERN ontdekt familie vreemde zware deeltjes

18/01/2017 — Physics at Veldhoven [2 / 33]

[LHCb, Phys. Rev. Lett. 115 (2015) 072001, arXiv:1507.03414]

WHAT IS A PENTAQUARK?

Conserved quantities

Time dependence of observable U:

$$\frac{d}{dt} \langle U \rangle = \frac{d}{dt} \langle \Psi | U | \Psi \rangle$$

$$= \langle \frac{\partial \Psi}{\partial t} | U | \Psi \rangle + \langle \Psi | \frac{\partial U}{\partial t} | \Psi \rangle + \langle \Psi | U | \frac{\partial \Psi}{\partial t} \rangle$$

$$= -\frac{1}{i\hbar} \langle H\Psi | U | \Psi \rangle + \langle \Psi | \frac{\partial U}{\partial t} | \Psi \rangle + \frac{1}{i\hbar} \langle \Psi | U | H\Psi \rangle$$

$$= \frac{1}{i\hbar} \langle [U, H] \rangle + \langle \Psi | \frac{\partial U}{\partial t} | \Psi \rangle$$
If *U* commutes with *H* [U H]=0

If U commutes with H, [U,H]=0(and if U does not depend on time, dU/dt=0)

Then U is conserved: d/dt < U > = 0

U conserved \rightarrow U generates a symmetry of the system

Other symmetries:

Transformation	Conserved quantity
Translation (space)	Momentum
Translation (time)	Energy
Rotation (space)	Orbital momentum
Rotation (iso-spin)	Iso-spin

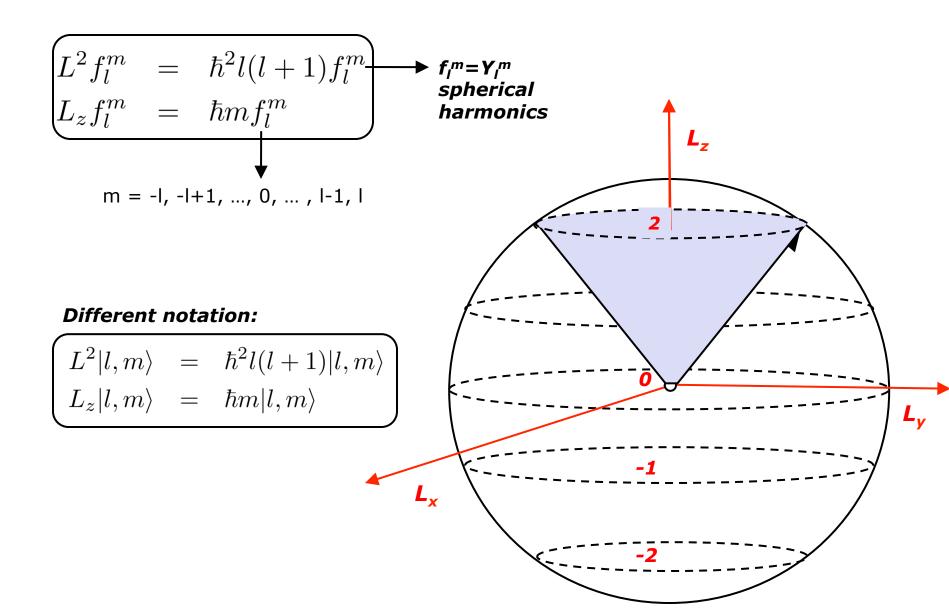
Quantum mechanics: orbital momentum

$$L = \vec{r} \times \vec{p} = -i\hbar(\vec{r} \times \vec{\nabla}) \qquad L_x = -i\hbar\left(y\frac{\partial}{\partial z} - z\frac{\partial}{\partial y}\right) = yp_z - zp_y$$
$$L_y = -i\hbar\left(z\frac{\partial}{\partial y} - x\frac{\partial}{\partial z}\right) = zp_x - xp_z$$
$$L_z = -i\hbar\left(x\frac{\partial}{\partial y} - y\frac{\partial}{\partial x}\right) = xp_y - yp_x$$

$$\left[[L_x, L_y] = i\hbar L_z \right]$$

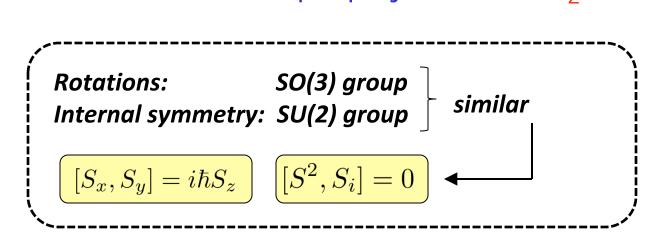
L_x and L_y cannot be known simultaneously Sequence matters!

$$\boxed{[x,p_x] = i\hbar}$$


$$\left[L^2, L_i\right] = 0$$

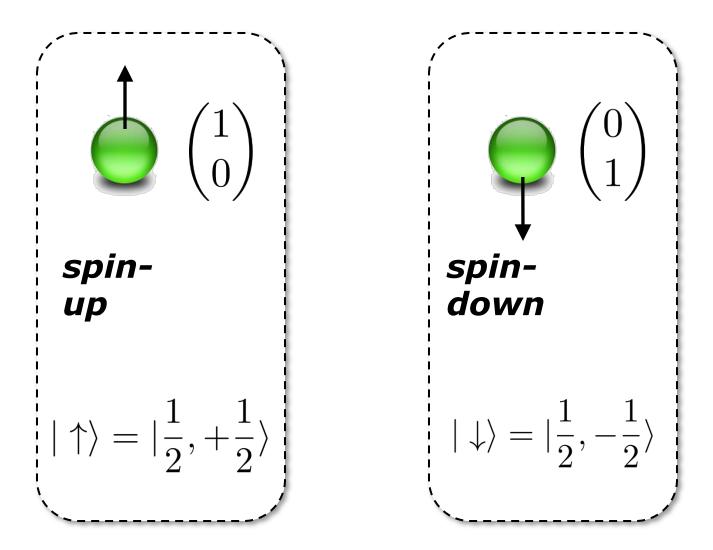
 L^2 and L_i (i=x,y,z) can be known simultaneously Can both be used to label states

