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Particle Physics II – CP violation 
(also known as “Physics of Anti-matter”) 
 
Lecture 3 

N. Tuning 



Plan 
1)  Wed 12 Feb:  Anti-matter + SM 

2)  Mon 17 Feb:  CKM matrix + Unitarity Triangle 

3)  Wed  19 Feb:  Mixing + Master eqs. + B0→J/ψKs 

4)  Mon 20  Feb:  CP violation in B(s) decays (I) 

5)  Wed 9 Mar:  CP violation in B(s) and K decays (II) 

6)  Mon 16 Mar:  Rare decays + Flavour Anomalies 

7)  Wed 18 Mar:  Exam 
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Ø  Final Mark:  
§  if (mark > 5.5) mark = max(exam, 0.85*exam + 0.15*homework) 

§  else mark = exam 

Ø  In parallel: Lectures on Flavour Physics by prof.dr. R. Fleischer 





Diagonalize Yukawa matrix Yij 
–  Mass terms 
–  Quarks rotate 

–  Off diagonal terms in charged current couplings 
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Recap 
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Charged Currents 
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A comparison shows that CP is conserved only if Vij = Vij
* 

(Together with (x,t) -> (-x,t)) 

The charged current term reads: 

Under the CP operator this gives: 

In general the charged current term is CP violating 
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CKM-matrix: where are the phases? 

u 

d,s,b 

W 

•  Possibility 1: simply 3 ‘rotations’, and put phase on smallest: 

•  Possibility 2: parameterize according to magnitude, in O(λ): 



This was theory, now comes experiment 

•  We already saw how the moduli |Vij| are determined 

•  Now we will work towards the measurement of the 
imaginary part 
–  Parameter:  η 

–  Equivalent: angles α, β, γ .  

•  To measure this, we need the formalism of neutral 
meson oscillations… 
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“The” Unitarity triangle 

•  We can visualize the CKM-constraints in (ρ,η) plane 

arg(Vtd) = -β arg(Vub) = -γ 

Chapter 4

CP violation in the B-system

In the previous chapter we have identified where CP violation occurs in the general for-
malism of meson decays, and classified the various categories. In the coming sections we
will investigate a few special decays with which CP violation is measured and the phases
of the CKM elements are determined [9].

Remember the Wolfenstein parametrization, Eq. (2.16), since it so widely used. This pa-
rameterization is very convenient to localize weak phase differences in Feynman diagrams:

VCKM,Wolfenstein =

⎛

⎝

|Vud| |Vus| |Vub|e−iγ

−|Vcd| |Vcs| |Vcb|
|Vtd|e−iβ −|Vts|eiβs |Vtb|

⎞

⎠ + O(λ5) (4.1)

In this chapter we will see how the angles β, βs and γ can be determined.

At first sight it might be remarkable that complex phases can be observed, because the
complex phase in an amplitude A = |A|eiϕ disappears in the expectation value, AA† =
|A|2ei(ϕ−ϕ) = |A|2. However, several decay amplitudes Ai = |Ai|eiϕi might contribute to
the total amplitude A [18]. Each phase consists of a CP-odd phase φi originating from
complex coupling constants, and a CP-even phase δi, typically originating from gluon
exchange in the final state (and strong interactions are CP-conserving!). Therefore we
have for the CP-conjugated amplitude Āi = |Ai|ei(−φi+δi). Now we can calculate the
difference in the magnitude of the total amplitude |A(a → b)| and the CP-conjugate
|Ā(ā → b̄)|:

|A|2 = |A1 + A2|2 = |A1|2 + |A2|2 + |A1A2|
(

ei((φ1+δ1)−(φ2+δ2)) + ei(−(φ1+δ1)+(φ2+δ2))
)

= |A1|2 + |A2|2 + 2|A1A2| cos(∆φ+ ∆δ)

|Ā|2 = |Ā1 + Ā2|2 = |A1|2 + |A2|2 + |A1A2|
(

ei((−φ1+δ1)−(−φ2+δ2)) + ei(−(−φ1+δ1)+(−φ2+δ2))
)

= |A1|2 + |A2|2 + 2|A1A2| cos(−∆φ + ∆δ)

An explicit example will be shown in Section 4.1.

