Particle Physics II - CP violation

Lecture 1

N. Tuning

1) Wed 12 Feb: Anti-matter + SM
2) Mon 17 Feb: CKM matrix + Unitarity Triangle
3) Wed 19 Feb: Mixing + Master eqs. $+\mathrm{B}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}_{\mathrm{s}}$
4) Mon 20 Feb: $\quad C P$ violation in $B_{(s)}$ decays (I)
5) Wed 9 Mar: $\quad C P$ violation in $B_{(s)}$ and K decays
6) Mon 16 Mar:
7) Wed 18 Mar:

Rare decays + Flavour Anomalies
Exam
> Final Mark:

- if (mark > 5.5) mark $=\max ($ exam, $0.85 *$ exam $+0.15 *$ homework $)$
- else mark = exam
> In parallel: Lectures on Flavour Physics by prof.dr. R. Fleischer

Plan

- $2 \times 60 \mathrm{~min}$ (with break)
> Monday
- Start: 13:15
- End: 15:15
- Werkcollege: 15:15-16:15
> Wednesday:
- Start: 9:00
- End: 11:00
- Werkcollege: 11:00-12:00
3.3 Eigenvalues and -vectors of Mass-decay Matrix 29
3.4 Time evolution . 30
3.5 The Amplitude of the Box diagram . 32

Table of contents
3.6 Meson Decays . 35
3.7 Classification of CP Violating Effects . 36

Introduction

1 CP Violation in the Standard Model
1.1 Parity transformation . 3
1.1.1 The Wu-experiment: ${ }^{60}$ Co decay . 4
1.1.2 Parity violation . 5
1.1.3 CPT . 7
1.2 C, P and T: Discrete symmetries in Maxwell's equations 8
1.3 C, P and T: Discrete symmetries in QED 9
1.4 CP violation and the Standard Model Lagrangian 12
1.4.1 Yukawa couplings and the Origin of Quark Mixing 12
1.4.2 CP violation . 15

2 The Cabibbo-Kobayashi-Maskawa Matrix
2.1 Unitarity Triangle(s) . 17
2.2 Size of matrix elements . 20
2.3 Wolfenstein parameterization . 23
2.4 Discussion . 26

3 Neutral Meson Decays
3.1 Neutral Meson Oscillations . 27
3.2 The mass and decay matrix . 27 iii

4 CP violation in the B-system
4.1β : the $B^{0} \rightarrow J / \psi K_{S}^{0}$ decay . 40
$4.2 \beta_{s}$: the $B_{s}^{0} \rightarrow J / \psi \phi$ decay . 44
$4.3 \quad \gamma$: the $B_{s}^{0} \rightarrow D_{s}^{ \pm} K^{\mp}$ decay . 46
4.4 Direct CP violation: the $B^{0} \rightarrow \pi^{-} K^{+}$decay 48
4.5 CP violation in mixing: the $B^{0} \rightarrow l^{+} \nu X$ decay 49
4.6 Penguin diagram: the $B^{0} \rightarrow \phi K_{S}^{0}$ decay . 50

5 CP violation in the K-system
5.1 CP and pions
5.2 Description of the K-system . 53
5.3 The Cronin-Fitch experiment . 54
5.3.1 Regeneration . 56
5.4 CP violation in mixing: ϵ. 57
5.5 CP violation in decay: ϵ^{\prime}. 58

6 Experimental Aspects and Present Knowledge of Unitarity Triangle
6.1 B-meson production
6.2 Flavour Tagging . 65
6.3 Present Knowledge on Unitarity Triangle 66
6.3.1 Measurement of $\sin 2 \beta$. 67
6.3.2 Measurement of ϵ_{K}. 67

6.3.4 Measurement of Δm. 68
6.4 Outlook: the LHCb experiment . 71

Grand picture....
TOE
\longrightarrow

These lectures

Jargon

EDM	Flavour physics	
	quarks	quarks
	CP violation	Rare decays
	neutrinos	t, μ
	Leptons ${ }^{\text {g }}$	

Today

Flavour physics

quarks	quarks
CP violation neutrinos	Rare decays

Flavour physics has a track record...

GIM mechanism in $K^{0} \rightarrow \mu \mu$

Weak Interactions with Lepton-Hadron Symmetry*

> S. L. Glashow, J. Ihiopoulos, and L. Maianit

Lyman Laboratory of Physics, Harrard Universily, Cambridge, Massachuseits 02130 (Received 5 March 1970)

We propose a model of weak interactions in which the currents are constructed out of four basic quark fields and interact with a charged massive vector boson. We show, to all orders in perturbation theory,
that the leading divergences do not violate any strong-interaction symmetry and the next to the leading divergences respect all observed weak-interaction selection rules. The model features a remarkable symmetry between leptons and quarks. The extension of our model to a complete Yang-Milis theory is discussed.
splitting, beginning at order $G\left(G \Lambda^{2}\right)$, as well as contributions to such unobserved decay modes as $K_{2} \rightarrow$ $\mu^{+}+\mu^{-}, K^{+} \rightarrow \pi^{+}+l+\bar{l}$, etc., involving neutral lepton

We wish to propose a simple model in which the divergences are properly ordered. Our modol ic founded in a quark model, but one involving four, not three, fundamental fermions; the weak interactions are medi-

Glashow, Iliopoulos, Maiani, Phys.Rev. D2 (1970) 1285

CP violation, $K_{L}{ }^{0} \rightarrow \Pi$ п

27 July 1964

EVIDENCE FOR THE 2π DECAY OF THE $K_{2}{ }^{0}$ MESON* \dagger
J. H. Christenson, J. W. Cronin, ${ }^{\ddagger}$ V. L. Fitch, ${ }^{\ddagger}$ and R. Turlay ${ }^{\S}$ Princeton University, Princeton, New Jersey (Received 10 July 1964)

This Letter reports the results of experimental studies designed to search for the 2π decay of the $K_{2}{ }^{0}$ meson. Several previous experiments have
three-body decays of the $K_{2}{ }^{0}$. The presence of a two-pion decav mode implies that the $K_{2}{ }^{0}$ meson is not a pure eigenstate of $C P$. Expressed as $K_{2}{ }^{0}=2^{-1 / 2}\left[\left(K_{0}-K_{0}\right)+\epsilon\left(K_{0}+K_{0}\right)\right]$ then $|\epsilon|^{2} \cong R_{T}{ }^{\tau} 1^{\tau} 2$

Christenson, Cronin, Fitch, Turlay,
Phys.Rev.Lett. 13 (1964) 138-140

$B^{0} \leftrightarrow \rightarrow \bar{B}^{0}$ mixing

DESY 87-029
 April 1987

OBSERVATION OF $\mathrm{B}^{0} \cdot \overline{\mathrm{~B}}^{0}$ MIXING The ARGUS Colldaoration

In summary, the combined evidence of the investigation of B^{0} meson pairs, lepton pairs and B^{0} meson-lepton events on the $\Upsilon(45)$ leads to the conclusion that $B^{0} \cdot \bar{B}^{-0}$ mixing has been observed and is substantial.

Parameters	Comments
$r>0.0990 \% C L$	This experiment
$x>0.44$	This experiment
$B^{\frac{1}{2}} \mathrm{f}_{\mathrm{B}} \approx \mathrm{f}_{\mathrm{z}}<160 \mathrm{MeV}$	B mesou (\approx pion) decay constant
$\mathrm{mb}_{\mathrm{b}}<5 \mathrm{GcV} / \mathrm{c}^{2}$	b-quark mass
$\overbrace{6}<1.4 \cdot 10^{-12}{ }_{\text {s }}$	B mesoa lifetime
$\left\|\mathrm{V}_{\text {t }}\right\|<0.018$	Kobayashi-Maskawa matrix element
$7^{\text {mam }}$ < <0.86	QCD correction factor [17]
$\mathrm{m}_{1}>50 \mathrm{GeV} / \mathrm{c}^{2}$	t quark mass

ARGUS Coll.
Phys.Lett.B192:245,1987

Flavour physics has a track record...

Introduction: it's all about the charged current

- "CP violation" is about the weak interactions,
- In particular, the charged current interactions:

- The interesting stuff happens in the interaction with quarks
- Therefore, people also refer to this field as "flavour physics"

Motivation 1: Understanding the Standard Model

- "CP violation" is about the weak interactions,
- In particular, the charged current interactions:

- Quarks can only change flavour through charged current interactions

Introduction: it's all about the charged current

- "CP violation" is about the weak interactions,
- In particular, the charged current interactions:

- In $1^{\text {st }}$ hour:
- P-parity, C-parity, CP-parity
- \rightarrow the neutrino shows that P-parity is maximally violated

Introduction: it's all about the charged current

- "CP violation" is about the weak interactions,
- In particular, the charged current interactions:

- \rightarrow Symmetry related to particle - anti-particle

Motivation 2: Understanding the universe

- It's about differences in matter and anti-matter
- Why would they be different in the first place?
- We see they are different: our universe is matter dominated

Where and how do we generate the Baryon asymmetry?