 $[L^2,H] = [L_z,H] = 0$


Provided V = V(r), ie not θ dependent L² and L_z label eigenstates

Quantum mechanics: orbital momentum

Quantum mechanics: (intrinsic) spin

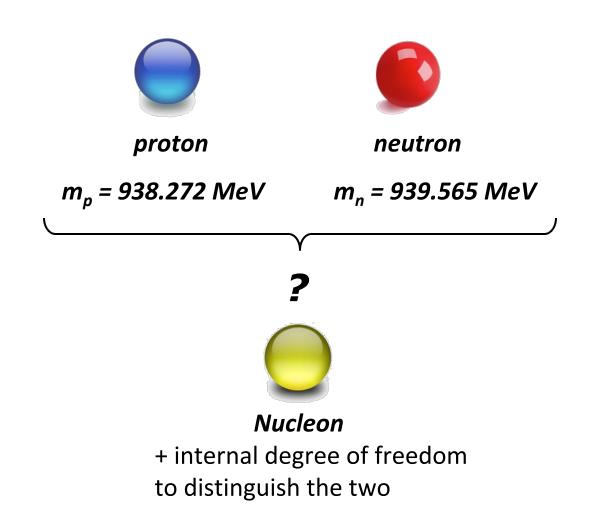

Spin is characterized by: - total spin - spin projection


Spin is quantized, just as orbital momentum $S = 0, \frac{1}{2}, 1, \frac{3}{2}, ...$ $S_z = -S, -S+1, ..., S-1, S$ Eigenfunctions |s,m_s>:

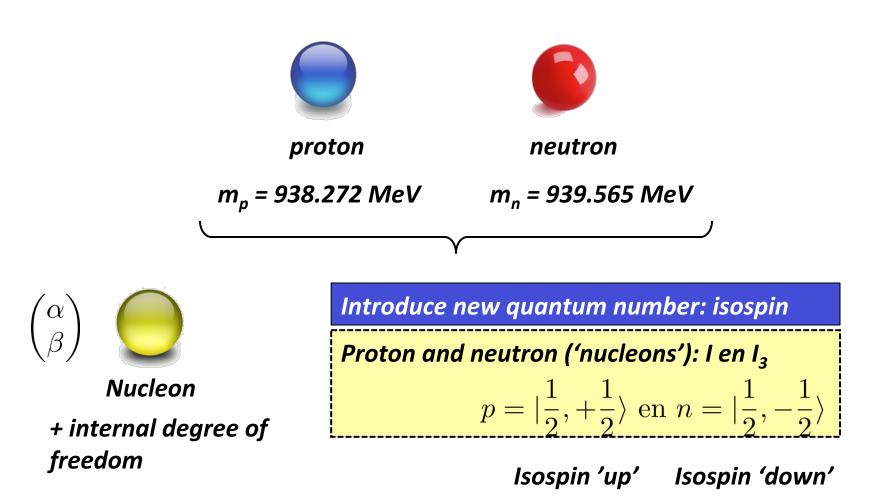
$$\begin{cases} S^2|s,m_s\rangle &= \hbar^2 s(s+1)|s,m_s\rangle \\ S_z|s,m_s\rangle &= \hbar m_s|s,m_s\rangle \end{cases}$$

spin-1/2 particles

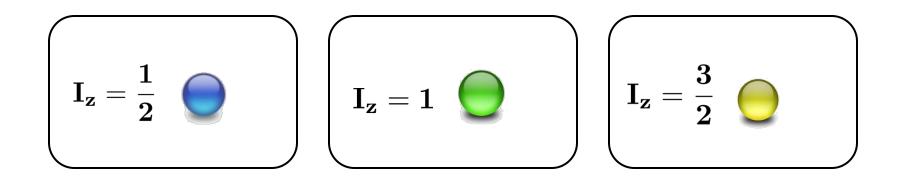
spin-1/2 particles



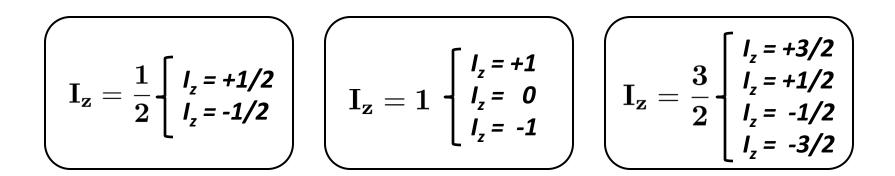
Pauli matrices: any complex 2x2 matrix can be written as: A = $a\sigma_1 + b\sigma_2 + c\sigma_3$


Protons and neutrons

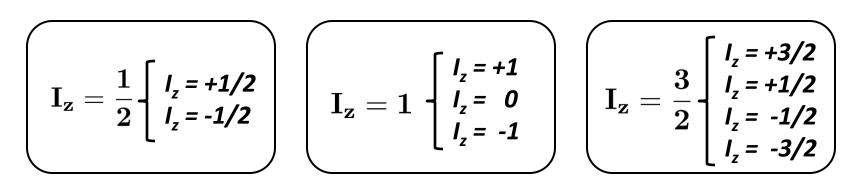
Proton and neutron *identical* under strong interaction


Protons and neutrons: Isospin

Proton and neutron *identical* under strong interaction


Possible states for given value of the Isospin

$$\begin{bmatrix} I &= 0, \frac{1}{2}, 1, \frac{3}{2}, \dots \\ I_z &= -I, -I+1, \dots, I-1, I \end{bmatrix}$$