43



Neutral Meson Oscillations 

Why? 

•  Loop diagram: sensitive to new particles 

•  Provides a second amplitude  
Ø  interference effects in B-decays 
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Dynamics of Neutral B (or K) mesons… 
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No mixing, but with decays… 
(i.e.: H is not Hermitian!) 
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è With decays included, probability of observing  
either B0 or  B0 must go down as time goes by: 

0⇒Γ >

Time evolution of B0 and B0 can be described by an effective Hamiltonian: 
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Describing Mixing… 
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Now with mixing – but what is the 
 difference between M12 and Γ12? 

M12 describes B0 ↔ B0 via off-shell states, 
e.g. the weak box diagram 

Γ12 describes B0↔f↔B0 via on-
shell states, eg. f=π+π-

Time evolution of B0 and B0 can be described by an effective Hamiltonian: 
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Solving the Schrödinger Equation 
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Solving the Schrödinger Equation 
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Time evolution 
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•  With diagonal Hamiltonian, usual time evolution is obtained: 
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B Oscillation Amplitudes 
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Measuring B Oscillations 
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Compare the mesons: 

P0àP0 

P0àP0 

Probability to measure P or P, when we start with 100% P 

Time ! 

P
ro

b
ab

ili
ty

 !
 

<τ> Δm x=Δm/Γ y=ΔΓ/2Γ 
K0 2.6 10-8 s 5.29 ns-1  Δm/ΓS=0.49 ~1 

D0 0.41 10-12 s 0.001 fs-1 ~0 0.01 

B0 1.53 10-12 s 0.507 ps-1 0.78 ~0 

Bs
0 1.47 10-12 s 17.8 ps-1 12.1 ~0.05 

By the way,  
ħ=6.58 10-22 MeVs  

x=Δm/Γ: avg nr of  
oscillations before decay 



Summary (1) 

•  Start with Schrodinger equation: 

•  Find eigenvalue: 

•  Solve eigenstates: 

•  Eigenstates have diagonal Hamiltonian: mass eigenstates! 
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(2-component state in 
P0 and P0 subspace) 
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Summary (2) 

•  Two mass eigenstates 

•  Time evolution: 

•  Probability for |P0> à |P0> ! 

•  Express in M=mH+mL and Δm=mH-mL à Δm dependence 

0 ( )P t
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Summary 
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•  p, q: 

•  Δm, ΔΓ: 

•  x,y: mixing often quoted 
in scaled parameters: 
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Personal impression: 

•  People think it is a complicated part of the Standard Model 
(me too:-). Why? 

1) Non-intuitive concepts? 
§  Imaginary phase in transition amplitude, T ~ eiφ 

§  Different bases to express quark states, d’=0.97 d + 0.22 s + 0.003 b 

§  Oscillations (mixing) of mesons:             |K0>   ↔ |K0> 

2)  Complicated calculations? 

3)  Many decay modes?  “Beetopaipaigamma…”  

–  PDG reports 347 decay modes of the B0-meson: 

•   Γ1   l+ νl  anything    ( 10.33 ± 0.28 ) × 10−2 

•  Γ347  ν ν γ   <4.7 × 10−5  CL=90% 

–  And for one decay there are often more than one decay amplitudes… 
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Describing Mixing 

M12 describes B0 ↔ B0 via off-shell states, 
e.g. the weak box diagram 

Γ12 describes B0↔f↔B0 via on-
shell states, eg. f=π+π-

Time evolution of B0 and�B0 can be described by an effective Hamiltonian: 



