Particle Physics II – CP violation (also known as "Physics of Anti-matter")

Lecture 1

N. Tuning

Niels Tuning (1)

Plan

- 1) Mon 2 Feb: Anti-matter + SM
- 2) Wed 4 Feb: CKM matrix + Unitarity Triangle
- 3) Mon 9 Feb: Mixing + Master eqs. + $B^0 \rightarrow J/\psi K_s$
- 4) Wed 11 Feb: CP violation in B_(s) decays (I)
- 5) Mon 16 Feb: CP violation in B_(s) decays (II)
- 6) Wed 18 Feb: CP violation in K decays + Overview
- 7) Mon 23 Feb: Exam on part 1 (CP violation)

Final Mark:

- if (mark > 5.5) mark = max(exam, 0.8*exam + 0.2*homework)
- else mark = exam

> In parallel: Lectures on Flavour Physics by prof.dr. R. Fleischer

Tuesday + Thrusday

Niels Tuning (2)

2 x 45 min
1) Keep track
of room!

Periode SEM2 - Hoorcollege (Aanwezigheid verplicht)					
Groep	Blokweken	Dag	Tijd	Gebouw	Zaal
	6 7 8 9 10 11 12 13 14 15 16 17 18				
1		Maandag	09.00 - 10.45	MIN	205
1		Maandag	09.00 - 10.45	MIN	023
1		Maandag	09.00 - 10.45	BBG	023
1		Maandag	09.00 - 10.45	MIN	012
1		Woensdag	09.00 - 10.45	MIN	025
1		Woensdag	09.00 - 10.45	BBG	061
	·		-	-	-

Periode SEM2 - Werkcollege (Aanwezigheid verplicht)

Groep	Blokweken	Dag	Tijd	Gebouw	Zaal
	6 7 8 9 10 11 12 13 14 15 16 17 18				
1		Maandag	11.00 - 12.45	MIN	205
1		Maandag	11.00 - 12.45	MIN	023
1		Maandag	11.00 - 12.45	BBG	007
1		Maandag	11.00 - 12.45	MIN	012
1		Woensdag	11.00 - 12.45	MIN	025
1		Woensdag	11.00 - 12.45	BBG	061
	·				·

1) Monday + Wednesday:

- Start: 9:00 → 9:15
- End: 11:00
- Werkcollege: 11:00 ?

Table of contents

In	Introduction		1
1	СР	Violation in the Standard Model	3
_	1 1	Parity transformation	3
	1.1		5
		1.1.1 The Wu-experiment: 60 Co decay	4
		1.1.2 Parity violation	5
		1.1.3 CPT	7
	1.2	C, P and T: Discrete symmetries in Maxwell's equations $\hfill\hf$	8
	1.3	C, P and T: Discrete symmetries in QED	9
	1.4	CP violation and the Standard Model Lagrangian $\hdots \ldots \hdots \hdots\hdo$	12
		1.4.1 Yukawa couplings and the Origin of Quark Mixing	12
		1.4.2 CP violation	15
2	\mathbf{The}	Cabibbo-Kobayashi-Maskawa Matrix	17
	2.1	Unitarity Triangle(s) \ldots	17
	2.2	Size of matrix elements	20
	2.3	Wolfenstein parameterization	23
	2.4	Discussion	26
3	Neu	atral Meson Decays	27
	3.1	Neutral Meson Oscillations	27
	3.2	The mass and decay matrix	27

	3.3	Eigenvalues and -vectors of Mass-decay Matrix	29
	3.4	Time evolution \ldots	30
	3.5	The Amplitude of the Box diagram $\hdots \ldots \hdots \hdddt \hdots \hdots\hdots \hdots \hdd$	32
	3.6	Meson Decays	35
	3.7	Classification of CP Violating Effects	36
4	CP	violation in the B-system	39
	4.1	β : the $B^0 \rightarrow I/2/K^0$ decay	40
	4.2	β : the $B^0 \rightarrow J/\psi h g$ decay	40
	4.2	p_s , the $B_s \to f \psi \psi$ decay	46
	4.5	Direct CP violation: the $B^0 \rightarrow \pi^- K^+$ decay	40
	4.4	Direct C1 violation, the $D \rightarrow \pi K^{-}$ decay	40
	4.5	CF violation in mixing: the $D \to t^* \nu A$ decay	49 50
	4.0	rengum diagram: the $D^* \to \phi \Lambda_S$ decay	50
5	\mathbf{CP}	violation in the K-system	51
	5.1	CP and pions \hdots	51
	5.2	Description of the K-system	53
	5.3	The Cronin-Fitch experiment	54
		5.3.1 Regeneration	56
	5.4	CP violation in mixing: ϵ	57
	5.5	CP violation in decay: ϵ'	58
G	Erro	animental Aspests and Descent Knowledge of Unitarity Twicngle	61
0	ыхр	Present Knowledge of Unitarity Triangle	01
	0.1	B-meson production	01
	6.2	Flavour lagging	65
	6.3	Present Knowledge on Unitarity Triangle	66
		6.3.1 Measurement of $\sin 2\beta$	67
		6.3.2 Measurement of ϵ_K	67
		6.3.3 $ V_{ub}/V_{cb} $ 6.3.4Measurement of Δm	68 68
	6.4	Outlook: the LHCb experiment	71

Introduction: it's all about the charged current

- "CP violation" is about the weak interactions,
- In particular, the charged current interactions:

- The interesting stuff happens in the interaction with quarks
- Therefore, people also refer to this field as <u>"flavour</u> physics"

Motivation 1: Understanding the Standard Model

- "CP violation" is about the <u>weak interactions</u>,
- In particular, the charged current interactions:

• Quarks can only change flavour through charged current interactions

Introduction: it's all about the charged current

- "CP violation" is about the weak interactions,
- In particular, the charged current interactions:

- In 1st hour:
- <u>P-parity</u>, C-parity, CP-parity
- \rightarrow the neutrino shows that P-parity is maximally violated

Introduction: it's all about the charged current

- "CP violation" is about the weak interactions,
- In particular, the charged current interactions:

• \rightarrow Symmetry related to particle – anti-particle

Motivation 2: Understanding the universe

- It's about differences in matter and anti-matter
 - Why would they be different in the first place?
 - We see they are different: our universe is matter dominated

Where and how do we generate the Baryon asymmetry?

- No definitive answer to this question yet!
- In 1967 A. Sacharov formulated a set of general conditions that any such mechanism has to meet
 - You need a process that violates the baryon number B: (Baryon number of matter=1, of anti-matter = -1)
 - 2) Both C and CP symmetries should be violated
 - 3) Conditions 1) and 2) should occur during a phase in which there is no thermal equilibrium
- In these lectures we will focus on 2): CP violation
- Apart from cosmological considerations, I will convince you that there are more interesting aspects in CP violation

Introduction: it's all about the charged current

- "CP violation" is about the weak interactions,
- In particular, the charged current interactions:

- Same initial and final state
- Look at interference between $B^0 \rightarrow f_{CP}$ and $B^0 \rightarrow \overline{B^0} \rightarrow f_{CP}$

Motivation 3: Sensitive to find new physics

- "CP violation" is about the weak interactions,
- In particular, the charged current interactions:

• Are heavy particles running around in loops?

