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Particle Physics II – CP violation 
 
 
Lecture 2 

N. Tuning 



Plan 
1)  Wed 12 Feb:  Anti-matter + SM 

2)  Mon 17 Feb:  CKM matrix + Unitarity Triangle 

3)  Wed  19 Feb:  Mixing + Master eqs. + B0→J/ψKs 

4)  Mon 20  Feb:  CP violation in B(s) decays (I) 

5)  Wed 9 Mar:  CP violation in B(s) and K decays (II) 

6)  Mon 16 Mar:  Rare decays + Flavour Anomalies 

7)  Wed 18 Mar:  Exam 

Niels Tuning (2) 

Ø  Final Mark:  
§  if (mark > 5.5) mark = max(exam, 0.85*exam + 0.15*homework) 

§  else mark = exam 

Ø  In parallel: Lectures on Flavour Physics by prof.dr. R. Fleischer 



Recap: Motivation 

•  Interesting because: 
1)  Standard Model:                    

in the heart of quark 
interactions 

2)  Cosmology:                   
related to matter – anti-matter 
asymetry 

3)  Beyond Standard Model: 
measurements are sensitive to 
new particles 
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•  CP-violation (or flavour physics) is about charged 
current interactions 

b 
s 

s 
b 

Matter 
Dominates ! 



Recap: Anti matter 
•  Dirac equation (1928) 

–  Find linear equation to avoid negative energies 

–  and that is relativistically correct 

Ø  Predict existence of anti-matter 

•  Positron discovered (1932)  

•  Anti matter research at CERN very active 
–  1980: 270 GeV anti protons for SppS 

–  1995: 9 anti hydrogen atoms detected 

–  2014: anti hydrogen beam 
•  ´` detection of 80 antihydrogen atoms 2.7 metres downstream of their production`` 

Ø  Test CPT invariance: measure hyperfine structure and gravity 
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Recap: C and P 

•  C and P maximally violated in weak decays 
–  Wu experiment with 60Co 

–  Ledermann experiment with pion decay 

Ø  Neutrino´s are lefthanded! 

•  C and P conserved in strong and EM interactions 
–  C and P conserved quantitites 

Ø  C and P eigenvalues of particles 

•  Combined CP conserved? 
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Fields: Notation 

Explicitly: 
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•  Similarly for the quark singlets: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 3

1 3

(3,1, 2 3) , , , , , , , ,

(3,1, 1 3) , , , , , , , ,

I
Ri R R R

I
R

I I I
r r r

I I I
r

I I I
r r r

I I I
r r

I I I
r r r

I I I
i Rr r r r Rr R r

Y

Y

t

d s b

u c tu

d d s b

cuu c t

d s b

=

= −

=

− =

( )3

3

1 2
1 2

1 2
(1,2, 1 2) , ,

II I
eI

Li I II
L LL

T
L Y

Te
µ τνν ν

τµ

+

−

⎛ ⎞⎛ ⎞ ⎛ ⎞ =
− = = −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ =⎝ ⎠ ⎝ ⎠⎝ ⎠

•  And similarly the (charged) singlets:  ( )(1,1, 1) , , 1I I I I
Ri R R Rl e Yµ τ− = = −

•  The left handed leptons: 

•  The left handed quark doublet : 

Q = T3 + Y Y = Q - T3 



Niels Tuning (7) 

Weak interaction: parity violating (and not only for neutrinos!) 
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Only acts on the left-handed doublet! 



Recap: SM Lagrangian 

•  C and P violation in weak interaction 

•  How is weak (charged) interaction described in SM? 
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Diagonalize Yukawa matrix Yij 
–  Mass terms 
–  Quarks rotate 

–  Off diagonal terms in charged current couplings 
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Recap 
SM Kinetic Higgs Yukawa= + +L L L L
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CKM matrix 
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•  CKM matrix: `rotates` quarks between different bases 

•  Describes charged current coupling of quarks (mass 
eigenstates)    

•  NB: weak interaction responsible for P violation 

Ø  What are the properties of the CKM matrix? 

Ø  What are the implications for CP violation? 
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Ok…. We’ve got the CKM matrix, now what? 

•  It’s unitary 
–  “probabilities add up to 1”:  

–  d’=0.97 d + 0.22 s + 0.003 b   (0.972+0.222+0.0032=1) 

•  How many free parameters? 
–  How many real/complex? 

•  How do we normally visualize these parameters?  
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How do you measure those numbers? 