- No definitive answer to this question yet!
- In 1967 A. Sacharov formulated a set of general conditions that any such mechanism has to meet

1) You need a process that violates the baryon number B : (Baryon number of matter=1, of anti-matter $=-1$)
2) Both C and $C P$ symmetries should be violated

3) Conditions 1) and 2) should occur during a phase in which there is no thermal equilibrium

- In these lectures we will focus on 2): CP violation
- Apart from cosmological considerations, I will convince you that there are more interesting aspects in CP violation

Introduction: it's all about the charged current

- "CP violation" is about the weak interactions,
- In particular, the charged current interactions:

- Same initial and final state
- Look at interference between $B^{0} \rightarrow f_{C P}$ and $B^{0} \rightarrow \overline{B^{0}} \rightarrow f_{C P}$

Motivation 3: Sensitive to find new physics

- "CP violation" is about the weak interactions,
- In particular, the charged current interactions:

- Are heavy particles running around in loops?

Recap:

- CP-violation (or flavour physics) is about charged current interactions
- Interesting because:

1) Standard Model: in the heart of quark interactions

2) Cosmology:
related to matter - anti-matter asymetry

3) Beyond Standard Model: measurements are sensitive to new particles

Grand picture....
TOE
\longrightarrow

These lectures

Personal impression:

- People think it is a complicated part of the Standard Model (me too:-). Why?

1) Non-intuitive concepts?

- Imaginary phase in transition amplitude, $\mathrm{T} \sim \mathrm{e}^{\mathrm{i} \varphi}$
- Different bases to express quark states, d' $=0.97 \mathrm{~d}+0.22 \mathrm{~s}+0.003 \mathrm{~b}$
- Oscillations (mixing) of mesons:

$$
\left|K^{0}>\leftrightarrow\right| \text { ? } K^{0}>
$$

2) Complicated calculations?

$$
\begin{aligned}
& \Gamma\left(B^{0} \rightarrow f\right) \propto\left|A_{f}\right|\left[\left[\left.g_{-}(t)\right|^{2}+|\lambda|^{2}\left|g_{-}(t)\right|^{2}+2 \Re\left(\lambda g_{+}^{*}(t) g_{-}(t)\right)\right]\right. \\
& \Gamma\left(\bar{B}^{0} \rightarrow f\right) \propto \left\lvert\, \bar{A}_{f}{ }^{2}\left[\left|g_{+}(t)\right|^{+} \frac{1}{|\lambda|^{2}}\left|g_{-}(t)\right|^{2}+\frac{2}{|\lambda|^{2}} \Re\left(\lambda^{0} g_{+}^{*}(t) g_{-}(t)\right)\right]\right.
\end{aligned}
$$

3) Many decay modes? "Beetopaipaigamma..."

- PDG reports 347 decay modes of the B^{0}-meson:
- Γ_{1} I+ v_{l} anything $(10.33 \pm 0.28) \times 10^{-2}$
- $\Gamma_{347} v v \gamma$ $<4.7 \times 10^{-5}$ $C L=90 \%$
- And for one decay there are often more than one decay amplitudes...

Anti-matter

- Dirac (1928): Prediction
- Anderson (1932): Discovery
- Present-day experiments

Schrödinger

Classic relation between E and p :

$$
E=\frac{\vec{p}^{2}}{2 m}
$$

Quantum mechanical substitution: (operator acting on wave function ψ)

$$
E \rightarrow i \frac{\partial}{\partial t} \quad \text { and } \quad \vec{p} \rightarrow-i \vec{\nabla}
$$

Schrodinger equation:

$$
i \frac{\partial}{\partial t} \psi=\frac{-1}{2 m} \nabla^{2} \psi
$$

Solution:

$$
\psi=N e^{i(\vec{p} \vec{x}-E t)}
$$

Klein-Gordon

Relativistic relation between E and p :

$$
E^{2}=\bar{p}^{2}+m^{2}
$$

Quantum mechanical substitution: (operator acting on wave function ψ)

$$
E \rightarrow i \frac{\partial}{\partial t} \quad \text { and } \quad \vec{p} \rightarrow-i \vec{\nabla}
$$

$$
-\frac{\partial^{2}}{\partial t^{2}} \phi=-\nabla^{2} \phi+m^{2} \phi
$$

$$
\begin{array}{cl}
\hline \text { or : } & \left(\square+m^{2}\right) \phi(x)=0 \\
\text { or : } & \left(\partial_{\mu} \partial^{\mu}+m^{2}\right) \phi(x)=0 \\
\hline
\end{array}
$$

Solution:

$$
\phi(x)=N e^{-i p_{\mu} x^{\mu}} \quad \text { with eigenvalues: } E^{2}=\vec{p}^{2}+m^{2}
$$

But! Negative energy solution?

$$
E= \pm \sqrt{\vec{p}^{2}+m^{2}}
$$

Dirac

Paul Dirac tried to find an equation that was

- relativistically correct,
- but linear in d/dt to avoid negative energies
- (and linear in d / dx (or ∇) for Lorentz covariance)

He found an equation that

- turned out to describe spin-1/2 particles and
- predicted the existence of anti-particles

Dirac

How to find that relativistic, linear equation ??

Write Hamiltonian in general form,

$$
H \psi=(\vec{\alpha} \cdot \vec{p}+\beta m) \psi
$$

but when squared, it must satisfy:

$$
H^{2} \psi=\left(\vec{p}^{2}+m^{2}\right) \psi
$$

Let's find α_{i} and β !

$$
\begin{aligned}
H^{2} \psi & =\left(\alpha_{i} p_{i}+\beta m\right)^{2} \psi \quad \text { with : } i=1,2,3 \\
& =(\underbrace{\alpha_{i}^{2}}_{=1} p_{i}^{2}+\underbrace{\left(\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}\right)}_{=0} p_{i>j} p_{j}+\underbrace{\left(\alpha_{i} \beta+\beta \alpha_{i}\right)}_{=0} p_{i} m+\underbrace{\beta^{2}}_{=1} m^{2})
\end{aligned}
$$

So, α_{i} and β must satisfy:

- $\alpha_{1}{ }^{2}=\alpha_{2}{ }^{2}=\alpha_{3}{ }^{2}=\beta^{2}$
- $\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta$ anti-commute with each other
- (not a unique choice!)

$$
H \psi=(\vec{\alpha} \cdot \vec{p}+\beta m) \psi
$$

$>$ What are $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$??

The lowest dimensional matrix that has the desired behaviour is $\mathbf{4 \times 4}$!?

Often used
Pauli-Dirac representation:

$$
\vec{\alpha}=\left(\begin{array}{cc}
0 & \vec{\sigma} \\
\vec{\sigma} & 0
\end{array}\right) \quad ; \quad \beta=\left(\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right)
$$

with:

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad ; \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad ; \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

So, α_{i} and β must satisfy:

- $\alpha_{1}{ }^{2}=\alpha_{2}{ }^{2}=\alpha_{3}{ }^{2}=\beta^{2}$
- $\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta$ anti-commute with each other
- (not a unique choice!)

$$
H \psi=(\vec{\alpha} \cdot \vec{p}+\beta m) \psi
$$

Usual substitution:

$$
H \rightarrow i \frac{\partial}{\partial t}, \vec{p} \rightarrow-i \vec{\nabla}
$$

Leads to:

$$
i \frac{\partial}{\partial t} \psi=(-i \vec{\alpha} \cdot \vec{\nabla}+\beta m) \psi
$$

$$
\left(i \beta \frac{\partial}{\partial t} \psi+i \beta \alpha_{1} \frac{\partial}{\partial x}+i \beta \alpha_{2} \frac{\partial}{\partial y}+i \beta \alpha_{3} \frac{\partial}{\partial z}\right) \psi \stackrel{\left(\beta^{2}=\mathbf{1}\right)}{-m \psi}=0
$$

Gives the famous Dirac equation:

$$
\begin{aligned}
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi & =0 \\
\text { with }: \gamma^{\mu}=(\beta, \beta \vec{\alpha}) & \equiv \text { Dirac } \gamma \text {-matrices }
\end{aligned}
$$

$$
\begin{gathered}
\text { for each } \\
\mathrm{j}=1,2,3,4
\end{gathered} \quad: \quad \sum_{k=1}^{4}\left[\sum_{\mu=0}^{3} i\left(\gamma^{\mu}\right)_{j k} \partial_{\mu}-m \delta_{j k}\right]\left(\psi_{k}\right)=0
$$

Dirac

$$
H \psi=(\vec{\alpha} \cdot \vec{p}+\beta m) \psi
$$

The famous Dirac equation:

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0
$$

$$
\text { with : } \gamma^{\mu}=(\beta, \beta \vec{\alpha}) \equiv \text { Dirac } \gamma \text {-matrices }
$$

R.I.P. :

Dirac

$$
H \psi=(\vec{\alpha} \cdot \vec{p}+\beta m) \psi
$$

The famous Dirac equation:

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0
$$

$$
\text { with : } \gamma^{\mu}=(\beta, \beta \vec{\alpha}) \equiv \operatorname{Dirac} \gamma \text {-matrices }
$$

Remember!