Recap:

- CP-violation (or flavour physics) is about charged current interactions
- Interesting because:
 - Standard Model: in the heart of quark interactions

 $d \longrightarrow u^{W^{-}} s \longrightarrow u^{W^{-}}$

 <u>Cosmology:</u> related to matter – anti-matter asymetry

3) <u>Beyond Standard Model:</u> measurements are sensitive to new particles

Personal impression:

- People think it is a complicated part of the Standard Model (me too:-). Why?
- 1) Non-intuitive concepts?
 - *Imaginary phase* in transition amplitude, $T \sim e^{i\phi}$
 - Different bases to express quark states, d'=0.97 d + 0.22 s + 0.003 b
 - Oscillations (mixing) of mesons: $/K^0 > \leftrightarrow | \overline{K}^0 >$
- 2) Complicated calculations?

$$\Gamma\left(B^{0} \to f\right) \propto \left|A_{f}\right|^{2} \left[\left|g_{+}\left(t\right)\right|^{2} + \left|\lambda\right|^{2}\left|g_{-}\left(t\right)\right|^{2} + 2\Re\left(\lambda g_{+}^{*}\left(t\right)g_{-}\left(t\right)\right)\right]$$

$$\Gamma\left(\overline{B}^{0} \to f\right) \propto \left|\overline{A}_{f}\right|^{2} \left[\left|g_{+}\left(t\right)\right|^{2} + \frac{1}{\left|\lambda\right|^{2}}\left|g_{-}\left(t\right)\right|^{2} + \frac{2}{\left|\lambda\right|^{2}}\Re\left(\lambda^{*}g_{+}^{*}\left(t\right)g_{-}\left(t\right)\right)\right]$$

- 3) Many decay modes? "Beetopaipaigamma..."
 - PDG reports 347 decay modes of the B⁰-meson:
 - $\Gamma_1 \ l^+ v_l \text{ anything}$ (10.33 ± 0.28) × 10⁻²
 - $\Gamma_{347} V V Y$ <4.7 × 10⁻⁵ CL=90%
 - And for one decay there are often more than one decay amplitudes...

- Dirac (1928): Prediction
- Anderson (1932): Discovery
- Present-day experiments

Schrödinger

Classic relation between E and p:

$$E = \frac{\vec{p}^2}{2m}$$

 $E \to i \frac{\partial}{\partial t}$

Quantum mechanical substitution: (operator acting on wave function ψ)

Schrodinger equation:

Solution:

$$i\frac{\partial}{\partial t}\,\psi=\frac{-1}{2m}\,\nabla^2\psi$$

and

$$\psi = N \; e^{i(\vec{p}\vec{x} - Et)}$$

(show it is a solution) Niels Tuning (18)

 $ec{p}
ightarrow -i ec{
abla}$

Klein-Gordon

Relativistic relation between E and p:

Quantum mechanical substitution: (operator acting on wave function ψ)

 $E \to i \frac{\partial}{\partial t}$ and $\vec{p} \to -i \vec{\nabla}$

Klein-Gordon equation:

$$-\frac{\partial^2}{\partial t^2}\phi = -\nabla^2\phi + m^2 \phi$$

 $E^2 = \vec{p}^2 + m^2$

or :
$$\left(\Box + m^2\right) \phi(x) = 0$$

or : $\left(\partial_\mu \partial^\mu + m^2\right) \phi(x) = 0$

Solution:

$$\phi(x) = N \ e^{-ip_{\mu}x^{\mu}}$$
 with eigenvalues: $E^2 = \overline{p}^2 + m^2$

But! Negative energy solution?

$$E = \pm \sqrt{\vec{p}^2 + m^2}$$

Niels Tuning (19)

Paul Dirac tried to find an equation that was

- relativistically correct,
- but <u>linear</u> in d/dt to avoid negative energies
- (and linear in d/dx (or ∇) for Lorentz covariance)

He found an equation that

- turned out to describe spin-1/2 particles and
- predicted the existence of anti-particles

How to find that relativistic, linear equation ??

Write Hamiltonian in general form,

$$H\psi = \left(\vec{\alpha}\cdot\vec{p} + \beta m\right) \ \psi$$

but when squared, it must satisfy:

Let's find
$$lpha_i$$
 and eta !

$$H^2\psi = \left(\vec{p}^2 + m^2 \right) \, \psi$$

$$H^{2}\psi = (\alpha_{i}p_{i} + \beta m)^{2}\psi \quad \text{with}: i = 1, 2, 3$$
$$= \left(\underbrace{\alpha_{i}^{2}}_{=1}p_{i}^{2} + \underbrace{(\alpha_{i}\alpha_{j} + \alpha_{j}\alpha_{i})}_{=0}p_{i}p_{j} + \underbrace{(\alpha_{i}\beta + \beta\alpha_{i})}_{=0}p_{i}m + \underbrace{\beta^{2}}_{=1}m^{2}\right)\psi$$

So, α_i and β must satisfy:

•
$$\alpha_1^2 = \alpha_2^2 = \alpha_3^2 = \beta^2$$

- $\alpha_1, \alpha_2, \alpha_3, \beta$ anti-commute with each other
- (not a unique choice!)

 $H\psi = \left(\vec{\alpha} \cdot \vec{p} + \beta m\right) \,\psi$

> What are α and β ??

The lowest dimensional matrix that has the desired behaviour is <u>4x4</u> !?

Often used Pauli-Dirac representation:

$$\vec{\alpha} = \begin{pmatrix} 0 & \vec{\sigma} \\ \vec{\sigma} & 0 \end{pmatrix} \qquad ; \qquad \beta = \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix}$$

with:

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad ; \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad ; \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

So, α_i and β must satisfy:

•
$$\alpha_1^2 = \alpha_2^2 = \alpha_3^2 = \beta^2$$

- $\alpha_1, \alpha_2, \alpha_3, \beta$ anti-commute with each other
- (not a unique choice!)

$$H\psi = \left(\vec{\alpha} \cdot \vec{p} + \beta m\right) \,\psi$$

Usual substitution: $H \to i\frac{\partial}{\partial t}, \ \vec{p} \to -i\vec{\nabla}$ Leads to: $i\frac{\partial}{\partial t}\psi = \left(-i\vec{\alpha}\cdot\vec{\nabla}+\beta m\right)\psi$ Multiply by β : $\left(i\beta\frac{\partial}{\partial t}\psi + i\beta\alpha_1\frac{\partial}{\partial x} + i\beta\alpha_2\frac{\partial}{\partial y} + i\beta\alpha_3\frac{\partial}{\partial z}\right)\psi^{(\beta^2=1)} = 0$

Gives the famous Dirac equation:

$$(i\gamma^{\mu}\partial_{\mu} - m) \ \psi = 0$$

with : $\gamma^{\mu} = (\beta, \beta \vec{\alpha}) \equiv \text{Dirac } \gamma - \text{matrices}$

for each
 j=1,2,3,4 :
$$\sum_{k=1}^{4} \left[\sum_{\mu=0}^{3} i (\gamma^{\mu})_{jk} \partial_{\mu} - m \delta_{jk} \right] (\psi_k) = 0$$

The famous Dirac equation:

$$(i\gamma^{\mu}\partial_{\mu} - m) \ \psi = 0$$

with : $\gamma^{\mu} = (\beta, \beta \vec{\alpha}) \equiv \text{Dirac } \gamma - \text{matrices}$

R.I.P. :

The famous Dirac equation:

$$(i\gamma^{\mu}\partial_{\mu} - m) \psi = 0$$

with : $\gamma^{\mu} = (\beta, \beta \vec{\alpha}) \equiv \text{Dirac } \gamma - \text{matrices}$

Remember!

