## "Elementary Particles" Lecture 2

# Niels Tuning 

Harry van der Graaf
Ernst-Jan Buis
Martin Fransen

## Plan

Theory
Detection and sensor techn.


## Plan

## Today



## Schedule

1) 11 Feb: Accelerators (Harry vd Graaf) + Special relativity (Niels Tuning)
2) 18 Feb: Quantum Mechanics (Niels Tuning)
3) 25 Feb: Interactions with Matter (Harry vd Graaf)
4) 3 Mar: Light detection (Harry vd Graaf)
5) 10 Mar: Particles and cosmics (Niels Tuning)
6) 17 Mar: Astrophysics and Dark Matter (Ernst-Jan Buis)
7) 24 Mar: Forces (Niels Tuning)
break
8) 21 Apr: $\mathrm{e}^{+} \mathrm{e}^{-}$and ep scattering (Niels Tuning)
9) 28 Apr: Gravitational Waves (Ernst-Jan Buis)
10) 12 May: Higgs and big picture (Niels Tuning)
11) 19 May: Charged particle detection (Martin Franse)
12) 26 May: Applications: experiments and medical (Martin Franse)
13) 2 Jun: Nikhef excursie
14) 8 Jun: CERN excursie

## Thanks

- Ik ben schatplichtig aan:
- Dr. Ivo van Vulpen (UvA)
- Prof. dr. ir. Bob van Eijk (UT)
- Prof. dr. M. Merk (VU)



## Exercises Lecture 1: Special Relativity

## 1 Lorentz transformation

a) The Galilean transformation of the space coordinate, from coordinate system $S$ to system $S^{\prime}$, with relative velocity $v$, is given by $x^{\prime}=x-v t$. What is the Galilean transformation of the time coordinate, between two inertial observers?
b) The Galilean transformation of the space coordinate $x$, from system $S^{\prime}$ to $S$, is given by $x=x^{\prime}-v t$. Let's find the corresponding transformation if we assume that the speed of light is equal in systems $S$ and $S^{\prime}$, ie. $x^{\prime}=c t^{\prime}$ and $x=c t$. We modify the Galilean transformation rules, by $x^{\prime}=\gamma(x-v t)$ and find the expression for $\gamma$ :

$$
\begin{array}{ccc}
x^{\prime}=\gamma(x-v t) & \stackrel{x=c t}{=} & \gamma(c t-v t) \\
x=\gamma\left(x^{\prime}-v t^{\prime}\right) & \stackrel{x^{\prime} \equiv c t^{\prime}}{=} & \gamma\left(c t^{\prime}-v t^{\prime}\right) \tag{2}
\end{array}
$$

This leads to:

$$
\begin{equation*}
\frac{x^{\prime}}{\gamma}=\frac{c t^{\prime}}{\gamma}=\frac{\gamma(c t-v t)}{\gamma}=(c t-v t) \tag{3}
\end{equation*}
$$

Eliminate $t$ in the above expression, and give the expression for $\gamma$.
b) $t^{\prime}=t$
a) Find the expression for $\gamma$ :

$$
\left.\begin{array}{lll}
x^{\prime}=\gamma(x-v t) & \stackrel{\mathrm{x}=\mathrm{ct}}{=} & \gamma(c t-v t) \\
x^{\prime}=c t^{\prime} & &
\end{array}\right\}
$$

This leads to:

$$
\frac{x^{\prime}}{\gamma}=\frac{c t^{\prime}}{\gamma}=(c t-v t)
$$

Eliminate $t$ in the above expression, and give expression for $\gamma$ :

$$
\begin{aligned}
\frac{c t^{\prime}}{\gamma} & =(c t-v t) \stackrel{c t=\gamma\left(c t^{\prime}+v t^{\prime}\right)}{=} \gamma\left(c t^{\prime}+v t^{\prime}\right)-\frac{v}{c} \gamma\left(c t^{\prime}+v t^{\prime}\right) \\
& \Rightarrow \frac{1}{\gamma^{2}}=\left(1-v^{2} / c^{2}\right)
\end{aligned}
$$

## Exercises Lecture 1: Special Relativity

c) Rewrite the Lorentztransformation,

$$
\begin{align*}
x^{\prime} & =\gamma(x-v t)  \tag{4}\\
t^{\prime} & =\gamma\left(t-\frac{v}{c^{2}} x\right), \tag{5}
\end{align*}
$$

expressing the velocity as a fraction of the speed of light, $\beta=v / c$, and the timecoordinate as $x^{0} \equiv c t$.
c)

$$
\begin{gathered}
x^{\prime}=\gamma(x-v t) \\
t^{\prime}=\gamma\left(t-\frac{v}{c^{2}} x\right) \\
x^{\prime}=\gamma\left(x^{1}-\frac{v}{c} c t\right) \stackrel{\beta=v / c)}{=} \gamma\left(x^{1}-\beta x^{0}\right) \\
c t^{\prime}=\gamma\left(c t-\frac{v}{c} x\right) \stackrel{\left.x^{0}=c t\right)}{=} \gamma\left(x^{0}-\beta x^{1}\right)
\end{gathered}
$$

## Exercises Lecture 1: Special Relativity

d) The time-coordinate, and three space coordinates can be expressed as 4 -vectors $x^{\mu}=(t / c, x, y, z)$. Show that the quantity $I=\Sigma_{\mu=0,3} \Sigma_{\nu=0,3} g_{\mu \nu} x^{\mu} x^{\nu}=x_{\mu} x^{\mu}$ is invariant, ie. that $I=I^{\prime}$. (Apply a boost in the direction of $x^{1}$.)
e) Suppose you want to build a muon collider, and you want to keep your muons about 30 minutes in your accelerator before they decay. What boost (ie. value for $\gamma$ ) is then needed for the muons? (The lifetime of muons is $2.2 \mu \mathrm{~s}$.) To what beam energy does this correspond? (The mass of the muon is $106 \mathrm{MeV} / c^{2}$.)
d)

$$
\begin{align*}
I^{\prime} & =\left(x^{\prime 0}\right)^{2}-\left(x^{\prime 1}\right)^{2}-\left(x^{\prime 2}\right)^{2}-\left(x^{\prime 3}\right)^{2}  \tag{10}\\
& =\left(\gamma\left(x^{0}-\beta x^{1}\right)\right)^{2}-\left(\gamma\left(x^{1}-\beta x^{0}\right)\right)^{2}-\left(x^{\prime 2}\right)^{2}-\left(x^{\prime 3}\right)^{2}  \tag{11}\\
& \left.=\gamma^{2}\left(\left(x^{0}\right)^{2}\left(1-\beta^{2}\right)-\left(x^{1}\right)^{2}\right)\left(1-\beta^{2}\right)\right)-\left(x^{\prime 2}\right)^{2}-\left(x^{\prime 3}\right)^{2}  \tag{12}\\
& =\gamma^{2}\left(1-\beta^{2}\right)\left(\left(x^{0}\right)^{2}-\left(x^{1}\right)^{2}\right)-\left(x^{\prime 2}\right)^{2}-\left(x^{\prime 3}\right)^{2}  \tag{13}\\
& =\left(x^{0}\right)^{2}-\left(x^{1}\right)^{2}-\left(x^{\prime 2}\right)^{2}-\left(x^{3}\right)^{2}=I \tag{14}
\end{align*}
$$

e)

$$
\begin{align*}
\gamma & =\Delta t^{\prime} / \Delta t=1800 / 2.2 \times 10^{-6}=8 \times 10^{8}  \tag{15}\\
E & =\gamma m_{0}=8 \times 10^{8} \times 0.106=8 \times 10^{7} \mathrm{GeV} \tag{16}
\end{align*}
$$

## Exercises Lecture 1: Special Relativity

## 2 Relativistic momentum

Given 4 -vector calculus, we know that $p_{\mu} p^{\mu}=E^{2} / c^{2}-\vec{p}^{2}=m_{0}^{2} c^{2}$.
a) Show that you get in trouble when you use $E=m c^{2}$ and $\vec{p}=m \vec{v}$.
b) Show that $E=\gamma m_{0} c^{2}$ and $\vec{p}=\gamma m_{0} \vec{v}$ obey $E^{2} / c^{2}-\vec{p}^{2}=m_{0}^{2} c^{2}$.
a) Using $E=m c^{2}$ and $\vec{p}=m \vec{v}$, one finds:

$$
E^{2} / c^{2}-\vec{p}^{2}=m^{2} c^{2}-m^{2} v^{2}=m^{2}\left(c^{2}-v^{2}\right) \neq m^{2} c^{2}
$$

b) Using $E=\gamma m_{0} c^{2}$ and $\vec{p}=\gamma m_{0} \vec{v}$, one finds:

$$
E^{2} / c^{2}-\vec{p}^{2}=\gamma^{2}\left(m^{2}\left(c^{2}-v^{2}\right)\right)=m^{2} c^{2} \frac{1-v^{2} / c^{2}}{1-v^{2} / c^{2}}=m^{2} c^{2} .
$$