- $\quad \mu$:

Lorentz index

- $4 \times 4 \gamma$ matrix: Dirac index

Less compact notation:

$$
\begin{gathered}
\text { for each } \\
\mathrm{j}=1,2,3,4
\end{gathered} \quad: \quad \sum_{k=1}^{4}\left[\sum_{\mu=0}^{3} i\left(\gamma^{\mu}\right)_{j k} \partial_{\mu}-m \delta_{j k}\right]\left(\psi_{k}\right)=0
$$

Even less compact... :

$$
\left[\left(\begin{array}{cc}
\mathbb{1} & 0 \\
0 & -\mathbb{1}
\end{array}\right) \frac{i \partial}{\partial t}+\left(\begin{array}{cc}
0 & \sigma_{1} \\
-\sigma_{1} & 0
\end{array}\right) \frac{i \partial}{\partial x}+\left(\begin{array}{cc}
0 & \sigma_{2} \\
-\sigma_{2} & 0
\end{array}\right) \frac{i \partial}{\partial y}+\left(\begin{array}{cc}
0 & \sigma_{3} \\
-\sigma_{3} & 0
\end{array}\right) \frac{i \partial}{\partial z}-\left(\begin{array}{cc}
\mathbb{1} & 0 \\
0 & \mathbb{1}
\end{array}\right) m\right]\left(\begin{array}{l}
\psi_{1} \\
\psi_{2} \\
\psi_{3} \\
\psi_{4}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

$>$ What are the solutions for ψ ??

Dirac

$$
H \psi=(\vec{\alpha} \cdot \vec{p}+\beta m) \psi
$$

The famous Dirac equation:

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0
$$

$$
\text { with : } \gamma^{\mu}=(\beta, \beta \vec{\alpha}) \equiv \operatorname{Dirac} \gamma \text {-matrices }
$$

Solutions to the Dirac equation?
Try plane wave: $\quad \psi(x)=u(p) e^{-i p x} \rightarrow$

$$
\begin{aligned}
\left(\gamma^{\mu} p_{\mu}-m\right) u(p) & =0 \\
\text { or }:(\not p-m) u(p) & =0
\end{aligned}
$$

Linear set of eq:

$$
\left[\left(\begin{array}{cc}
\mathbb{1} & 0 \\
0 & -\mathbb{1}
\end{array}\right) E-\left(\begin{array}{cc}
0 & \sigma_{i} \\
-\sigma_{i} & 0
\end{array}\right) p^{i}-\left(\begin{array}{cc}
\mathbb{1} & 0 \\
0 & \mathbb{1}
\end{array}\right) m\right]\binom{u_{A}}{u_{B}}=0
$$

> 2 coupled equations:

$$
\left\{\begin{aligned}
(\vec{\sigma} \cdot \vec{p}) u_{B} & =(E-m) u_{A} \\
(\vec{\sigma} \cdot \vec{p}) u_{A} & =(E+m) u_{B}
\end{aligned}\right.
$$

If $p=0$:

$$
u^{(1)}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) \quad, \quad u^{(2)}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right) \quad, \quad u^{(3)}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right) \quad, \quad u^{(4)}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
$$

$$
H \psi=(\vec{\alpha} \cdot \vec{p}+\beta m) \psi
$$

The famous Dirac equation:

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0
$$

$$
\text { with : } \gamma^{\mu}=(\beta, \beta \vec{\alpha}) \equiv \operatorname{Dirac} \gamma \text {-matrices }
$$

Solutions to the Dirac equation?
Try plane wave

$$
\psi(x)=u(p) e^{-i p x}
$$

$$
\begin{aligned}
\left(\gamma^{\mu} p_{\mu}-m\right) u(p) & =0 \\
\text { or }:(\not p-m) u(p) & =0
\end{aligned}
$$

> 2 coupled equations:

$$
\left\{\begin{array}{l}
(\vec{\sigma} \cdot \vec{p}) u_{B}=(E-m) u_{A} \\
(\vec{\sigma} \cdot \vec{p}) u_{A}=(E+m) u_{B}
\end{array}\right.
$$

If $p \neq 0$:
Two solutions for $\mathrm{E}>0$:
(and two for $\mathrm{E}<0$)

$$
u^{(1)}=\binom{u_{A}^{(1)}}{u_{B}^{(1)}} \quad, \quad u^{(2)}=\binom{u_{A}^{(2)}}{u_{B}^{(2)}}
$$

$$
u_{A}^{(1)}=\binom{1}{0} \quad u_{A}^{(2)}=\binom{0}{1}
$$

$$
u_{B}^{(1)}=\frac{\vec{\sigma} \cdot \vec{p}}{E+m} u_{A}^{(1)}=\frac{\vec{\sigma} \cdot \vec{p}}{E+m}\binom{1}{0} u_{B}^{(2)}=\frac{\vec{\sigma} \cdot \vec{p}}{E+m} u_{A}^{(2)}=\frac{\vec{\sigma} \cdot \vec{p}}{E+m}\binom{0}{1}
$$

Dirac

$$
H \psi=(\vec{\alpha} \cdot \vec{p}+\beta m) \psi
$$

The famous Dirac equation:

$$
\begin{aligned}
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi & =0 \\
\text { with }: \gamma^{\mu}=(\beta, \beta \vec{\alpha}) & \equiv \text { Dirac } \gamma-\text { matrices }
\end{aligned}
$$

Solutions to the Dirac equation?
Try plane wave: $\quad \psi(x)=u(p) e^{-i p x}$

$$
\begin{aligned}
\left(\gamma^{\mu} p_{\mu}-m\right) u(p) & =0 \\
\text { or }:(\not p-m) u(p) & =0
\end{aligned}
$$

> 2 coupled equations:

$$
\left\{\begin{array}{l}
(\vec{\sigma} \cdot \vec{p}) u_{B}=(E-m) u_{A} \\
(\vec{\sigma} \cdot \vec{p}) u_{A}=(E+m) u_{B}
\end{array}\right.
$$

If $p \neq 0$:
Two solutions for $\mathrm{E}>0$:
(and two for $\mathrm{E}<0$)

$$
u^{(1)}=\binom{u_{A}^{(1)}}{u_{B}^{(1)}} \quad, \quad u^{(2)}=\binom{u_{A}^{(2)}}{u_{B}^{(2)}}
$$

$$
u^{(2)}=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vec{\sigma} \bullet \vec{p} /(E+m)
\end{array}\right)
$$

The famous Dirac equation:

$$
\begin{aligned}
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi & =0 \\
\text { with : } \gamma^{\mu}=(\beta, \beta \vec{\alpha}) & \equiv \text { Dirac } \gamma \text {-matrices }
\end{aligned}
$$

ψ is 4-component spinor
4 solutions correspond to fermions and anti-fermions with spin $+1 / 2$ and $-1 / 2$

Two solutions for $\mathrm{E}>0$:
(and two for $\mathrm{E}<0$)

Discovery of anti-matter

Nobelprize 1936

P and C violation

- What is the link between anti-matter and discrete symmetries?
- C operator changes matter into anti-matter
- 2 more discrete symmetries: P and T

Continuous vs discrete symmetries

- Space, time translation \& orientation symmetries are all continuous symmetries
- Each symmetry operation associated with one ore more continuous parameter
- There are also discrete symmetries
- Charge sign flip $(Q \rightarrow-Q)$: C parity
- Spatial sign flip ($x, y, z \rightarrow-x,-y,-z$) : P parity
- Time sign flip ($\mathrm{t} \rightarrow-\mathrm{t}$) : T parity
- Are these discrete symmetries exact symmetries that are observed by all physics in nature?
- Key issue of this course

Three Discrete Symmetries

- Parity, P
- Parity reflects a system through the origin. Converts right-handed coordinate systems to left-handed ones.
- Vectors change sign but axial vectors remain unchanged

- Charge Conjugation, C
- Charge conjugation turns a particle into its anti-particle
- $\mathbf{e}^{+} \rightarrow \mathbf{e}^{-}, K^{-} \rightarrow K^{+}$
- Time Reversal, T
- Changes, for example, the direction of motion of particles

- $\boldsymbol{t} \rightarrow \boldsymbol{- t}$

Example: People believe in symmetry...