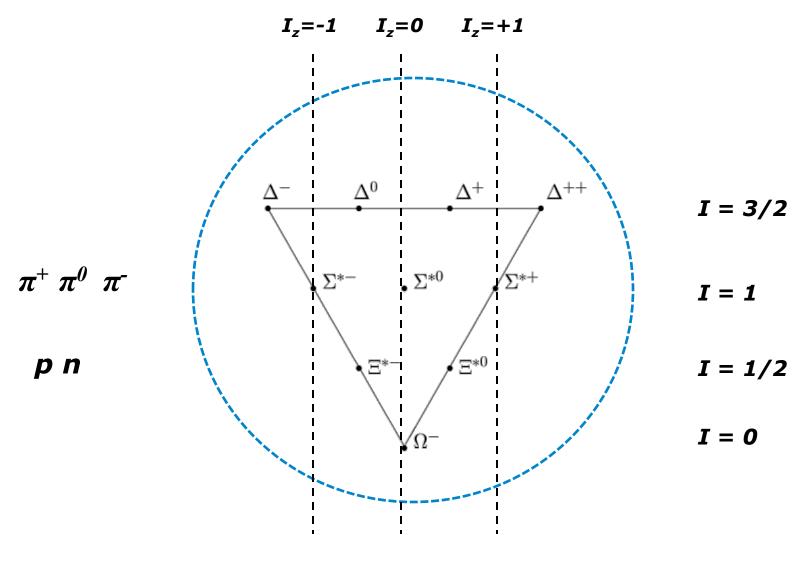

Possible states for given value of the Isospin

$$\begin{bmatrix} I &= 0, \frac{1}{2}, 1, \frac{3}{2}, \dots \\ I_z &= -I, -I+1, \dots, I-1, I \end{bmatrix}$$

Possible states for given value of the Isospin

$$\begin{bmatrix} I &= 0, \frac{1}{2}, 1, \frac{3}{2}, \dots \\ I_z &= -I, -I+1, \dots, I-1, I \end{bmatrix}$$

proton \bigcirc $|\frac{1}{2}, +\frac{1}{2}\rangle$ neutron \bigcirc $|\frac{1}{2}, -\frac{1}{2}\rangle$


 $\begin{array}{c} \pmb{\pi^{+}} & \bigodot & |1,+1\rangle \\ \pmb{\pi^{0}} & \bigodot & |1,0\rangle \\ \pmb{\pi^{-}} & \bigodot & |1,-1\rangle \end{array}$ \bigcirc $|1,-1\rangle$

m_p ~ 939 MeV

*m*_π ~ 140 MeV

*m*_Δ ~ 1232 MeV

Baryon decuplet

Adding spin

Quantum mechanica: adding spin

$$|s_1,m_1\rangle + |s_2,m_2\rangle \rightarrow |s,m\rangle$$

 $\begin{array}{c} m=m_1+m_2 \\ s=|s_1-s_2|, |s_1-s_2|+1, \dots, s_1+s_2-1, s_1+s_2 \\ - S \text{ can vary between difference} \\ and sum \end{array}$

2) Notation:

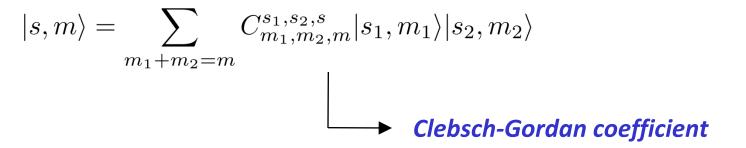
$$\begin{array}{|c|} \hline & \alpha = |\frac{1}{2}, +\frac{1}{2} \\ \hline & \\ \hline & \beta = |\frac{1}{2}, -\frac{1}{2} \\ \end{array}$$

	S _z	S
(1)	+1	1
(2)	0	?
(3)	-1	1

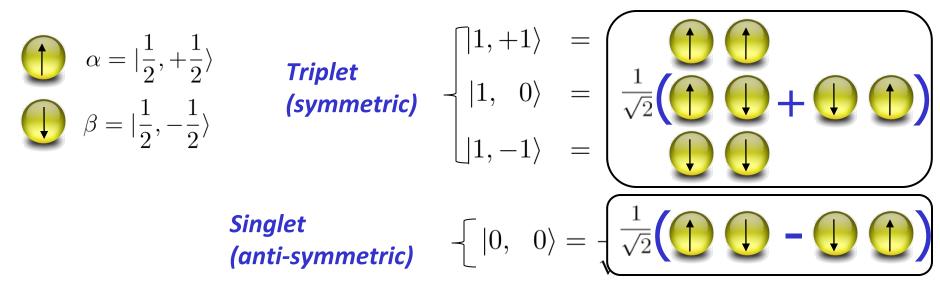
$$\begin{array}{|c|} \hline & \alpha = |\frac{1}{2}, +\frac{1}{2} \\ \hline \\ \hline \\ \hline \\ & \beta = |\frac{1}{2}, -\frac{1}{2} \\ \end{array}$$

$$\begin{array}{c} \textcircled{1} \\ \hline \end{array} \quad \alpha = |\frac{1}{2}, +\frac{1}{2}\rangle \\ \hline \\ \hline \\ \hline \end{array} \quad \beta = |\frac{1}{2}, -\frac{1}{2}\rangle \end{array}$$

$$2 \otimes 2 = 3 \oplus 1$$


$$S=1 \quad Triplet (symmetric) \qquad \begin{cases} |1,+1\rangle &= \\ |1, 0\rangle &= \\ |1,-1\rangle &= \\ \end{cases} \quad (1,-1) \quad (1,$$

$$\begin{array}{|c|} \hline & \alpha = |\frac{1}{2}, +\frac{1}{2} \\ \hline & \\ \hline & \beta = |\frac{1}{2}, -\frac{1}{2} \\ \end{array}$$


$$2 \otimes 2 = 3 \oplus 1$$

Triplet
(symmetric)
$$\begin{cases} |1,+1\rangle &= \\ |1, 0\rangle &= \\ |1,-1\rangle &= \\ \end{cases} \begin{pmatrix} \frac{1}{2} [\alpha(1)\beta(2) + \beta(1)\alpha(2)] \\ \beta(1)\beta(2) \end{pmatrix}$$
Singlet
(anti-symmetric)
$$\begin{cases} |0, 0\rangle &= \\ \sqrt{\frac{1}{2}} [\alpha(1)\beta(2) - \beta(1)\alpha(2)] \end{pmatrix}$$