- μ: <u>Lorentz index</u>
- 4x4 γ matrix: <u>Dirac index</u>

Less compact notation:

for each j=1,2,3,4 : $\sum_{k=1}^{4} \left[\sum_{\mu=0}^{3} i (\gamma^{\mu})_{jk} \partial_{\mu} - m \delta_{jk} \right] (\psi_k) = 0$

Even less compact... :

$$\begin{bmatrix} \begin{pmatrix} \mathbf{1} & 0 \\ 0 & -\mathbf{1} \end{bmatrix} \frac{i\partial}{\partial t} + \begin{pmatrix} 0 & \sigma_1 \\ -\sigma_1 & 0 \end{bmatrix} \frac{i\partial}{\partial x} + \begin{pmatrix} 0 & \sigma_2 \\ -\sigma_2 & 0 \end{bmatrix} \frac{i\partial}{\partial y} + \begin{pmatrix} 0 & \sigma_3 \\ -\sigma_3 & 0 \end{bmatrix} \frac{i\partial}{\partial z} - \begin{pmatrix} \mathbf{1} & 0 \\ 0 & \mathbf{1} \end{bmatrix} m \begin{bmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \\ \psi_4 \end{bmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

> What are the solutions for ψ ??

$$H\psi = \left(\vec{\alpha} \cdot \vec{p} + \beta m\right) \,\psi$$

The famous Dirac equation:

$$(i\gamma^{\mu}\partial_{\mu} - m) \ \psi = 0$$

with : $\gamma^{\mu} = (\beta, \beta \vec{\alpha}) \equiv \text{Dirac } \gamma - \text{matrices}$

Solutions to the Dirac equation? Try plane wave: $\psi(x) = u(p) e^{-ipx}$

$$(\gamma^{\mu} p_{\mu} - m) u(p) = 0$$

or: $(\not p - m) u(p) = 0$

Linear set of eq:

$$\begin{pmatrix} \mathbf{1} & 0 \\ 0 & -\mathbf{1} \end{pmatrix} E - \begin{pmatrix} 0 & \sigma_i \\ -\sigma_i & 0 \end{pmatrix} p^i - \begin{pmatrix} \mathbf{1} & 0 \\ 0 & \mathbf{1} \end{pmatrix} m \left] \begin{pmatrix} u_A \\ u_B \end{pmatrix} = 0$$

2 coupled equations:

$$\begin{cases} (\vec{\sigma} \cdot \vec{p}) \ u_B &= (E-m) \ u_A \\ (\vec{\sigma} \cdot \vec{p}) \ u_A &= (E+m) \ u_B \end{cases}$$

If
$$p=0$$
: $u^{(1)} = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}$, $u^{(2)} = \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}$, $u^{(3)} = \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}$, $u^{(4)} = \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix}$

Niels Tuning (26)

$$H\psi = \left(\vec{\alpha} \cdot \vec{p} + \beta m\right) \,\psi$$

Niels Tuning (27)

$$H\psi = \left(\vec{\alpha} \cdot \vec{p} + \beta m\right) \,\psi$$

The famous Dirac equation:

$$(i\gamma^{\mu}\partial_{\mu} - m) \ \psi = 0$$

with : $\gamma^{\mu} = (\beta, \beta \vec{\alpha}) \equiv \text{Dirac } \gamma - \text{matrices}$

 $\psi\,$ is 4-component spinor

4 solutions correspond to fermions and anti-fermions with spin+1/2 and -1/2

Two solutions for E>0:

(and two for E<0)

$$\begin{bmatrix} 1 \\ 0 \\ \vec{\sigma} \bullet \vec{p} / (E+m) \\ 0 \end{bmatrix} \begin{bmatrix} u^{(2)} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vec{\sigma} \bullet \vec{p} / (E+m) \\ \vec{\sigma} \bullet \vec{p} / (E+m) \end{bmatrix}_{\text{Is Tuning (29)}}$$

Discovery of anti-matter

Nobelprize 1936

Niels Tuning (30)

Why anti-matter must exist!

• "Feynman-Stueckelberg interpretation"

• "One observer's electron is the other observer's positron"

CPT theorem

- CPT transformation:
 - C: interchange particles and anti-particles
 - P: reverse space-coordinates
 - T: Reverse time-coordinate
- CPT transformation closely related to Lorentz-boost
- > CPT invariance implies
 - Particles and anti-particles have same mass and lifetime
 - Lorentz invariance

CPT is conserved, but does anti-matter fall down?

Experiments

- Need to have neutral anti-matter
 - Otherwise electrostatic forces spoil the weak gravitational force
- Make anti-protons
 - Accelerator
 - Anti-proton factory
 - Decelerator
 - Storage
- Produce anti-hydrogen for study
 - Trap
 - Observe (spectroscopy, ...)

Thanks to Rolf Landua (CERN)

Anti-proton beam

- CERN (1980):
 - SppS: led to discovery of W, Z

Principle of Antiproton Production

Anti-proton storage

- AC: Accumulator (3.57 GeV)
- PS: Decelarator (0.6 GeV)
- LEAR: Low Energy Anti-proton ring (1982)

Anti-hydrogen

• 1995: First 9 anti-hydrogen atoms made:

• 1997: Replace LEAR by AD (anti-proton decelerator)

Niels Tuning (39)

Anti-hydrogen production

• ATHENA and ATRAP experiments

Anti-hydrogen production

• ATRAP, ALPHA, ASACUSA, AEGIS experiments:

Anti-hydrogen production

Anti-hydrogen detection

- ATRAP, ATHENA: pioneering the trapping technique
- ALPHA: trapped anti-hydrogen for 16 minutes

- ASACUSA:
 - 2011: trapped anti-proton in He (replacing an electron), measuring mass to 10⁻⁹

21 Jan 2014:

• The <u>ASACUSA experiment</u> at CERN has succeeded for the first time in producing a beam of anti-hydrogen atoms. In a paper published today in <u>Nature Communications</u>, the ASACUSA collaboration reports the unambiguous detection of 80 anti-hydrogen atoms 2.7 metres downstream of their production, where the perturbing influence of the magnetic fields used initially to produce the anti-atoms is small. This result is a significant step towards precise hyperfine spectroscopy of anti-hydrogen atoms.

Anti-hydrogen detection

- AEgIS
 - Does antihydrogen fall with the same acceleration as hydrogen?

С, Р, Т

- C, P, T transformation:
 - C: interchange particles and anti-particles
 - P: reverse space-coordinates
 - T: Reverse time-coordinate
- CPT we discussed briefly ...
- After the break we deal with P and CP...
 ... violation!

Break

- What is the link between anti-matter and discrete symmetries?
- > C operator changes matter into anti-matter
- 2 more discrete symmetries: P and T

Continuous vs discrete symmetries

- Space, time translation & orientation symmetries are all continuous symmetries
 - Each symmetry operation associated with one ore more continuous parameter
- There are also *discrete* symmetries
 - Charge sign flip $(Q \rightarrow -Q)$: **C parity**
 - Spatial sign flip ($x,y,z \rightarrow -x,-y,-z$) : **P parity**
 - Time sign flip $(t \rightarrow -t)$: **T parity**
- Are these discrete symmetries *exact* symmetries that are observed by all physics in nature?
 - Key issue of this course

Three Discrete Symmetries

- Parity, P
 - Parity reflects a system through the origin. Converts right-handed coordinate systems to left-handed ones.
 - Vectors change sign but axial vectors remain unchanged
 - $\overrightarrow{x} \rightarrow -\overrightarrow{x}$, $\overrightarrow{p} \rightarrow -\overrightarrow{p}$, but $\overrightarrow{L} = \overrightarrow{x} \times \overrightarrow{p} \rightarrow \overrightarrow{L}$
- Charge Conjugation, C
 - Charge conjugation turns a particle into its anti-particle
 - $e^+ \rightarrow e^-$, $K^- \rightarrow K^+$
- Time Reversal, T
 - Changes, for example, the direction of motion of particles
 - $t \rightarrow -t$

Example: People believe in symmetry...

