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Schedule

1)

11 Feb:

Accelerators (Harry vd Graaf) + Special relativity (Niels Tuning)

2)

18 Feb:

Quantum Mechanics (Niels Tuning)

3)
4)
5)
6)
/)

25 Feb:

3 Mar:

10 Mar:
17 Mar:
24 Mar:

break

8)
9)

21 Apr:
28 Apr:

10) 12 May
11) 19 May
12) 26 May

Interactions with Matter (Harry vd Graaf)
Light detection (Harry vd Graaf)

Particles and cosmics (Niels Tuning)
Astrophysics and Dark Matter (Ernst-Jan Buis)
Forces (Niels Tuning)

e*te” and ep scattering (Niels Tuning)
Gravitational Waves (Ernst-Jan Buis)
: Higgs and big picture (Niels Tuning)
: Charged particle detection (Martin Franse)

: Applications: experiments and medical (Martin Franse)

13) 2 Jun: Nikhef excursie
14) 8 Jun: CERN excursie
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Thanks

e Ik ben schatplichtig aan:
— Dr. Ivo van Vulpen (UvA)
— Prof. dr. ir. Bob van Eijk (UT)
— Prof. dr. M. Merk (VU)
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Plan

1900-1940

1945-1965

1965-1975

1975-2000

1) Intro: Standard Model & Relativity
2) Basis

1) Atom model, strong and weak force

2) Scattering theory
3) Hadrons

1) Isospin, strangeness
2) Quark model, GIM

4) Standard Model
1) QED
2) Parity, neutrinos, weak inteaction
3) QCD

5) ete  and DIS

2000-2015 \/ 6) Higgs and CKM
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Exercises Lecture 1: Special Relativity

1 Lorentz transformation

a) The Galilean transformation of the space coordinate, from coordinate system S to
system 57, with relative velocity v, is given by 2/ = # — vt. What is the Galilean
transformation of the time coordinate, between two inertial observers?

b) The Galilean transformation of the space coordinate x, from system S’ to S, is given
by x = 2’ — vt. Let’s find the corresponding transformation if we assume that the
speed of light is equal in systems S and S’, ie. 2’ = ¢t’ and x = ¢t. We modify the
Galilean transformation rules, by 2/ = ~(x — vt) and find the expression for 7 :

r=ct

o =ry(x—vt) "= A(ct—ot) (1)

z'=ct’

T = A’(lv/ — lvf/) = "/‘«((’t’ — l't’) (2)

I

This leads to:
o' (et —wt)

= (ct — vt) (3)

~ - ~

Y Y )
Eliminate ¢ in the above expression, and give the expression for 7.

b) t' =t

a) Find the expression for v :

x=ct

o =q(x—vt) "= y(ct—ot)

) >

X =ct

This leads to:
T ct'
= —’ = ((‘f — l‘f)

¥ !
! /

Eliminate ¢t in the above expression, and give expression for ~:
ct!

i
/

ct=~(ct'+vt’)

v
= (ct —t) = y(et' + vt') — —y(ct’ + vt')
-

1 : 2/ 2
= 3:(1—'1'/0)
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Exercises Lecture 1: Special Relativity

¢) Rewrite the Lorentztransformation,

¥ = ~y(x—ot) (4)
o |
/ . ~ o 'f'
t — / (l‘ ('21 ) b ( '))

expressing the velocity as a fraction of the speed of light, 7 = v /¢, and the time-

coordinate as 2° = ¢t.

c)
! = Al o)
= ",-.r(l‘—;—;l)
= (= =et) T (@ - gaf)
ot = et = Za) "= (2 - Bat)
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Exercises Lecture 1: Special Relativity

d) The time-coordinate, and three space coordinates can be expressed as 4-vectors
at = (t/c,x,y.z). Show that the quantity I = X,—03X,=03gpr’s” = z,a is
invariant, ie. that I = I’. (Apply a boost in the direction of z!.)

e) Suppose you want to build a muon collider, and you want to keep your muons about
30 minutes in your accelerator before they decay. \Vhat boost (ie. value for v) is
then needed for the muons? (The lifetime of muons is 2.2 us. ) To what beam energy
does this correspond? (The mass of the muon is 106 Mc\’/ )

d)
[/ — (IIO)Z ( )2 o (111'2)2 - (1_13)’2

(v(2® — B’ )) — (y(=' - "‘3’1’0))2 — (@) = (=7)°
(@)1 =87 = (2)) (1 = B%) — (7)* — («7)°
“(

e e s e e
[S R —Y

- VO

— e e e N

[a—
()

)
1— B)((a)? — (2')?) — () — (a")?
)2 ( )2 o ( '/2)2 o (1?13)2 =7

v
= (z

At' /At =1800/2.2 x 107° =8 x 10° (15)
E = ~ymy=28x10° x0.106 = 8 x 10"GeV (16)

-2
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Exercises Lecture 1: Special Relativity

2 Relativistic momentum

Given 4-vector calculus, we know that p,p" = E?/c* — p* = mic®.

a) Show that you get in trouble when you use E = mc* and p'= mv.

b) Show that E = ymgc® and p = ymgv obey E?/c* — p? = mic®.

a) Using E = mc® and p = mv, one finds:

F2/c® — 52 = m2c® — m20? = m2(2 — v?) #£ m2c2

b) Using E = ymyc* and p = ymy¥, one finds:

02 /02
E?/c* — p? = v (m*(c? —v?)) = mQCQ—i_UQ?@ = m=c”.