•  Magnitudes are typically determined from ratio of decay 
rates 

•  Example 1 – Measurement of Vud 

–  Compare decay rates of neutron 
decay and muon decay 

–  Ratio proportional to Vud
2 

–  |Vud| = 0.97420 ± 0.00021 

–  Vud of order 1 



How do you measure those numbers? 

•  Example 2 – Measurement of Vus 

–  Compare decay rates of  
semileptonic K- decay and  
muon decay 

–  Ratio proportional to Vus
2 

–  |Vus| = 0.2243 ± 0.0005 

–  Vus ≡ sin(θc) 

3/ 20 22 5
2 2 22

2 2

( ) 2( ) 4 ,
192
F K

K
s

e

K
u

d K e mV EG m f q x x
dx m m

π π
π π

π

π ν
π

+ − ⎛ ⎞Γ →
= − =⎜ ⎟

⎝ ⎠



How do you measure those numbers? 

•  Example 3 – Measurement of Vcs 

–  Ds decay: Ds
+àµ+ν 

–  Ratio proportional to Vcs
2 

–  |Vcs| = 0.997 ± 0.017 

–  Vcs ~ 1 



How do you measure those numbers? 

•  Example 4 – Measurement of Vcb 

–  Compare decay rates of  
B0 à D*-l+ν and muon decay 

–  Ratio proportional to Vcb
2 

–  |Vcb| = 0.0422 ± 0.0008 

–  Vcb is of order sin(θc)2 [= 0.0484] 
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How do you measure those numbers? 

•  Example 5 – Measurement of Vub 

–  Decay rate of B0 à π-l+ν  

–  Proportional to (Vub)2 

–  |Vub| = 0.00394 ± 0.00036 

–  Vub is of order sin(θc)3 [= 0.01] 



How do you measure those numbers? 

•  Example 5 – Measurement of Vub 

–  Decay rate of B0 à π-l+ν  

–  Proportional to (Vub)2 

–  |Vub| = 0.00394 ± 0.00036 

–  Vub is of order sin(θc)3 [= 0.01] 

–  Inclusive vs exclusive…? 

ρ, π+X, … 



How do you measure those numbers? 

•  Example 6 – Measurement of Vcd 

–  Early measurement charm in DIS with neutrinos 

–  Rate proportional to Vcd
2 

–  |Vcd| = 0.218 ± 0.004 

–  Vcb is of order sin(θc) [= 0.24] 



How do you measure those numbers? 

•  Example 7 – Measurement of Vtb 

–  Very recent measurement: March ’09! 

–  Single top production at Tevatron 

–  CDF+D0+LHC: |Vtb| = 1.019 ± 0.025 



How do you measure those numbers? 

•  Example 8 – Measurement of Vtd, Vts 

–  Cannot be measured from top-decay… 

–  Indirect from loop diagram 

–  |Vtd| = 0.0081 ± 0.0005 

–  |Vts| = 0.0394 ± 0.0023 

–  |Vtd/Vts| = 0.210 ± 0.008 
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Ratio of frequencies for B0 and Bs

ξ = 1.239 ± 0.046 from lattice QCD

Vts ~ λ2

Vtd ~λ3     à Δms ~ (1/λ2)Δmd ~ 25 Δmd  
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What do we know about the CKM matrix? 

•  Magnitudes of elements have been measured over time 
–  Result of a large number of measurements and calculations 
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22 Chapter 2 The Cabibbo-Kobayashi-Maskawa Matrix
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Figure 2.5: Diagrams important for determining Vcb.

discussed in detail in Section 3.5. Using lattice calculations to take long-distance
effects into account, and assuming |Vtb| = 1, yields:

|Vtd| = 0.0081± 0.0005

|Vts| = 0.0394± 0.0023

|Vtb| : CDF, D0, ATLAS and CMS measured the ratio of branching ratiosBr(t → Wb)/Br(t →
Wq), yielding the following 95% confidence level limit:

|Vtb| = 1.019± 0.025

Taking all the information above, a global fit with Standard Model constraints leads to
the following result for the absolute values of the elements:

VCKM =

⎛

⎝

0.97446 0.22452 0.00365
0.22438 0.97359 0.04214
0.00896 0.04133 0.99911

⎞

⎠±

⎛
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0.00010 0.00044 0.00012
0.00044 0.00011 0.00076
0.00024 0.00974 0.00003

⎞

⎠ (2.6)

The strength of the charged current couplings seem to exhibit a hierarchy. This pattern
motivated Wolfenstein [8] to parametrize the CKM-matrix in powers of the parameter

λ ≈ sin θ12 ≈
√

md

ms
, which is described in the next section.
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What do we know about the CKM matrix? 