Instruction for Abel Tasman, explorer of Australia (1642):

 "Since many rich mines and other treasures have been found in countries north of the equator between 15° and 40° latitude, there is no doubt that countries alike exist south of the equator.

The provinces in Peru and Chili rich of gold and silver, all positioned south of the equator, are revealing proofs hereof."

Example: People believe in symmetry...

Award Ceremony Speech Nobel Prize (1957):

- "it was assumed almost tacitly, that elementary particle reactions are symmetric with respect to right and left."
- "In fact, most of us were inclined to regard the symmetry of elementary particles with respect to right and left as a necessary consequence of the general principle of right-left symmetry of Nature."
- "... only Lee and Yang ... asked themselves what kind of experimental support there was for the assumption that all elementary particle processes are symmetric with respect to right and left. "

Chen Ning Yang Tsung-I Prize share: 1/2 Prize sh

Tsung-Dao (T.D.) Lee Prize share: 1/2

A realistic experiment: the Wu experiment (1956)

- Observe radioactive decay of Cobalt-60 nuclei
 - The process involved: ${}^{60}_{27}\text{Co} \rightarrow {}^{60}_{28}\text{Ni} + e^- + \overline{v_e}$
 - ${}^{60}_{27}$ Co is spin-5 and ${}^{60}_{28}$ Ni is spin-4, both e- and v_e are spin-1/2
 - If you start with fully polarized Co ($S_z=5$) the experiment is essentially the same (i.e. there is only one spin solution for the decay)

 $|5,+5> \rightarrow |4,+4> + |\frac{1}{2},+\frac{1}{2}> + |\frac{1}{2},+\frac{1}{2}>$

Intermezzo: Spin and Parity and Helicity

• We introduce a new quantity: Helicity = the projection of the spin on the direction of flight of a particle

The Wu experiment – 1956

- Experimental challenge: how do you obtain a sample of Co(60) where the spins are aligned in one direction
 - Wu's solution: adiabatic demagnetization of Co(60) in magnetic fields at very low temperatures (~1/100 K!). Extremely challenging in 1956.

The Wu experiment – 1956

- The surprising result: the counting rate is different
 - Electrons are preferentially emitted in direction opposite of ⁶⁰Co spin!
 - Careful analysis of results shows that experimental data is consistent with emission of left-handed (H=-1) electrons only at any angle!!

'Backward' Counting rate w.r.t unpolarized rate

The Wu experiment – 1956

- Physics conclusion:
 - Angular distribution of electrons shows that only pairs of lefthanded electrons / right-handed anti-neutrinos are emitted regardless of the emission angle
 - Since right-handed electrons are known to exist (for electrons H is not Lorentz-invariant anyway), this means
 no left-handed anti-neutrinos are produced in weak decay
- Parity is violated in weak processes
 - Not just a little bit but 100%
- How can you see that ⁶⁰Co violates parity symmetry?
 - If there is parity symmetry there should exist no measurement that can distinguish our universe from a parity-flipped universe, but we can!

So P is violated, what's next?

- Wu's experiment was shortly followed by another clever experiment by L. Lederman: Look at decay $\pi^+ \rightarrow \mu^+ \nu_{\mu}$
 - Pion has spin 0, μ , ν_{μ} both have spin $\frac{1}{2}$ \rightarrow spin of decay products must be oppositely aligned \rightarrow Helicity of muon is same as that of neutrino.

- Nice feature: can also measure polarization of both neutrino (π⁺ decay) and anti-neutrino (π⁻ decay)
- Ledermans result: All neutrinos are left-handed and all anti-neutrinos are right-handed

Charge conjugation symmetry

- Introducing C-symmetry
 - The C(harge) conjugation is the operation which exchanges particles and anti-particles (not just electric charge)
 - It is a discrete symmetry, just like P, i.e. $C^2 = 1$

- C symmetry is broken by the weak interaction,
 - just like P

The Weak force and C,P parity violation

- What about $C+P \equiv CP$ symmetry?
 - CP symmetry is parity conjugation (x,y,z → -x,-y,z) followed by charge conjugation (X → \overline{X})

CP appears to be preserved in weak interaction!

What do we know now?

- C.S. Wu discovered from ⁶⁰Co decays that the weak interaction is 100% asymmetric in P-conjugation
 - We can distinguish our universe from a parity flipped universe by examining ⁶⁰Co decays
- L. Lederman et al. discovered from π⁺ decays that the weak interaction is 100% asymmetric in C-conjugation as well, but that CP-symmetry appears to be preserved
 - First important ingredient towards understanding matter/antimatter asymmetry of the universe: weak force violates matter/anti-matter(=C) symmetry!
 - C violation is a required ingredient, but not enough as we will learn later

Conserved properties associated with C and P

- C and P are still good symmetries in any reaction not involving the weak interaction
 - Can associate a conserved value with them (Noether Theorem)
- Each hadron has a conserved P and C quantum number
 - What are the values of the quantum numbers
 - Evaluate the eigenvalue of the P and C operators on each hadron $\mathbf{P}|_{\Psi} > = p|_{\Psi} >$
- What values of C and P are possible for hadrons?
 - Symmetry operation squared gives unity so eigenvalue squared must be 1
 - Possible C and P values are +1 and -1.
- Meaning of P quantum number
 - If P=1 then $P|\psi\rangle = +1|\psi\rangle$ (wave function symmetric in space) if P=-1 then $P|\psi\rangle = -1 |\psi\rangle$ (wave function anti-symmetric in space)

Figuring out P eigenvalues for hadrons

- QFT rules for particle vs. anti-particles
 - Parity of particle and anti-particle must be opposite for fermions (spin-N+1/2)
 - Parity of bosons (spin N) is same for particle and anti-particle
- Definition of convention (i.e. arbitrary choice in def. of q vs \overline{q})
 - Quarks have positive parity → Anti-quarks have negative parity
 - e⁻ has positive parity as well.
 - (Can define other way around: Notation different, physics same)
- Parity is a *multiplicative* quantum number for composites
 - For composite AB the parity is P(A)*P(B), Thus:
 - Baryons have P=1*1*1=1, anti-baryons have P=-1*-1*-1=-1
 - (Anti-)mesons have $P=1^*-1 = -1$
- Excited states (with orbital angular momentum)
 - Get an extra factor (-1) / where / is the orbital L quantum number
 - Note that parity formalism is parallel to total angular momentum J=L+S formalism, it has an *intrinsic* component and an *orbital* component
- NB: Photon is spin-1 particle has intrinsic P of -1

Parity eigenvalues for selected hadrons

- The π^+ meson
 - Quark and anti-quark composite: intrinsic $P = (1)^*(-1) = -1$
 - Orbital ground state \rightarrow no extra term
 - **P(**π⁺)=-1

Meaning: $P|\pi^+> = -1|\pi^+>$

- The neutron
 - Three quark composite: intrinsic $P = (1)^*(1)^*(1) = 1$
 - Orbital ground state \rightarrow no extra term
 - P(n) = +1
- The K₁(1270)
 - Quark anti-quark composite: intrinsic $P = (1)^*(-1) = -1$
 - Orbital excitation with L=1 \rightarrow extra term (-1)¹
 - $P(K_1) = +1$