2.2
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Exercises Lecture 1: Special Relativity

3

Center-of-mass energy

a)

Not only the space and time can be expressed as a 4-vector, but also energy and

momentum can be expressed as 4-vectors, p* = (E/c¢,py, py,p.). Because p,pt is

invariant, this means that the rest-mass mg of a particle does not change under

Lorentz transformations. Show that p,p* = mic?.

Let’s consider two colliding particles @ and b, with 4-momenta p# and p). We will

use natural units, with ¢ = 1 and h = 1, so pt = (E,,pa). We take the masses of

the two colliding particles equal, m, = m, = m, and we sit in the center-of-mass

frame of the system, p, = —pp. What are the four components of the sum of the
. octors it — )

two 4-vectors, py,, = (ph +1p,)

The ’“invariant mass’ of the combined system. is often called the ’center-of-mass
energy’ of the collision. If the energy of both particles a and b is 4 TeV, what is

then the center-of-mass energy, /s = \/PhoPputot

Let’s consider a fixed-target collision of two protons. One proton has an energy of
4 TeV, and 4-vector p#, whereas the other proton is at rest, with 4-vector pj. What
are the four components of the sum of the two 4-vectors, pj,, = (p +pf) ? Give
the expression for the center-of-mass energy of this system.

d)

pup" = (E/e)* — | = (E* = &[p*) /* = (moc?)/?

Piot = (Vo + 1h) = (Ea.Da) + (Eb. 1) = (Ea + E3,0) = (2E,0)

(E,0,0,VE? —m?)+(F,0,0,—VE? —-m?) = (2E,0,0,0)
=5 = 4F?’= \/s=2E =

(E,0,0,vVE? —m?)+ (m,0,0,0) = (E+m,0,0,VE? —m?)
=s=(E+m)®—(E*—-m? 2m? + 2Em

= /s~ V2Em = 89GeV

8TeV
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Exercises Lecture 1: Special Relativity

e) People were afraid that the earth would be destroyed at the start of the LHC,
planning for collisions with beams of 7 TeV each. The earth has been bombarded
for billions of years with cosmic rays. What is the center-of-mass energy of the
highest energetic cosmic rays ( 10%! eV) hitting the atmosphere? Was the fear
justified?

f) What is the energy of a cosmic ray hitting the atmosphere, that corresponds to the
center-of-mass energy of collisions of two lead-ions 2°® Pb with energies of 2.24 TeV
per nucleon?

g) Consider relatively low-energy proton-proton collisions, with opposite and equal
momenta (ie. the center-of-mass system is at rest). In the process p+p — p+p+p+p
an extra proton-antiproton pair is created. What is the minimum energy of the
protons to create two extra (anti)protons?

Vs~ V2Em = /2 x 1012 x 1GeV? ~ 10°GeV (24)

f) (Scaled the 1.38 TeV /nucleon from 4 TeV to the expected 6.5 TeV in 2015.)

m

1 . .
Vs ~ V2Em = 2 x 208 x 2.24 TeV = E = 2—(106 GeV)? = 5 x 10%%V
m
(26)
g)
Before : s = 4FE* (27)
Afterpin : s = (4m)? = Enin = 2m = 2GeV (28)

iels Tuning (12)



Lecture 1: Standard Model & Relativity

e Standard Model Lagrangian

e Standard Model Particles

Niels Tuning (13)



Lecture 1: Standard Model & Relativity

P,

Theory of relativity

— Lorentz transformations (“boost”)

— Calculate energy in colissions

4-vector calculus

pu! = (E/c)’ = |p* = (B* = &|p*) /¢* =

= (o = 52 5=
met 1
— N =
3 _ 3 1— 32
x
2
ot =1 (,u =012 ))
.
(moct)/c? 3

High energies needed to make (new) particles

D ] / \

s=(p +p) =2m* +2(E>+p°)
= 2m® +2E” +2(E? —m’ ) = 4E




Outline for today

Quantum mechanics: equations of motions of wave functions

— Schrodinger, Klein Gordon, Dirac

Forces

- Strong force, pion exchange

Weak nuclear force, decay

Scattering Theory

Rutherford (classic) and QM
“Cross section”

Coulomb potential
Yukawa potential

Resonances
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D. Griffiths A "

e |ecture 1:

- ch.3 Relativistic kinematics

e lecture 2:
- ¢h.5.1 Schrodinger equation
- c¢h.7.1 Dirac equation
- ch.6.5 Scattering

e |ecture 3:

- ch.1.7 Quarkmodel
- ch.4 Symmetry/spin

o |ecture 4:

- c¢ch.7.4 QED
- ch 11.3 Gauge theories

e |ecture 5:

- ch.8.2 e+e-
- ch.8.5e+p

e |ecture 6:

- ¢h.11.8 Higgs mechanism
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Lecture 2: QM, Dirac and Scattering

e Introduce “matter particles”

— spinor g from Dirac equation

e Introduce “force particles”

e Introduce basic concepts of scattering processes

my m

Niels Tuning (17)



Quantum mechanics
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From classic to quantum

Why does the black body Why does the electron not
spectrum look like it does? fall onto the nucleus?