## Exercises Lecture 1: Special Relativity 3 Center-of-mass energy

a) Not only the space and time can be expressed as a 4 -vector, but also energy and momentum can be expressed as 4 -vectors, $p^{\mu}=\left(E / c, p_{x}, p_{y}, p_{z}\right)$. Because $p_{\mu} p^{\mu}$ is invariant, this means that the rest-mass $m_{0}$ of a particle does not change under Lorentz transformations. Show that $p_{\mu} p^{\mu}=m_{0}^{2} c^{2}$.
b) Let's consider two colliding particles $a$ and $b$, with 4 -momenta $p_{a}^{\mu}$ and $p_{b}^{\mu}$. We will use natural units, with $c=1$ and $\hbar=1$, so $p_{a}^{\mu}=\left(E_{a}, \vec{p}_{a}\right)$. We take the masses of the two colliding particles equal, $m_{a}=m_{b}=m$, and we sit in the center-of-mass frame of the system, $\vec{p}_{a}=-\vec{p}_{b}$. What are the four components of the sum of the two 4 -vectors, $p_{t o t}^{\mu}=\left(p_{a}^{\mu}+p_{b}^{\mu}\right)$ ?
c) The 'invariant mass' of the combined system, is often called the 'center-of-mass energy' of the collision. If the energy of both particles $a$ and $b$ is 4 TeV , what is then the center-of-mass energy, $\sqrt{s} \equiv \sqrt{p_{\text {tot }}^{\mu} p_{\mu, t o t}}$ ?
d) Let's consider a fixed-target collision of two protons. One proton has an energy of 4 TeV , and 4 -vector $p_{a}^{\mu}$, whereas the other proton is at rest, with 4 -vector $p_{b}^{\mu}$. What are the four components of the sum of the two 4 -vectors, $p_{t o t}^{\mu}=\left(p_{a}^{\mu}+p_{b}^{\mu}\right)$ ? Give the expression for the center-of-mass energy of this system.
a)

$$
p_{\mu} p^{\mu}=(E / c)^{2}-|\vec{p}|^{2}=\left(E^{2}-c^{2}|\vec{p}|^{2}\right) / c^{2}=\left(m_{0} c^{4}\right) / c^{2}
$$

b)

$$
p_{t o t}^{\mu}=\left(p_{a}^{\mu}+p_{b}^{\mu}\right)=\left(E_{a}, \vec{p}_{a}\right)+\left(E_{b}, \vec{p}_{b}\right)=\left(E_{a}+E_{b}, 0\right)=(2 E, 0)
$$

c)

$$
\begin{aligned}
\left(E, 0,0, \sqrt{E^{2}-m^{2}}\right)+\left(E, 0,0,-\sqrt{E^{2}-m^{2}}\right) & =(2 E, 0,0,0) \\
\Rightarrow s & =4 E^{2} \Rightarrow \sqrt{s}=2 E=8 \mathrm{TeV}
\end{aligned}
$$

d)

$$
\begin{aligned}
\left(E, 0,0, \sqrt{E^{2}-m^{2}}\right)+(m, 0,0,0) & =\left(E+m, 0,0, \sqrt{E^{2}-m^{2}}\right) \\
\Rightarrow s=(E+m)^{2}-\left(E^{2}-m^{2}\right) & =2 m^{2}+2 E m \\
\Rightarrow \sqrt{s} \sim \sqrt{2 E m} & =89 \mathrm{GeV}
\end{aligned}
$$

## Exercises Lecture 1: Special Relativity

e) People were afraid that the earth would be destroyed at the start of the LHC, planning for collisions with beams of 7 TeV each. The earth has been bombarded for billions of years with cosmic rays. What is the center-of-mass energy of the highest energetic cosmic rays ( $10^{21} \mathrm{eV}$ ) hitting the atmosphere? Was the fear justified?
f) What is the energy of a cosmic ray hitting the atmosphere, that corresponds to the center-of-mass energy of collisions of two lead-ions ${ }^{208} \mathrm{~Pb}$ with energies of 2.24 TeV per nucleon?
g) Consider relatively low-energy proton-proton collisions, with opposite and equal momenta (ie. the center-of-mass system is at rest). In the process $p+p \rightarrow p+p+p+\bar{p}$ an extra proton-antiproton pair is created. What is the minimum energy of the protons to create two extra (anti)protons?
e)

$$
\begin{align*}
& \sqrt{s} \sim \sqrt{2 E m}=\sqrt{2 \times 10^{12} \times 1 \mathrm{GeV}^{2}} \sim 10^{6} \mathrm{GeV}=10^{3} \mathrm{TeV}  \tag{24}\\
& \sqrt{s} \sim \sqrt{2 E m}=14 \mathrm{TeV} \Rightarrow E=\frac{1}{2 m}\left(14 \times 10^{3}\right)^{2}=10^{17} \mathrm{eV}
\end{align*}
$$

f) (Scaled the $1.38 \mathrm{TeV} /$ nucleon from 4 TeV to the expected 6.5 TeV in 2015.)

$$
\sqrt{s} \sim \sqrt{2 E m}=2 \times 208 \times 2.24 \mathrm{TeV}\left(10^{3} \mathrm{TeV} \Rightarrow E=\frac{1}{2 m}\left(10^{6} \mathrm{GeV}\right)^{2}=5 \times 10^{20} \mathrm{eV}\right.
$$

g)

$$
\begin{align*}
\text { Before : } & s=4 E^{2}  \tag{27}\\
\text { After }_{\min }: & s=(4 m)^{2} \Rightarrow E_{\min }=2 m=2 \mathrm{GeV} \tag{28}
\end{align*}
$$

## Lecture 1: Standard Model \& Relativity

- Standard Model Lagrangian

$$
\begin{aligned}
\mathcal{L} & =-\frac{1}{4} F_{N \nu} F^{\mu \nu} \\
& +i F D \psi+h_{c c} \\
& +\psi_{i} y_{i j} y_{s} \phi+h c . \\
& +\left|D_{m} \phi\right|^{\prime}-V(\phi)
\end{aligned}
$$

- Standard Model Particles



## Lecture 1: Standard Model \& Relativity

- Theory of relativity
- Lorentz transformations ("boost")
- Calculate energy in colissions

$$
\begin{array}{llrl}
\hline x^{\prime 0} & =\gamma\left(x^{0}-\beta x^{1}\right) & & \beta \equiv \frac{v}{c} \\
x^{\prime 1}=\gamma\left(x^{1}-\beta x^{0}\right) & \text { met } & & \gamma \equiv \frac{1}{\sqrt{1-\beta^{2}}} \\
x^{\prime 2}=x^{2} & & \\
x^{\prime 3}=x^{3} & &
\end{array}
$$

- 4-vector calculus

$$
p_{\mu} p^{\mu}=(E / c)^{2}-|\vec{p}|^{2}=\left(E^{2}-c^{2}|\vec{p}|^{2}\right) / c^{2}=\left(m_{0} c^{4}\right) / c^{2}
$$

$$
x^{\mu}=\left(\begin{array}{c}
x^{0} \\
x^{1} \\
x^{2} \\
x^{3}
\end{array}\right), \quad(\mu=0,1,2,3)
$$

- High energies needed to make (new) particles


$$
\begin{aligned}
s & =\left(p_{1}+p_{2}\right)^{2}=2 m^{2}+2\left(E^{2}+\vec{p}^{2}\right) \\
& =2 m^{2}+2 E^{2}+2\left(E^{2}-m^{2}\right)=4 E^{2}
\end{aligned}
$$

## Outline for today

- Quantum mechanics: equations of motions of wave functions
- Schrodinger, Klein Gordon, Dirac
- Forces
- Strong force, pion exchange
- Weak nuclear force, decay
- Scattering Theory
- Rutherford (classic) and QM
- "Cross section"
- Coulomb potential
- Yukawa potential
- Resonances
- Lecture 1:
- ch. 3 Relativistic kinematics
- Lecture 2 :
- ch.5.1 Schrodinger equation
- ch.7.1 Dirac equation
- ch.6.5 Scattering
- Lecture 3:
- ch.1.7 Quarkmodel
- ch. 4 Symmetry/spin
- Lecture 4:
- ch.7.4 QED
- ch 11.3 Gauge theories
- Lecture 5:
- ch.8.2 e+e-
- ch.8.5 e+p
- Lecture 6:
- ch.11.8 Higgs mechanism



## Lecture 2: QM, Dirac and Scattering

- Introduce "matter particles"
- spinor $\psi$ from Dirac equation
- Introduce "force particles"

$$
\begin{aligned}
\mathcal{L} & =-\frac{1}{4} F_{\mu \nu} F^{\mu \nu} \\
& +i \mp D \psi+h . c . \\
& +\psi_{i} y_{i j} \psi_{3} \phi+h c . \\
& +\left|D_{m} \phi\right|^{2}-V(\phi)
\end{aligned}
$$

- Introduce basic concepts of scattering processes


Quantum mechanics

## From classic to quantum

Why does the black body spectrum look like it does?

## Why does the electron not fall onto the nucleus?


$\rightarrow$ Finite number of wavelengths ( $E=h v$ )

$\rightarrow$ Finite number of nuclear orbits

- The wavefunction $\psi$ describes a system (eg. particle)
- Physical quantities are given by operators


## Wavefunction

Each particle may be described by a wave function $\Psi(x, y, z, t)$, real or complex, having a single value for a given position $(x, y, z)$ and time $t$

- In QM a particle is not localized
- Probability of finding a particle somewhere in a volume $V$ of space:

$$
P(\mathbf{r}, t) d V=|\Psi(\mathbf{r}, t)|^{2} d V
$$



- Probability to find particle anywhere in space = 1
> condition of normalization:

$$
\int_{u / \text { ppace }}^{|\Psi(\mathbf{r}, t)|^{2} d V=1}
$$

## Operator

Any physical quantity is associated with an operator

- An operator O: the "recipe" to transform $\boldsymbol{\Psi}$ into $\boldsymbol{\Psi}$ '
- We write: $\quad \mathbf{O} \boldsymbol{\psi}=\boldsymbol{\Psi}$
- If $\mathrm{O} \boldsymbol{\psi}=\mathbf{o w}$ then
- $\boldsymbol{\Psi}$ is an eigenfunction of $O$ and
- $\quad \mathrm{o}$ is the eigenvalue.

We have "solved" the wave equation $\mathrm{O} \boldsymbol{\psi}=\boldsymbol{O} \boldsymbol{\psi}$ by finding simultaneously $\boldsymbol{\Psi}$ and o that satisfy the equation.
$>0$ is the measure of O for the particle in the state described by $\boldsymbol{\Psi}$

## Correspondence?

- What operator belongs to which physical quantity?