•  Magnitudes of elements have been measured over time 
–  Result of a large number of measurements and calculations 
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Approximately diagonal form 

•  Values are strongly ranked:  
–  Transition within generation favored 

–  Transition from 1st to 2nd generation suppressed by sin(θc) 

–  Transition from 2nd to 3rd generation suppressed bu sin2(θc) 

–  Transition from 1st to 3rd generation suppressed by sin3(θc) 

u 

d 

t 

c 

b s 
CKM magnitudes 

λ 

λ

λ3 λ2 

λ2 

λ3 

λ=sin(θc)=0.23 

Why the ranking? 
We don’t know (yet)! 
 
If you figure this out, 
you will win the nobel 
prize 



Intermezzo: How about the leptons? 

•  We now know that neutrinos also have flavour oscillations 
–  Neutrinos have mass 

–  Diagonalizing Yl
ij doesn’t come for free any longer 

•  thus there is the equivalent of a CKM matrix for them: 
–  Pontecorvo-Maki-Nakagawa-Sakata matrix 

 

Niels Tuning (24) 

vs 



Intermezzo: How about the leptons? 

•  the equivalent of the CKM matrix 
–  Pontecorvo-Maki-Nakagawa-Sakata matrix 

 

•  a completely different hierarchy! 
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vs 
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the following result for the absolute values of the elements:

VCKM =

⎛

⎝

0.97446 0.22452 0.00365
0.22438 0.97359 0.04214
0.00896 0.04133 0.99911

⎞

⎠±

⎛

⎝

0.00010 0.00044 0.00012
0.00044 0.00011 0.00076
0.00024 0.00974 0.00003

⎞

⎠ (2.6)

The strength of the charged current couplings seem to exhibit a hierarchy. This pattern
motivated Wolfenstein [8] to parametrize the CKM-matrix in powers of the parameter
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2.4 Discussion 27

2.4.1 The Lepton Sector

We only focussed on the quark couplings, and we will continue to do so in the rest of
these notes. Nevertheless it is both enlightening and intriguing to cast some light on the
lepton sector.

The discovery of neutrino oscillations [11] implies that neutrinos have non-zero mass, and
as a result a similar diagonalization of the Yukawa matrix can be done, compared to
the quarks (see Section 1.4.1). The lepton counterpart of the CKM-matrix is called the
PMNS-matrix, after Maki, Nakagawa, Sakata and Pontecorvo [12].

The first observation is that the leptons are commonly referred to as the flavour eigen-
states, in contrast to the mass eigenstates that we use for the quarks. For example, we
typically picture the W to couple purely to a (e, νe) pair, whereas the coupling of the W
to the quarks we picture as the coupling to a (u, [d, s, b]) pair, ie. a mixture of d, s and b
quarks. The lepton-equivalent of the down-type mass eigenstates are ν1, ν2 and ν3.

The second, inspiring, observation is that the magnitude of the elements of the MNSP-
matrix show a completely different hierarchy [13]:
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⎛

⎝

Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

⎞

⎠ ≈

⎛

⎝

0.82 0.55 0.15
0.37 0.57 0.70
0.39 0.59 0.69

⎞

⎠ .

Interesting numerology appears if we square the matrix elements, revealing the following
approximate composition (known as ’tri-bimaximal mixing’ [14]):
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.

This comparison should make clear that the hierarchy in the CKM matrix, nor the fact
that the matrix is symmetric, is by any means “logical”, or “natural”?!

To date, no experiment has reached the sensitivity to measure complex phases on the
MNSP matrix elements, which would indicate CP violation in the lepton sector 3.

3The situation is slightly more complex if the neutrino’s are of Majorana nature, ie. if the neutrinos
are their own anti-particles. The smallness of the neutrino masses is typically explained with the see-saw

mechanism, which at the same time predicts a heavy right-handed sterile neutrino at the grand-unification
scale.



Intermezzo: How about the leptons? 

•  the equivalent of the CKM matrix 
–  Pontecorvo-Maki-Nakagawa-Sakata matrix 

 

•  a completely different hierarchy! 
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vs 

ν1 ν2 ν3 d s b 

See eg. PhD thesis R. de Adelhart Toorop 



Intermezzo: what does the size tell us? 
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H.Murayama, 6 Jan 2014, arXiv:1401.0966 

§ Neutrino mixing due to ´anarchy´: 

§ ̀ quite typical of the ones obtained by randomly 
drawing a mixing matrix from an unbiased 
distribution of unitary 3x3 matrices´ 

Harrison, Perkins, Scott, 
Phys.Lett. B530 (2002) 167,  

hep-ph/0202074 

§  Neutrino mixing due to 
underlying symmetry: 



Back to business: quarks 
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We discussed magnitude. 
 