Instruction for Abel Tasman, explorer of Australia (1642):

- "Since many rich mines and other treasures have been found in countries north of the equator between 15° and 40° latitude, there is no doubt that countries alike exist south of the equator.

The provinces in Peru and Chili rich of gold and silver, all positioned south of the equator, are revealing proofs hereof."

Example: People believe in symmetry...

Award Ceremony Speech Nobel Prize (1957):

- "it was assumed almost tacitly, that elementary particle reactions are symmetric with respect to right and left."
- "In fact, most of us were inclined to regard the symmetry of elementary particles with respect to right and left as a necessary consequence of the general principle of right-left symmetry of Nature."
- "... only Lee and Yang ... asked themselves what kind of experimental support there was for the assumption that all elementary particle processes are symmetric with respect to right and left. "

Chen Ning Yang
Prize share: 1/2

Tsung-Dao (T.D.) Lee Prize share: 1/2

A realistic experiment: the Wu experiment (1956)

- Observe radioactive decay of Cobalt-60 nuclei
- The process involved: ${ }_{20}{ }_{27} \mathrm{Co} \rightarrow{ }^{60}{ }_{28} \mathrm{Ni}+\mathrm{e}^{-}+\overline{v_{\mathrm{e}}}$
- ${ }^{60}{ }_{27} \mathrm{Co}$ is spin-5 and ${ }^{60}{ }_{28} \mathrm{Ni}$ is spin-4, both e- and v_{e} are spin-1/2
- If you start with fully polarized Co ($\mathrm{S}_{\mathrm{z}}=5$) the experiment is essentially the same (i.e. there is only one spin solution for the decay)

$$
|5,+5\rangle \rightarrow|4,+4\rangle+|1 / 2,+1 / 2\rangle+|1 / 2,+1 / 2\rangle
$$

Intermezzo: Spin and Parity and Helicity

- We introduce a new quantity: Helicity = the projection of the spin on the direction of flight of a particle

$$
H \equiv \frac{S \cdot p}{|S \cdot p|}
$$

The Wu experiment - 1956

- Experimental challenge: how do you obtain a sample of $\mathrm{Co}(60)$ where the spins are aligned in one direction
- Wu's solution: adiabatic demagnetization of $\mathrm{Co}(60)$ in magnetic fields at very low temperatures ($\sim 1 / 100$ $\mathrm{K}!$). Extremely challenging in 1956.

The Wu experiment - 1956

- The surprising result: the counting rate is different
- Electrons are preferentially emitted in direction opposite of ${ }^{60}$ Co spin!
- Careful analysis of results shows that experimental data is consistent with emission of left-handed ($\mathrm{H}=-1$) electrons only at any angle!!
'Backward' Counting rate
w.r.t unpolarized rate

'Forward' Counting rate w.r.t unpolarized rate
${ }^{60}$ Co polarization decreases as function of time

Experimental Test of Parity Conservation in Beta Decay*
C. S. Wu, Columbia University, New York, New York

AND
E. Ambler, R. W. Hayward, D. D. Hoppes, and R. P. Hudson, National Bureau of Standards, Washington, D. C.
(Received January 15, 1957)

The Wu experiment - 1956

- Physics conclusion:
- Angular distribution of electrons shows that only pairs of lefthanded electrons / right-handed anti-neutrinos are emitted regardless of the emission angle
- Since right-handed electrons are known to exist (for electrons H is not Lorentz-invariant anyway), this means no left-handed anti-neutrinos are produced in weak decay
- Parity is violated in weak processes
- Not just a little bit but 100\%
- How can you see that ${ }^{60} \mathrm{Co}$ violates parity symmetry?
- If there is parity symmetry there should exist no measurement that can distinguish our universe from a parity-flipped universe, but we can!

So P is violated, what's next?

- Wu's experiment was shortly followed by another clever experiment by L. Lederman: Look at decay $\pi^{+} \rightarrow \mu^{+} v_{\mu}$
- Pion has spin $0, \mu, v_{\mu}$ both have spin $1 / 2$
\rightarrow spin of decay products must be oppositely aligned
\rightarrow Helicity of muon is same as that of neutrino.

- Nice feature: can also measure polarization of both neutrino (π^{+}decay) and anti-neutrino (π^{-}decay)
- Ledermans result: All neutrinos are left-handed and all anti-neutrinos are right-handed

Charge conjugation symmetry

- Introducing C-symmetry
- The C(harge) conjugation is the operation which exchanges particles and anti-particles (not just electric charge)
- It is a discrete symmetry, just like P, i.e. $C^{2}=1$

C

- C symmetry is broken by the weak interaction,
- just like P

The Weak force and C,P parity violation

- What about $\mathrm{C}+\mathrm{P} \equiv \mathrm{CP}$ symmetry?
- CP symmetry is parity conjugation ($x, y, z \rightarrow-x,-y, z$) followed by charge conjugation $(X \rightarrow \bar{X})$

CP appears to be preserved in weak interaction!

CPT theorem

- CPT transformation:
- C: interchange particles and anti-particles
- P: reverse space-coordinates
- T: Reverse time-coordinate
- CPT transformation closely related to Lorentz-boost
> CPT invariance implies
- Particles and anti-particles have same mass and lifetime
- Lorentz invariance

Why anti-matter must exist!

- "Feynman-Stueckelberg interpretation"

- "One observer's electron is the other observer's positron"

CPT is conserved, but does anti-matter fall down?

C, P, T

- C, P, T transformation:
- C: interchange particles and anti-particles
- P: reverse space-coordinates
- T: Reverse time-coordinate
- CPT we discussed briefly ...
- After the break we deal with P and CP...
... violation!

What do we know now?

- C.S. Wu discovered from ${ }^{60} \mathrm{Co}$ decays that the weak interaction is 100% asymmetric in P-conjugation
- We can distinguish our universe from a parity flipped universe by examining ${ }^{60} \mathrm{Co}$ decays
- L. Lederman et al. discovered from π^{+}decays that the weak interaction is 100% asymmetric in C-conjugation as well, but that CP-symmetry appears to be preserved
- First important ingredient towards understanding matter/antimatter asymmetry of the universe: weak force violates matter/anti-matter $(=C)$ symmetry!
- C violation is a required ingredient, but not enough as we will learn later

Conserved properties associated with C and P

- C and P are still good symmetries in any reaction not involving the weak interaction
- Can associate a conserved value with them (Noether Theorem)
- Each hadron has a conserved P and C quantum number
- What are the values of the quantum numbers
- Evaluate the eigenvalue of the P and C operators on each hadron $\mathbf{P}|\psi\rangle=p|\psi\rangle$
- What values of C and P are possible for hadrons?
- Symmetry operation squared gives unity so eigenvalue squared must be 1
- Possible C and P values are +1 and -1 .
- Meaning of P quantum number
- If $\mathrm{P}=1$ then $\mathrm{P}|\psi\rangle=+1|\psi\rangle$ (wave function symmetric in space) if $P=-1$ then $P|\psi\rangle=-1|\psi\rangle$ (wave function anti-symmetric in space)

Figuring out P eigenvalues for hadrons

- QFT rules for particle vs. anti-particles
- Parity of particle and anti-particle must be opposite for fermions (spin-N+1/2)
- Parity of bosons (spin N) is same for particle and anti-particle
- Definition of convention (i.e. arbitrary choice in def. of q vs $\overline{\mathrm{q}}$)
- Quarks have positive parity \rightarrow Anti-quarks have negative parity
- e^{-}has positive parity as well.
- (Can define other way around: Notation different, physics same)
- Parity is a multiplicative quantum number for composites
- For composite $A B$ the parity is $P(A) * P(B)$, Thus:
- Baryons have $\mathrm{P}=1^{*} 1^{*} 1=1$, anti-baryons have $\mathrm{P}=-1^{*}-1^{*}-1=-1$
- (Anti-)mesons have $\mathrm{P}=1^{*}-1=-1$
- Excited states (with orbital angular momentum)
- Get an extra factor (-1)' where $/$ is the orbital L quantum number
- Note that parity formalism is parallel to total angular momentum J=L+S formalism, it has an intrinsic component and an orbital component
- NB: Photon is spin-1 particle has intrinsic P of -1