## Classical quantity QM operator

| $f(x)$ | Any function of position, <br> such as x , or potential $\mathrm{V}(\mathrm{x})$ | $f(x)$ |
| :--- | :--- | :--- |
| $p_{x}$ | x component of momentum <br> (y and z same form) | $\frac{\hbar}{i} \frac{\partial}{\partial x}$ |
| $E$ | Hamiltonian <br> (time independent) | $\frac{p_{o p}^{2}}{2 m}+V(x)$ |
| $E$ | Hamiltonian <br> (time dependent) | $i \hbar \frac{\partial}{\partial t}$ |
| $E_{\text {kin }}$ | Kinetic energy | $\frac{-\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}$ |
| $L_{\mathrm{z}}$ | z component of <br> angular momentum | $-i \hbar \frac{\partial}{\partial \phi}$ |

## Example

Let's try operating:
-Wavefunction:

$$
\Psi(x, t)=A(\cos [k x-\omega t]+i \sin [k x-\omega t])=A e^{i k x-\omega t}
$$

- Momentum operator :

$$
\hat{p}_{x} \Psi(x, t)=\frac{\hbar}{i} \frac{\partial}{\partial x} A e^{i(k x-\omega t)}=\frac{\hbar}{i} i k A e^{i(k x-\omega t)}=\hbar k A e^{i(k x-\omega t)}=\hbar k \Psi(x, t)
$$

-Or energy operator:

$$
\hat{E} \Psi(x, t)=i \hbar \frac{\partial}{\partial t} A e^{i(k x-\omega t)}=i \hbar(-i \omega) A e^{i(k x-\omega t)}=\hbar \omega A e^{i(k x-\omega t)}=E \Psi(x, t)
$$

$>\Psi$ is indeed eigenfunction ( $\ddagger \mathrm{k}$ and $\ddagger \omega$ are the eigenvalues for ${ }^{\wedge} \mathrm{p}$ and ${ }^{\wedge} \mathrm{E}$ )

## Expectation value

Average value of physical quantity: expectation value
Think of the Staatsloterij:
$x_{i}:$ prize
$p\left(x_{i}\right):$ probability to win that prize
$E(X)=\sum_{i} x_{i} p\left(x_{i}\right)=0.697 \times 13.50=9.41 \mathrm{EUR}$

$$
\langle W\rangle=\int_{-\infty}^{+\infty} \boldsymbol{\Psi}^{*}(x, t)[\hat{\mathrm{N}}(x, t)] d x
$$

Example:

$$
\begin{gathered}
\psi(x)=A e^{i k x} \text { with } \int_{-\infty}^{+\infty}|\psi(x)|^{2} d x=\int_{-\infty}^{+\infty}\left[A e^{i k x}\right]\left[A e^{i k x}\right] d x=1, \\
\text { where } A \rightarrow 0 \text { as limits of integration } \rightarrow \infty \\
\langle p\rangle=\int_{-\infty}^{+\infty}\left[A e^{i k x}\right]\left[\frac{\hbar}{i} \frac{\partial}{\partial x} A e^{i k x}\right] d x \\
\langle p\rangle=\int_{-\infty}^{+\infty}\left[A e^{i k x}\right] \frac{\hbar}{i} i k\left[A e^{i k x}\right] d x=\hbar k \int_{-\infty}^{+\infty}\left[A e^{i k x}\right]\left[A e^{i k x}\right] d x=\hbar k=p \\
\equiv 1 \quad \text { Niels Tuning (24) }
\end{gathered}
$$

## Heisenberg

How to describe a particle that is "localized" somewhere, but which is also "wave-like" ?
$>k$ can be any value:

$$
\psi=A e^{i k x}
$$

$>$ Fourier decomposition of many frequencies
> The more frequencies you add, the more it gets localized
> The worse you know p, the better you know x !

$$
\Delta x \approx \frac{h}{\Delta p_{x}}
$$



## Heisenberg

## How to describe a particle that is "localized"

 somewhere, but which is also "wave-like" ?$>$ Fourier decomposition of many frequencies
> The more frequencies you add, the more it gets localized
> The worse you know p, the better you know x !

$$
\Delta x \approx \frac{h}{\Delta p_{x}}
$$



## Twitter

## 饣】 You Retweeted

Grant Sanderson＠3Blue1Brown • Feb 24
New video！
Uncertainty principle？It＇s not about quantum．
youtu．be／MBnnXbOM5S4


Q 24
へ】 32
25
1.5 K
$\square$

## Heisenberg

- Uncertainty relation $\rightarrow$ Commutation relation
> A wave function cannot be simultaneously an eigenstate of position and momentum

$$
\begin{aligned}
P_{x} X \Psi & =\frac{\hbar}{i} \frac{\partial}{\partial x}(x \Psi)=\frac{\hbar}{i}\left(\Psi+x \frac{\partial \Psi}{\partial x}\right) \\
X P_{x} \Psi & =x \frac{\hbar}{i} \frac{\partial \Psi}{\partial x}
\end{aligned}
$$

$$
\left(P_{x} X-X P_{x}\right) \Psi=\left[P_{x}, X\right] \Psi=\frac{\hbar}{i} \Psi
$$

- Suppose it was, what then??
> Then the operators would commute:

$$
\left(P_{x} X-X P_{x}\right) \Psi=\left(P_{x} x_{0}-X_{P}\right) \Psi=\left(x_{0} p_{0}-x_{0} p_{0}\right) \Psi=0
$$

## Schrödinger

Classic relation between E and p :

$$
E=\frac{\vec{p}^{2}}{2 m}
$$

Quantum mechanical substitution: (operator acting on wave function $\psi$ )

$$
E \rightarrow i \frac{\partial}{\partial t} \quad \text { and } \quad \vec{p} \rightarrow-i \vec{\nabla}
$$

Schrodinger equation:

$$
i \frac{\partial}{\partial t} \psi=\frac{-1}{2 m} \nabla^{2} \psi
$$

Solution:

$$
\psi=N e^{i(\vec{p} \vec{x}-E t)}
$$

## Intermezzo: "radial Schrödinger equation"

- Polar coordinates
- Separate variables

$$
\Psi(x, \mathrm{y}, z, \mathrm{t})=\psi(x, y, z) e^{-i E t / \hbar}
$$

$$
\psi(r, \theta, \phi)=R(r) \Theta(\theta) \Phi(\phi)
$$

- Three differential equations for $R, \varphi, \theta$ :

$$
\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)=\left[\frac{l(l+1)}{r^{2}}+\frac{2 m}{\hbar^{2}}(V(r)-E)\right] R
$$

- Radial Schrödinger equation
- Potential is augmented by "centrifugal barrier" : (apparent centrifugal force)


$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} u}{d r^{2}}+\left[V(r)+\frac{\hbar^{2}}{2 m} \frac{l(l+1)}{r^{2}}\right] u=E u
$$

## Klein-Gordon

Relativistic relation between E and p :

$$
E^{2}=\bar{p}^{2}+m^{2}
$$

Quantum mechanical substitution: (operator acting on wave function $\psi$ )

$$
E \rightarrow i \frac{\partial}{\partial t} \quad \text { and } \quad \vec{p} \rightarrow-i \vec{\nabla}
$$

$$
-\frac{\partial^{2}}{\partial t^{2}} \phi=-\nabla^{2} \phi+m^{2} \phi
$$

$$
\begin{array}{|ll}
\hline \text { or : } & \left(\square+m^{2}\right) \phi(x)=0 \\
\text { or : } & \left(\partial_{\mu} \partial^{\mu}+m^{2}\right) \phi(x)=0 \\
\hline
\end{array}
$$

Solution:

$$
\phi(x)=N e^{-i p_{\mu} x^{\mu}} \quad \text { with eigenvalues: } E^{2}=\vec{p}^{2}+m^{2}
$$

But! Negative energy solution?

$$
E= \pm \sqrt{\vec{p}^{2}+m^{2}}
$$

## Dirac

Paul Dirac tried to find an equation that was

- relativistically correct,
- but linear in d/dt to avoid negative energies
- (and linear in $\mathrm{d} / \mathrm{dx}$ (or $\nabla$ ) for Lorentz covariance)

He found an equation that

- turned out to describe spin-1/2 particles and
- predicted the existence of anti-particles


## Dirac

$>$ How to find that relativistic, linear equation ??
Write Hamiltonian in general form,

$$
H \psi=(\vec{\alpha} \cdot \vec{p}+\beta m) \psi
$$

but when squared, it must satisfy:

$$
H^{2} \psi=\left(\vec{p}^{2}+m^{2}\right) \psi
$$

Let's find $\alpha_{i}$ and $\beta$ !

$$
\begin{aligned}
H^{2} \psi & =\left(\alpha_{i} p_{i}+\beta m\right)^{2} \psi \quad \text { with : } i=1,2,3 \\
& =(\underbrace{\alpha_{i}^{2}}_{=1} p_{i}^{2}+\underbrace{\left(\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}\right.}_{=0}) p_{i>j} p_{j}+\underbrace{\left(\alpha_{i} \beta+\beta \alpha_{i}\right)}_{=0} p_{i} m+\underbrace{\beta^{2}}_{=1} m^{2})
\end{aligned}
$$

So, $\alpha_{i}$ and $\beta$ must satisfy:

- $\alpha_{1}^{2}=\alpha_{2}^{2}=\alpha_{3}{ }^{2}=\beta^{2}$
- $\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta$ anti-commute with each other
- (not a unique choice!)