Next is the imaginary part ! 
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Quark field re-phasing 
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and a simultaneous rephasing of the CKM matrix: 

( )( )expj j jV i Vα α αφ φ→ −or 

the charged current  CC Li ij LjJ u V dµ µγ= is left invariant. 

Degrees of freedom in VCKM     in        3        N     generations 
Number of real parameters:                9      + N2 

Number of imaginary parameters:       9      + N2 

Number of constraints (VV† = 1):        -9      - N2 

Number of relative quark phases:      -5      - (2N-1) 
                                                        ----------------------- 
Total degrees of freedom:                   4        (N-1)2 

Number of Euler angles:                     3         N (N-1) / 2 
Number of CP phases:                       1         (N-1) (N-2) / 2    

No CP violation in SM! 
This is the reason 
Kobayashi and Maskawa 
first suggested a 3rd  
family of fermions!  
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First some history… 
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Cabibbos theory successfully correlated many decay rates 

•  Cabibbos theory successfully correlated many decay 
rates by counting the number of cosθc and sinθc terms in 
their decay diagram 
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Cabibbos theory successfully correlated many decay rates 

•  There was however one major exception which Cabibbo 
could not describe: K0 à µ+ µ- 

–  Observed rate much lower than expected from Cabibbos rate 
correlations (expected rate ∝ g8sin2θccos2θc) 

d 

µ+ µ- 

νµ 

u 

cosθc sinθc 

W W 

s 
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The Cabibbo-GIM mechanism 

•  Solution to K0 decay problem in 1970 by Glashow, 
Iliopoulos and Maiani à postulate existence of 4th quark  
–  Two ‘up-type’ quarks decay into rotated ‘down-type’ states 

–  Appealing symmetry between generations 
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Phys.Rev.D2,1285,1970 

… 

… 

… 

The Cabibbo-GIM mechanism 
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The Cabibbo-GIM mechanism 

•  How does it solve the K0 à µ+µ- problem? 
–  Second decay amplitude added that is almost identical to original 

one, but has relative minus sign à Almost fully destructive 
interference 

–  Cancellation not perfect because u, c mass different 
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Quark field re-phasing 

u d

c s

t b

ud us ub

cd cs cb

td ts tb

e V V V e
V e V V V e

e V V V e

φ φ

φ φ

φ φ

− −

− −

− −

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟→⎜ ⎟ ⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

u ii
Li Liu e uφ→ d ii

Li Lid e dφ→

Under a quark phase transformation: 

and a simultaneous rephasing of the CKM matrix: 

( )( )expj j jV i Vα α αφ φ→ −or 

In other words: 
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Quark field re-phasing 

u d

c s

t b

ud us ub

cd cs cb

td ts tb

e V V V e
V e V V V e

e V V V e

φ φ

φ φ

φ φ

− −

− −

− −

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟→⎜ ⎟ ⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

u ii
Li Liu e uφ→ d ii

Li Lid e dφ→

Under a quark phase transformation: 

and a simultaneous rephasing of the CKM matrix: 

( )( )expj j jV i Vα α αφ φ→ −or 

the charged current  CC Li ij LjJ u V dµ µγ= is left invariant. 

Degrees of freedom in VCKM     in        3        N     generations 
Number of real parameters:                9      + N2 

Number of imaginary parameters:       9      + N2 

Number of constraints (VV† = 1):        -9      - N2 

Number of relative quark phases:      -5      - (2N-1) 
                                                        ----------------------- 
Total degrees of freedom:                   4        (N-1)2 

Number of Euler angles:                     3         N (N-1) / 2 
Number of CP phases:                       1         (N-1) (N-2) / 2    

No CP violation in SM! 
This is the reason 
Kobayashi and Maskawa 
first suggested a 3rd  
family of fermions!  

cos sin
sin cosCKMV
θ θ

θ θ
⎛ ⎞

= ⎜ ⎟−⎝ ⎠

2 generations: 



Intermezzo: Kobayashi & Maskawa 
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Timeline: 
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•  Timeline: 
–  Sep 1972: Kobayashi & Maskawa predict 3 generations 