Quantum mechanics: adding spin

Specific: adding spin of two spin-1/2 particles:

Why is
$$|1,0\rangle = \frac{1}{\sqrt{2}}|\uparrow\downarrow+\downarrow\uparrow\rangle$$
 and not $|1,0\rangle = \frac{1}{\sqrt{2}}|\uparrow\downarrow-\downarrow\uparrow\rangle$?

$$\begin{split} S^{2}|s,m_{s}\rangle &= \hbar^{2}s(s+1)|s,m_{s}\rangle\\ S_{z}|s,m_{s}\rangle &= \hbar m_{s}|s,m_{s}\rangle\\ \hline S_{\pm}|s,m_{s}\rangle &= \hbar \sqrt{s(s+1) - m_{s}(m_{s}\pm1)}|s,m_{s}\pm1\rangle\\ \hline S_{\pm}|s,m_{s}\rangle &= \hbar \sqrt{s(s+1) - m_{s}(m_{s}\pm1)}|s,m_{s}\pm1\rangle}\\ \hline S_{\pm}|s,m_{s}\rangle &= \hbar \sqrt{s(s+1) - m_{s}(m_{s}\pm1)}|s,m_{s}\pm1\rangle}$$

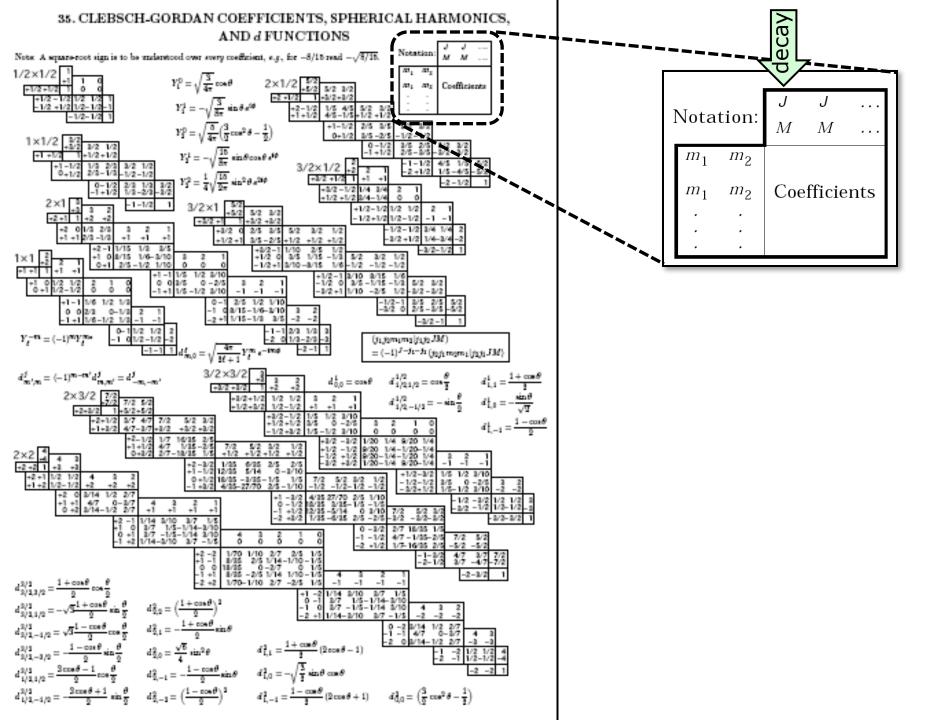
Clebsch-Gordan coefficients

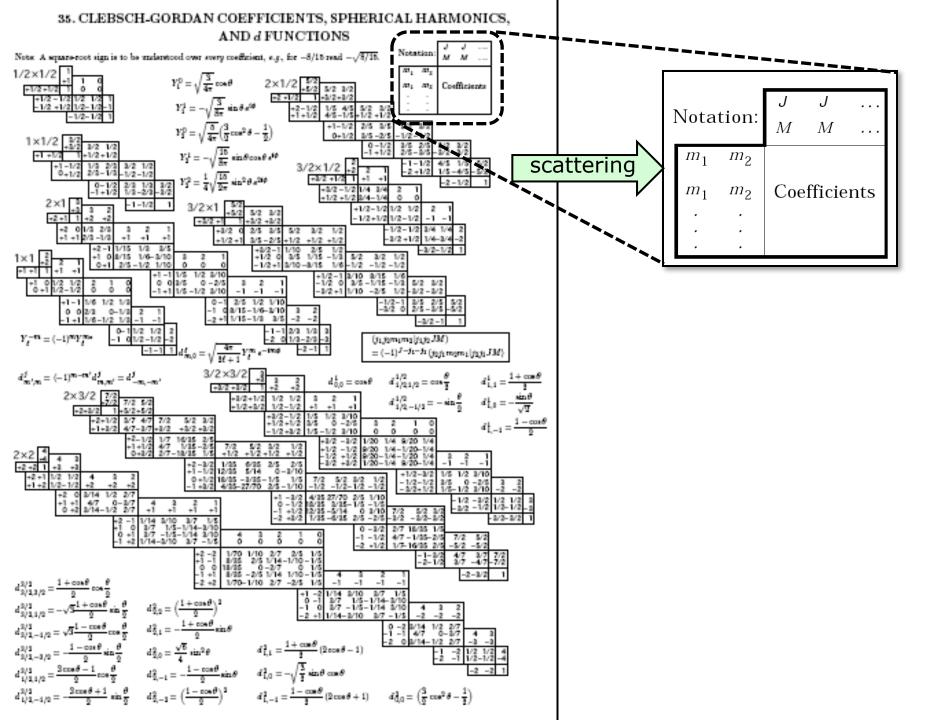
Coefficients can be used "both ways":