## Dirac

$$
H \psi=(\vec{\alpha} \cdot \vec{p}+\beta m) \psi
$$

## $>$ What are $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ ??

The lowest dimensional matrix that has the desired behaviour is $\mathbf{4 \times 4}!?$

Often used
Pauli-Dirac representation:

$$
\vec{\alpha}=\left(\begin{array}{cc}
0 & \vec{\sigma} \\
\vec{\sigma} & 0
\end{array}\right) \quad ; \quad \beta=\left(\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right)
$$

with:

$$
\sigma_{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \quad ; \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad ; \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

So, $\alpha_{i}$ and $\beta$ must satisfy:

- $\alpha_{1}^{2}=\alpha_{2}^{2}=\alpha_{3}^{2}=\beta^{2}$
- $\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta$ anti-commute with each other
- (not a unique choice!)


## Dirac

$$
H \psi=(\vec{\alpha} \cdot \vec{p}+\beta m) \psi
$$

Usual substitution:

$$
H \rightarrow i \frac{\partial}{\partial t}, \vec{p} \rightarrow-i \vec{\nabla}
$$

Leads to:

$$
i \frac{\partial}{\partial t} \psi=(-i \vec{\alpha} \cdot \vec{\nabla}+\beta m) \psi
$$

$$
\left(i \beta \frac{\partial}{\partial t} \psi+i \beta \alpha_{1} \frac{\partial}{\partial x}+i \beta \alpha_{2} \frac{\partial}{\partial y}+i \beta \alpha_{3} \frac{\partial}{\partial z}\right) \psi \stackrel{\left(\beta^{2}=\mathbf{1}\right)}{-m \psi}=0
$$

Gives the famous Dirac equation:

$$
\begin{aligned}
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi & =0 \\
\text { with : } \gamma^{\mu}=(\beta, \beta \vec{\alpha}) & \equiv \text { Dirac } \gamma \text {-matrices }
\end{aligned}
$$

$$
\begin{gathered}
\text { for each } \\
\mathrm{j}=1,2,3,4
\end{gathered} \quad: \quad \sum_{k=1}^{4}\left[\sum_{\mu=0}^{3} i\left(\gamma^{\mu}\right)_{j k} \partial_{\mu}-m \delta_{j k}\right] \quad\left(\psi_{k}\right)=0
$$

## Dirac

$$
H \psi=(\vec{\alpha} \cdot \vec{p}+\beta m) \psi
$$

The famous Dirac equation:

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0
$$

$$
\text { with : } \gamma^{\mu}=(\beta, \beta \vec{\alpha}) \equiv \operatorname{Dirac} \gamma \text {-matrices }
$$

R.I.P. :


## Dirac

$$
H \psi=(\vec{\alpha} \cdot \vec{p}+\beta m) \psi
$$

The famous Dirac equation:

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0
$$

$$
\text { with : } \gamma^{\mu}=(\beta, \beta \vec{\alpha}) \equiv \text { Dirac } \gamma \text {-matrices }
$$

Remember!

- $\mu$ : Lorentz index
- $4 \times 4 \gamma$ matrix: Dirac index

Less compact notation:

$$
\begin{gathered}
\text { for each } \\
\mathrm{j}=1,2,3,4
\end{gathered} \quad: \quad \sum_{k=1}^{4}\left[\sum_{\mu=0}^{3} i\left(\gamma^{\mu}\right)_{j k} \partial_{\mu}-m \delta_{j k}\right]\left(\psi_{k}\right)=0
$$

Even less compact... :

$$
\left[\left(\begin{array}{cc}
\mathbb{1} & 0 \\
0 & -\mathbb{1}
\end{array}\right) \frac{i \partial}{\partial t}+\left(\begin{array}{cc}
0 & \sigma_{1} \\
-\sigma_{1} & 0
\end{array}\right) \frac{i \partial}{\partial x}+\left(\begin{array}{cc}
0 & \sigma_{2} \\
-\sigma_{2} & 0
\end{array}\right) \frac{i \partial}{\partial y}+\left(\begin{array}{cc}
0 & \sigma_{3} \\
-\sigma_{3} & 0
\end{array}\right) \frac{i \partial}{\partial z}-\left(\begin{array}{cc}
\mathbb{1} & 0 \\
0 & \mathbb{1}
\end{array}\right) m\right]\left(\begin{array}{l}
\psi_{1} \\
\psi_{2} \\
\psi_{3} \\
\psi_{4}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

> What are the solutions for $\psi$ ??

## Intermezzo: The "Four-derivative"

- Transformation of contravariant 4-vector:
- Lowering the index, costs minus-sign:

$$
\begin{aligned}
& x_{\mu}=g_{\mu v} x^{v} \\
& x_{0}=x^{0}, x_{1}=-x^{1}, x_{2}=-x^{2}, x_{3}=-x^{3}
\end{aligned}
$$

$$
\mathcal{X}^{\mu} \cdot \quad \begin{aligned}
& x^{\prime 0}=\gamma\left(x^{0}-\beta x^{1}\right) \\
& x^{\prime 1}=\gamma\left(x^{1}-\beta x^{0}\right) \\
& x^{\prime 2}=x^{2} \\
& x^{\prime 3}=x^{3}
\end{aligned}
$$

$$
g_{\mu v} \equiv\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

- Transformation of covariant 4-vec:

$$
\mathcal{X}_{\mu} \cdot{ }_{\mu} \cdot \begin{aligned}
x_{0}^{\prime} & =\gamma\left(x_{0}+\beta x_{1}\right) \\
-x_{1}^{\prime} & =\gamma\left(-x_{1}-\beta x_{0}\right) \Rightarrow x_{1}^{\prime}=\gamma\left(x_{1}+\beta x_{0}\right) \\
x_{2}^{\prime} & =x_{2} \\
x_{3}^{\prime} & =x_{3}
\end{aligned}
$$

> Derivative $\partial_{\mu}=\partial / \partial x^{\mu}$ transforms as covariant 4-vec (consistent with index):

$$
\left.\begin{array}{rl}
\left(\partial_{\mu} \phi\right)^{\prime} & =\frac{\partial \phi}{\partial x^{\mu^{\prime}}}=\frac{\partial \phi}{\partial x^{v}} \frac{\partial x^{v}}{\partial x^{\mu^{\prime}}}=\frac{\text { (Sum over index v) }}{\partial x^{\nu}}\left(\partial_{\nu} \phi\right) \\
\frac{\partial x^{0}}{\partial x^{0^{\prime}}} & =\gamma, \quad \frac{\partial x^{0}}{\partial x^{1^{\prime}}}=\gamma \beta, \quad \frac{\partial x^{1}}{\partial x^{0^{\prime}}}=\gamma \beta, \quad \frac{\partial x^{1}}{\partial x^{1^{\prime}}}=\gamma
\end{array}\right] \quad \begin{aligned}
& \left(\partial_{0} \phi\right)^{\prime}=\left(\partial_{0} \phi\right) \frac{\partial x^{0}}{\partial x^{0^{\prime}}}+\left(\partial_{1} \phi\right) \frac{\partial x^{1}}{\partial x^{0^{\prime}}}=\gamma\left[\left(\partial_{0} \phi\right)+\beta\left(\partial_{1} \phi\right)\right] \\
& \left(\partial_{1} \phi\right)^{\prime}=\left(\partial_{0} \phi\right) \frac{\partial x^{0}}{\partial x^{1^{\prime}}}+\left(\partial_{1} \phi\right) \frac{\partial x^{1}}{\partial x^{1^{\prime}}}=\gamma\left[\left(\partial_{1} \phi\right)+\beta\left(\partial_{0} \phi\right)\right]
\end{aligned}
$$

> And:

$$
\partial^{\mu}=\left(\frac{1}{c} \frac{\partial}{\partial t^{\prime}}, \nabla\right) \text { and } \partial_{\mu}=\left(\frac{1}{c} \frac{\partial}{\partial t}, \nabla\right)
$$

Griffiths, p.214:

* The gradient with respect to a contravariant position-time four-vector $x^{*}$ is itself a covarian four-vector, hence the placement of the index. Written out in full, equation (7.5) says ( $E / \mathcal{C},-\mathbf{p}$ ) $i \hbar\left(\frac{1}{c} \frac{\partial}{\partial t}, \nabla\right)$.


## Dirac

$$
H \psi=(\vec{\alpha} \cdot \vec{p}+\beta m) \psi
$$

The famous Dirac equation:

$$
\begin{aligned}
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi & =0 \\
\text { with }: \gamma^{\mu}=(\beta, \beta \vec{\alpha}) & \equiv \text { Dirac } \gamma-\text { matrices }
\end{aligned}
$$

Solutions to the Dirac equation?
Try plane wave: $\quad \psi(x)=u(p) e^{-i p x} \rightarrow$

$$
\begin{aligned}
\left(\gamma^{\mu} p_{\mu}-m\right) u(p) & =0 \\
\text { or }:(\not p-m) u(p) & =0
\end{aligned}
$$

Linear set of eq:

$$
\left[\left(\begin{array}{cc}
\mathbb{1} & 0 \\
0 & -\mathbb{1}
\end{array}\right) E-\left(\begin{array}{cc}
0 & \sigma_{i} \\
-\sigma_{i} & 0
\end{array}\right) p^{i}-\left(\begin{array}{cc}
\mathbb{1} & 0 \\
0 & \mathbb{1}
\end{array}\right) m\right]\binom{u_{A}}{u_{B}}=0
$$

> 2 coupled equations:

$$
\left\{\begin{array}{l}
(\vec{\sigma} \cdot \vec{p}) u_{B}=(E-m) u_{A} \\
(\vec{\sigma} \cdot \vec{p}) u_{A}=(E+m) u_{B}
\end{array}\right.
$$

If $p=0$ :

$$
u^{(1)}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) \quad, \quad u^{(2)}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right) \quad, \quad u^{(3)}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right) \quad, \quad u^{(4)}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
$$

## Dirac

$$
H \psi=(\vec{\alpha} \cdot \vec{p}+\beta m) \psi
$$

The famous Dirac equation:

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0
$$

$$
\text { with : } \gamma^{\mu}=(\beta, \beta \vec{\alpha}) \equiv \operatorname{Dirac} \gamma \text {-matrices }
$$