Parity eigenvalues for selected hadrons

- The π^{+}meson
- Quark and anti-quark composite: intrinsic $P=(1)^{*}(-1)=-1$
- Orbital ground state \rightarrow no extra term
- $P\left(\pi^{+}\right)=-1$

$$
\text { Meaning: } P\left|\pi^{+}\right\rangle=-1\left|\pi^{+}\right\rangle
$$

- The neutron

```
Experimental proof: J.Steinberger (1954)
\boldsymbol{\pid}->\mathbf{nn}
-n are fermions, so (nn) anti-symmetric
- S
1) final state:P|nn> = (-1)| Lnn> =-1 nn>
2) init state: P|d> = P |pn> = (+1)2 |pn> = +1 |d>
To conserve parity: P|>>=-1 |\pi>
```

- Three quark composite: intrinsic $\mathrm{P}=(1)^{*}(1)^{*}(1)=1$
- Orbital ground state \rightarrow no extra term
- $P(n)=+1$
- The $\mathrm{K}_{1}(1270)$
- Quark anti-quark composite: intrinsic $P=(1)^{*}(-1)=-1$
- Orbital excitation with $\mathrm{L}=1 \rightarrow$ extra term (-1) ${ }^{1}$
- $P\left(K_{1}\right)=+1$

Figuring out C eigenvalues for hadrons

- Only particles that are their own anti-particles are C eigenstates because $C|x\rangle \equiv \overline{|x\rangle}=c|x\rangle$
- E.g. $\pi^{0}, \eta, \eta^{\prime}, \rho^{0}, \phi, \omega, \psi$ and photon
- C eigenvalues of quark-anti-quark pairs is determined by
L and S angular momenta: $C=(-1)^{L+S}$
- Rule applies to all above mesons
- C eigenvalue of photon is -1
- Since photon is carrier of EM force, which obviously changes sign under C conjugation
- Example of C conservation:
- Process $\pi^{0} \rightarrow \gamma \gamma \quad \mathrm{C}=+1\left(\pi^{0}\right.$ has spin 0$) \rightarrow(-1)^{*}(-1)$
- Process $\pi^{0} \rightarrow \gamma \gamma \gamma$ does not occur (and would violate C conservation)
- This was an introduction to P and C
- Let's change gear...

CP violation in the SM Lagrangian

- Focus on charged current interaction $\left(W^{ \pm}\right)$: let's trace it

The Standard Model Lagrangian

$L_{S M}=L_{\text {Kinetic }}+L_{\text {Higgs }}+L_{\text {Yukawa }}$

- $\mathbf{L}_{\text {Kinetic }}$: • Introduce the massless fermion fields
- Require local gauge invariance \rightarrow gives rise to existence of gauge bosons
- $\mathbf{L}_{\text {Higgs }}$: • Introduce Higgs potential with $\left.\left.<\phi>\neq 0\right\} \begin{array}{c}G_{S M}=S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y} \rightarrow S U(3)_{C} \times U(1)_{Q} \\ \text { - Spontaneous symmetry breaking }\end{array}\right\} \begin{gathered}\mathrm{W}^{+}, \mathrm{W}, \mathrm{Z}^{0} \text { bosons acquire a mass }\end{gathered}$
- $L_{\text {Yukawa }}$: • Ad hoc interactions between Higgs field \& fermions

Fermions: $\quad \psi_{L}=\left(\frac{1-\gamma_{5}}{2}\right) \psi \quad ; \quad \psi_{R}=\left(\frac{1+\gamma_{5}}{2}\right) \psi \quad$ with $\quad \psi=Q_{L}, u_{R}, d_{R}, L_{L}, l_{R}, v_{R}$
Quarks:

Under SU2:
Left handed doublets
Right bander singlets

$$
\cdot\binom{u^{I}(3,2,1 / 6)}{d^{I}(3,2,1 / 6)}_{L i}
$$

- $u_{R i}^{I}(3,1,2 / 3)$
- $d_{R i}^{I}(3,1,-1 / 3)$

Leptons: $\cdot\binom{\boldsymbol{v}^{I}(1,2,-1 / 2)}{l^{I}(1,2,-1 / 2)}_{L i} \equiv L_{L i}^{I}(1,2,-1 / 2)$

$$
\text { - } l_{R i}^{I}(1,1,-1) \quad \text { • }\left(v_{R i}^{I}\right)
$$

Scalar field: $\quad \phi(1,2,1 / 2)=\binom{\varphi^{+}}{\varphi^{0}}$

Note:
Interaction representation: standard model interaction is independent of generation number

Explicitly:

- The left handed quark doublet:

$$
Q_{L i}^{I}(3,2,1 / 6)=\binom{u_{r}^{I}, u_{g}^{I}, u_{b}^{I}}{d_{r}^{I}, d_{g}^{I}, d_{b}^{I}}_{L},\binom{c_{r}^{I}, c_{g}^{I}, c_{b}^{I}}{s_{r}^{I}, s_{g}^{I}, s_{b}^{I}}_{L},\binom{t_{r}^{I}, t_{g}^{I}, t_{b}^{I}}{b_{r}^{I}, b_{g}^{I}, b_{b}^{I}}_{L} \quad \begin{aligned}
& T_{3}=+1 / 2 \\
& T_{3}=-1 / 2
\end{aligned} \quad(Y=1 / 6)
$$

- Similarly for the quark singlets:

$$
\begin{array}{lll}
u_{R i}^{I}(3,1,2 / 3)=\left(u_{r}^{I}, u_{r}^{I}, u_{r}^{I}\right)_{R},\left(c_{r}^{I}, c_{r}^{I}, c_{r}^{I}\right)_{R},\left(t_{r}^{I}, t_{r}^{I}, t_{r}^{I}\right)_{R} & (Y=2 / 3) \\
d_{R i}^{I}(3,1,-1 / 3)=\left(d_{r}^{I}, d_{r}^{I}, d_{r}^{I}\right)_{R},\left(s_{r}^{I}, s_{r}^{I}, s_{r}^{I}\right)_{R},\left(b_{r}^{I}, b_{r}^{I}, b_{r}^{I}\right)_{R} & (Y=-1 / 3)
\end{array}
$$

-The left handed leptons: $L_{L i}^{I}(1,2,-1 / 2)=\binom{\boldsymbol{v}_{e}^{I}}{e^{I}}_{L},\binom{\boldsymbol{v}_{\mu}^{I}}{\mu^{I}}_{L},\binom{\boldsymbol{v}_{\tau}^{I}}{\tau^{I}}_{L} \begin{aligned} & T_{3}=+1 / 2 \\ & T_{3}=-1 / 2\end{aligned} \quad(Y=-1 / 2)$

- And similarly the (charged) singlets: $\quad l_{R i}^{I}(1,1,-1)=e_{R}^{I}, \mu_{R}^{I}, \tau_{R}^{I}$

$$
(Y=-1)
$$

$\mathrm{L}_{S M}=\mathrm{L}_{\text {Kinetic }}+\mathrm{L}_{\text {Higgs }}+\mathrm{L}_{\text {Yukuwal }}$:The Kinetic Part

$L_{\text {Kinetic }}$

: Fermions + gauge bosons + interactions

Procedure:
Introduce the Fermion fields and demand that the theory is local gauge invariant under $S U(3)_{C} x S U(2)_{L} x U(1)_{Y}$ transformations.