Experimental proof: J.Steinberger (1954) $\underline{\pi d \rightarrow nn}$ •n are fermions, so (nn) anti-symmetric • $S_d=1, S_{\pi}=0 \rightarrow L_{nn}=1$ 1) final state: $P|nn> = (-1)^L|nn> = -1 |nn>$ 2) init state: $P|d> = P |pn> = (+1)^2|pn> = +1 |d>$ \Rightarrow To conserve parity: $P|\pi> = -1 |\pi>$

Figuring out C eigenvalues for hadrons

Only particles that are their own anti-particles are C eigenstates because C|x> = x> = c|x>

- E.g. π^0 , η , η' , ρ^0 , ϕ , ω , ψ and photon

- C eigenvalues of quark-anti-quark pairs is determined by L and S angular momenta: C = (-1)^{L+S}
 - Rule applies to all above mesons
- C eigenvalue of photon is -1
 - Since photon is carrier of EM force, which obviously changes sign under C conjugation
- Example of C conservation:
 - Process $\pi^0 \rightarrow \gamma \gamma$ C=+1(π^0 has spin 0) \rightarrow (-1)*(-1)
 - Process $\pi^0 \rightarrow \gamma \gamma \gamma$ does not occur (and would violate C conservation)

Experimental proof of C-invariance: BR($\pi^0 \rightarrow \gamma \gamma \gamma$)<3.1 10⁻⁵

- This was an introduction to P and C
- Let's change gear...

CP violation in the SM Lagrangian

• Focus on charged current interaction (W^{\pm}): let's trace it

The Standard Model Lagrangian

$$\mathbf{L}_{SM} = \mathbf{L}_{Kinetic} + \mathbf{L}_{Higgs} + \mathbf{L}_{Yukawa}$$

- L_{Kinetic} Introduce the massless fermion fields
 - Require local gauge invariance → gives rise to existence of gauge bosons
- L_{*Higgs* : Introduce Higgs potential with $\langle \phi \rangle \neq 0$ • Spontaneous symmetry breaking $G_{SM} = SU(3)_C \times SU(2)_L \times U(1)_Y \rightarrow SU(3)_C \times U(1)_Q$ The W⁺, W⁻, Z⁰ bosons acquire a mass}
- L_{Yukawa} : Ad hoc interactions between Higgs field & fermions

Fields: Notation

Fermions:

$$\psi_L = \left(\frac{1-\gamma_5}{2}\right)\psi \quad ; \quad \psi_R = \left(\frac{1+\gamma_5}{2}\right)\psi \qquad \text{with} \quad \psi = Q_L, \ u_R, \ d_R, \ L_L, \ l_R, \ v_R$$

 $Y = Q - T_3$

Quarks:

Under SU2: Left handed double Right hander single

number

Fields: Notation

Explicitly:

• The left handed quark doublet :

$$Q_{Li}^{I}(3,2,1/6) = \begin{pmatrix} u_{r}^{I}, u_{g}^{I}, u_{b}^{I} \\ d_{r}^{I}, d_{g}^{I}, d_{b}^{I} \end{pmatrix}_{L}, \begin{pmatrix} c_{r}^{I}, c_{g}^{I}, c_{b}^{I} \\ s_{r}^{I}, s_{g}^{I}, s_{b}^{I} \end{pmatrix}_{L}, \begin{pmatrix} t_{r}^{I}, t_{g}^{I}, t_{b}^{I} \\ b_{r}^{I}, b_{g}^{I}, b_{b}^{I} \end{pmatrix}_{L} \qquad T_{3} = +1/2$$

$$T_{3} = -1/2 \qquad (Y = 1/6)$$

• Similarly for the quark singlets:

$$u_{Ri}^{I}(3,1, 2/3) = \left(u_{r}^{I}, u_{r}^{I}, u_{r}^{I}\right)_{R}, \left(c_{r}^{I}, c_{r}^{I}, c_{r}^{I}\right)_{R}, \left(t_{r}^{I}, t_{r}^{I}, t_{r}^{I}\right)_{R} \qquad (Y = 2/3)$$

$$d_{Ri}^{I}(3,1,-1/3) = \left(d_{r}^{I}, d_{r}^{I}, d_{r}^{I}\right)_{R}, \left(s_{r}^{I}, s_{r}^{I}, s_{r}^{I}\right)_{R}, \left(b_{r}^{I}, b_{r}^{I}, b_{r}^{I}\right)_{R} \qquad (Y = -1/3)$$

• The left handed leptons: $L_{Li}^{I}(1,2,-1/2) = \begin{pmatrix} v_{e}^{I} \\ e^{I} \end{pmatrix}_{L}, \begin{pmatrix} v_{\mu}^{I} \\ \mu^{I} \end{pmatrix}_{L}, \begin{pmatrix} v_{\tau}^{I} \\ \tau^{I} \end{pmatrix}_{L}, \quad T_{3} = -1/2 \quad (Y = -1/2)$

• And similarly the (charged) singlets: $l_{Ri}^{I}(1,1,-1) = e_{R}^{I}, \mu_{R}^{I}, \tau_{R}^{I}$ (Y=-1)

 $Y = Q - T_3$

Introduce the Fermion fields and <u>demand</u> that the theory is local gauge invariant under $SU(3)_C x SU(2)_L x U(1)_Y$ transformations.

Start with the Dirac Lagrangian: $L = i \overline{\psi} (\partial^{\mu} \gamma_{\mu}) \psi$

Replace:
$$\partial^{\mu} \rightarrow D^{\mu} \equiv \partial^{\mu} + ig_s G_a^{\mu} L_a + ig W_b^{\mu} T_b + ig' B^{\mu} Y$$
Fields: G_a^{μ} : 8 gluons
 W_b^{μ} : weak bosons: W_1, W_2, W_3
 B^{μ} : hypercharge bosonGenerators: L_a : Gell-Mann matrices: $\frac{1}{2} \lambda_a$ (3x3) $SU(3)_C$
 T_b : Pauli Matrices: $\frac{1}{2} \tau_b$ (2x2) $SU(2)_L$
 $U(1)_Y$

For the remainder we only consider Electroweak: $SU(2)_L \times U(1)_Y$

$$L_{SM} = L_{Kinetic} + L_{Higgs} + L_{Yukawa}$$
: The Kinetic Part
$$L_{kinetic} : i\overline{\psi}(\partial^{\mu}\gamma_{\mu})\psi \rightarrow i\overline{\psi}(D^{\mu}\gamma_{\mu})\psi$$

with $\psi = Q_{Li}^{I}, \ u_{Ri}^{I}, \ d_{Ri}^{I}, \ L_{Li}^{I}, \ l_{Ri}^{I}$

For example, the term with Q_{Li}^{I} becomes:

$$L_{kinetic}(Q_{Li}^{I}) = iQ_{Li}^{I}\gamma_{\mu}D^{\mu}Q_{Li}^{I}$$

$$= i\overline{Q_{Li}^{I}}\gamma_{\mu} \left(\partial^{\mu} + \frac{i}{2}g_{s}G_{a}^{\mu}\lambda_{a} + \frac{i}{2}gW_{b}^{\mu}\tau_{b} + \frac{i}{6}g'B^{\mu}\right)Q_{Li}^{I}$$