Solutions to the Dirac equation?
Try plane wave:

$$
\psi(x)=u(p) e^{-i p x} \rightarrow
$$

$$
\begin{aligned}
\left(\gamma^{\mu} p_{\mu}-m\right) u(p) & =0 \\
\text { or }:(\not p-m) u(p) & =0
\end{aligned}
$$

> 2 coupled equations:

$$
\left\{\begin{array}{l}
(\vec{\sigma} \cdot \vec{p}) u_{B}=(E-m) u_{A} \\
(\vec{\sigma} \cdot \vec{p}) u_{A}=(E+m) u_{B}
\end{array}\right.
$$

If $\mathrm{p} \neq 0$ :
Two solutions for $\mathrm{E}>0$ :
(and two for $\mathrm{E}<0$ )

$$
u^{(1)}=\binom{u_{A}^{(1)}}{u_{B}^{(1)}} \quad, \quad u^{(2)}=\binom{u_{A}^{(2)}}{u_{B}^{(2)}}
$$

$$
u_{A}^{(1)}=\binom{1}{0} \quad u_{A}^{(2)}=\binom{0}{1}
$$

$$
u_{B}^{(1)}=\frac{\vec{\sigma} \cdot \vec{p}}{E+m} u_{A}^{(1)}=\frac{\vec{\sigma} \cdot \vec{p}}{E+m}\binom{1}{0} u_{B}^{(2)}=\frac{\vec{\sigma} \cdot \vec{p}}{E+m} u_{A}^{(2)}=\frac{\vec{\sigma} \cdot \vec{p}}{E+m}\binom{0}{1}
$$

## Dirac

$$
H \psi=(\vec{\alpha} \cdot \vec{p}+\beta m) \psi
$$

The famous Dirac equation:

$$
\begin{aligned}
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi & =0 \\
\text { with }: \gamma^{\mu}=(\beta, \beta \vec{\alpha}) & \equiv \text { Dirac } \gamma-\text { matrices }
\end{aligned}
$$

Solutions to the Dirac equation?
Try plane wave:

$$
\psi(x)=u(p) e^{-i p x} \rightarrow
$$

$$
\begin{aligned}
\left(\gamma^{\mu} p_{\mu}-m\right) u(p) & =0 \\
\text { or }:(\not p-m) u(p) & =0
\end{aligned}
$$

> 2 coupled equations:

$$
\left\{\begin{array}{l}
(\vec{\sigma} \cdot \vec{p}) u_{B}=(E-m) u_{A} \\
(\vec{\sigma} \cdot \vec{p}) u_{A}=(E+m) u_{B}
\end{array}\right.
$$

If $\mathrm{p} \neq 0$ :
Two solutions for $\mathrm{E}>0$ :
(and two for $\mathrm{E}<0$ )

$$
u^{(1)}=\binom{u_{A}^{(1)}}{u_{B}^{(1)}} \quad, \quad u^{(2)}=\binom{u_{A}^{(2)}}{u_{B}^{(2)}}
$$



$$
u^{(2)}=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vec{\sigma} \bullet \vec{p} /(E+m)
\end{array}\right)
$$

## Dirac

$$
H \psi=(\vec{\alpha} \cdot \vec{p}+\beta m) \psi
$$

The famous Dirac equation:

$$
\begin{aligned}
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi & =0 \\
\text { with : } \gamma^{\mu}=(\beta, \beta \vec{\alpha}) & \equiv \text { Dirac } \gamma \text {-matrices }
\end{aligned}
$$

$\psi$ is 4-component spinor
4 solutions correspond to fermions and anti-fermions with spin $+1 / 2$ and $-1 / 2$
> What do we need this for ??

Needed e.g. to calculate the probability for a scattering process like:


## Prediction of anti-matter

- Dirac found his equation in 1928
- The existence of anti-matter was not taken serious until 1932, when Anderson discovered the anti-electron: the positron


## Discovery of anti-matter



Nobelprize 1936

## What else happened in 1932 ?

- Discovery of the neutron, by J. Chadwick
> What was known at that time about the nucleus?

Nobelprize 1935


## 'Bullet':



6 MeV alpha particle

## Measurement:

Hypothesis:


$$
\frac{d \sigma}{d \Omega}(\theta)=\left(\frac{Z Z^{\prime}}{4 E}\right)^{2} \frac{1}{\sin ^{4}(\theta / 2)}
$$

Scattering of a and $\beta$ Particles by Matter.

| Metal. | Atomic weight. | $z$. | $z / \mathrm{A}^{3 / 2}$. |
| :---: | :---: | :---: | :---: |
| Lead. | 207 | 62 | 208 |
| Gold ....... | 197 | 67 | 242 |
| Platinum ... | 195 | 63 | 23.2 |
| Tin ......... | 119 | 34 | 226 |
| Silver ......... | 108 | 27 | $2+1$ |
| Copper ...... | 64 | 145 | 225 |
| Iron ........ | 56 | $10 \cdot 2$ | 250 |
| Aluminium | 27 | $3 \cdot 4$ | 243 |
|  |  | Arerage | 233 |

The Number of Possible Elements and Mendeléeff's "Cubic" Periodic System.
According to Rutherford's theory of "single scattering" (" On the Scattering of $\alpha$ and $\beta$ Particles by Matter and the Structure of the Atom," Phil. Mag., May, igir), and to Barkla's "Note on the Energy of Scattered X-Radiation" (ibid.), the numbers of electrons per atom is half the atomic weight ; thus, for U , about 120. Now, a reconstruction of Mendeléeff's "cubic" periodic system, as suggested in his famous paper "Die Beziehungen zwischen den Eigenschaften der Elemente und ihren Atomgewichten " (Ostze. Klass., No. 68, pp. 32, 36, 37, and 74), gives a constant mean difference between consecutive atomic weights $=2$, and thus, from $H$ to $U, 120$ as the number of possible elements (van den Broek, "Das Mendelejeff'sche 'Kubische' Periodische System der Elemente und die Einordnung der Radioelemente in dieses System," Physik. Zeitschr. 12, p. 490). Hence, if this cubic periodic system should prove to be correct, then the number of possible elements is equal to the number of possible permanent charges of each sign per atom, or to each possible permanent charge (of both signs) per atom belongs a possible element.
A. van den broek.

Noordwijk-Zee, June 23 .


July 1911
'Hey, that is funny... looking at Rutherford's results, one notices that the number of electrons per atom is precisely halve the atom mass.'
Antonius van den Broek

## What else happened in 1932 :

- Discovery of the neutron, by J. Chadwick
$\alpha+B e \rightarrow$ non - ionizing radiation

1) Neutral

- Gamma? No! protons too energetic

2) $m_{n} \sim m_{p}$
> Interpretation:
${ }_{2}^{4} \mathrm{He}+{ }_{4}^{9} \mathrm{Be} \rightarrow{ }_{0}^{1} n+{ }_{6}^{12} \mathrm{C}$

$$
\begin{aligned}
& { }^{4} \mathrm{He}+{ }^{9} \mathbf{B e} \rightarrow{ }^{12} \mathrm{C}+\text { neutron }
\end{aligned}
$$



Nobelprize 1935

## Towards massive force carriers

## Strong interaction

- 1932: discovery of neutron
- $\alpha+{ }^{9} \mathrm{Be} \rightarrow \mathrm{n}+{ }^{12} \mathrm{C}$
- Nuclear effect only $\rightarrow$ short range
> What can you then deduce about:
- Energy scale
- Potential


## Yukawa

- 1935: Introduced strong carriers on small distances
- Massive particle, that exists only shortly
- 'virtual' particle


## Compare:

- Electro-magnetism
- Infinite range

$$
V(r)=-e^{2} \frac{1}{r} \quad R \rightarrow \infty
$$

- Transmitted by massless photon
> Coulomb potential
- Strong force
- Finite range

$$
U(r)=-g^{2} \frac{e^{-r / R}}{r} \text { R: range }
$$

- Transmitted by massive pion
> Yukawa potential


## Yukawa

- 1935: Introduced strong carriers on small distances
- Massive particle, that exists only shortly
- 'virtual' particle

- Strong force
- Finite range

$$
U(r)=-g^{2} \frac{e^{-r / R}}{r} \text { R: range }
$$

- Transmitted by massive pion
> Yukawa potential


## Yukawa's strong nuclear force



Strength: coupling constant
Short range: massive quanta

Coulomb: $\mathrm{V} \propto-\alpha \frac{1}{r}$

$$
\alpha=\frac{e^{2}}{4 \pi \varepsilon_{0} \mathrm{~h}_{c}}=\frac{1}{137.04}
$$

Yukawa : $\mathrm{V} \propto-g^{2} \frac{e^{-r / R}}{r}$
Coupling $g^{2}>\alpha$

## Yukawa's pions - pictures

Powell used a new detection technique
Photographic emulsion:

- Thick photosensitive film
- Charged particles leave tracks

Results: two particles (pion and muon)

$$
\xrightarrow{\pi^{+} \rightarrow \mu^{+} v_{\mu}} \mu^{+} \rightarrow e^{+}+v_{e}+\bar{v}_{\mu}
$$

> 1947 Discovery of pion (Powell): Nobelprijs 1950
$>1935$ Prediction of pion (Yukawa): Nobelprijs 1949


- $\pi$-meson, $m=140 \mathrm{MeV}$, short lifetime

Produced high in atmosphere and decays before reaching sealevel.

- muon ( $\mu$ ), m=105 MeV, long lifetime

Reaches sea-level and weakly interacts with matter

## Intermezzo: Strong force nowadays:

> Yukawa:
"Effective" description
Still useful to describe some features!
In particular at "lower energies"
> Gluons:
More fundamental description
But fails at low energies...


## Intermezzo: Strong force nowadays:

> Yukawa:
"Effective" description ( $=$ wrong!)
Still useful to describe some features!
In particular at "lower energies"

> Gluons:
More fundamental description
But fails at low energies...