Box diagram and Δm 

0 0
0 0 0 0

H L
H H L LP P

m m m P H P P H PΔ = − = −
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Inami and Lim, 
Prog.Theor.Phys.65:297,1981 



Box diagram and Δm 
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Box diagram and Δm: Inami-Lim  

C.Gay, B Mixing, hep-ex/0103016 

•  K-mixing 



Box diagram and Δm: Inami-Lim  

C.Gay, B Mixing, hep-ex/0103016 

•  B0-mixing 



Box diagram and Δm: Inami-Lim  

C.Gay, B Mixing, hep-ex/0103016 

•  Bs
0-mixing 



Next: measurements of oscillations 

1.  B0 mixing:   
Ø  1987: Argus,  first 

Ø  2001: Babar/Belle, precise 

2.  Bs
0 mixing: 

Ø  2006: CDF:  first 

Ø  2010: D0:  anomalous ?? 
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B0 mixing 
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B0 mixing 

•  What is the probability to observe a B0/B0 at time t, 
when it was produced as a B0 at t=0? 
–  Calculate observable probility Ψ*Ψ(t) 

•  A simple B0 decay experiment. 
–  Given a source B0 mesons produced in a flavor eigenstate |B0> 

–  You measure the decay time of each meson that decays into a 
flavor eigenstate (either B0 or�B0) you will find that 
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B0 oscillations: 

–  First evidence of heavy top 

–  à mtop>50 GeV 

–  Needed to break GIM 
cancellations 

 
NB: loops can reveal heavy particles! 

B0 mixing: 1987 Argus 

Phys.Lett.B192:245,1987 
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B0 mixing pointed to the top quark: 

B0 mixing: t quark     GIM: c quark 

ARGUS Coll, Phys.Lett.B192:245,1987 

b 
d 

d 
b 

d s 

μ	
μ	

K0→µµ  pointed to the charm quark: 
GIM, Phys.Rev.D2,1285,1970 

… 

… 

… 
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B0 mixing: 2001 B-factories 

•  You can really see this because (amazingly)  
B0 mixing has same time scale as decay 
–   τ=1.54 ps 

–   Δm=0.5 ps-1 

–  50/50 point at πΔm ≈ τ

–  Maximal oscillation at 2πΔm ≈ 2τ  

•  Actual measurement 
of B0/B0 oscillation 
–  Also precision measurement 

of Δm! 
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Bs
0 mixing 
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Bs
0 mixing: 2006 
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Bs
0 mixing (Δms): SM Prediction 
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Bs
0 mixing  (Δms): Unitarity Triangle 
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Bs
0 mixing (Δms) 
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Consistency? 
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γ 

Compare eg.: 
1) Δms with γ 
2)  |Vub| with sin2β 

Δm 



γ β 

From: M.Blanke & A.Buras 
arXiv:1812.06963 



Δms / Δmd 

•  Check ratio 

 

•  Hadronic parameter much more precise: 
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Flavour Physics and CKM - neutral meson mixing

Experiment ⇡ CKM ⇥ non-perturbative⇥ (PT+kinematics)
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ξ for Δms / Δmd 

•  Hadronic parameter: 
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Indirect determination of �

Constraint on � from the UT analysis MB, Buras (2016), (2018)

� determined indirectly from length Rt /
p

�Md/�Ms

recent results for ratio ⇠ of relevant hadronic matrix elements:

lattice QCD

Fermilab Lattice/MILC Bazavov et al. (2016)

⇠ = 1.206± 0.019 ‚ � = (63.0± 2.1)�

RBC/UKQCD Boyle et al. (2018)

⇠ = 1.1853± 0.0054+0.0116
�0.0156 ‚ � = (60.7± 1.5)�

QCD sum rules King, Lenz, Rauh (2019)

⇠ = 1.2014+0.0065
�0.0072 ‚ � = (62.5± 0.9)�

‚ deviation from tree level value signals NP in �Md and/or �Ms

6 M.Blanke Status and prospects of CP violation in Beauty
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Calculated by Lenz 
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Consistency? 
If you believe ξ = 1.201 ± 0.007 then ...  