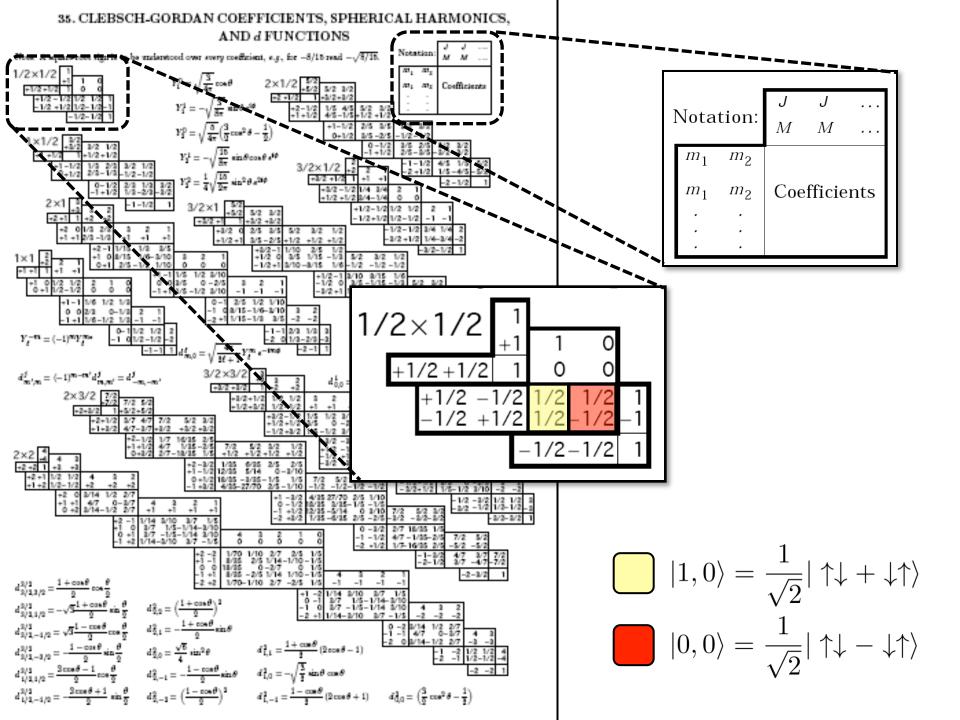
1) add

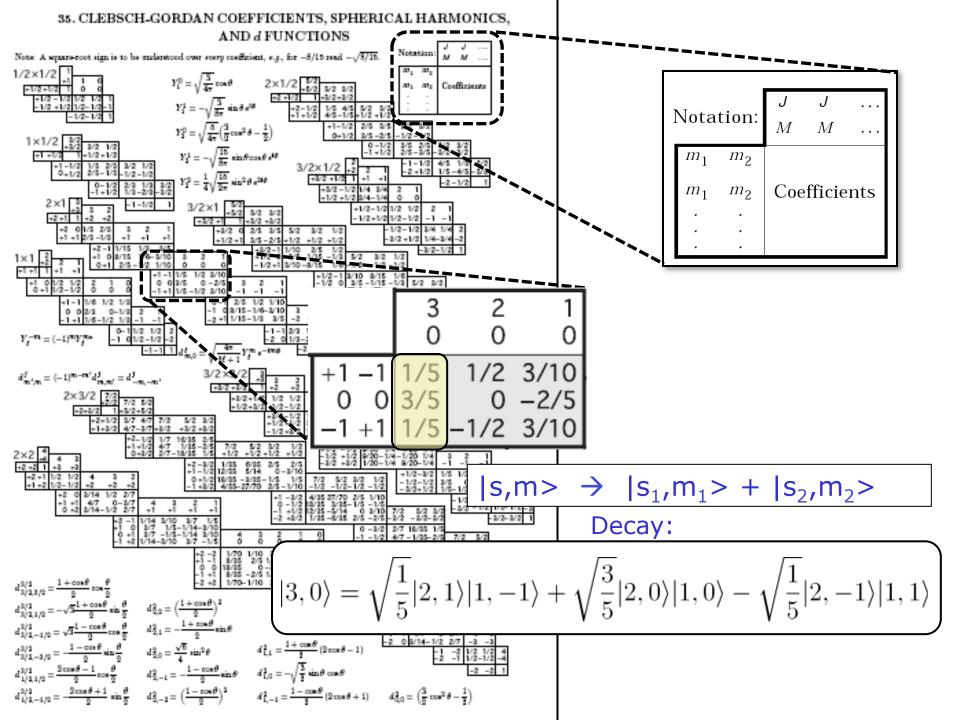
$$\begin{split} |\frac{3}{2},\frac{1}{2}\rangle|1,0\rangle &= \sqrt{\frac{3}{5}}|\frac{5}{2},\frac{1}{2}\rangle + \sqrt{\frac{1}{15}}|\frac{3}{2},\frac{1}{2}\rangle - \sqrt{\frac{1}{3}}|\frac{1}{2},\frac{1}{2}\rangle \\ |s_1,m_1\rangle &+ |s_2,m_2\rangle \rightarrow |s,m\rangle \end{split}$$