## Radioactive decay

- 1895: Röntgen discovered radiation from vaccum tubes $(\gamma)$
- 1895: Bequerel measured radiation from ${ }^{238} \mathrm{U}$ ( n )
- 1898: Curie measured radiation from ${ }^{232}$ Th ( $\alpha$ )
- 1899: Rutherford concluded $\alpha \neq \boldsymbol{\beta}$
- 1914: Rutherford determined wavelength of $\gamma$ (scattering of crystals)



## Link with Modern physics

- $\beta$-decay: weak interaction
- W-exchange

- $\alpha$-decay: strong interaction
- Pions (gluons?!) keeps nucleus together

- $\gamma$-decay: electro-magnetic interaction
- Excited states



## Particle Decay

1) Number of decayed particles, $d N$, is proportional to: $N, d t$ and constant $\Gamma$ :


$$
\begin{aligned}
d N & =-N \Gamma d t \\
N & =N_{0} e^{-\Gamma t} \\
& =N_{0} e^{-t / \tau}
\end{aligned}
$$

$$
\text { lifetime } \quad \tau=\frac{1}{T_{f i}}=\frac{1}{\Gamma}
$$

2) States that decay, do not correspond to one specific energy level, but have a "width" $\Delta \mathrm{E}$ :

Heisenberg: $\Delta E \Delta t \sim \hbar$

$$
\begin{aligned}
& \Delta E \tau \sim \hbar \\
& \Delta E \sim \hbar / \tau=\hbar \Gamma
\end{aligned}
$$

$>$ The width of a particle is inverse proportional to its lifetime!

## Quantum mechanical description of decay

State with energy $\mathrm{E}_{0}(\hbar \omega)$ and lifetime $\tau$
To allow for decay, we need to change the time-dependence:

$$
\Psi(t)=\Psi_{0} e^{-i E_{0} t} \Longleftrightarrow \Psi(t)=\Psi_{0} e^{-i E_{0} t} e^{-\frac{t}{2 \tau}}
$$

$$
\Psi^{*} \Psi=\Psi_{0}^{*} \Psi_{0} e^{-\frac{t}{\tau}}
$$

What is the wavefunction in terms of energy (instead of time) ? $>$ Infinite sum of flat waves, each with own energy
>Fourier transformation:

$$
f(\omega)=f(E)=\int_{0}^{\infty} \Psi_{0} e^{-t\left(i E_{0}+\frac{1}{2 \tau}\right)} e^{i E t} d t=\Psi_{0} \frac{1}{i\left(\left(E_{0}-E\right)-\frac{i}{2} \Gamma\right)}
$$

## Resonance

Probability to find particle with energy E :

$$
f(E)^{*} f(E)=\Psi_{0}^{*} \Psi_{0} \frac{1}{\left(E_{0}-E\right)^{2}+\frac{1}{4} \Gamma^{2}}
$$



Resonance-structure contains information on:

- Mass
- Lifetime
- Decay possibilities


## Scattering

## Outline for today

- Quantum mechanics: equations of motions of wave functions
- Schrodinger, Klein Gordon, Dirac
- Forces
- Strong force, pion exchange
- Weak nuclear force, decay
- Scattering Theory
- Rutherford (classic) and QM
- "Cross section"
- Coulomb potential
- Yukawa potential
- Resonance


## Decay and Scattering: decay width and cross section

- Decay

$$
\mathrm{a} \rightarrow \mathrm{~b}+\mathrm{c}
$$

- Decay width is reciprocal of decay time:
- Total width is sum of partial widths:
- Branching fraction for certain decay mode:
- Unit: inverse seconds

$$
\begin{aligned}
& \tau=1 / \Gamma \\
& \hline \Gamma_{\text {tot }}=\Sigma_{\mathrm{i}} \Gamma_{\mathrm{i}} \\
& \hline \mathrm{BR}=\Gamma_{\mathrm{i}} / \Gamma_{\text {tot }}
\end{aligned}
$$

- Scattering $a+b \rightarrow c+d$
- Parameter of interest is "size of target", cross section $\sigma$
- Total cross section is sum of possible processes: $\sigma_{\text {tot }}=\Sigma_{i} \sigma_{i}$
- Unit: surface
$>$ Golden rule: $\quad$ transition rate $=\frac{2 \pi}{\hbar}|\boldsymbol{\mathcal { L }}|^{2} \times$ (phase space)


## Fermi's Golden Rule

$$
\begin{gathered}
\left.\Gamma=\frac{2 \pi}{\hbar}\left|\langle f| H^{\prime}\right| i\right\rangle\left.\right|^{2} \rho\left(E_{f}\right) \\
\qquad \xrightarrow[\longrightarrow]{\longrightarrow} \rho\left(E_{f}\right) \text { density of final states } \\
\longrightarrow\langle f| H^{\prime}|i\rangle \text { Matrix element }
\end{gathered}
$$

```
Fermi's "golden rule" gives:
The transition probability
to go from initial state i to final state f
```

Amplitude $\mathcal{M}$ :
contains dynamical information fundamental physics

## Phase space $\varphi$

contains kinematic information masses, momenta

$$
\text { transition rate }=\frac{2 \pi}{\hbar}|\mathcal{M}|^{2} \times(\text { phase space })
$$

## Rutherford

- Classical calculation of cross section of a scattering process



## Rutherford

- Scatter from spherical potential
- Incoming: impact parameter between $b$ and $d b$
- Outgoing: scattering angle between $\theta$ and $d \theta$
> 3d: incoming particle "sees" surface d $\sigma$, and scatters off solid angle $\mathrm{d} \Omega$



## Rutherford

> 3d: incoming particle "sees" surface d $\sigma$, and scatters off solid angle $\mathrm{d} \Omega$
> Calculate:

$$
\frac{d \sigma}{d \Omega}=D(\theta, \varphi)
$$

$$
\begin{gathered}
d \sigma=|b d b d \varphi| \\
d \Omega=|\sin \theta d \theta d \varphi|
\end{gathered}
$$



## Rutherford

> 3d: incoming particle "sees" surface d $\sigma$, and scatters off solid angle d $\Omega$

- Conservation of angular momentum:
- Force:

Before $L=m v_{0} b$
After: $L=m r \frac{d \phi}{d t} r$
$F(r)=\frac{Z_{1} Z_{2} \alpha}{r^{2}}$

## Rutherford

> 3d: incoming particle "sees" surface d $\sigma$, and scatters off
solid angle d $\Omega$

- Conservation of angular momentum:
- Force:

Before $L=m v_{0} b$
After: $L=m r \frac{d \phi}{d t} r$

$$
m \frac{d v_{y}}{d t}=F_{y}=F \sin \phi=\frac{Z_{1} Z_{2} \alpha}{r^{2}} \sin \phi
$$

$$
F(r)=\frac{Z_{1} Z_{2} \alpha}{r^{2}}
$$

$$
\frac{d v_{y}}{d t}=\frac{Z_{1} Z_{2} \alpha}{m v_{0} b} \sin \phi \frac{d \phi}{d t}
$$



$$
\int_{0}^{v_{0} \sin \theta} d v_{y}=\frac{Z_{1} Z_{2} \alpha}{m v_{0} b} \int_{\cos \pi}^{\cos \theta} d \cos \phi
$$

$$
\begin{aligned}
\frac{d \sigma}{d \Omega} & =\left|\frac{b}{\sin \theta} \frac{d b}{d \theta}\right| \\
& =\left|\left(\frac{Z_{1} Z_{2} \alpha}{m v_{0}^{2}}\right)^{2} \frac{\cot \frac{\theta}{2}}{\sin \theta} \frac{d \cot \frac{\theta}{2}}{d \theta}\right|
\end{aligned}
$$

$$
\cot \frac{\theta}{2}=\frac{m v_{0}^{2}}{Z_{1} Z_{2} \alpha} b
$$

$$
=\left(\frac{Z_{1} Z_{2} \alpha}{m v_{0}^{2}}\right)^{2} \frac{1}{4 \sin ^{4} \frac{\theta}{2}}
$$

## Rutherford scattering $\rightarrow$ Cross section

- Differential cross section

$\frac{d \sigma}{d \Omega}=\left(\frac{Z_{1} Z_{2} \alpha}{m v_{0}^{2}}\right)^{2} \frac{1}{4 \sin ^{4} \frac{\theta}{2}}$| $p_{i}=\left(E, 0,0, m v_{0}\right)$ |
| :--- |
| $p_{o}=\left(E, 0, m v_{0} \sin \theta, m v_{0} \cos \theta\right)$ |
| $q \equiv p_{i}-p_{o}$ |$\quad \frac{d \sigma}{d \Omega}=\left(\frac{2 m Z_{1} Z_{2} \alpha}{q^{2}}\right)^{2}$

$$
\frac{d \sigma}{d \Omega}=\left(\frac{Z_{1} Z_{2} \alpha}{m v_{0}^{2}}\right)^{2} \frac{1}{4 \sin ^{4} \frac{\theta}{2}} \begin{aligned}
& p_{i}=\left(E, 0,0, m v_{0}\right) \\
& p_{o}=\left(E, 0, m v_{0} \sin \theta, m v_{0} \cos \theta\right) \\
& q \equiv p_{i}-p_{o}
\end{aligned} \quad \frac{d \sigma}{d \Omega}=\left(\frac{2 m Z_{1} Z_{2} \alpha}{q^{2}}\right)^{2}
$$