Start with the Dirac Lagrangian: $\quad \mathrm{L}=i \bar{\psi}\left(\partial^{\mu} \gamma_{\mu}\right) \psi$
Replace: $\quad \partial^{\mu} \rightarrow D^{\mu} \equiv \partial^{\mu}+i g_{s} G_{a}^{\mu} L_{a}+i g W_{b}^{\mu} T_{b}+i g^{\prime} B^{\mu} Y$
Fields: $\quad G_{a}{ }^{4}: 8$ gluons
$W_{b}{ }^{\mu}$: weak bosons: $\mathrm{W}_{1}, \mathrm{~W}_{2}, \mathrm{~W}_{3}$
$B^{u \prime}$: hypercharge boson

Generators: $\quad L_{a}$: Gell-Mann matrices: $\quad 1 / 2 \lambda_{a} \quad(3 \times 3) \quad \mathrm{SU}(3)_{\mathrm{c}}$
T_{b} : Pauli Matrices: $\quad 1 / 2 \tau_{b} \quad(2 \times 2) \quad \mathrm{SU}(2)_{\llcorner }$
Y : Hypercharge:
$\mathrm{U}(1)_{\mathrm{Y}}$
For the remainder we only consider Electroweak: $S U(2)_{L} x U(1)_{Y}$

$\mathrm{L}_{S M}=\mathrm{L}_{\text {Kinetic }}+\mathrm{L}_{\text {Higgs }}+\mathrm{L}_{\text {Yukawa }}$: The Kinetic Part

$L_{\text {kinetic }}: i \bar{\psi}\left(\partial^{\mu} \gamma_{\mu}\right) \psi \rightarrow i \bar{\psi}\left(D^{\mu} \gamma_{\mu}\right) \psi$
with $\quad \psi=Q_{L i}^{I}, \quad u_{R i}^{I}, \quad d_{R i}^{I}, \quad L_{L i}^{I}, \quad l_{R i}^{I}$
For example, the term with $Q_{L i}{ }^{I}$ becomes:
$L_{\text {kinetic }}\left(Q_{L i}^{I}\right)=i Q_{L i}^{I} \gamma_{\mu} D^{\mu} Q_{L i}^{I}$

$$
=\overline{i \overline{Q_{L i}^{I}} \gamma_{\mu}\left(\partial^{\mu}+\frac{i}{2} g_{s} G_{a}^{\mu} \lambda_{a}+\frac{i}{2} g W_{b}^{\mu} \tau_{b}+\frac{i}{6} g^{\prime} B^{\mu}\right) Q_{L i}^{I}, ~}
$$

Writing out only the weak part for the quarks:
$\mathrm{L}_{\text {kinetic }}^{\text {Week }}(u, d)_{L}^{I}=\overline{i(u, d)_{L}^{I}} \gamma_{\mu}\left(\partial^{\mu}+\frac{i}{2} g\left(W_{1}^{\mu} \tau_{1}+W_{2}^{\mu} \tau_{2}+W_{3}^{\mu} \tau_{3}\right)\right)\binom{u}{d}_{L}^{I}$

$$
\begin{aligned}
& \tau_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
& \tau_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \\
& \tau_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

$=i \overline{u_{L}^{I}} \gamma_{\mu} \partial^{\mu} u_{L}^{I}+i \overline{d_{L}^{I}} \gamma_{\mu} \partial^{\mu} d_{L}^{I}-\frac{g}{\sqrt{2}} \overline{u_{L}^{I}} \gamma_{\mu} W^{-\mu} d_{L}^{I}-\frac{g}{\sqrt{2}} \overline{d_{L}^{I}} \gamma_{\mu} W^{+\mu} u_{L}^{I}-\ldots$

$$
\mathrm{L}=J_{\mu} W^{\mu} \quad \begin{array}{ll}
W^{+}=(1 / \sqrt{ } 2)\left(W_{1}+i W_{2}\right) \\
& W^{-}=(1 / \sqrt{ } 2)\left(W_{1}-i W_{2}\right)
\end{array}
$$

$\mathrm{L}_{S M}=\mathrm{L}_{\text {Kinetic }}+\mathrm{L}_{\text {Higgs }}+\mathrm{L}_{\text {Yukawa }}$: The Higgs Potential

$$
\begin{aligned}
& \mathrm{L}_{\text {Higgs }}=D_{\mu} \phi^{\dagger} D^{\mu} \phi-V_{\text {Higgs }} \quad V_{\text {Higgs }}=\frac{1}{2} \mu^{2}\left(\phi^{\dagger} \phi\right)+|\lambda|\left(\phi^{\dagger} \phi\right)^{2} \\
& \text { Symmetry } \\
& \mu^{2}>0 \text { : } \\
& \langle\varphi\rangle=0
\end{aligned}
$$

Spontaneous Symmetry Breaking: The Higgs field adopts a non-zero vacuum expectation value
Procedure: $\quad \phi=\binom{\varphi^{+}}{\varphi^{0}}=\binom{\Re e \varphi^{+}+i \Im m \phi^{+}}{\Re e \varphi^{0}+i \Im m \phi^{0}} \quad$ Substitute: $\quad \Re e \varphi^{0}=\frac{v+H^{0}}{\sqrt{2}}$

And rewrite the Lagrangian (tedious):
(The other 3 Higgs fields are "eaten" by the W, Z bosons)

1. $G_{S M}:\left(S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y}\right) \rightarrow\left(S U(3)_{C} \times U(1)_{E M}\right)$
2. The W^{+}, W^{-}, Z^{0} bosons acquire mass
3. The Higgs boson H appears

$\mathrm{L}_{S M}=\mathrm{L}_{\text {Kinetic }}+\mathrm{L}_{\text {Higgs }}+\mathrm{L}_{\text {Yukawa }}$: The Yukawa Part

Since we have a Higgs field we can (should?) add (ad-hoc) interactions between ϕ and the fermions in a gauge invariant way.

are arbitrary complex matrices which operate in family space (3×3)
\rightarrow Flavour physics!

$\mathrm{L}_{S M}=\mathrm{L}_{\text {Kinetic }}+\mathrm{L}_{\text {Higgs }}+\mathrm{L}_{\text {Yukawa }}$

: The Yukawa Part

Writing the first term explicitly:

$$
\begin{aligned}
& Y_{i j}^{d}\left(\overline{u_{L}^{I}}, \overline{d_{L}^{I}}\right)_{i}\binom{\varphi^{+}}{\varphi^{0}} d_{R j}^{I}= \\
& \left(\begin{array}{l}
Y_{11}^{d}\left(\overline{u_{L}^{I}}, \overline{d_{L}^{I}}\right)\binom{\varphi^{+}}{\varphi^{0}} \quad Y_{12}^{d}\left(\overline{u_{L}^{I}}, \overline{d_{L}^{I}}\right)\binom{\varphi^{+}}{\varphi^{0}} \\
Y_{13}^{d}\left(\overline{u_{L}^{I}}, \overline{d_{L}^{I}}\right)\binom{\varphi^{+}}{\varphi^{0}} \\
Y_{21}^{d}\left(\overline{c_{L}^{I}}, \overline{s_{L}^{I}}\right)\binom{\varphi^{+}}{\varphi^{0}} \quad Y_{22}^{d}\left(\overline{c_{L}^{I}}, \overline{s_{L}^{I}}\right)\binom{\varphi^{+}}{\varphi^{0}} \\
Y_{13}^{d}\left(\overline{c_{L}^{I}}, \overline{s_{L}^{I}}\right)\binom{\varphi^{+}}{\varphi^{0}} \\
Y_{31}^{d}\left(\overline{t_{L}^{I}}, \overline{b_{L}^{I}}\right)\binom{\varphi_{R}^{+}}{\varphi^{0}} \\
Y_{R 2}^{I} \\
b_{R}^{I}
\end{array}\right) \\
& \left.\overline{t_{L}^{I}} \overline{b_{L}^{I}}\right)\binom{\varphi^{+}}{\varphi^{0}} \\
& Y_{33}^{d}\left(\overline{t_{L}^{I}}, \overline{b_{L}^{I}}\right)\binom{\varphi^{+}}{\varphi^{0}}
\end{aligned}
$$

$\mathrm{L}_{\text {SM }}=\mathrm{L}_{\text {Kinetic }}+\mathrm{L}_{\text {Higgs }}+\mathrm{L}_{\text {Yukawa }}$

There are 3 Yukawa matrices (in the case of massless neutrino's):

$$
Y_{i j}^{d} \quad, \quad Y_{i j}^{u} \quad, \quad Y_{i j}^{l}
$$

Each matrix is 3×3 complex:

- 27 real parameters
- 27 imaginary parameters ("phases")
> many of the parameters are equivalent, since the physics described
by one set of couplings is the same as another
$>$ It can be shown (see ref. [Nir]) that the independent parameters are:
- 12 real parameters
- 1 imaginary phase
$>$ This single phase is the source of all CP violation in the Standard Model

Start with the Yukawa Lagrangian

$$
\begin{aligned}
& \left.-L_{Y_{u k}}=Y_{i j}^{d} \overline{u_{L}^{I}}, \overline{d_{L}^{I}}\right)_{i}\binom{\varphi^{+}}{\varphi^{0}} d_{R j}^{I}+Y_{i j}^{u}(\ldots)+Y_{i j}^{l}(\ldots) \\
& \text { S.S.B. }: \Re e\left(\varphi^{0}\right) \rightarrow \frac{v+H}{\sqrt{2}}
\end{aligned}
$$