\\ . Positively

\ classical theory curve ﬂ:la(:';gﬁg

observed curve \

In Rutherford's model of the atom,
an accelerating electron should
gradually lose energy and event-
ually spiral into the positively

A : \
\
\

intensity charged nucleus.
Negatively charged
> electron
wavelength of emitted radiation
- Finite number of wavelengths ( E=hv) = Finite number of nuclear orbits

e The wavefunction @ describes a system (eg. particle)

e Physical quantities are given by operators

Niels Tuning (19)



Wavefunction

Each particle may be described by a wave function W(x,y,zt),
real or complex, having a single value for a given position
(x,y,z) and time t

e In QM a particle is not /localized

dv

e Probability of finding a particle

somewhere in a volume V of
space:

P(x,t)dV =|W(x,t)"dV

~v

e Probability to find particle

anywhere in space = 1 ﬂlP(r,t)\de ~1

» condition of normalization: all space

Niels Tuning (20)




Operator

Any physical quantity is associated with an operator
= An operator O: the “recipe” to transform g into g’

-  We write: Oyp =y’
o If Ow = ow then

— @ is an eigenfunction of O and

- 0 is the eigenvalue.

We have “solved” the wave equation Oy = ow by finding
simultaneously @ and o that satisfy the equation.

> 0 is the measure of O for the particle in the state described by g

Niels Tuning (21)



Correspondence?

e What operator belongs to which physical quantity?

Classical quantity QM operator

C ( Any function of position, .
f(x) such as x, or potential V(x) f (x)
h o
P, x component of momentum  —
' (y and z same form) [ Ox
Hamiltonian [),'; ' ‘,
E . . iy + V(X)
me in nden
(time independent) Pyt
E Hamiltonian ih a
(time dependent) Ot
_hl al
E kin Kinetic energy .
2m ox
L z component of —ih i
n
z angular momentum h o

Niels Tuning (22)



Example

Let’ s try operating:

e\Wavefunction:

W(x,£) = A(cos[hx — wr]+isin[kx — wr]) = Ae™

eMomentum operator :

pW(x,1) = B9 feitemon LT g0 _ g o-o0 _ ppas(x, )

[ ox I

eOr energy operator:

N

EW(x,t)= ih%Ae“’““"” = ii(=iw) 4’ ™™ = hwde ™™ = E¥(x, 1)

> ¥ is indeed eigenfunction (hk and hw are the eigenvalues for "p and "E)

Niels Tuning (23)




Expectation value

Average value of physical quantity: expectation value

Think of the Staatsloterij:

X, :prize
p(x;) : probability to win that prize
E(X) = Exl. p(x.)=0.697x13.50 = 9.41EUR

400

(W) = f‘P*(x,t)[W‘P(x,t)]dx

Example:

+00

—00

w(x) = Ae™ with f\w(x)\zdx -

where 4 — 0 as limits of integration — oo

<p> = f[Ae”“T ?ik[Ae”“ ]a’x = hk}o[Aeib“} :Aeib“ ]dx =hk=p

400

f[Ae”“ ] [Aeﬂ“ L’x =1,

—00

+00

= f[Ae”“ T l? aa_x Ae™ dx

—0

Niels Tuning (24)
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Heisenberg

How to describe a particle that is “localized”
somewhere, but which is also “wave-like” ?

?//=Aeikx

»Fourier decomposition of many frequencies

» The more frequencies you add, the more it gets localized

»k can be any value:

» The worse you know p, the better you know x !




Heisenberg

How to describe a particle that is “localized”
somewhere, but which is also “wave-like” ?

»Fourier decomposition of many frequencies
» The more frequencies you add, the more it gets localized

» The worse you know p, the better you know x !




Twitter

TV You Retweeted

Grant Sanderson @3Blue1Brown - Feb 24
New video!

Uncertainty principle? It's not about quantum.
youtu.be/MBnnXbOM5S4

1 Time
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!
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Fourier Transform
{1 |
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Heisenberg

e Uncertainty relation > Commutation relation

» A wave function cannot be simultaneously an eigenstate of position

and momentum

h 0

—|r + J’@

)

P XV = ——(I\If) -
1 0x
XP VT = xzﬂ
1 Oz

(PX—-XP )T =|P.X|T = "y

.Z'

e Suppose it was, what then??

» Then the operators would commute:

Niels Tuning (28)



Schrodinger

Classic relation between E and p:

Quantum mechanical substitution:
(operator acting on wave function vy)

Schrodinger equation:

Solution:

-9
P
EF=—
2m
13
E — 'z‘.a and
8 _—
1— P = — VQ b
Zat ¥ 2m y
= N e'PE—EY)

(show it is a solution)
Niels Tuning (29)



Intermezzo: “radial Schrodinger equation”

e Polar coordinates V(x, v,z t) = W(x, y, z)e

e Separate variables Wr, 0, ) = R(NOO)D(¢p)

e Three differential equations for R, ¢, 6:

1 d dR Z(l+ 1)
PE(I‘ Z) I: B +~7(V(r) E):]R

e Radial Schrodinger equation

- Potential is augmented by “centrifugal barrier” : (apparent centrifugal force)
4_ :'
- R* d*u A% K+ 1)
o T - — =5+ | V() + — |u = Eu
| Wy 2m dr’ 2m r
‘/’f Linear momentum Potential energy Angular momentum

/-2 Niels Tuning (30)



Klein-Gordon

Relativistic relation between E and p:

Quantum mechanical substitution:

(operator acting on wave function v)

Klein-Gordon equation:

Solution:

E? = ;32 + m?
E — z% and
—3—;() = -V +m? o
or : (l:l + -771.2) o(x) =0
or : (8#0" -+-'m2) o(x) =0
é(z) =N e~ 'Pur” | with eigenvalues:| 2 — 5% 4

But! Negative energy solution?

+/p? + m?