–  Nov 1974: Richter, Ting discover J/ψ: fill 2nd generation 

–  July 1977:    Ledermann discovers Υ: discovery of 3rd generation 
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From 2 to 3 generations 

•  2 generations: d’=0.97 d + 0.22 s   (θc=13o) 

•  3 generations: d’=0.97 d + 0.22 s + 0.003 b 

•  NB: probabilities have to add up to 1: 0.972+0.222+0.0032=1 
–  è “Unitarity” ! 
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From 2 to 3 generations 
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•  2 generations: d’=0.97 d + 0.22 s   (θc=13o) 

•  3 generations: d’=0.97 d + 0.22 s + 0.003 b 
Parameterization used by Particle Data Group (3 Euler angles, 1 phase): 
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Possible forms of 3 generation mixing matrix 

•  ‘General’ 4-parameter form (Particle Data Group) with  
three rotations θ12,θ13,θ23 and one complex phase δ13 
–  c12 = cos(θ12), s12 = sin(θ12) etc… 

•  Another form (Kobayashi & Maskawa’s original) 
–  Different but equivalent 

 

•  Physics is independent of choice of parameterization! 
–  But for any choice there will be complex-valued elements  
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Possible forms of 3 generation mixing matrix 
à Different parametrizations! It’s about phase differences!  

Re-phasing V:  

PDG 

KM 

3 parameters: θ, τ, σ 
1 phase:             φ  



Wolfenstein parameterization 

3 real parameters:         A, λ, ρ 
1 imaginary parameter:   η  



Wolfenstein parameterization 

3 real parameters:         A, λ, ρ 
1 imaginary parameter:   η  
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Exploit apparent ranking for a convenient parameterization 

•  Given current experimental precision on CKM element values, 
we usually drop λ4 and λ5 terms as well  
–  Effect of order 0.2%... 

•  Deviation of ranking of 1st and 2nd generation (λ vs λ2) 
parameterized in A parameter 

•  Deviation of ranking between 1st and 3rd generation, 
parameterized through |ρ-iη|  

•  Complex phase parameterized in arg(ρ-iη) 
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~1995 What do we know about A, λ, ρ and η? 

•  Fit all known Vij values to Wolfenstein parameterization 
and extract A, λ, ρ and η  
 
 
 
 
 

•  Results for A and λ most precise (but don’t tell us much 
about CPV) 
–  A = 0.83, λ = 0.227 

•  Results for ρ,η are usually shown in  
complex plane of ρ-iη for easier interpretation 

22 Chapter 2 The Cabibbo-Kobayashi-Maskawa Matrix

B0

d

D∗−
cb

W+

d

e+

νe

V ∗

cb
W−

µ− νµ

e−

νe

1

Figure 2.5: Diagrams important for determining Vcb.

discussed in detail in Section 3.5. Using lattice calculations to take long-distance
effects into account, and assuming |Vtb| = 1, yields:

|Vtd| = 0.0081± 0.0005

|Vts| = 0.0394± 0.0023

|Vtb| : CDF, D0, ATLAS and CMS measured the ratio of branching ratiosBr(t → Wb)/Br(t →
Wq), yielding the following 95% confidence level limit:

|Vtb| = 1.019± 0.025

Taking all the information above, a global fit with Standard Model constraints leads to
the following result for the absolute values of the elements:

VCKM =

⎛

⎝

0.97446 0.22452 0.00365
0.22438 0.97359 0.04214
0.00896 0.04133 0.99911

⎞

⎠±

⎛

⎝

0.00010 0.00044 0.00012
0.00044 0.00011 0.00076
0.00024 0.00974 0.00003

⎞

⎠ (2.6)

The strength of the charged current couplings seem to exhibit a hierarchy. This pattern
motivated Wolfenstein [8] to parametrize the CKM-matrix in powers of the parameter

λ ≈ sin θ12 ≈
√

md

ms
, which is described in the next section.

|VCKM | ∼

⎛

⎝

1 λ λ3

λ 1 λ2

λ3 λ2 1

⎞
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Deriving the triangle interpretation 

•  Starting point: the 9 unitarity constraints on the CKM 
matrix 

•  Pick (arbitrarily) orthogonality condition with (i,j)=(3,1) 

* * * 0ub ud cb cd tb tdV V V V V V+ + =

* * *

* * *

* * *

1 0 0
0 1 0
0 0 1
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Deriving the triangle interpretation 

•  Starting point: the 9 unitarity constraints on the CKM 
matrix 
–  3 orthogonality relations 