- Luminosity $\mathcal{L}$
$>\mathcal{L}=\mathrm{dN} / \mathrm{d} \sigma$
> Number of incoming particles per unit surface

$$
d N=\mathcal{L} d \sigma=\mathcal{L} \frac{d \sigma}{d \Omega} d \Omega
$$

## Scattering Theory: QM

- Describe a stationary state, that satisfies the incoming and outgoing wave

$$
\left(\nabla^{2}+k^{2}\right) \psi(\overrightarrow{\mathbf{r}})=\frac{2 m}{\hbar^{2}} V(\overrightarrow{\mathbf{r}}) \psi(\overrightarrow{\mathbf{r}})
$$

$$
\frac{\hbar^{2}}{2 m} \nabla^{2} \psi(\vec{r}, t)=i \hbar \frac{\partial}{\hbar^{2}} \psi(\vec{r}, t)
$$



## Scattering Theory: QM

- Describe a stationary state, that satisfies the incoming and outgoing wave

$$
\left(\nabla^{2}+k^{2}\right) \psi(\overrightarrow{\mathbf{r}})=\frac{2 m}{\hbar^{2}} V(\overrightarrow{\mathbf{r}}) \psi(\overrightarrow{\mathbf{r}})
$$

- Find a solution which is a superposition of the incoming wave, and the outgoing waves



## Scattering Theory: Quantum mechanics

Classical:


QM:


- Superposition of incoming wave and outgoing waves
- Scattering amplitude f calculated from potential V
- Fourier transform of potential:

$$
\begin{gathered}
\Phi(\overrightarrow{\mathbf{r}})=\underset{\substack{\phi_{a}(\overrightarrow{\mathbf{r}})+\\
\text { ingoing }}}{ } f\left(\overrightarrow{\mathbf{k}_{\mathbf{a}}}, \overrightarrow{\mathbf{k}_{\mathbf{b}}}\right) \frac{e^{i k r}}{\text { outgoing }} r \\
f\left(\overrightarrow{\mathbf{k}_{\mathbf{a}}}, \overrightarrow{\mathbf{k}_{\mathbf{b}}}\right)=-\frac{m}{2 \pi \hbar^{2}} \int e^{-i \overrightarrow{\mathbf{k}}_{\mathbf{b}} \cdot \overrightarrow{\mathbf{r}}^{\prime}} V\left(\overrightarrow{\mathbf{r}}^{\prime}\right) \Phi\left(\overrightarrow{\mathbf{r}}^{\prime}\right) \mathrm{d}^{3} r
\end{gathered}
$$

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\left|f\left(\overrightarrow{\mathrm{k}_{\mathrm{a}}}, \overrightarrow{\mathrm{k}_{\mathrm{b}}}\right)\right|^{2}
$$

## Scattering Theory: Quantum mechanics

Classical:


QM:


- Yukawa:

$$
V(r)=\frac{Z_{1} Z_{2} e^{2}}{r} e^{-a r}
$$

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=|f|^{2}=\frac{m^{2}}{\left(2 \pi \hbar^{2}\right)^{2}}\left[\frac{4 \pi Z_{1} Z_{2} e^{2}}{q^{2}+a^{2}}\right]^{2}
$$

- Coulomb:

$$
V(r)=\frac{Z_{1} Z_{2} e^{2}}{r}
$$

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\frac{m^{2}}{\left(2 \pi \hbar^{2}\right)^{2}}\left[\frac{4 \pi Z_{1} Z_{2} e^{2}}{q^{2}}\right]^{2}=\left[\frac{Z_{1} Z_{2} e^{2}}{2 m v^{2} \sin ^{2} \frac{\theta}{2}}\right]^{2}
$$

- Centrifugal Barier:

$$
V_{e f f}=V(r)+\frac{\hbar^{2} l(l+1)}{2 m r^{2}}
$$

$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega} & =\left|f^{\text {res }}(\theta)\right|^{2} \\
& =\frac{(2 l+1)^{2}}{k^{2}} \frac{\frac{\Gamma^{2}}{4}}{\left(E_{r}-E\right)^{2}+\frac{\mathrm{\Gamma}^{2}}{4}}\left|P_{l}(\cos \theta)\right|^{2}
\end{aligned}
$$

## Well-known resonances ete cross-section

$$
e^{+} e^{-} \rightarrow R \rightarrow e^{+} e^{-}
$$



## More resonances

$$
\pi^{+} p \rightarrow R \rightarrow \pi^{+} p
$$



## Why did we need this mathematical trickery?

- That is how we see and discover particles!
- As resonances!




## Feynman Rules

- How to calculate amplitude M ?

- The 'drawing' is a mathematical object!


## D. 1 External Lines

| Spin 0: | (nothing) |
| :--- | :--- |
| Spin $\mathrm{f}:$ | $\left\{\begin{array}{l}\text { Incoming particle: } u \\ \text { Incoming antiparticle: } \bar{v} \\ \text { Outgoing particle: } \bar{u} \\ \text { Outgoing antiparticle: } v\end{array}\right.$ |
| Spin 1: | $\left\{\begin{array}{l}\text { incoming: } \epsilon^{\mu} \\ \text { Outgoing: } \epsilon^{*}\end{array}\right.$ |

D. 2 Propagators

Spin 0: $\quad \frac{\boldsymbol{l}}{\boldsymbol{q}^{2}-(m c)^{2}}$
Spin f: $\quad \frac{i(q+m c)}{q^{2}-(m c)^{2}}$


$$
\sum \begin{gathered}
\frac{1}{(2 \pi)^{4}} \int d^{4} q(-i g)^{2} \frac{i}{q^{2}-m_{C}^{2}}(2 \pi)^{4} \delta\left(q-p_{1}-p_{2}\right)(2 \pi)^{4} \delta\left(q-p_{3}-p_{4}\right) \\
-(-i g)^{2} \frac{i}{\left(p_{1}+p_{2}\right)^{2}-m_{C}^{2}}(2 \pi)^{4} \delta\left(p_{1}+p_{2}-p_{3}-p_{4}\right) \Rightarrow \\
-i \mathcal{M}_{b}-(-i g)^{2} \frac{i}{\left(p_{1}+p_{2}\right)^{2}-m_{C}^{2}} \Rightarrow \mathcal{M}_{b}-\frac{g^{2}}{\left(p_{1}+p_{2}\right)^{2}-m_{C}^{2}}
\end{gathered}
$$

## Twitter

१】 You Retweeted

## Sabine Hossenfelder＠skdh • Feb 25

Those lines in the Feynman diagrams？They do not depict particle paths．No they don＇t．They＇re visual aids that encode long formulas by help of which you can calculate the outcome of certain experiments．Yes，it＇s all abstract math． Not，they do not depict particle paths．

〔】 113

O 386
$\nabla$


## Extra: derivation of scattering amplitude f

## Scattering Theory

- Describe a stationary state, that satisfies the incoming and outgoing wave
- Incoming particle (almost) free:

$$
\left(\nabla^{2}+k^{2}\right) \phi(\overrightarrow{\mathbf{r}})=0
$$

- Introduce Green function such:

$$
\left(\nabla^{2}+k^{2}\right) G\left(\overrightarrow{\mathbf{r}} \mid \overrightarrow{\mathbf{r}}^{\prime}\right)=\delta\left(\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}^{\prime}\right)
$$

- If we know $G$, then the solution for

$$
\left(\nabla^{2}+k^{2}\right) \phi(\overrightarrow{\mathbf{r}})=A(\overrightarrow{\mathbf{r}})
$$

- is indeed a sum of the 2 waves: $\Phi(\overrightarrow{\mathbf{r}})=\phi_{a}(\overrightarrow{\mathbf{r}})+\int G\left(\overrightarrow{\mathbf{r}} \mid \overrightarrow{\mathbf{r}}^{\prime}\right) A\left(\overrightarrow{\mathbf{r}}^{\prime}\right) \mathrm{d}^{3} r^{\prime}=\phi_{a}(\overrightarrow{\mathbf{r}})+\phi_{s c}(\overrightarrow{\mathbf{r}})$
- With: $\quad G_{(+)}=-\frac{e^{i k\left|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}^{\prime}\right|}}{4 \pi\left|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}^{\prime}\right|}$

$$
\Phi(\overrightarrow{\mathbf{r}})=\phi_{a}(\overrightarrow{\mathbf{r}})-\frac{m}{2 \pi \hbar^{2}} \int \frac{e^{i k\left|\overrightarrow{\mathbf{r}}^{2}-\overrightarrow{\mathbf{r}}^{\prime}\right|}}{\left|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}^{\prime}\right|} V\left(\overrightarrow{\mathbf{r}}^{\prime}\right) \Phi\left(\overrightarrow{\mathbf{r}}^{\prime}\right) \mathrm{d}^{3} r^{\prime}
$$

## Scattering Theory

- Describe a stationary state, that satisfies the incoming and outgoing wave
- Large r:

$$
\Phi(\overrightarrow{\mathbf{r}})=\phi_{a}(\overrightarrow{\mathbf{r}})-\frac{m}{2 \pi \hbar^{2}} \int \frac{e^{i k\left|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}^{\prime}\right|}}{\left|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}^{\prime}\right|} V\left(\overrightarrow{\mathbf{r}}^{\prime}\right) \Phi\left(\overrightarrow{\mathbf{r}}^{\prime}\right) \mathrm{d}^{3} r^{\prime}
$$

$$
\Phi(\overrightarrow{\mathbf{r}})=\phi_{a}(\overrightarrow{\mathbf{r}})+f\left(\overrightarrow{\mathbf{k}_{\mathrm{a}}}, \overrightarrow{\mathrm{k}_{\mathbf{b}}}\right) \frac{e^{i k r}}{r}
$$

- f: "scattering amplitude":

$$
f\left(\overrightarrow{\mathbf{k}_{\mathbf{a}}}, \overrightarrow{\mathbf{k}_{\mathbf{b}}}\right)=-\frac{m}{2 \pi \hbar^{2}} \int e^{-i \overrightarrow{\mathbf{k}_{\mathbf{b}}} \cdot \overrightarrow{\mathbf{r}}^{\prime}} V\left(\overrightarrow{\mathbf{r}}^{\prime}\right) \Phi\left(\overrightarrow{\mathbf{r}}^{\prime}\right) \mathrm{d}^{3} r
$$

- which we will use for:

$$
\left(\nabla^{2}+k^{2}\right) \psi(\overrightarrow{\mathbf{r}})=\frac{2 m}{\hbar^{2}} V(\overrightarrow{\mathbf{r}}) \psi(\overrightarrow{\mathbf{r}})
$$

$$
k\left|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}^{\prime}\right| \approx k r-\left(\overrightarrow{\mathbf{k}_{\mathbf{b}}} \cdot \overrightarrow{\mathbf{r}}^{\prime}\right)
$$

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\left|f\left(\overrightarrow{\mathrm{k}_{\mathrm{a}}}, \overrightarrow{\mathrm{k}_{\mathrm{b}}}\right)\right|^{2}
$$

> Differential equation became integral equation, but how do we solve it??