Niels Tuning (31)




Dirac

Paul Dirac tried to find an equation that was

= relativistically correct,
= but /inear in d/dt to avoid negative energies

= (and linear in d/dx (or V) for Lorentz covariance)

He found an equation that
= turned out to describe spin-1/2 particles and

= predicted the existence of anti-particles

Niels Tuning (32)



Dirac

» How to find that relativistic, linear equation ??

Write Hamiltonian in general form, Hy = (a-p+ Bm) ¥

but when squared, it must satisfy: | H%) = (]3’2 + mQ> 0

Let’s find 0. and 3 !

2 0 N2 . . o .
H* = (a;pi + Bm)” with: 2=1,2,3
2 2 ] L P 22 2|
= | «of p;+ (o +ajaq) pipi + (6 + Bai)pom + 37 m” | ¥
N~ ~ ~~ - ~ -~ - S~~~

So, 0O, and B must satisfy:
n (112: (122: 0.32 — BZ
= q,,0,,05, p @anti-commute with each other

= (not a unique choice!)

Niels Tuning (33)



Dirac Hiv = (a-p+ Bm) ¥

> What are a.and P ??

The lowest dimensional matrix that has the desired behaviour is 4x4 1?

7 . (T 0

) (b )

with: (01 _ - 0 —: ‘ (1 0
1= 10) » 2T\i 0 BTl 1

Often used (

Pauli-Dirac representation:

So, O and B must satisfy:
n (112: (122: (132 — B2
" q,,0,,05, p @anti-commute with each other

= (not a unique choice!)

Niels Tuning (34)



Dirac

Usual substitution:

Leads to:

Multiply by B:

Gives the famous Dirac equation:

i=1,2,34

for each

Hv = (a-p+ pfm) ¥

3

ot

(—ic_f V¥V + ,'3771) W

o, o,
. £

3 O - (=)
— 1 z.lx3a3f Y —miy =0

0z

(1O —m) ¥
with : +* = (3, Ba)

Dirac y—matrices

Z Z 0 (7")jk Ou — mji| (¢Yr) =0

Niels Tuning (35)




Hy =(a-p+pm) ¥

Dirac

The famous Dirac equation: ("8, —m) ¥ = 0

with : 4* = (3,5a) = Dirac y—matrices

R.I.P. :

Niels Tuning (36)



Dirac

Hv = (a-p+ pfm) ¥

The famous Dirac equation:

(17 O —m) ¥
with : +* = (3, Ba)

0

Dirac y—matrices

Remember!
LI TR Lorentz index

=  4x4 y matrix: Dirac index

Less compact notation:
for each

i=1,2.34

4

D

k=1

3

[Z: i (A" )j,‘._ Ou — 77?(5jk] (Yr) =0

0

Even less compact... :

(

0 @Jr 001Q+ 002Q+
-1 ] ot —o1 0 ) Ox —o2 0 ) Oy

0

03
0

v 0
i 1 0\ v | |0
9z Lo 1 )™ v |~ |0
Uy 0

» What are the solutions for \y ??

Niels Tuning (37)




Intermezzo: The “"Four-derivative

144

z'0 = (10—3;1’1)
e Transformation of contravariant 4-vector: .| et = (' — 32°)
x ° I-‘j — .T2
.‘1?'3 — .‘I.‘3
e Lowering the index, costs minus-sign: . . .
Ty = gy’ 0 -1 0 0
Yyv = :
z, =2 2, = -2l 2, = -2 2, = —2° ’ o 0 -1 0
0O 0 0 -1
e Transformation of covariant 4-vec: ¥o = 7(xo + px1)
X . —x1 = 7(=x1 = Bxo) = x7 = 7(x1 + o)
M| xa=x
X5 = X3.

> Derivative 6u= o/ox* transforms as covariant 4-vec (consistent with index):

(Sum 0}/?' index v) =
() = 2. = 20 9T _ O (5 0) @) = Qo) 2 + @19) 25 = 7 [(09) + B(@19)]
}l(P - a_\‘]{, - oxV 3.\"" - a.\‘}” l’(/) _ I 0/ o (?1/
) : 1 1 9:
w e g O @19) = (09) 25 + @19) 25, = 7 [(219) + B(God)
ax0’ oxl ax0’ oot ox ox
» And: -
Griffiths, p.214:
8“ J— 1 C_) V P d 8 S 1 C) * The gradient with respect to a contravariant position-time four-vector x* is itself a covariant
- A s ar 1 - - V four-vector, hence the placement of the index. Written out in full, equation (7.5) says (E/c, —p) —
(& C)f C C)t m(' jt
““ 7 (E,-p)—ih(0/ot, V)




Hv = (a-p+ pfm) ¥

Dirac

The famous Dirac equation: (48, — m) ¥ 0

with : +# = (3,8a) = Dirac y—matrices

Solutions to the Dirac equation?

. (",r"‘“p# — m_) 'u.(p_) = 0
Try plane wave: () = u(p) e ""—>

or: (g —m)ulp) = 0

Linear set of eq: 1 0 - 0 o) 1 0 ua ) _ g
0 -1 )"\ =, 0)P Vo 1) \u )™

> 2 coupled equations: (0-p) up = (E—m)uy
(-p) uy = (E+m)up
1 0 0 0
0 . 1 0 7 0

PR e @) _ - (3) _ (@) _
If p=0: u 0 u 0 u 1 U 0
0 0 0 1

Niels Tuning (39)



Dirac

The famous Dirac equation:

Solutions to the Dirac equation?