Writing out only the weak part for the quarks:

g

 $d_L^I /$

$$L_{kinetic}^{Weak}(u,d)_{L}^{I} = i\overline{(u,d)}_{L}^{I}\gamma_{\mu} \left(\partial^{\mu} + \frac{i}{2}g\left(W_{1}^{\mu}\tau_{1} + W_{2}^{\mu}\tau_{2} + W_{3}^{\mu}\tau_{3}\right)\right) \begin{pmatrix} u \\ d \end{pmatrix}_{L}^{I}$$

$$= i\overline{u}_{L}^{I}\gamma_{\mu}\partial^{\mu}u_{L}^{I} + i\overline{d}_{L}^{I}\gamma_{\mu}\partial^{\mu}d_{L}^{I} - \frac{g}{\sqrt{2}}\overline{u}_{L}^{I}\gamma_{\mu}W^{-\mu}d_{L}^{I} - \frac{g}{\sqrt{2}}\overline{d}_{L}^{I}\gamma_{\mu}W^{+\mu}u_{L}^{I} - \dots$$

$$= I_{\mu}W^{\mu} \qquad U_{L}^{I} = (1/\sqrt{2})(W_{1} + iW_{2})$$

$$W^{I} = (1/\sqrt{2})(W_{1} - iW_{2})$$

Niels Tuning (72)

 $\tau_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

Spontaneous Symmetry Breaking: The Higgs field adopts a non-zero vacuum expectation value

Procedure:

$$\phi = \begin{pmatrix} \varphi^+ \\ \varphi^0 \end{pmatrix} = \begin{pmatrix} \Re e \, \varphi^+ + i \Im m \, \phi^+ \\ \Re e \, \varphi^0 + i \Im m \, \phi^0 \end{pmatrix} \qquad \text{Substitute:} \qquad \Re e \, \varphi^0 = \frac{v + H^0}{\sqrt{2}}$$

And rewrite the Lagrangian (tedious):

(The other 3 Higgs fields are "eaten" by the W, Z bosons)

1. $G_{SM}: (SU(3)_C \times SU(2)_L \times U(1)_Y) \rightarrow (SU(3)_C \times U(1)_{EM})$ 2. The W^+, W^-, Z^0 bosons acquire mass 3. The Higgs boson H appears

$$\mathsf{L}_{SM} = \mathsf{L}_{Kinetic} + \mathsf{L}_{Higgs} + \mathsf{L}_{Yukawa}$$

Since we have a Higgs field we can (should?) add (ad-hoc) interactions between ϕ and the fermions in a gauge invariant way.

The result is:

$$-\mathcal{L}_{Yukawa} = Y_{ij} (\overrightarrow{\psi}_{Li} \phi) \psi_{Rj} + h.c.$$

$$= (Y_{ij}^{d} (\overline{Q}_{Li}^{I} \phi) d_{Rj}^{I} + Y_{ij}^{u} (\overline{Q}_{Li}^{I} \phi) u_{Rj}^{I} + Y_{ij}^{l} (\overline{L}_{Li}^{I} \phi) l_{Rj}^{I} + h.c.$$

$$i, j: \text{ indices for the 3 generations!}$$

$$\text{With:} \quad \tilde{\phi} = i\sigma_{2} \phi^{*} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \phi^{*} = \begin{pmatrix} \phi^{0} \\ -\phi^{-} \end{pmatrix}$$

$$\text{To be manifestly invariant under SU(2)}$$

are arbitrary complex matrices which operate in family space (3x3)
→ Flavour physics!

$$L_{SM} = L_{Kinetic} + L_{Higgs} + L_{Yukawa} : \text{The Yukawa Part}$$
Writing the first term explicitly:

$$Y_{ij}^{d} (\overline{u_{L}^{I}}, \overline{d_{L}^{I}})_{i} \begin{pmatrix} \varphi^{+} \\ \varphi^{0} \end{pmatrix} d_{Rj}^{I} =$$

$$\begin{pmatrix} Y_{11}^{d} (\overline{u_{L}^{I}}, \overline{d_{L}^{I}})_{i} \begin{pmatrix} \varphi^{+} \\ \varphi^{0} \end{pmatrix} & Y_{12}^{d} (\overline{u_{L}^{I}}, \overline{d_{L}^{I}}) \begin{pmatrix} \varphi^{+} \\ \varphi^{0} \end{pmatrix} & Y_{13}^{d} (\overline{u_{L}^{I}}, \overline{d_{L}^{I}}) \begin{pmatrix} \varphi^{+} \\ \varphi^{0} \end{pmatrix} \\ Y_{21}^{d} (\overline{c_{L}^{I}}, \overline{s_{L}^{I}}) \begin{pmatrix} \varphi^{+} \\ \varphi^{0} \end{pmatrix} & Y_{22}^{d} (\overline{c_{L}^{I}}, \overline{s_{L}^{I}}) \begin{pmatrix} \varphi^{+} \\ \varphi^{0} \end{pmatrix} & Y_{13}^{d} (\overline{c_{L}^{I}}, \overline{s_{L}^{I}}) \begin{pmatrix} \varphi^{+} \\ \varphi^{0} \end{pmatrix} \\ Y_{31}^{d} (\overline{t_{L}^{I}}, \overline{b_{L}^{I}}) \begin{pmatrix} \varphi^{+} \\ \varphi^{0} \end{pmatrix} & Y_{32}^{d} (\overline{t_{L}^{I}}, \overline{b_{L}^{I}}) \begin{pmatrix} \varphi^{+} \\ \varphi^{0} \end{pmatrix} & Y_{33}^{d} (\overline{t_{L}^{I}}, \overline{b_{L}^{I}}) \begin{pmatrix} \varphi^{+} \\ \varphi^{0} \end{pmatrix} \end{pmatrix} e^{\begin{pmatrix} d_{R}^{I} \\ s_{R}^{I} \\ b_{R}^{I} \end{pmatrix}}$$

$$\mathsf{L}_{SM} = \mathsf{L}_{Kinetic} + \mathsf{L}_{Higgs} + \mathsf{L}_{Yukawa}$$

There are 3 Yukawa matrices (in the case of massless neutrino's):

 Y_{ij}^d , Y_{ij}^u , Y_{ij}^l

Each matrix is 3x3 complex:

- 27 real parameters
- 27 imaginary parameters ("phases")

many of the parameters are equivalent, since the physics described by one set of couplings is the same as another

- > It can be shown (see ref. [Nir]) that the independent parameters are:
 - 12 real parameters
 - 1 imaginary phase

➤This single phase is the source of all CP violation in the Standard Model

.....Revisit later Niels Tuning (76)

Start with the Yukawa Lagrangian

$$-\mathcal{L}_{Yuk} = Y_{ij}^{d} (\overline{u_{L}^{I}}, \overline{d_{L}^{I}})_{i} \begin{pmatrix} \varphi^{+} \\ \varphi^{0} \end{pmatrix} d_{Rj}^{I} + Y_{ij}^{u} (...) + Y_{ij}^{l} (...)$$

S.S.B. : $\Re e(\varphi^{0}) \rightarrow \frac{v+H}{\sqrt{2}}$

After which the following mass term emerges:

$$-L_{Yuk} \rightarrow -L_{Mass} = d_{Li}^{I} M_{ij}^{d} d_{Rj}^{I} + u_{Li}^{I} M_{ij}^{u} u_{Rj}^{I}$$
$$+ \overline{l_{Li}^{I}} M_{ij}^{l} l_{Rj}^{I} + h.c.$$
with $M_{ij}^{d} \equiv \frac{v}{\sqrt{2}} Y_{ij}^{d}$, $M_{ij}^{u} \equiv \frac{v}{\sqrt{2}} Y_{ij}^{u}$, $M_{ij}^{I} \equiv \frac{v}{\sqrt{2}} Y_{ij}^{U}$