After which the following mass term emerges:

$$
\begin{aligned}
-L_{Y u k} \rightarrow-L_{\text {Mass }} & =\overline{d_{L i}^{I}} M_{i j}^{d} d_{R j}^{I}+\overline{u_{L i}^{I}} M_{i j}^{u} u_{R j}^{I} \\
& +\overline{l_{L i}^{I}} M_{i j}^{l} l_{R j}^{I}+h . c . \\
\text { with } \quad M_{i j}^{d} \equiv & \frac{v}{\sqrt{2}} Y_{i j}^{d} \quad, \quad M_{i j}^{u} \equiv \frac{v}{\sqrt{2}} Y_{i j}^{u} \quad, \quad M_{i j}^{l} \equiv \frac{v}{\sqrt{2}} Y_{i j}^{l}
\end{aligned}
$$

$\mathrm{L}_{\text {Mass }}$ is CP violating in a similar way as $\mathrm{L}_{\text {Yuk }}$

Writing in an explicit form:

The matrices M can always be diagonalised by unitary matrices V_{L}^{f} and $V_{R}{ }^{f}$ such that:

$$
V_{L}^{f} M^{f} V_{R}^{f \dagger}=M_{\text {diagonal }}^{f} \quad\left[\left(\overline{d^{I}}, \overline{s^{l}}, \overline{b^{\bar{\prime}}}\right)_{L} V_{L}^{f \dagger} V_{L}^{f} M^{f} V_{R}^{f \dagger} V_{R}^{f}\left(\begin{array}{l}
d^{I} \\
s^{I} \\
b^{I}
\end{array}\right)_{R}\right]
$$

Then the real fermion mass eigenstates are given by:

$$
\begin{array}{ll}
d_{L i}=\left(V_{L}^{d}\right)_{i j} \cdot d_{L j}^{I} & d_{R i}=\left(V_{R}^{d}\right)_{i j} \cdot d_{R j}^{I} \\
u_{L i}=\left(V_{L}^{u}\right)_{i j} \cdot u_{L j}^{I} & u_{R i}=\left(V_{R}^{u}\right)_{i j} \cdot u_{R j}^{I} \\
l_{L i}=\left(V_{L}^{l}\right)_{i j} \cdot l_{L j}^{I} & l_{R i}=\left(V_{R}^{l}\right)_{i j} \cdot l_{R j}^{I}
\end{array}
$$

$d_{L}{ }^{I}, u_{L}^{I}, l_{L}^{I} \quad$ are the weak interaction eigenstates
$d_{L}, u_{L}, l_{L} \quad$ are the mass eigenstates ("physical particles")

$$
\begin{aligned}
& \text { In terms of the mass eigenstates: } \\
& \left.\begin{array}{lll}
-L_{\text {Mass }}=(\bar{d}, \bar{s}, \bar{b})_{L} \mathrm{~g} \\
& m_{s} & \\
& & m_{b}
\end{array}\right)\left(\begin{array}{l}
m_{d} \\
s \\
s \\
b
\end{array}\right)_{R}+(\bar{u}, \bar{c}, \bar{t})_{L} \mathrm{~g}\left(\begin{array}{lll}
m_{u} & & \\
& m_{c} & \\
& & m_{t}
\end{array}\right)\left(\begin{array}{l}
u \\
g \\
c \\
t
\end{array}\right)_{R} \\
& +(\bar{e}, \bar{\mu}, \bar{\tau})_{L} \mathrm{~g}\left(\begin{array}{lll}
m_{e} & & \\
& m_{\mu} & \\
& & m_{\tau}
\end{array}\right)\left(\begin{array}{l}
e \\
\mathrm{~g} \\
\mu \\
\tau
\end{array}\right)_{R}+\text { hic. } \\
& -L_{\text {Mass }}=m_{u} \bar{u} u+m_{c} \bar{c} c+m_{t} \overline{t t} \\
& +m_{d} \bar{d} d+m_{s} \bar{s} S+m_{b} \bar{b} b \\
& +m_{e} \bar{e} e+m_{\mu} \bar{\mu} \mu+m_{\tau} \bar{\tau} \tau
\end{aligned}
$$

In flavour space one can choose:
Weak basis: The gauge currents are diagonal in flavour space, but the flavour mass matrices are non-diagonal
Mass basis: The fermion masses are diagonal, but some gauge currents (charged weak interactions) are not diagonal in flavour space
$\begin{array}{ll}\text { In the weak basis: } L_{\text {Yukawa }} & =C P \text { violating } \\ \text { In the mass basis: } L_{\text {Yukawa }} \rightarrow L_{\text {Mass }} & =C P \text { conserving }\end{array}$
\rightarrow What happened to the charged current interactions (in $\left.\mathrm{L}_{\text {Kinetic }}\right)$?

$\mathrm{L}_{\mathrm{W}} \rightarrow \mathrm{L}_{C K M} \quad:$ The Charged Current

The charged current interaction for quarks in the interaction basis is:

$$
-L_{W^{+}}=\frac{g}{\sqrt{2}} \overline{u_{L i}^{I}} \quad \gamma^{\mu} \quad d_{L i}^{I} \quad W_{\mu}^{+}
$$

The charged current interaction for quarks in the mass basis is:

$$
-L_{W^{+}}=\frac{g}{\sqrt{2}} \overline{u_{L i}} V_{L}^{u} \quad \gamma^{\mu} \quad V_{L}^{d \dagger} d_{L i} \quad W_{\mu}^{+}
$$

The unitary matrix: $\quad V_{\text {CKM }}=\left(V_{L}^{u} \cdot V_{L}^{d \dagger}\right) \quad$ With: $\quad V_{\text {CKM }} \cdot V_{C K M}^{\dagger}=1$
is the Cabibbo Kobayashi Maskawa mixing matrix:

$$
-L_{W^{+}}=\frac{g}{\sqrt{2}}(\bar{u}, \bar{c}, \bar{t})_{L}\left(V_{C K M}\right)\left(\begin{array}{l}
d \\
s \\
b
\end{array}\right)_{L} \gamma^{\mu} W_{\mu}^{+}
$$

Lepton sector: similarly $\quad V_{M N S}=\left(V_{L}^{V} \cdot V_{L}^{l \dagger}\right)$
However, for massless neutrino's: $V_{L}{ }^{\nu}=$ arbitrary. Choose it such that $V_{M N S}=1$
\rightarrow There is no mixing in the lepton sector

Charged Currents

The charged current term reads:

$$
\begin{aligned}
L_{C C} & =\frac{g}{\sqrt{2}} \overline{u_{L i}^{I}} \gamma^{\mu} W_{\mu}^{-} d_{L i}^{I}+\frac{g}{\sqrt{2}} \overline{d_{L i}^{I}} \gamma^{\mu} W_{\mu}^{+} u_{L i}^{I}=J_{C C}^{\mu-} W_{\mu}^{-}+J_{C C}^{\mu+} W_{\mu}^{+} \\
& =\frac{g}{\sqrt{2}} \overline{u_{i}}\left(\frac{1-\gamma^{5}}{2}\right) \gamma^{\mu} W_{\mu}^{-} V_{i j}\left(\frac{1-\gamma^{5}}{2}\right) d_{j}+\frac{g}{\sqrt{2}} \overline{d_{j}}\left(\frac{1-\gamma^{5}}{2}\right) \gamma^{\mu} W_{\mu}^{+} V_{j i}^{\dagger}\left(\frac{1-\gamma^{5}}{2}\right) u_{i} \\
& =\frac{g}{\sqrt{2}} \overline{u_{i}} \gamma^{\mu} W_{\mu}^{-} V_{i j}\left(1-\gamma^{5}\right) d_{j}+\frac{g}{\sqrt{2}} \overline{d_{j}} \gamma^{\mu} W_{\mu}^{+} V_{i j}^{*}\left(1-\gamma^{5}\right) u_{i}
\end{aligned}
$$

Under the CP operator this gives:

$$
L_{C C} \xrightarrow{C P} \frac{g}{\sqrt{2}} \overline{d_{j}} \gamma^{\mu} W_{\mu}^{+} V_{i j}\left(1-\gamma^{5}\right) u_{i}+\frac{g}{\sqrt{2}} \overline{u_{i}} \gamma^{\mu} W_{\mu}^{i} V_{i j}^{*}\left(1-\gamma^{5}\right) d_{j}
$$

A comparison shows that CP is conserved only if $V_{i j}=V_{i j}{ }^{*}$
In general the charged current term is CP violating