Try plane wave:

» 2 coupled equations:

If p£0:

Two solutions for E>O0:
(and two for E<O0)

Hv = (a-p+ pfm) ¥

(ivf0, —m) Y =

with : +# = (3, 8a) =

0

Dirac y—matrices

() =u(p) e

(VP —m) u(p) = 0

(¥ —m) ulp) = 0

- p) ug

*P) ug

E —m)uy
= (E+m)up

N

e
ulD

(2)

W2 — [ UA
| - ‘lL(Q)
B

with:

Niels Tuning (40)




Hy = (a-p+ Bm) ¢

Dirac

The famous Dirac equation: 0

Dirac y—matrices

(17" 0 —m) ¥
with : +* = (3, Ba)

Solutions to the Dirac equation?

; (‘7"“Pp — 771) ‘ll‘(p) = ()
Try plane wave: .Ir;,(i,) _ -u,(p) ey,

or: (p—m)ulp) = 0

» 2 coupled equations: (5’ . ]3’) U = (E — m) U A
(G-p)uy = (E+m)up
If p£0:
(1) (2)
Two solutions for E>0: uD = ( “‘-(;41) ) R 0 ( “‘-(%)) )
(and two for E<0) ! s
( | \ ( 0 \
D _ 0 L@ _ I
G p/(E+m) 0
\ 0 ) \5.]3/(E+m)) Tuning (41)




Hv = (a-p+ pfm) ¥

Dirac

The famous Dirac equation: (48, — m) ¥ 0

with : +# = (3,8a) = Dirac y—matrices

[/ is 4-component spinor
4 solutions correspond to fermions and anti-fermions with spin+1/2 and -1/2

> What do we need this for ??

Needed e.g. to calculate the probability for a scattering process like:

. 7’
LETU D7 Yu B

eucy'uy
(A e Niels Tuning (42)




Prediction of anti-matter

e Dirac found his equation in 1928

e The existence of anti-matter was not taken serious until
1932, when Anderson discovered the anti-electron:
the positron

Niels Tuning (43)



Discovery of anti-matter

Nobelprize 1936

Niels Tuning (44)



What else happened in 1932 ?

e Discovery of the neutron, by J. Chadwick

> What was known at that time about the nucleus?

Nobelprize 1935
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Rutherford

‘Bullet’:

Hypothesis:

It was as if you fired a 15-
inch shell at a sheet of
tissue paper and it came
back to hit you.

\ Thomso

°X)

6 MeV alpha
particle

do
L |—(0) =
dQ()

77"\’

1

4F

sin®(6/2)

[Measurement: ]

Scattering of a and B Particles by Matter.
Metal. Atomic weight. , z. z[A3"2

Toad .0 esiss WL 907 62 208
Gold il l 197 67 242
Platinum ...... 195 63 232
b RO SO 119 34 226
Bilver sl ... 108 27 241
Copper ... 64 145 | 22
B a0t ss 56 1002 | 260
Aluminium ... 27 34 | 243

Number of back-scattered particles ~ A3

Average 233

681
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‘Hey, that is funny... looking at Rutherford’s results,
one notices that the number of electrons per atom
is precisely halve the atom mass.’

Antonius van den Broek (Note: Proton only proposed in 1920)




What else happened in 1932 :

e Discovery of the neutron, by J. Chadwick

a + Be — non -10nizing radiation

1) Neutral

. Gamma? No! protons too energetic

2) m,~m,

» Interpretation:

Neutrons

/

—

.

4 9 1 12
,He+,Be—,n+ C

Nobelprize 1935

°°+"‘¢> 6‘2’

‘He + Be — '2C + neutron

Protons

-

- |

I

/ lonisation “—
chamber
Polonium :
Beryllium

(as source)

Paraffin (lots of H)
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-~

Towards massive
force carriers

\




Strong interaction

e 1932: discovery of neutron

= ot+°Be—=n+12C

= Nuclear effect only - short range

» What can you then deduce about:

= Energy scale

= Potential
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Yukawa

e 1935: Introduced strong carriers on small distances

e Massive particle, that exists only shortly

— ‘virtual’ particle

Compare:

e Electro-magnetism

e Infinite range

e Transmitted by massless photon

» Coulomb potential

e Strong force ~_—7/R

R: range

e Finite range Ulr)=—¢g T

e Transmitted by massive pion

» Yukawa potential
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Yukawa

e 1935: Introduced strong carriers on small distances

e Massive particle, that exists only shortly

— ‘virtual’ particle

n »> > n n - > P
71'0 7!'1
p > > p P > > n
e Strong force — R
I(r) = —g? = s range
e Finite range uir) I s

e Transmitted by massive pion

» Yukawa potential
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Yukawa’s strong nuclear force

I
i l

Strength: coupling constant Short range: massive quanta

| (am el
[ Coulomb:V « —a— } What is the typical mass that limits the range

i to the proton radius (10°m) ?

e’ 1 / \

o = =
dmehe 13704

o/ R J Homework

[Yukawa Vo —g°
r

Coupling g° > a &




Yukawa's pions — pictures

: - ~V
Powell used a new detection technique o i €

Photographic emulsion:
- Thick photosensitive film
- Charged particles leave tracks

Results: two particles (pion and muon)

§‘+

|
§+
<
n—

» 1947 Discovery of pion (powell):  Nobelprijs 1950
» 1935 Prediction of pion (vukawa): Nobelprijs 1949 V8

» t-meson, m=140 MeV, short lifetime
Produced high in atmosphere and decays before reaching sealevel.