## Scattering Theory

- Describe a stationary state, that satisfies the incoming and outgoing wave

$$
\left(\nabla^{2}+k^{2}\right) \psi(\overrightarrow{\mathbf{r}})=\frac{2 m}{\hbar^{2}} V(\overrightarrow{\mathbf{r}}) \psi(\overrightarrow{\mathbf{r}})
$$

- f: "scattering amplitude":
- which we will use for:

$$
\begin{gathered}
\Phi(\overrightarrow{\mathbf{r}})=\phi_{a}(\overrightarrow{\mathbf{r}})+f\left(\overrightarrow{\mathbf{k}_{\mathbf{a}}}, \overrightarrow{\mathbf{k}}_{\mathbf{b}}\right) \frac{e^{i k r}}{r} \\
f\left(\overrightarrow{\mathbf{k}_{\mathbf{a}}}, \overrightarrow{\mathbf{k}_{\mathbf{b}}}\right)=-\frac{m}{2 \pi \hbar^{2}} \int e^{-i \overrightarrow{\mathbf{k}}_{\mathbf{b}}} \cdot \overrightarrow{\mathbf{r}}^{\prime} \\
V\left(\overrightarrow{\mathbf{r}}^{\prime}\right) \Phi\left(\overrightarrow{\mathbf{r}}^{\prime}\right) \mathrm{d}^{3} r
\end{gathered}
$$

$>$ How do we solve it?? Not analytic... $\rightarrow$ Perturbation series!

- $1^{\text {st }}$ approximation:

$$
\begin{gathered}
\Phi(\overrightarrow{\mathbf{r}})=\phi_{a}(\overrightarrow{\mathbf{r}})-\frac{m}{2 \pi \hbar^{2}} \int \frac{e^{i k\left|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}^{\prime}\right|}}{\left|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}^{\prime}\right|} V\left(\overrightarrow{\mathbf{r}}^{\prime}\right) \phi_{a}\left(\overrightarrow{\mathbf{r}}^{\prime}\right) \mathrm{d}^{3} r^{\prime} \\
f^{[1]}\left(\overrightarrow{\mathbf{k}_{\mathbf{a}}}, \overrightarrow{\mathbf{k}_{\mathbf{b}}}\right)=\frac{m}{2 \pi \hbar^{2}} \int e^{i\left(\overrightarrow{\mathbf{k}_{\mathrm{a}}}-\overrightarrow{\mathbf{k}_{\mathbf{b}}}\right) \cdot \overrightarrow{\mathbf{r}}^{\prime}} V\left(\overrightarrow{\mathbf{r}}^{\prime}\right) \mathrm{d}^{3} r^{\prime}
\end{gathered}
$$

$>$ Scattered wave is described by Fourier transform of the potential

## Scattering Theory

- Let's try the Yukawa potential

$$
\begin{gathered}
\Phi(\overrightarrow{\mathbf{r}})=\phi_{a}(\overrightarrow{\mathbf{r}})-\frac{m}{2 \pi \hbar^{2}} \int \frac{e^{i k\left|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}^{\prime}\right|}}{\left|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}^{\prime}\right|} V\left(\overrightarrow{\mathbf{r}}^{\prime}\right) \phi_{a}\left(\overrightarrow{\mathbf{r}}^{\prime}\right) \mathrm{d}^{3} r^{\prime} \\
f^{[1]}\left(\overrightarrow{\mathbf{k}_{\mathbf{a}}}, \overrightarrow{\mathbf{k}_{\mathbf{b}}}\right)=\frac{m}{2 \pi \hbar^{2}} \int e^{i\left(\overrightarrow{\mathbf{k}_{\mathbf{a}}}-\overrightarrow{\mathbf{k}_{\mathbf{b}}}\right) \cdot \overrightarrow{\mathbf{r}}^{\prime}} V\left(\overrightarrow{\mathbf{r}}^{\prime}\right) \mathrm{d}^{3} r^{\prime}
\end{gathered}
$$

$$
V(r)=\frac{Z_{1} Z_{2} e^{2}}{r} e^{-a r}
$$

$$
f\left(\overrightarrow{\mathbf{k}_{\mathrm{a}}}, \overrightarrow{\mathbf{k}_{\mathbf{b}}}\right)=-\frac{m}{2 \pi \hbar^{2}} Z_{1} Z_{2} e^{2} \int \frac{e^{-a r^{\prime}}}{r^{\prime}} e^{i\left(\overrightarrow{\mathbf{k}_{\mathrm{a}}}-\overrightarrow{\mathbf{k}_{\mathbf{b}}}\right) \cdot \overrightarrow{\mathbf{r}}^{\prime}} \mathrm{d}^{3} r^{\prime}=-\frac{m}{2 \pi \hbar^{2}} \frac{4 \pi Z_{1} Z_{2} e^{2}}{q^{2}+a^{2}}
$$

- Yukawa:

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=|f|^{2}=\frac{m^{2}}{\left(2 \pi \hbar^{2}\right)^{2}}\left[\frac{4 \pi Z_{1} Z_{2} e^{2}}{q^{2}+a^{2}}\right]^{2}
$$

- Coulomb (a>0) :

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\frac{m^{2}}{\left(2 \pi \hbar^{2}\right)^{2}}\left[\frac{4 \pi Z_{1} Z_{2} e^{2}}{q^{2}}\right]^{2}=\left[\frac{Z_{1} Z_{2} e^{2}}{2 m v^{2} \sin ^{2} \frac{\theta}{2}}\right]^{2}
$$

> We found back the classical solution from Rutherford

## Interpretation

- Consider again the amplitude:
(Fourier transform of potential)
- We used quantum mechanics,

$$
\begin{aligned}
f\left(\overrightarrow{k_{b}}, \overrightarrow{k_{a}}\right) & =\frac{-m}{2 \pi \hbar^{2}} \int d \overrightarrow{r^{\prime}} e^{i\left(\overrightarrow{k_{a}}-\overrightarrow{k_{b}}\right) \cdot \overrightarrow{r^{\prime}}} V\left(\overrightarrow{r^{\prime}}\right) \\
V(r) & =-\frac{\alpha}{r}
\end{aligned}
$$

$$
\begin{aligned}
f\left(\overrightarrow{k_{b}}, \overrightarrow{k_{a}}\right) & =-\frac{2 m \alpha}{q^{2}} \quad q=\left|\overrightarrow{k_{b}}-\overrightarrow{k_{a}}\right| \\
\frac{d \sigma}{d \Omega} & =\frac{4 m^{2} \alpha^{2}}{q^{4}}
\end{aligned}
$$

- but with relativistic quantum field theory, the concept is similar:


$$
f \sim e \cdot e \cdot \text { propagator }
$$

## Scattering Theory

- Let's try an effective potential:

$$
\begin{gathered}
\Phi(\overrightarrow{\mathbf{r}})=\phi_{a}(\overrightarrow{\mathbf{r}})-\frac{m}{2 \pi \hbar^{2}} \int \frac{e^{i k\left|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}^{\prime}\right|}}{\left|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}^{\prime}\right|} V\left(\overrightarrow{\mathbf{r}}^{\prime}\right) \phi_{a}\left(\overrightarrow{\mathbf{r}}^{\prime}\right) \mathrm{d}^{3} r^{\prime} \\
f^{[1]}\left(\overrightarrow{\mathbf{k}_{\mathrm{a}}}, \overrightarrow{\mathbf{k}_{\mathbf{b}}}\right)=\frac{m}{2 \pi \hbar^{2}} \int e^{i\left(\overrightarrow{\mathbf{k}_{\mathrm{a}}}-\overrightarrow{\mathbf{k}_{\mathbf{b}}}\right) \cdot \overrightarrow{\mathbf{r}}^{\prime}} V\left(\overrightarrow{\mathbf{r}}^{\prime}\right) \mathrm{d}^{3} r^{\prime}
\end{gathered}
$$

$$
V_{e f f}=V(r)+\frac{\hbar^{2} l(l+1)}{2 m r^{2}}
$$

$$
f^{r e s}(\theta)=\frac{(2 l+1)}{k} \frac{\Gamma / 2}{\left(E_{r}-E\right)-i \Gamma / 2} P_{l}(\cos \theta)
$$

$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega} & =\left|f^{r e s}(\theta)\right|^{2} \\
& =\frac{(2 l+1)^{2}}{k^{2}} \frac{\frac{\Gamma^{2}}{4}}{\left(E_{r}-E\right)^{2}+\frac{\Gamma^{2}}{4}}\left|P_{l}(\cos \theta)\right|^{2} \\
\sigma_{l} & =\frac{4 \pi(2 l+1)}{k^{2}} \frac{\frac{\Gamma^{2}}{4}}{\left(E_{r}-E\right)^{2}+\frac{\Gamma^{2}}{4}}
\end{aligned}
$$



Scattering to this potential can lead to a bound system, that can then "tunnel away"
> We found the non-relativistic Breit-Wigner resonance formula!

## Use cosmic rays

Discovery pions / muons