The Standard Model Lagrangian (recap)

$$
\mathrm{L}_{S M}=\mathrm{L}_{\text {Kinetic }}+\mathrm{L}_{\text {Higgs }}+\mathrm{L}_{\text {Yukawa }}
$$

- $L_{\text {Kinetic }}$: •Introduce the massless fermion fields
-Require local gauge invariance \rightarrow gives rise to existence of gauge bosons
\rightarrow CP Conserving
- $\left.L_{\text {Higgs }}: \begin{array}{c}\text { Introduce Higgs potential with }<\phi>\neq 0 \\ \cdot \text { Spontaneous symmetry breaking }\end{array}\right\} \begin{gathered}G_{S U}=S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y} \rightarrow S U(3)_{C} \times U(1)_{Q} \\ \text { The } \mathrm{W}^{+}, \mathrm{W}, \mathrm{Z}^{-} \text {bosons acquire a mass }\end{gathered}$
\rightarrow CP Conserving
- $L_{\text {Yukawa }}$: •Ad hoc interactions between Higgs field \& fermions
\rightarrow CP violating with a single phase
- $L_{\text {Yukawa }} \rightarrow L_{\text {mass }}$: • fermion weak eigenstates:
- mass matrix is (3×3) non-diagonal
- fermion mass eigenstates:
- mass matrix is (3x3) diagonal

- $L_{\text {Kinetic }}$ in mass eigenstates: CKM - matrix \rightarrow CP violating with a single Niels $_{\text {phasing (73) }}$
$L_{S M}=L_{\text {Kinetic }}+L_{\text {figs }}+L_{\text {Yukawa }}$

Recap

$$
\begin{aligned}
-L_{\text {Yuk }} & =Y_{i j}^{d}\left(\overline{u_{L}^{I}}, \overline{d_{L}^{I}}\right)_{i}\binom{\varphi^{+}}{\varphi^{0}} d_{R j}^{I}+\ldots \\
L_{\text {Kinetic }} & =\frac{g}{\sqrt{2}} \overline{u_{L i}^{I}} \gamma^{\mu} W_{\mu}^{-} d_{L i}^{I}+\frac{g}{\sqrt{2}} \overline{d_{L i}^{I}} \gamma^{\mu} W_{\mu}^{+} u_{L i}^{I}+\ldots
\end{aligned}
$$

Diagonalize Yukawa matrix Y_{ij}

- Mass terms
- Quarks rotate
- Off diagonal terms in charged current couplings
$\left(\begin{array}{c}d^{I} \\ s^{I} \\ b^{I}\end{array}\right) \rightarrow V_{\text {СКМ }}\left(\begin{array}{l}d \\ s \\ b\end{array}\right)$

$$
\left.\begin{array}{rl}
-L_{\text {Mass }} & =\left(\begin{array}{lll}
\bar{d}, \bar{s}, \bar{b})_{L} g^{m_{d}} & & \\
& m_{s} & \\
& & m_{b}
\end{array}\right)\left(\begin{array}{l}
d \\
s \\
b
\end{array}\right)_{R}+(\bar{u}, \bar{c}, \bar{t})_{L}\left\{^{m_{u}}\right. \\
& m_{c} \\
& \\
L_{C K M} & =\frac{g}{\sqrt{2}} \overline{u_{i}} \gamma^{\mu} W_{\mu}^{-} V_{i j}\left(1-\gamma^{5}\right) d_{j}+\frac{g}{\sqrt{2}} \overline{d_{j}} \gamma^{u} W_{\mu}^{+} V_{i j}^{*}\left(1-\gamma^{5}\right) u_{i}+\ldots \\
t
\end{array}\right)_{R}+\ldots .
$$

$$
L_{S M}=L_{C K M}+L_{\text {Figs }}+L_{\text {Mass }}
$$

Ok.... We've got the CKM matrix, now what?

$$
\left(\begin{array}{c}
d^{\prime} \\
s^{\prime} \\
b^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)\left(\begin{array}{c}
d \\
s \\
b
\end{array}\right)
$$

- It's unitary
- "probabilities add up to 1 ":
$-d^{\prime}=0.97 d+0.22 s+0.003 b \quad\left(0.97^{2}+0.22^{2}+0.003^{2}=1\right)$
- How many free parameters?
- How many real/complex?
- How do we normally visualize these parameters?

Personal impression:

- People think it is a complicated part of the Standard Model (me too:-). Why?

1) Non-intuitive concepts?

- Imaginary phase in transition amplitude, $\mathrm{T} \sim \mathrm{e}^{\mathrm{i} \varphi}$
- Different bases to express quark states, d' $=0.97 \mathrm{~d}+0.22 \mathrm{~s}+0.003 \mathrm{~b}$
- Oscillations (mixing) of mesons:

$$
\left|K^{0}>\leftrightarrow\right| \text { ? } K^{0}>
$$

2) Complicated calculations?

$$
\begin{aligned}
& \Gamma\left(B^{0} \rightarrow f\right) \propto\left|A_{f}\right|\left[\left[\left.g_{-}(t)\right|^{2}+|\lambda|^{2}\left|g_{-}(t)\right|^{2}+2 \Re\left(\lambda g_{+}^{*}(t) g_{-}(t)\right)\right]\right. \\
& \Gamma\left(\bar{B}^{0} \rightarrow f\right) \propto \left\lvert\, \bar{A}_{f}{ }^{2}\left[\left|g_{+}(t)\right|^{+} \frac{1}{|\lambda|^{2}}\left|g_{-}(t)\right|^{2}+\frac{2}{|\lambda|^{2}} \Re\left(\lambda^{0} g_{+}^{*}(t) g_{-}(t)\right)\right]\right.
\end{aligned}
$$

3) Many decay modes? "Beetopaipaigamma..."

- PDG reports 347 decay modes of the B^{0}-meson:
- Γ_{1} I+ v_{l} anything $(10.33 \pm 0.28) \times 10^{-2}$
- $\Gamma_{347} v v \gamma$ $<4.7 \times 10^{-5}$ $C L=90 \%$
- And for one decay there are often more than one decay amplitudes...
3.3 Eigenvalues and -vectors of Mass-decay Matrix 29
3.4 Time evolution . 30
3.5 The Amplitude of the Box diagram . 32

Table of contents
3.6 Meson Decays . 35
3.7 Classification of CP Violating Effects . 36

Introduction

1 CP Violation in the Standard Model
1.1 Parity transformation . 3
1.1.1 The Wu-experiment: ${ }^{60}$ Co decay . 4
1.1.2 Parity violation . 5
1.1.3 CPT . 7
1.2 C, P and T: Discrete symmetries in Maxwell's equations 8
1.3 C, P and T: Discrete symmetries in QED 9
1.4 CP violation and the Standard Model Lagrangian 12
1.4.1 Yukawa couplings and the Origin of Quark Mixing 12
1.4.2 CP violation . 15

2 The Cabibbo-Kobayashi-Maskawa Matrix
2.1 Unitarity Triangle(s) . 17
2.2 Size of matrix elements . 20
2.3 Wolfenstein parameterization . 23
2.4 Discussion . 26

3 Neutral Meson Decays
3.1 Neutral Meson Oscillations . 27
3.2 The mass and decay matrix . 27 iii

4 CP violation in the B-system
4.1β : the $B^{0} \rightarrow J / \psi K_{S}^{0}$ decay . 40
$4.2 \beta_{s}$: the $B_{s}^{0} \rightarrow J / \psi \phi$ decay . 44
$4.3 \quad \gamma$: the $B_{s}^{0} \rightarrow D_{s}^{ \pm} K^{\mp}$ decay . 46
4.4 Direct CP violation: the $B^{0} \rightarrow \pi^{-} K^{+}$decay 48
4.5 CP violation in mixing: the $B^{0} \rightarrow l^{+} \nu X$ decay 49
4.6 Penguin diagram: the $B^{0} \rightarrow \phi K_{S}^{0}$ decay . 50

5 CP violation in the K-system
5.1 CP and pions
5.2 Description of the K-system . 53
5.3 The Cronin-Fitch experiment . 54
5.3.1 Regeneration . 56
5.4 CP violation in mixing: ϵ. 57
5.5 CP violation in decay: ϵ^{\prime}. 58

6 Experimental Aspects and Present Knowledge of Unitarity Triangle
6.1 B-meson production
6.2 Flavour Tagging . 65
6.3 Present Knowledge on Unitarity Triangle 66
6.3.1 Measurement of $\sin 2 \beta$. 67
6.3.2 Measurement of ϵ_{K}. 67

6.3.4 Measurement of Δm. 68
6.4 Outlook: the LHCb experiment . 71