 L_{Mass} is CP violating in a similar way as L_{Yuk}

Multiple as the second second that the second

$$-L_{Mass} = (\overline{d^{T}, \overline{s^{T}, \overline{b^{T}}}}) \left[(M^{d}) \right]_{R}^{\binom{d^{T}}{s^{T}}} + (\overline{u^{T}, \overline{c^{T}, \overline{t^{T}}}}) \left[(M^{u}) \right]_{R}^{\binom{u^{T}}{s^{T}}} + (\overline{e^{T}, \overline{\mu^{T}, \overline{\tau^{T}}}}) \left[(M^{l}) \right]_{R}^{\binom{e^{T}}{\mu^{T}}} + h.c.$$
The matrices M can always be diagonalised by unitary matrices V_{L}^{f} and V_{R}^{f} such that:
$$V_{L}^{f} M^{f} V_{R}^{f\dagger} = M_{diagonal}^{f}$$

$$\left[(\overline{d^{T}, \overline{s^{T}, \overline{b^{T}}}})_{L} V_{L}^{f\dagger} V_{L}^{f\dagger} V_{R}^{f\dagger} V_{R}^{f} \left[(\overline{s^{T}}_{b^{T}})_{L} V_{L}^{f\dagger} V_{L}^{f} M^{f} V_{R}^{f\dagger} V_{R}^{f} \left[(\overline{s^{T}}_{b^{T}})_{L} V_{L}^{f\dagger} V_{L}^{f\dagger} N^{f} V_{R}^{f\dagger} V_{R}^{f\dagger} \left[(\overline{s^{T}}_{b^{T}})_{L} V_{L}^{f\dagger} V_{L}^{f\dagger} N^{f} V_{R}^{f\dagger} V_{R}^{f\dagger} \left[(\overline{s^{T}}_{b^{T}})_{L} V_{L}^{f\dagger} V_{L}^{f\dagger} N^{f} V_{R}^{f\dagger} V_{R}^{f\dagger} \left[(\overline{s^{T}}_{b^{T}})_{L} V_{L}^{f\dagger} V_{L}^{f\dagger} V_{R}^{f\dagger} V_{R}^{f\dagger} V_{R}^{f\dagger} V_{R}^{f\dagger} V_{R}^{f\dagger} V_{R}^{f\dagger} V_{L}^{f\dagger} V_{R}^{f\dagger} V_{R}^{f\dagger} V_{R}^{f\dagger} V_{R}^{f\dagger} V_{R}^{f\dagger} V_{R}^{f\dagger} V_{R}^{f} V_{R}^{f\dagger} V_{R}^{f\dagger} V_{R}^{f} V_{R}^{f\dagger} V_{R}^{f} V_{R}^{f} V_{R}^{f} V_{R}^{f} V_{R}^{f} V_{R}^{f} V_{R}^{f\dagger} V_{R}^{f} V_{R}^{f}$$

Then the real fermion mass eigenstates are given by:

$$d_{Li} = \left(V_L^d\right)_{ij} \cdot d_{Lj}^I \qquad d_{Ri} = \left(V_R^d\right)_{ij} \cdot d_{Rj}^I$$
$$u_{Li} = \left(V_L^u\right)_{ij} \cdot u_{Lj}^I \qquad u_{Ri} = \left(V_R^u\right)_{ij} \cdot u_{Rj}^I$$
$$l_{Li} = \left(V_L^l\right)_{ij} \cdot l_{Lj}^I \qquad l_{Ri} = \left(V_R^l\right)_{ij} \cdot l_{Rj}^I$$

 $d_L^{I}, u_L^{I}, l_L^{I}$ are the weak interaction eigenstates d_L, u_L, l_L are the mass eigenstates ("physical particles")

Niels Tuning (78)

In flavour space one can choose:

<u>Weak basis</u>: The gauge currents are diagonal in flavour space, but the flavour mass matrices are non-diagonal

<u>Mass basis</u>: The fermion masses are diagonal, but some gauge currents (charged weak interactions) are not diagonal in flavour space

In the weak basis: L_{Yukawa} = CP violating In the mass basis: L_{Yukawa} \rightarrow L_{Mass} = CP conserving

 \rightarrow What happened to the charged current interactions (in L_{Kinetic}) ?

 $L_W \rightarrow L_{CKM}$: The Charged Current

The charged current interaction for quarks in the *interaction* basis is:

$$-L_{W^+} = \frac{g}{\sqrt{2}} \overline{u_{Li}^I} \gamma^{\mu} d_{Li}^I W_{\mu}^+$$

The charged current interaction for quarks in the mass basis is:

$$-L_{W^+} = rac{g}{\sqrt{2}} \overline{u_{Li}} V^u_L \gamma^\mu V^{d\dagger}_L d_{Li} W^+_\mu$$

The unitary matrix: $V_{CKM} = (V_L^u \cdot V_L^{d\dagger})$ With: $V_{CKM} \cdot V_{CKM}^{\dagger} = 1$

is the Cabibbo Kobayashi Maskawa mixing matrix:

$$-L_{W^{+}} = \frac{g}{\sqrt{2}} \left(\overline{u}, \overline{c}, \overline{t}\right)_{L} \left(V_{CKM}\right) \begin{pmatrix} d \\ s \\ b \end{pmatrix}_{L} \qquad \gamma^{\mu} W_{\mu}^{+}$$

Lepton sector: similarly $V_{MNS} = \left(V_L^{\nu} \cdot V_L^{l\dagger}\right)$

However, for massless neutrino's: V_L^{ν} = arbitrary. Choose it such that $V_{MNS} = 1$ There is no mixing in the lepton sector
Niels Tuning (80)

Charged Currents

The charged current term reads:

$$\begin{split} \mathcal{L}_{CC} &= \frac{g}{\sqrt{2}} \overline{u_{Li}^{I}} \gamma^{\mu} W_{\mu}^{-} d_{Li}^{I} + \frac{g}{\sqrt{2}} \overline{d_{Li}^{I}} \gamma^{\mu} W_{\mu}^{+} u_{Li}^{I} = J_{CC}^{\mu-} W_{\mu}^{-} + J_{CC}^{\mu+} W_{\mu}^{+} \\ &= \frac{g}{\sqrt{2}} \overline{u_{i}} \left(\frac{1 - \gamma^{5}}{2} \right) \gamma^{\mu} W_{\mu}^{-} \mathbf{V}_{ij} \left(\frac{1 - \gamma^{5}}{2} \right) d_{j} + \frac{g}{\sqrt{2}} \overline{d_{j}} \left(\frac{1 - \gamma^{5}}{2} \right) \gamma^{\mu} W_{\mu}^{+} \mathbf{V}_{ji}^{\dagger} \left(\frac{1 - \gamma^{5}}{2} \right) u_{i} \\ &= \frac{g}{\sqrt{2}} \overline{u_{i}} \gamma^{\mu} W_{\mu}^{-} \mathbf{V}_{ij} \left(1 - \gamma^{5} \right) d_{j} + \frac{g}{\sqrt{2}} \overline{d_{j}} \gamma^{\mu} W_{\mu}^{+} \mathbf{V}_{ij}^{*} \left(1 - \gamma^{5} \right) u_{i} \end{split}$$

Under the CP operator this gives:

(Together with $(x,t) \rightarrow (-x,t)$)

$$L_{CC} \xrightarrow{CP} \frac{g}{\sqrt{2}} \overline{d_j} \gamma^{\mu} W^+_{\mu} V_{ij} \left(1 - \gamma^5\right) u_i + \frac{g}{\sqrt{2}} \overline{u_i} \gamma^{\mu} W^i_{\mu} V^*_{ij} \left(1 - \gamma^5\right) d_j$$