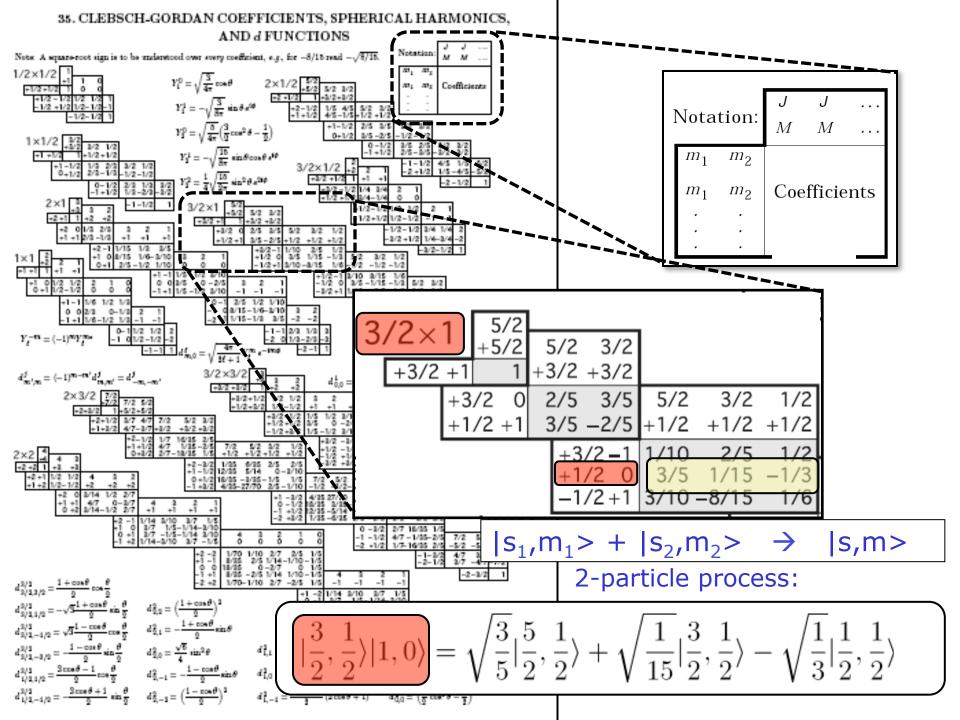
2) decay

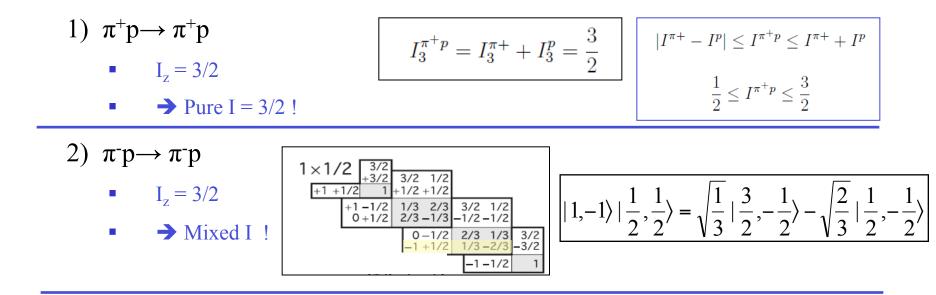

$$|3,0\rangle = \sqrt{\frac{1}{5}}|2,1\rangle|1,-1\rangle + \sqrt{\frac{3}{5}}|2,0\rangle|1,0\rangle - \sqrt{\frac{1}{5}}|2,-1\rangle|1,1\rangle$$

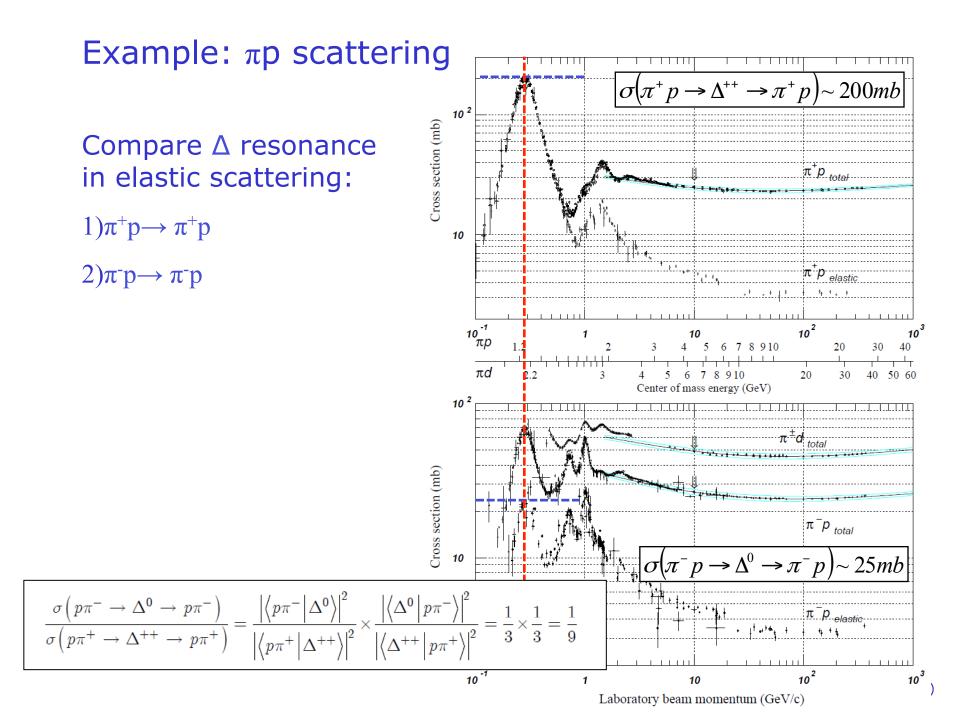

 $|s,m\rangle \rightarrow |s_1,m_1\rangle + |s_2,m_2\rangle$


Clebsch-Gordan coefficients

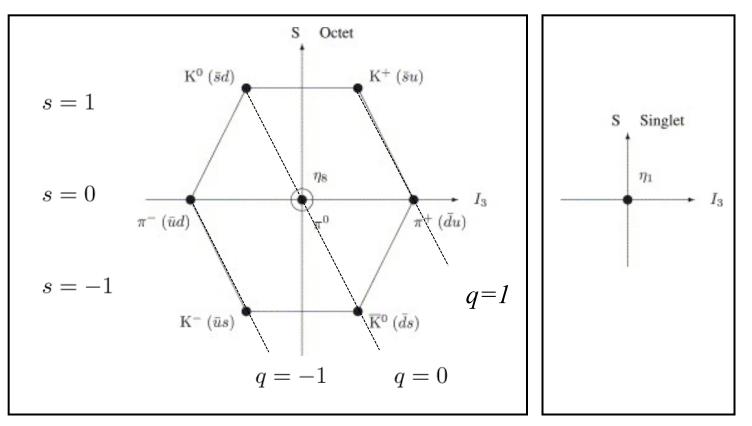

A) Find out yourself (doable, but bit messy...)