= muon (u), m=105 MeV, long lifetime
Reaches sea-level and weakly interacts with matter




Intermezzo: Strong force nowadays:

> Yukawa:
“Effective” description
Still useful to describe some features! ﬂ,O
In particular at “lower energies”
P e— P P

hadrons

> Gluons:

More fundamental description

But fails at low energies...
J p—)—C

hadrons
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Intermezzo: Strong force nowadays:

> Yukawa:
“Effective” description (# wrong!)
Still useful to describe some features!

In particular at “lower energies”

> Gluons:
More fundamental description

But fails at low energies...

p

u
u

d

c oo

O

hadrons

hadrons

_<_:{O—(—p
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Radioactive decay

1895: Rontgen discovered radiation from vaccum tubes (y)
1895: Bequerel measured radiation from 238U (n)
1898: Curie measured radiation from 232Th (a)

1899: Rutherford concluded o # 3

1914: Rutherford determined wavelength of y (scattering of crystals)

a-deeltjes

Loden afscherming

[ G ‘ — » 7-straling
C———1

Radioactive bron

Elektrisch veld 3-deeltjes
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Link with Modern physics

B-decay: weak interaction

- W-exchange

a-decay: strong interaction

— Pions (gluons?!) keeps nucleus together

' S
v-decay: electro-magnetic interaction ~£J_
: 3" Ba / B

- Excited states >
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Particle Decay

1) Number of decayed particles, dN, is proportional to: N, dt and constantI:
t+dt

@ dN = —N'T dt
P
. N:Noe_ I't¢
:Noe—t/T
o 1 1
lifetime T = Ty T

2) States that decay, do not correspond to one specific energy level, but
have a “width” AE:

[ Heisenberg: AEAt ~ h } AE 7~ h
AE ~h/T=hT

» The width of a particle is inverse proportional to its lifetime!




Quantum mechanical description of decay

State with energy E, (iw) and lifetime ©

To allow for decay, we need to change the time-dependence:

U(t) = Woe B0l mm U(t) = Ue Fole3r

M\A/\N\AAA/\/\/\/\AA,> U0 = Ui Wge™ -

LA

I

What is the wavefunction in terms of energy (instead of time) ?
» Infinite sum of flat waves, each with own energy

> Fourier transformation:

1

i((EO —E)—;F)

flw)=F(E) = / Woe HFoTam) il —p,
0




Resonance

(. N

Breit-Wigner

Probability to find particle with
energy E:

1 P /2
(Ep — E)? 4 1172

FE) F(E) = VoW

& E;I72 E, EjfI/2 J

Resonance-structure contains information on:
= Mass

= Lifetime

= Decay possibilities




{ Scattering J




Outline for today

Quantum mechanics: equations of motions of wave functions

— Schrodinger, Klein Gordon, Dirac

Forces

- Strong force, pion exchange

Weak nuclear force, decay

Scattering Theory

Rutherford (classic) and QM
“Cross section”

Coulomb potential
Yukawa potential

Resonance
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Decay and Scattering: decay width and cross section

e Decay a—b+tc
— Decay width is reciprocal of decay time: ©=1/T
— Total width is sum of partial widths: _
Ftot B 2iri
— Branching fraction for certain decay mode:
— Unit: inverse seconds BR=T,/T,

e Scattering |a+b—c+d

— Parameter of interest is “size of target”, cross section o

— Total cross section is sum of possible processes: G..=Y
tot

— Unit: surface

> Golden rule:

i0;

transition rate =

2w

h

i

M|? X (phase space)
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Fermi’s Golden Rule

(FIH [8)]? p(Ey)
. p(Er) density of final states
(f|H / ) Matrix element

=)
h

Fermi's “golden rule” gives:
The transition probability
to go from initial state i to final state f

Amplitude M: Phase space o
contains dynamical information contains kinematic information
fundamental physics masses, momenta

) 27 ¢
transition rate = - |M|? X (phase space)




Rutherford

e C(Classical calculation of cross section

of a scattering process

Diafragma

Radioactieve

bron

o - deeltjes

Dun goud
folie

22pn = 218pg 4+ q

o

detector
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Rutherford

e Scatter from spherical potential
e Incoming: impact parameter between b and db
e Qutgoing: scattering angle between 6 and do

» 3d: incoming particle “sees” surface do, and scatters off
solid angle dQ

. o

[ S

| Qo
Y
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Rutherford

» 3d: incoming particle “sees” surface do, and scatters off
solid angle dQ

» Calculate:

do
dQ

=D(6.9)

do =|bdb do|
dQ =sin 6 d6 do|

Y
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Rutherford

» 3d: incoming particle “sees” surface do, and scatters off

solid angle dQ

= Conservation of angular momentum:

= Force:

Before 1 = mvyb

After:

L=mr—r

d¢

dt

Y

v, sin @
>
)

Uy
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Rutherford

>

solid angle dQ

= Conservation of angular momentum:

= Force:
d‘.v . ZIZQQ' .
m 7 = F}, =Fsm¢= —sm ¢
re
v, 7.7,
y _ 21227 si11¢d—¢
dt mvob dt
Vo siné cosd
ZZ
J‘a’\'r _f142¢ jd cos ¢
: mvoyb
0 COS T
=(cosO + 1)
6  mvi
Ya
cot — = b
2 ZiZha

‘q Aq 1 d0e[doy

=
Z.
=

g
=
(@]
o
=
7]
%
o
=
=)
=

3d: incoming particle “sees” surface do, and scatters off

Before L=mvyb

After:

L=mr—r

dg
dt

b db

siné dé

2

cotg dcoté
2 2

B l Z,Z,a

2
L mvy )

"

sin &

|

de

,2
Comvy

(Z2Z,a ]

. 4 0
4sm” —
3
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Rutherford scattering - Cross section

e Differential cross section

do

dQ

(aaaT 1

-
- my, 0

4sin* —

S

e Luminosity L
» L =dN/do

p; =(E.0.0.mvg) L2
o |ldo | 2mZiZ,«a
p, =(E. 0. mvysin@. mv,cosé) ||—— =
| dQ qZ
q=Pi—Po \
» Number of incoming particles per unit surface
do .
(f_Q
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e, %
L V2(7, t) = ifietb(F, 1)

Scattering Theory: QM 2m ot

e Describe a stationary state, that satisfies the incoming
and outgoing wave

2m

7 V(T)(T) V#0
h*

(vQ 1 A-‘B) U(F) =
k?=2mE

‘ o >

/E-ﬁ' _ Wi

Yy

‘(;“) >
E.j=hk
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Scattering Theory: QM

e Describe a stationary state, that satisfies the incoming

and outgoing wave

(V2 + &) o (F) =

2m

2
h 2

V(E)4(F)

e Find a solution which is a superposition of the incoming
wave, and the outgoing waves

Incoming plane
wave

Bron

Outgoing spherical
wave

M

v

O(T) = ¢o(F) + f(ka, k)

ingoing

C_zkr

outgoing
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Scattering Theory: Quantum mechanics

Classical: QM:
' Outgoing
spherical
Incoming wave
plane wave \
g | ] m
&
R |
e Superposition of incoming ~ etkr
wave and outgoing waves B(F) = ¢u(F) + f(Ka, tkb>
ingoing outgoing
e Scattering amplitude f
- - - m . - —
caIcuIaFed from potentla! V FEL 1K) = — m : o—iKb 1 V(F)D(F) d3r
- Fourier transform of potential: 2mh
ClO' «/u 7 B >
— = |f(ky. k)|~
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Scattering Theory: Quantum mechanics

Classical: QM:
: Outgoing
spherical
Incoming wave
plane wave \
g | ] m
&
R |
o YU kawa L lezez o d_o- B |f|2 B 7722 47TZlZ~:_)€’2 2
v (') - r € dQ (7775 )2 | q%+ a?
; 2 272 2 12
e Coulomb: Vi 212262 do _ m2 | [47?21‘226 ] B 21226’2
(I) - - dQ2 (Qﬂ'h )2 q2 )7711 SIn %
: . do res /o 19
e Centrifugal Barier: g = O
. 20 +1)? e
] ] RA(L+1 _ ( 1 ,
Verp =VI(r)+ —Q(m,,.g ) K (E,—-E24+ L [Filcos0)]
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Well-known resonances

ete—R— efe

80 1
242 Eventsﬂ

70| SPECTROMETER

B At normal current
60 [J-10% current

EVENTS /25 MeV

-

O [mb]

10

e*te cross-section

% T UL | T T T 1 T T 17 ?
3 F ]
10 E ¥(2S) 5
= Y 3
4 F P —
10 EM/ Z =
sk i ﬁ :
°F T L]
-6 n e N 1" ..n -
1 0 E - 1’1-.,,‘ I') ‘\\ E
E - . /'I \\ E
-7 w"*ﬂ.w/ \\\ -
10 F e \?\\‘?
S s W3
-8_|/'| Coaal |4”| Lol ‘\
10 v %> —
et /1 10 .-° 107\
,l / P \
/ ‘ Z-boson
- ALEPH 2v
- DELPHI
r L3 =

30 | OPAL
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error bars increased |/
by factor 10 J

% i
=20}
o
=
=
©




More resonances

T p—R— 1'p

10

Cross section (mb)
1
el @

10

IIIIIIIJ
[ A A

Voo e
A i

I
'

ot — ¢4 _pogo

Q¥ ol 0 9 poo go O o

o

P GEVE

|

10”7 1
1.2 2
|

— T
Vs GeV P —




Why did we need this mathematical trickery?

e That is how we see and discover particles!

e As resonances!

5> S e [ I L L

8 . e Data ATLAS
— [ Background zz" .

025 [l Backg H—zZ" -4l

g r [l Background Z+jets, tt

(O Signal (m =125 GeV

220 [_]Signal (m, ) ]
" %% Syst.Unc.

15 B

"(s=8TeV:JLdt=5281b"

"Vs=7TeV:|Ldt= 4.8 b
10 }

100 150 200 250
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Feynman Rules

e How to calculate amplitude M ?

e The ‘drawing’ is a mathematical object!

D.l ExternallLines
Spin 0: (nothing)

| Incoming particle: i
J Incoming antiparticle: ¥

Spin f: Outgoing particle: {{
Outgoing antiparticle: v
{ S |
Spin |: fhcoming: ¢

Butgoing: ¢

D.2 Propagators

in 0 : .14/d4 —ig)? ?;A27T4(5— — ) (2m)*6(q — ps —
Spin 0: m $ (2m) q( g) qg_,,né( ) (q P pz)( ) (q D3 p’l)

Spin f: St mI - (*’ig)zm(%)“d(m b p2 —ps —pa) =

q* —{mc)* s N2 A ’ g2
(Massless: ~/8p- ZJMb B ( Lg) (p1+p2)2—7n%: = Mb o (P1+p2)2_7”(2';
ql
Spin 1: , N
- =ilg —g.4./(mc)’]
Massive: TR
q* —(mc)

D.3 Vertex Factors

QED: >VWL/~_ igey* (g = Vm)
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Twitter

Tl You Retweeted
Sabine Hossenfelder @ @skdh - Feb 25 v

“7\_) Those lines in the Feynman diagrams? They do not depict particle paths. No

<= they don't. They're visual aids that encode long formulas by help of which you
can calculate the outcome of certain experiments. Yes, it's all abstract math.
Not, they do not depict particle paths.