A comparison shows that CP is conserved only if $V_{ij} = V_{ij}^{*}$

In general the charged current term is CP violating

$$\begin{split} L_{SM} &= L_{Kinetic} + L_{Higgs} + L_{Yukawa} \qquad \text{Recap} \\ -L_{Yuk} &= Y_{ij}^{d} \left(\overline{u_{L}^{T}}, \overline{d_{L}^{T}} \right)_{i} \begin{pmatrix} \varphi^{+} \\ \varphi^{0} \end{pmatrix} d_{Rj}^{t} + \dots \\ L_{Kinetic} &= \frac{g}{\sqrt{2}} \overline{u_{Li}^{T}} \gamma^{\mu} W_{\mu}^{-} d_{Li}^{t} + \frac{g}{\sqrt{2}} \overline{d_{Li}^{T}} \gamma^{\mu} W_{\mu}^{+} u_{Li}^{t} + \dots \\ \\ \text{Diagonalize Yukawa matrix Y}_{ij} \\ &= \text{Mass terms} \\ &= \text{Quarks rotate} \\ &= \text{Off diagonal terms in charged current couplings} \qquad \begin{pmatrix} d^{T} \\ s^{T} \\ b^{T} \end{pmatrix} \rightarrow V_{CKM} \begin{pmatrix} d \\ s \\ b^{T} \end{pmatrix} \\ \\ \begin{pmatrix} d \\ s \\ b^{T} \end{pmatrix} \rightarrow V_{CKM} \begin{pmatrix} d \\ s \\ b^{T} \end{pmatrix} \\ \\ \begin{pmatrix} -L_{Mass} = (\overline{d}, \overline{s}, \overline{b})_{L} \begin{pmatrix} m_{d} \\ m_{s} \\ m_{b} \end{pmatrix} \\ \\ \begin{pmatrix} d \\ s \\ b^{T} \end{pmatrix} + (\overline{u}, \overline{c}, \overline{t})_{L} \begin{pmatrix} m_{u} \\ m_{c} \\ m_{t} \end{pmatrix} \\ \\ \begin{pmatrix} u \\ t \\ c_{KM} \end{pmatrix} \\ \\ \\ \begin{pmatrix} g \\ \sqrt{2} \\ \overline{u}_{i} \gamma^{\mu} W_{\mu}^{-} V_{ij} (1 - \gamma^{5}) d_{j} + \frac{g}{\sqrt{2}} \overline{d}_{j} \gamma^{\mu} W_{\mu}^{+} V_{ij}^{*} (1 - \gamma^{5}) u_{i} + \dots \\ \\ \end{pmatrix} \end{split}$$

$$L_{SM} = L_{CKM} + L_{Higgs} + L_{Mass}$$

Ok.... We've got the CKM matrix, now what?

$$\begin{pmatrix} d'\\s'\\b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\V_{cd} & V_{cs} & V_{cb}\\V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\s\\b \end{pmatrix}$$

- It's *unitary*
 - "probabilities add up to 1":
 - $d'=0.97 d + 0.22 s + 0.003 b (0.97^2+0.22^2+0.003^2=1)$
- How many free parameters?
 - How many real/complex?
- How do we normally visualize these parameters?

Personal impression:

- People think it is a complicated part of the Standard Model (me too:-). Why?
- 1) Non-intuitive concepts?
 - *Imaginary phase* in transition amplitude, $T \sim e^{i\phi}$
 - Different bases to express quark states, d'=0.97 d + 0.22 s + 0.003 b
 - Oscillations (mixing) of mesons: $/K^0 > \leftrightarrow | \overline{K}^0 >$
- 2) Complicated calculations?

$$\Gamma\left(B^{0} \to f\right) \propto \left|A_{f}\right|^{2} \left[\left|g_{+}\left(t\right)\right|^{2} + \left|\lambda\right|^{2}\left|g_{-}\left(t\right)\right|^{2} + 2\Re\left(\lambda g_{+}^{*}\left(t\right)g_{-}\left(t\right)\right)\right]$$

$$\Gamma\left(\overline{B}^{0} \to f\right) \propto \left|\overline{A}_{f}\right|^{2} \left[\left|g_{+}\left(t\right)\right|^{2} + \frac{1}{\left|\lambda\right|^{2}}\left|g_{-}\left(t\right)\right|^{2} + \frac{2}{\left|\lambda\right|^{2}}\Re\left(\lambda^{*}g_{+}^{*}\left(t\right)g_{-}\left(t\right)\right)\right]$$

- 3) Many decay modes? "Beetopaipaigamma..."
 - PDG reports 347 decay modes of the B⁰-meson:
 - $\Gamma_1 \ l^+ v_l \text{ anything}$ (10.33 ± 0.28) × 10⁻²
 - $\Gamma_{347} V V Y$ <4.7 × 10⁻⁵ CL=90%
 - And for one decay there are often more than one decay amplitudes...

Table of contents

In	Introduction			
1	СР	Violation in the Standard Model	3	
_	1 1	Parity transformation	3	
	1.1		5	
		1.1.1 The Wu-experiment: 60 Co decay	4	
		1.1.2 Parity violation	5	
		1.1.3 CPT	7	
	1.2	C, P and T: Discrete symmetries in Maxwell's equations $\hfill\hf$	8	
	1.3	C, P and T: Discrete symmetries in QED	9	
	1.4	CP violation and the Standard Model Lagrangian $\hdots \ldots \hdots \hdots\hdo$	12	
		1.4.1 Yukawa couplings and the Origin of Quark Mixing	12	
		1.4.2 CP violation	15	
2	\mathbf{The}	Cabibbo-Kobayashi-Maskawa Matrix	17	
	2.1	Unitarity Triangle(s) \ldots	17	
	2.2	Size of matrix elements	20	
	2.3	Wolfenstein parameterization	23	
	2.4	Discussion	26	
3	Neu	atral Meson Decays	27	
	3.1	Neutral Meson Oscillations	27	
	3.2	The mass and decay matrix	27	

	3.3	Eigenvalues and -vectors of Mass-decay Matrix	29
	3.4	Time evolution \ldots	30
	3.5	The Amplitude of the Box diagram $\hdots \ldots \hdots \hdddt \hdots \hdots\hdots \hdots \hdd$	32
	3.6	Meson Decays	35
	3.7	Classification of CP Violating Effects	36
4	CP	violation in the B-system	39
	4.1	β : the $B^0 \rightarrow I/2/K^0$ decay	40
	4.2	β : the $B^0 \rightarrow J/\psi h g$ decay	40
	4.2	p_s , the $B_s \to f \psi \psi$ decay	46
	4.5	Direct CP violation: the $B^0 \rightarrow \pi^- K^+$ decay	40
	4.4	Direct C1 violation, the $D \rightarrow \pi K^{-}$ decay	40
	4.5	CF violation in mixing: the $D \to t^* \nu A$ decay	49
	4.0	rengum diagram: the $D^* \to \phi \Lambda_S$ decay	90
5	\mathbf{CP}	violation in the K-system	51
	5.1	CP and pions \hdots	51
	5.2	Description of the K-system	53
	5.3	The Cronin-Fitch experiment	54
		5.3.1 Regeneration	56
	5.4	CP violation in mixing: ϵ	57
	5.5	CP violation in decay: ϵ'	58
G	Erro	animental Aspests and Descent Knowledge of Unitarity Twicngle	61
0	ыхр	Present Knowledge of Unitarity Triangle	01
	0.1	B-meson production	01
	6.2	Flavour lagging	65
	6.3	Present Knowledge on Unitarity Triangle	66
		6.3.1 Measurement of $\sin 2\beta$	67
		6.3.2 Measurement of ϵ_K	67
		6.3.3 $ V_{ub}/V_{cb} $ 6.3.4Measurement of Δm	68 68
	6.4	Outlook: the LHCb experiment	71