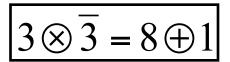

$$C_{s_{1},s_{2},s}^{m_{1},m_{2},m} = \delta_{m,m_{1}+m_{2}} \sqrt{\frac{(2j+1)(j+j_{1}-j_{2})!(j-j_{1}+j_{2})!(j_{1}+j_{2}+j)}{(j_{1}+j_{2}+j+1)!}} \\ \times \sqrt{(j+m)!(j-m)!(j_{1}-m_{1})!(j_{1}+m_{1})!(j_{2}-m_{2})!(j_{2}+m_{2})!} \\ \times \sum_{k} \frac{-1^{k}}{k!(j_{1}+j_{2}-j-k)!(j_{1}-m_{1}-k)!(j_{2}+m_{2}-k)!(j-j_{2}+m_{1}-k)!(j-j_{1}-m_{2}+k)!}$$



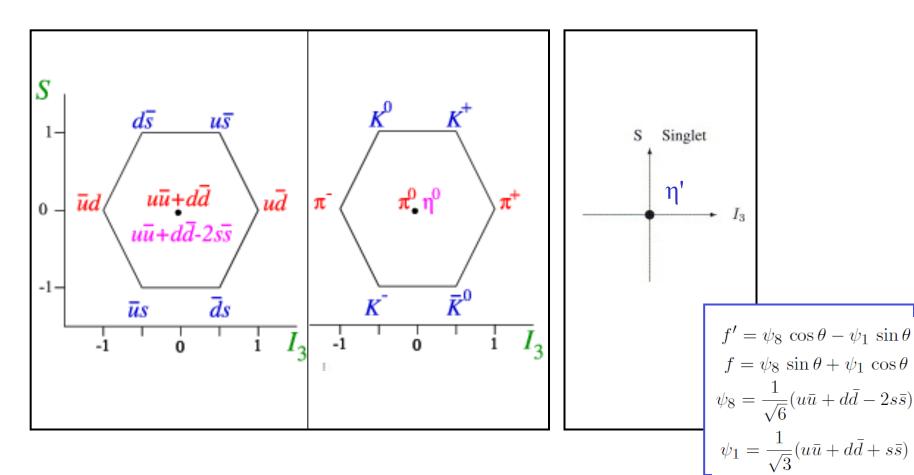


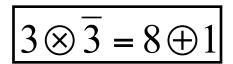
Example: *π*p scattering


What is relative cross section to make the I=3/2 resonance?


$$\frac{\sigma\left(p\pi^{-} \to \Delta^{0}\right)}{\sigma\left(p\pi^{+} \to \Delta^{++}\right)} = \frac{\left|\left\langle p\pi^{-} \left|\Delta^{0}\right\rangle\right|^{2}}{\left|\left\langle p\pi^{+} \left|\Delta^{++}\right\rangle\right|^{2}} = \frac{\left|\sqrt{1/3}\right|^{2}}{1} = \frac{1}{3}$$

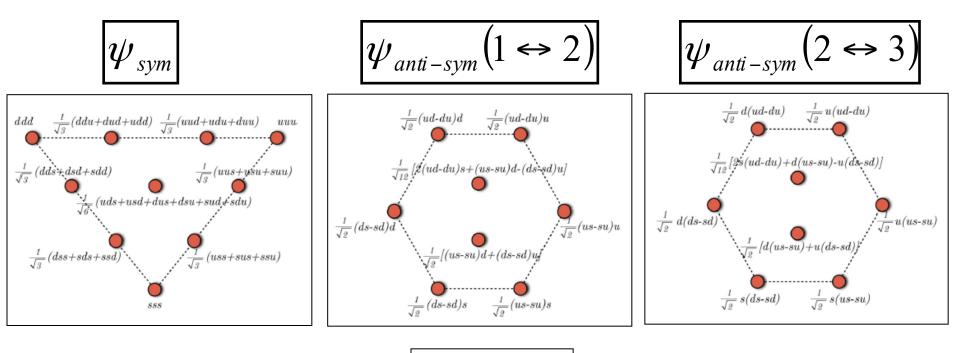
- Mesons:
 - 2 quarks, with 3 possible flavours: u, d, s