γ has to decrease considerably for consistent CKM picture! 

Niels Tuning (43) 

Figure 3: We show the constraints on the apex of the unitarity triangle from the direct

measurement of � from LHCb [10] (blue), B-mixing (green) and the value of �, taken from

HFLAV [11] (red). The dark and light green regions indicate the 1� and 5� bounds, while

the blue and red regions refer to the 1� constraints. The dashed blue lines illustrate the

future precision of ±1.5� on the measurement of �.

behaviour is illustrated in Figure 3 and allows us to derive a stringent upper limit on �.

At the level of five standard deviations we obtain

�  66.9� [5�] , (3)

which is indicated by the horizontal dashed line in Figure 2 and quite a bit smaller than

the direct measurements of � [10–12, 14, 15] summarised there. We note that the indirect

determinations of � from the CKMfitter [14] and UTfit [15] collaborations also yield smaller

values than direct measurements, albeit larger ones than our analysis. We used the CKM-

live [16] tool to perform the standard CKMfitter analysis without direct measurements of

� or the mass di↵erences and obtained the result

� =
�
71.6+4.4

�4.7

��
, CKMlive – fit without �,�Ms,�Md , (4)

which is in good agreement with the direct measurements of � and has a significantly larger

uncertainty than the indirect fit results. This demonstrates that the smaller indirect values

in the CKMfitter and UTfit studies are solely driven by �Ms and �Md and implies that

the confrontation of the planned improvements by LHCb and Belle II for the experimental

determination of � with constraints from the mass di↵erences is a very promising indicator

for BSM physics. Assuming the central value of the direct measurement remains the

expected precision of±1.5� by 2023 will lead to a significant tension as indicated in Figure 3.

For smaller values of � there are two intersections between the circle of length Rt

around the point (1,0) and the line crossing the origin at angle �, leading to two degenerate

perfect-fit results for |Vub| and |Vcb| at a fixed value of �. This degeneracy can be broken by

constraining the length of the side Ru by including the measurements of |Vub| in the fit. Due

– 4 –

γ (o) 
LHCb 74.0+5.0

-5.8 

World Avg (HFLAV) 71.1+4.6
−5.3 

Lenz (Δmexp, ξSR) 63.4 ± 0.9 

D. King, A. Lenz, Th. Rauh, arXiv:1911.07856, |Vcb| and γ from mixing  (addendum) 
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Bs
0 mixing (Δms): New: LHCb 
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Bs
0 mixing (Δms): New: LHCb 
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Mixing à CP violation? 

•  NB: Just mixing is not necessarily CP violation! 

•  However, by studying certain decays with and without 
mixing, CP violation is observed 

•  Next: Measuring CP violation… Finally 



Meson Decays 

•  Formalism of meson oscillations: 

•  Subsequent: decay 

0 ( )P t

Niels Tuning (47) 



Notation: Define Af and  λf 
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Some algebra for the decay P0 à f 

0 ( )P t

Interference 

P0 àf P0àP0 àf 
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Some algebra for the decay P0 à f 
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The ‘master equations’ 
Interference (‘direct’) Decay 
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The ‘master equations’ 
Interference (‘direct’) Decay 
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Classification of CP Violating effects 

1.  CP violation in decay 

2.  CP violation in mixing 

3.  CP violation in interference 
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What’s the time? 
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Now: Im( λf)  

1.  CP violation in decay 

2.  CP violation in mixing 

3.  CP violation in interference 

We will  investigate λf  for various final states f 



CP violation: type 3 
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Consider   f=f : 

 

If one amplitude dominates the decay, then Af = Af 

 

 

 

3.  CP violation in interference 

Classification of CP Violating effects - Nr. 3: 
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CP violation: a famous example 

•  The golden decay B0→J/ΨKs  
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