•  Pick (arbitrarily) orthogonality condition with (i,j)=(3,1) 

* * * 0ub ud cb cd tb tdV V V V V V+ + =

* * *

* * *

* * *

1 0 0
0 1 0
0 0 1

ud cd td ud us ub

us cs ts cd cs cb

ub cb tb td ts tb

V V V V V V
V V V V V V V V

V V V V V V

+
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* * * 0ud ub cd cb td tbV V V V V V+ + =
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Deriving the triangle interpretation 

•  Starting point: the 9 unitarity constraints on the CKM 
matrix 

•  Pick (arbitrarily) orthogonality condition with (i,j)=(3,1) 

* * * 0ub ud cb cd tb tdV V V V V V+ + =

* * *

* * *

* * *

1 0 0
0 1 0
0 0 1

ud cd td ud us ub

us cs ts cd cs cb

ub cb tb td ts tb

V V V V V V
V V V V V V V V

V V V V V V

+

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟= =⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠



Niels Tuning (51) 

Visualizing the unitarity constraint 

•  Sum of three complex vectors is zero à  
Form triangle when put head to tail 

)(2* λλ −⋅= AVV cdcb

(Wolfenstein params to order λ4) 

Vtb
*Vtd =1⋅Aλ

3(1− ρ − iη)
)(3* ηρλ iAVV udub +=



Niels Tuning (52) 

Visualizing the unitarity constraint 

•  Phase of ‘base’ is zero à Aligns with ‘real’ axis,  

Vtb
*Vtd =1⋅Aλ

3(1− ρ − iη)

)(2* λλ −⋅= AVV cdcb

)(3* ηρλ iAVV udub +=
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Visualizing the unitarity constraint 

•  Divide all sides by length of base 
 
 
 
 
 
 
 
 
 

•  Constructed a triangle with apex (ρ,η) 

Vub
*Vud

Vcb
*Vcd

= −(ρ + iη)
Vtb
*Vtd

Vcb
*Vcd

= −(1− ρ − iη)

1*

*

≡
cdcb

cdcb

VV
VV(0,0) (1,0) 

(ρ,η) 
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Visualizing arg(Vub) and arg(Vtd) in the (ρ,η) plane 

•  We can now put this triangle in the (ρ,η) plane 

Vub
*Vud

Vcb
*Vcd

≈ (ρ + iη)

Vtb
*Vtd

Vcb
*Vcd

≈ −(1− ρ − iη)



“The” Unitarity triangle 

•  We can visualize the CKM-constraints in (ρ,η) plane 



β 

•  We can correlate the angles β and γ to CKM elements: 
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Deriving the triangle interpretation 

•  Another 3 orthogonality relations 

•  Pick (arbitrarily) orthogonality condition with (i,j)=(3,1) 

* * * 0ud td us ts ub tbV V V V V V+ + =

* * *

† * * *

* * *

1 0 0
0 1 0
0 0 1

ud us ub ud cd td

cd cs cb us cs ts
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The “other” Unitarity triangle 

•  NB: angle βs introduced. But… not phase invariant definition!?  

•  Two of the six unitarity triangles have equal sides in O(λ) 
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The “Bs-triangle”: βs 
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•  Replace d by s: 



The phases in the Wolfenstein parameterization 
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The CKM matrix 
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'
'
'
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•  Couplings of the 
charged current: 

•  Wolfenstein 
parametrization: 

•  Magnitude: •  Complex phases: 

b 
W- 

u 
gVub 
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Back to finding new measurements 

•  Next order of business: Devise an experiment that measures 
arg(Vtd)≡β and arg(Vub)≡γ. 
–  What will such a measurement look like in the (ρ,η) plane? 

βγ

CKM phases 
Fictitious measurement of β consistent with CKM model 

)(*

*

ηρ i
VV
VV

cdcb

udub +≈

Vtb
*Vtd

Vcb
*Vcd

≈ −(1− ρ − iη)
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Consistency with other measurements in (ρ,η) plane 

Precise measurement of 
sin(2β) agrees perfectly 
with other measurements 
and CKM model 
assumptions 
 
The CKM model of CP 
violation 
experimentally 
confirmed with high 
precision! 



What’s going on?? 

•  ???   Edward Witten, 17 Feb 2009…  

•  See  “From F-Theory GUT’s to the LHC”  by Heckman and Vafa (arXiv:0809.3452) 

In 2004, Time magazine stated that Witten was widely thought to be the world's greatest living theoretical physicist. 