$$-3^2 = 9$$
 possibilities $= 8 + 1$



- Mesons:
 - 2 quarks, with 3 possible flavours: u, d, s

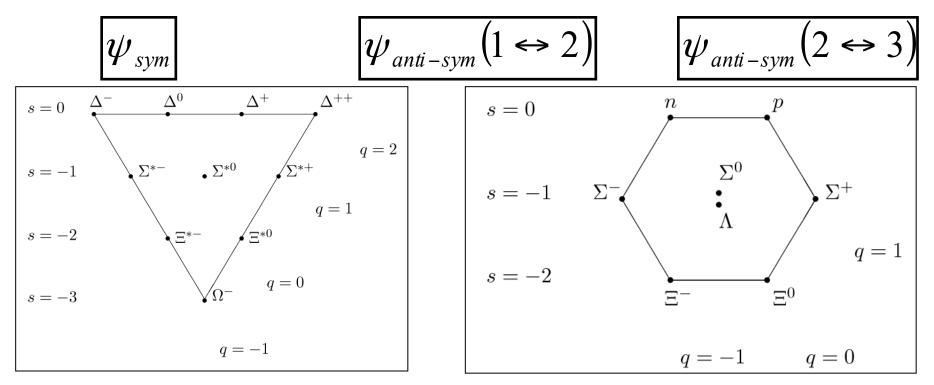
$$-3^2 = 9$$
 possibilities $= 8 + 1$

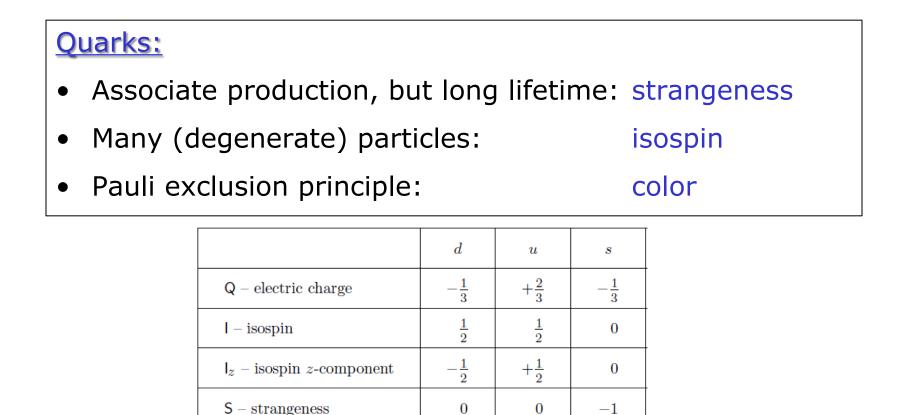


• Baryons:

$$3 \otimes 3 \otimes 3 = 10_S \oplus 8_M \oplus 8_M \oplus 1_A$$

- 3 quarks, with 3 possible flavours: u, d, s
- $3^3 = 27$ possibilities = 10 + 8 + 8 + 1




• Baryons:

$$3 \otimes 3 \otimes 3 = 10_S \oplus 8_M \oplus 8_M \oplus 1_A$$

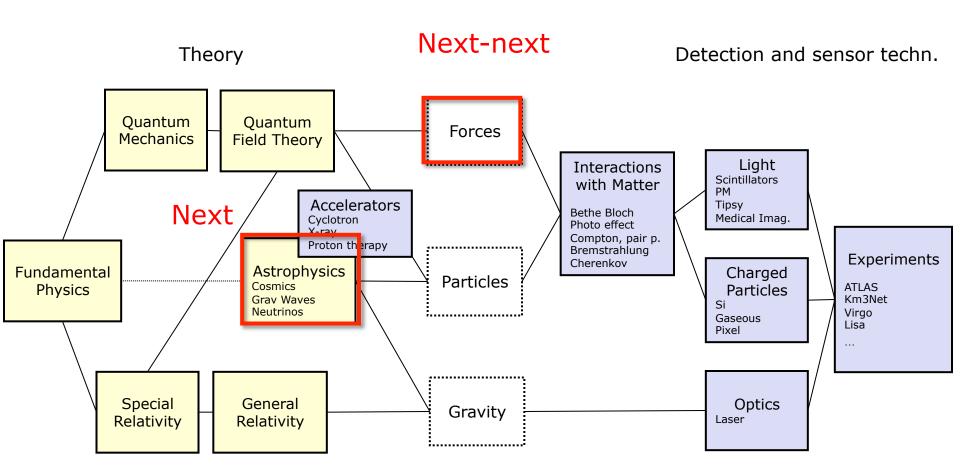
- 3 quarks, with 3 possible flavours: u, d, s
- $3^3 = 27$ possibilities = 10 + 8 + 8 + 1

What did we learn about quarks

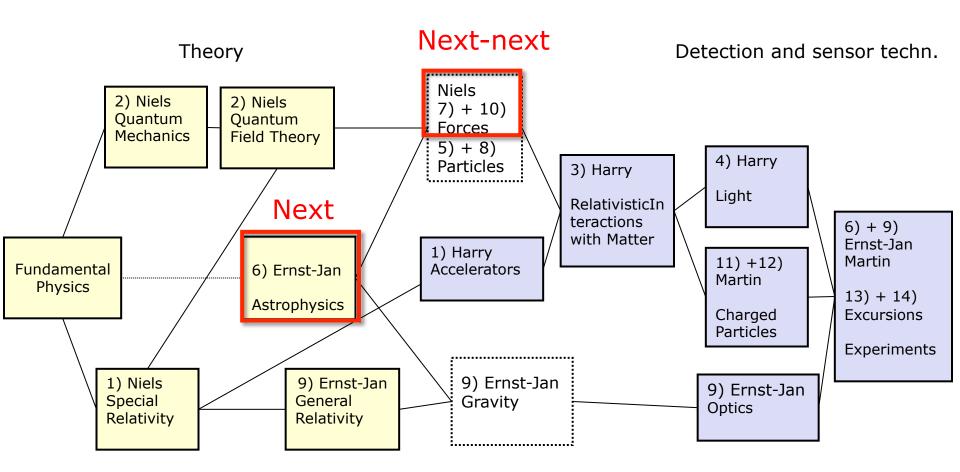
0

0

 $^{-1}$


How they combine into hadrons: \bullet

multiplets


How to add (iso)spin:

Clebsch-Gordan

Plan

Plan

Plan

	1) Intro: Standard Model & Relativity	11 Feb
1900-1940	2) Basis	18 Feb
	 Atom model, strong and weak force Scattering theory 	
1945-1965	3) Hadrons	10 Mar
	1) Isospin, strangeness	
	2) Quark model, GIM	
1965-1975	4) Standard Model	24 Mar
	1) QED	
	2) Parity, neutrinos, weak inteaction	
	3) QCD	
1975-2000	5) e ⁺ e ⁻ and DIS	21 Apr
2000-2015	6) Higgs and CKM	12 May