Q 20 T 118 ) 386 M
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Plan

1900-1940

1945-1965

1965-1975

1975-2000

1) Intro: Standard Model & Relativity
2) Basis

1) Atom model, strong and weak force

2) Scattering theory
3) Hadrons

1) Isospin, strangeness
2) Quark model, GIM

4) Standard Model
1) QED
2) Parity, neutrinos, weak inteaction
3) QCD

5) ete  and DIS

2000-2015 \/ 6) Higgs and CKM

V

11 Feb

18 Feb

10 Mar

24 Mar

21 Apr

12 May
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Extra: derivation of scattering amplitude f
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Scattering Theory

e Describe a stationary state, that satisfies the incoming
and outgoing wave

. ; 2m_
(V2 + ) 0(F) = <5 V(D))
h“_ y
V2 L2 b(F) =0 \
Incoming particle (almost) free: ( TR ) P(r) =
v‘z A'Q G((FIF) = 6(F =T
Introduce Green function such: ( /o ) A(F|F) = o(F — 1)

If we know G, then the solution for

is indeed a sum of the 2 waves:  ¢(7) = $q(T) + / G(T|T") A(T) 437 = Da(T) + dsel

e G kT o | m oikIT-T' D
Iitn. T(+) — 4W’f— f" (1) — C,‘)a(f) - 27r712/ ‘1—'_ 1—’/’ (1 ) (1 )
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Scattering Theory

e Describe a stationary state, that satisfies the incoming

and outgoing wave

e Larger:

e f:

e which we will use for:

; 2m
(V2 + k) (F) = 5 V(E)u(F)
h-
. - m e""'r_l—d . )
B(T) = da(F) e ’1_,_1_,,‘1 ) O (") d*

“scattering amplitude”:

= | f(Ka, kp)|?

» Differential equation became integral equation, but how

do we solve it??
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Scattering Theory

e Describe a stationary state, that satisfies the incoming

and outgoing wave

o f: “scattering amplitude”:

2m

9
72- 2

(V2 + &) w(F) =

V(E)(F)

—

B(F) = ¢a(F) + f(Ka, k)

€

ikr

T

m

oh?

[e R TV E)arE) d

e which we will use for:

» How do we solve it?? Not analytic... = Perturbation series!

. N m e T-T"| 3
e 1St approximation: D(T) = ¢a(T) — o] TF V()b (1) d°r
' 2mh” r—r o

fil](k;’k;) — ‘)77;2 /C.i(ka—kb,)'l_"",-'(l—:r) 43,
7N

» Scattered wave is described by Fourier transform of the potential
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Scattering Theory

. L m kT o ._
Let’s try th () = 9a(®) = 5z | oV ) 4
e Let's try the 2rh
Yukawa potential LK) = ):;2 /e.i<_ka—kb>.f-"1,,,..(f»,) EEW
AV A
V(r) = 142€° gy
.
. —ar’ - . T o2
f(k;,k_l’)) _ mQZldeQ/e Ci(ka—kb)l_"’ B m.. " YAVAN:
| 2mh ! orh? ¢+ a?
2 7 212
e Yukawa: d_0= ‘f.’;)_: m.. 47T‘Z1Z2€
dQ2 (27h%)2 | ¢% + a2
y . 272 ‘ )
e Coulomb (a->0) : do __m’ [4nZiZo|" [ ZiZpe?
d§2 (27"732)2 q 2mu? sin’ g

> We found back the classical solution from Rutherford
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Interpretation

e Consider again the amplitude:

(Fourier transform of potential)

e We used quantum mechanics,

ikr

B(F) = ¢u(F) + f (K, Kn) —
ingoing outgoing
(I N i(Ka—ky)-r”
fknka) = o /d/ V()
Vi) = -
7
(T 2ma = |k — k|
j(_kbf]‘a) - - D)
q
do B Am?a?
aQ ¢

e but with relativistic quantum
field theory, the concept is
similar:

:l\'a e L P B A—I;
. 8/'
f [; ]/q2 Z/,Z G=kq— k(=1 — 1)
> . ~
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Scattering Theory

m kT | \
D(T) = ¢u(T) — 537 | o V() da(T") d°r'
e Let'stry an 2rh” J T —T|
effective potential: LK) = ‘):;2 /e.z-(ka—kb>.sz(F,) EEW
RA(1+ 1)
Verp=Vi(r)+ ——— 1
I (r) + 2mir? |
|
Vir| |
: (21 +1) ['/2 ',
") = P(cos |
J0) k  (E.—E)—il/2 1(cos ) |
|I /
do , '|
- _ res 0 2 |' \\
= = 1) [ R . _
(20 +1)2 L ) .
. = | P(cos
k’z ( E.r . E)Q n % l (COS )| \/
Scattering to this potential
477(2[ 4 1) FTQ can lead to a t‘)‘ound system”,
o] = 5 : = that can then “tunnel away
k= (B —EP+7

» We found the non-relativistic Breit-Wigner resonance formula!
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Use cosmic rays

Discovery pions / muons Discovery ‘strange;

= particles
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